Cell compression force testing and its effects on thermal runaway response

J. Graika, T. Barrera, Y. Alobaidi

Project Team

Presenter Jason Graika

Date

11/28/2018

Name	Discipline	Organization
Core Team		
Chris Iannello	NESC Lead Power	KSC
Thomas P. Barrera	Technical Lead	LIB-X Consulting
Eric Darcy	Battery Specialist	NASA – JSC
Jason Graika	Battery Specialist	NASA – JSC
Daniel Doughty	Battery Specialist	Battery Safety Consulting, Inc.
Penni Dalton	Battery Specialist/ ISS Battery SSM	NASA – GRC
Kauser Imtiaz	NESC Lead Structures	NASA – JSC
Rob Button	NESC EP TDT Deputy	NASA - GRC
Yasir Alobaidi	Test Director ESTA	Jacobs Engineering
Yaramy Trevino	Test Director ESTA	Jacobs Engineering
Business Management		
Stephanie Hamrick	Program Analyst	LaRC/MTSO
Assessment Support		
Amy Tarnowski	Project Coordinator	LaRC/AMA
Linda Burgess	Planning and Control Analyst	LaRC/AMA
Jonay Campbell	Technical Editor	LaRC/SGT
Guy Kemmerly	Technical Writer/Engr	LaRC/AMA

	Background	Presenter Jason Graika
		Date 11/28/2018

- Lessons learned from recent aerospace lithium-ion battery (LIB) mishaps has created a new industry-wide awareness of catastrophic thermal runaway (TR) risks and hazards
- The NASA Engineering and Safety Center (NESC) has responded by sponsoring independent assessments of the ISS Extravehicular Mobility Unit (EMU) and Main LIB orbital replacement unit (ORU) energy storage systems
- NASA uses GS Yuasa LSE 134-101 cells for the ISS main battery
 - Configuration controlled cell with 1 vent on top
- Previous thermal runaway testing* has shown this particular cell has a propensity to eject cell contents from top of cell

*International Space Station Lithium-Ion Battery Thermal Runaway Propagation Test – 2017 NASA battery workshop Timothy North, Boeing; and Penni Dalton, NASA Glenn Research Center And Assessment of International Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR) 2017 Space Power Wokshop Jason Graika

Background	Presenter Jason Graika
Background	Date 11/28/2018

- NESC was concerned the ejection of the cell contents from the can causes an under test of the cell during thermal runaway resulting in lower cell temperatures and potentially misrepresenting the risk for cell-to-cell propagation.
- Cells in ISS main battery (and many other large format batteries) are clamped to immobilize cell contents for flight launch loads
- Aerojet Rocketdyne performed analysis* that showed that the preload clamping forces caused a highly stressed area near the top that would fail under flight compression loads during thermal runway

*TPD- 339467 "Answers to NASA questions on Li-Ion Thermal Runaway" August 2017 Hector Ortiz

Cell Information

Manufacturer and Part Number	GS-Yuasa LSE134-101
Chemistry	Lithium Cobalt Oxide
Performance	
Capacity (nameplate)	134 A-hr
Energy (nameplate)	496 W-hr
Energy Density at BOL	349 Wh/L
Specific Energy at BOL	155 Wh/kg
Temperature Range	
Charge	+10 to +35C
Discharge	-10 to + 35C
Mechanical	
Dimension (WxDxH) excluding terminals	130 x 50 x 271 mm
Weight	3.53 kg

Flight battery configuration

- A flight battery is comprised of 30 cells arranged into 3 separate 10 packs with each 10 pack comprised of 5 pairs of cells in series
- 10 screws are applied to each cell pair
- 1200 lb. of compression force applied to each cell pair

Structural analysis on bolts

Presenter Jason Graika Date 11/28/2018

Test Compression Calculation (4 Bolts)

Bolt Dia = 0.375

k_{PTFE Grease} = 0.10 - 0.18

- Analysis was completed to compare flight loading and test setup
 - Ungreased screws were found to create a large degree of uncertainty in the calculations
- 7 in-lb testing was found to be below flight level
- 14 was found to be close to flight load
- 19 in-lbs was found to be high but within the calculation error of flight loading

Total Cell	Single Bolt	Bolt	Torque (in-l	bs)	
Compression	Force	Max	Mean	Min	
lb	lb	k = 0.18	k = 0.13	k = 0.10	
2030	507.5	34.3	24.7	19.0	
1900	475	32.1	23.2	17.8	
1800	450	30.4	21.9	16.9	
1700	425	28.7	20.7	15.9	
1560	390	26.3	19.0	14.6	
1490	372.5	25.1	18.2	14.0	
1400	350	23.6	17.1	13.1	
1300	325	21.9	15.8	12.2	
1200	300	20.3	14.6	11.3	Flight Compression
1150	287.5	19.4	14.0	10.8	
1125	281.25	19.0	13.7	10.5	
900	225	15.2	11.0	8.4	
827	206.75	14.0	10.1	7.8	
745	186.25	12.6	9.1	7.0	
575	143.75	9.7	7.0	5.4	
500	125	8.4	6.1	4.7	
415	103.75	7.0	5.1	3.9	
300	75	5.1	3.7	2.8	
200	50	3.4	2.4	1.9	

Kauser Imtiaz - ISS Li-Ion Battery Thermal Runaway Test – Bolt Torque Assessment

Testing Methodology

- Cells were clamped following vendor procedure
- Custom drill rig controlled by an operator was used for trigger method
 - Drill bit diameter of .1285" with 4/16" max penetration distance
- Video monitoring, IR video, cell temperature, cell voltage, and cell current were all recorded
- All cells were charged to 3.95V (ISS maximum voltage per cell)
- Tests conducted in open air environment
- Values of 0, 7, 14, and 19 in-lb of torque were applied to screws.

DIVISION

Testing to date

Presenter Jason Graika Date

11/28/2018

Test	Trigger method	Clamping forces applied*	Result (eject or not)
Heat to vent 4-13-16	Ni chrome wire heaters	19 in-lb	Full ejection
Drill Penetration 6-6-16	¼" screw steel	19 in-lb	Full ejection
Drill Penetration with enclosure 6-22-16	.1285" 5/16 flute length drill bit cobalt	19 in-lb	Partial ejection (obstructed by lid)
Drill Penetration with enclosure 7-13-16	.1285" 5/16 flute length drill bit cobalt	19 in-lb	Partial ejection (obstructed by lid)
WSTF test 11-3-16	.1285" 4/16 flute length drill bit cobalt	~Flight load	Full ejection
Clamping force test 1 9-7-18	.1285" 4/16 flute length drill bit cobalt	0 in-lb	No ejection
Compression force test 2 9-8-18	.1285" 4/16 flute length drill bit cobalt	14 in-lb	Full ejection
Compression force test 3 9-8-18	.1285" 4/16 flute length drill bit cobalt	7 in-lb	No ejection
Compression force test 4 9-25-18	.1285" 4/16 flute length drill bit cobalt	14 in-lb	Full ejection
Ccompression force test 5 9-25-18	.1285" 4/16 flute length drill bit cobalt	7 in-lb	Full ejection

*Approximate as load cells are not used in these tests

Vent actuation to ejection

Presenter Jason Graika Date 11/28/2018

Test	Time from vent actuation until jelly roll ejection (approximate*)
Heat to vent 4-13-16	4 seconds
Drill penetration 6-6-16	5.5 seconds
Drill penetration 6-22-16	6.5 seconds
Drill Penetration 7-13-16	8.5 seconds
Clamping forces test 9-8-18 14 in-lbs	12 seconds
Clamping forces test 9-25-18 7 in-lbs	7 seconds
Clamping forces test 9-25-18 14 in-lbs	8 seconds

*Data gathered from watching video and approximating exact times

Video 0 compression force

Video 14 in-lb compression force

7 in lb test run 1 temp plot

14 in lb test run 1 temp plot

Compression force Vs max temp TR

Test	Compression force	Max temp during TR	Cell contents ejected
Heat to vent 4-13-16	19 in-lb	619.17	Yes
Drill Penetration 6-6-16	19 in-lb	542.77	Yes
Drill Penetration with enclosure 6-22- 16	19 in-lb	421.76	Yes
Drill Penetration with enclosure 7-13- 16	19 in-lb	650.63	Yes
Clamping force test 1 9-7-18	0 in-lb	284.37	No
Clamping force test 2 9-8-18	14 in-lb	430.60	Yes
Clamping force test 3 9-8-18	7 in-lb	337.43	No
Clamping force test 3 9-25-18	14 in-lb	265.77	Yes
Clamping force test 3 9-25-18	7 in-lb	218.45	Yes

Compression force Vs max temp TR

Presenter Jason Graika Date 11/28/2018

Max temp Vs compression force

Post tost	Presenter Jason Graika
FUSI IESI	Date 11/28/2018

Lessons learned	Date 11/28/2018

- Compression force applied to cell does appear to be a factor but not the main factor in how a cell reacts to thermal runway
 - 2 out of 3 runs at lower compression forces (7 or 0 in-lb) did not result in a cell content ejection
 - Cell can appears to swell more in no and lower compression force cases
 - May effect temp measurement as we are measuring skin temp and distance to jelly roll increases with cell can swelling
 - Current discussion on if the cell can is allowed to swell (via low or no clamping force), this could increase the flow path area for internal gasses to escape the cell vents, thereby preventing the very high pressures that are likely causing the cell content ejections.
 - Some correlation between max skin temp measured and compression force applied on the cell

Novt ctope	Presenter Jason Graika
Next steps	Date 11/28/2018

- Recommend further study into area
- May be an opportunity for battery designers to design a battery that behaves more benignly in thermal runaway or is less likely to propagate
- No further testing planned yet but possible further testing includes:
 - Additional compression testing with load cells to better quantify compression forces
 - Possibility of testing different cell types
 - Possibility of testing cells with different vents

Acknowledgments

Presenter	
	Jason Graika
Date	
	11/28/2018

- Thanks to the NESC and Chris Iannello for sponsoring this work
- Thanks to ISS Battery project, Penni Dalton, and Eugene Schwanbeck for helping to supply cells for this testing
- Thanks to all support of Yaramy Trevino, Yasir Alobaidi and rest of NASA JSC ESTA personnel for outstanding support during testing