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Background
• Lessons learned from recent aerospace lithium-ion battery (LIB) 

mishaps has created a new industry-wide awareness of catastrophic 
thermal runaway (TR) risks and hazards 

• The NASA Engineering and Safety Center (NESC) has responded by 
sponsoring independent assessments of the ISS Extravehicular 
Mobility Unit (EMU) and Main LIB orbital replacement unit (ORU) 
energy storage systems

• NASA uses GS Yuasa LSE 134-101 cells for the ISS main battery
• Configuration controlled cell with 1 vent on top

• Previous thermal runaway testing* has shown this particular cell has 
a propensity to eject cell contents from top of cell

*International Space Station Lithium-Ion Battery Thermal Runaway Propagation Test – 2017 NASA battery workshop Timothy North, Boeing; and 
Penni Dalton, NASA Glenn Research Center
And Assessment of International Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR) 2017 Space Power Wokshop Jason Graika 
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• NESC was concerned the ejection of the cell contents from the can 
causes an under test of the cell during thermal runaway resulting in 
lower cell temperatures and potentially misrepresenting the risk for 
cell-to-cell propagation.
• Cells in ISS main battery (and many other large format batteries) are 

clamped to immobilize cell contents for flight launch loads
• Aerojet Rocketdyne performed analysis* that showed that the 

preload clamping forces caused a highly stressed area near the top 
that would fail under flight compression loads during thermal runway

Background

*TPD- 339467 “Answers to NASA questions on Li-Ion Thermal Runaway”  August 2017 Hector Ortiz
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Manufacturer and Part Number GS-Yuasa LSE134-101

Chemistry Lithium Cobalt Oxide

Performance

Capacity (nameplate) 134 A-hr

Energy (nameplate) 496 W-hr

Energy Density at BOL 349 Wh/L

Specific Energy at BOL 155 Wh/kg

Temperature Range

Charge +10 to +35C

Discharge -10 to + 35C

Mechanical

Dimension (WxDxH) excluding terminals 130 x 50 x 271 mm

Weight 3.53 kg

Cell Information
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• A flight battery is comprised of 30 
cells arranged into 3 separate 10 
packs with each 10 pack comprised 
of 5 pairs of cells in series
• 10 screws are applied to each cell 

pair
• 1200 lb. of compression force 

applied to each cell pair

Flight battery configuration
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• Analysis was completed to 
compare flight loading and test 
setup
• Ungreased screws were found to 

create a large degree of uncertainty 
in the calculations

• 7 in-lb testing was found to be 
below flight level 

• 14 was found to be close to flight 
load

• 19 in-lbs was found to be high  but 
within the calculation error of flight 
loading

Structural analysis on bolts
Bolt Dia = 0.375 kPTFE Grease = 0.10 - 0.18

Total Cell Single Bolt
Compression Force Max Mean Min

lb lb k = 0.18 k = 0.13 k = 0.10
2030 507.5 34.3 24.7 19.0
1900 475 32.1 23.2 17.8
1800 450 30.4 21.9 16.9
1700 425 28.7 20.7 15.9
1560 390 26.3 19.0 14.6
1490 372.5 25.1 18.2 14.0
1400 350 23.6 17.1 13.1
1300 325 21.9 15.8 12.2
1200 300 20.3 14.6 11.3 Flight Compression
1150 287.5 19.4 14.0 10.8
1125 281.25 19.0 13.7 10.5
900 225 15.2 11.0 8.4
827 206.75 14.0 10.1 7.8
745 186.25 12.6 9.1 7.0
575 143.75 9.7 7.0 5.4
500 125 8.4 6.1 4.7
415 103.75 7.0 5.1 3.9
300 75 5.1 3.7 2.8
200 50 3.4 2.4 1.9

Bolt Torque (in-lbs)

Test Compression Calculation (4 Bolts)

Kauser Imtiaz - ISS Li-Ion Battery Thermal Runaway Test – Bolt Torque Assessment
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Test set up
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• Cells were clamped following vendor procedure
• Custom drill rig controlled by an operator was used for trigger 

method
• Drill bit diameter of .1285” with 4/16” max penetration distance

• Video monitoring, IR video, cell temperature, cell voltage, and cell 
current were all recorded
• All cells were charged to 3.95V (ISS maximum voltage per cell)
• Tests conducted in open air environment
• Values of 0, 7, 14, and 19 in-lb of torque were applied to screws.

Testing Methodology
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Testing to date
Test Trigger method Clamping forces applied* Result (eject or not)

Heat to vent 4-13-16 Ni chrome wire heaters 19 in-lb Full ejection

Drill Penetration 6-6-16 ¼” screw steel 19 in-lb Full ejection

Drill Penetration with enclosure 6-22-16 .1285” 5/16 flute length drill bit cobalt 19 in-lb Partial ejection (obstructed by lid)

Drill Penetration with enclosure 7-13-16 .1285” 5/16 flute length drill bit cobalt 19 in-lb Partial ejection (obstructed by lid)

WSTF test 11-3-16 .1285” 4/16 flute length drill bit cobalt ~Flight load Full ejection

Clamping force test 1 9-7-18 .1285” 4/16 flute length drill bit cobalt 0 in-lb No ejection

Compression force test 2 9-8-18 .1285” 4/16 flute length drill bit cobalt 14 in-lb Full ejection

Compression force test 3 9-8-18 .1285” 4/16 flute length drill bit cobalt 7 in-lb No ejection

Compression force test 4 9-25-18 .1285” 4/16 flute length drill bit cobalt 14 in-lb Full ejection

Ccompression force test 5 9-25-18 .1285” 4/16 flute length drill bit cobalt 7 in-lb Full ejection

*Approximate as load cells are not used in these tests
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Vent actuation to ejection

Test Time from vent actuation until jelly roll 
ejection (approximate*)

Heat to vent 4-13-16 4 seconds

Drill penetration 6-6-16 5.5 seconds

Drill penetration 6-22-16 6.5 seconds

Drill Penetration 7-13-16 8.5 seconds

Clamping forces test 9-8-18 14 in-lbs 12 seconds

Clamping forces test 9-25-18 7 in-lbs 7 seconds

Clamping forces test 9-25-18 14 in-lbs 8 seconds

*Data gathered from watching video and approximating exact times
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Video 0 compression force
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Video 14 in-lb compression force
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TC map

0 in lb test run 1 temp plot
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TC map

7 in lb test run 1 temp plot
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14 in lb test run 1 temp plot

TC map
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Test Compression force Max temp during TR Cell contents ejected
Heat to vent 4-13-16 19 in-lb 619.17 Yes

Drill Penetration 6-6-16 19 in-lb 542.77 Yes
Drill Penetration with enclosure 6-22-

16
19 in-lb 421.76 Yes

Drill Penetration with enclosure 7-13-
16

19 in-lb 650.63 Yes

Clamping force test 1 9-7-18 0 in-lb 284.37 No
Clamping force test 2 9-8-18 14 in-lb 430.60 Yes
Clamping force test 3 9-8-18 7 in-lb 337.43 No 

Clamping force test 3 9-25-18 14 in-lb 265.77 Yes
Clamping force test 3 9-25-18 7 in-lb 218.45 Yes

Compression force Vs max temp TR
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Post test
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Lessons learned
• Compression force applied to cell does appear to be a factor but not 

the main factor in how a cell reacts to thermal runway 
• 2 out of 3 runs at lower compression forces (7 or 0 in-lb) did not result in a 

cell content ejection
• Cell can appears to swell more in no and lower compression force cases

• May effect temp measurement as we are measuring skin temp and distance to jelly roll 
increases with cell can swelling

• Current discussion on if the cell can is allowed to swell (via low or no clamping force), 
this could increase the flow path area for internal gasses to escape the cell vents, 
thereby preventing the very high pressures that are likely causing the cell content 
ejections.

• Some correlation between max skin temp measured and compression force 
applied on the cell
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Next steps
• Recommend further study into area
• May be an opportunity for battery designers to design a battery that 

behaves more benignly in thermal runaway or is less likely to 
propagate
• No further testing planned yet but possible further testing includes:

• Additional compression testing with load cells to better quantify compression 
forces

• Possibility of testing different cell types
• Possibility of testing cells with different vents
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