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Combustion using Detailed chemistry and AMR

• CONVERGE contains the SAGE detailed chemical kinetics solver, parallelized efficiently for fast run-times

• The SAGE detailed chemistry solver is efficient, even with a large mechanism

• Uses local conditions to calculate reaction rates based on principles of chemical kinetics

• Autonomous meshing is well-suited for complex geometries, eliminating user meshing time

• Adaptive mesh refinement (AMR) automatically resolves the flow, diffusion of vent gas, flame front and 
thermal runaway front propagation at low computational expense
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Thermal Runaway Propagation and Vent Gas Analysis

CFD Modeling of Battery Thermal Runaway and Vent Gas 
Ignition Using Detailed Chemistry,
Tristan Burton,
2020 NASA Aerospace Battery Workshop
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CFD Modeling of Battery Thermal Runaway Propagation 
using Detailed Chemistry,
Kislaya Srivastava et.al,
2021 NASA Aerospace Battery Workshop



Sample Thermal Runaway Mechanisms in CONVERGE

HATCHARD-KIM TR MECHANISM

• 4 Reactions, LCO battery chemistry
• Kim et al., 2007

REN TR MECHANISM

• 6 Reactions, NMC battery chemistry
• Ren et al., 2018
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SEI decomposition (sei)

Anode and electrolyte (ne)

Cathode and electrolyte (pe)

Electrolyte decomposition (e)

SEI film decomposition (SEI)
Anode and electrolyte (An-E)

Anode and binder (An-B)
Cathode and anode (Cat-An)

Cathode and binder (Cat-B)
Cathode decomposition (Cat)



Thermal Runaway using Detailed chemistry and AMR

• Thermal runaway initiated through nail penetration into a prismatic LCO-type battery
• Initial heat release due to short-circuiting specified

• KIM TR mechanism employed for heat release within solid

• Temperature-based adaptive mesh refinement (AMR) to closely track propagation

• Comparison to Zhang et al. (2020)
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Coupling Thermal Runaway and Vent Gas Generation

• Vent gas generation proportional to TR reaction rates
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Cell heating rate and gas generation rate based on calorimetry 
measurements for an 18650 LCO cell (Ostanek et al., Jhu et al.)



Option1: Solid-Gas Coupled TR

• TR predictions in solid streams coupled with vent INFLOW conditions in fluid streams
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Vent gas flow rate
ሶ𝑚𝑣𝑔 = 𝑓(𝐻𝑅𝑅𝑇𝑅 , 𝑅𝑗)

Vent gas temperature
𝑇𝑣𝑔 = 𝑓(𝑇𝐵𝑎𝑡)

Vent species composition
𝑌𝑖 = 𝑓( ሶ𝑐𝑆𝐸𝐼, ሶ𝑐𝐴𝑁, ሶ𝑐𝐶𝐴𝑇 , ሶ𝑐𝐸𝐿𝐸 , . . . . )

Gas INFLOW BC  coupled with → TR mechanism predictions in Solid



Option2: Porous Media Approach (1/2)
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• Modelling the battery solid as a gaseous 
porous volume

• Based on model presented by Kim et. 
al., “Modeling cell venting and gas-
phase reactions in 18650 lithium ion
batteries during thermal runaway”

• Model gas pressure within the battery 
porous volume

• Change in porous solid density also 
incorporated
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Option2: Porous Media Approach (2/2)
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• First venting stage : 
• Pressure controlled event for cell cap burst 

• Second venting stage : 
• Rapid gas generation due to thermal runaway



Option3: Lumped Battery Pressure Modeling (1/2)
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• Based on model presented by Ostanek et. al., “Simulating Onset and Evolution of Thermal Runaway in Li-
ion Cells using a Coupled Thermal and Venting Model”

• Vent gas mass generation coupled to individual TR reaction rates. Electrolyte vaporization can be included 

• Lumped pressure evaluated inside the battery

• Use Option1 type setup to feed mass flow rates calculated as a function of pressure ratio across vent 

𝑉ℎ ∶ 𝐻𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒 𝑉𝑜𝑙𝑢𝑚𝑒
𝑇𝑐𝑒𝑙𝑙:𝑀𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑅𝑗 ∶ 𝑇𝑅 𝑟𝑥𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑗𝑡ℎ 𝑟𝑥𝑛

∆𝑚𝑗 ∶ 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑣𝑒𝑛𝑡 𝑔𝑎𝑠 𝑓𝑟𝑜𝑚 𝑗𝑡ℎ 𝑟𝑥𝑛

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 ∶

ሶ𝑚𝑔𝑒𝑛,𝑗 = Δ𝑚𝑗𝑅𝑗

𝑑𝑚𝑣𝑒𝑛𝑡𝑔𝑎𝑠

𝑑𝑡
= ሶ𝑚𝑣𝑒𝑛𝑡 +෍ ሶ𝑚𝑔𝑒𝑛

𝑃𝑣𝑒𝑛𝑡𝑔𝑎𝑠 =
𝑚𝑣𝑒𝑛𝑡𝑔𝑎𝑠𝑅𝑣𝑒𝑛𝑡𝑔𝑎𝑠𝑇𝑐𝑒𝑙𝑙

𝑉ℎ

Calculating pressure inside the battery : Calculating mass flow rate, temperature out of vent:

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐, 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑓𝑙𝑜𝑤
𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑠ℎ𝑎𝑟𝑝 𝑒𝑑𝑔𝑒 𝑜𝑟𝑖𝑓𝑖𝑐𝑒 ∶ ሶ𝑚𝑣𝑒𝑛𝑡



Option3: Lumped Battery Pressure Modeling (2/2)
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Results shown are from a 
solid-only TR simulation

Instantaneous calculations for vent 
flow rates applied as BC for INFLOW

Zero-D calculations for cell pressure



Coupled Thermal Runaway and Venting within a Pack
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Selecting suitable Thermal Runaway Mechanisms
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A.W. Golubkov et. al., “Thermal-runaway experiments on consumer 
Li-ion batteries with metal-oxide and olivin-type cathodes”



Experimental Studies on TR Behaviour
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Experimental identification of cell-to-cell 
variation in thermal runaway of Samsung 
18650 LCO batteries



Statistical Studies of TR behaviour
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Zhang et. al.
(2022)

Randomized Activation Energy (E) value obtained from gaussian distribution of 𝐸𝑎𝑣𝑒 and 𝐸𝑆𝐷
Pre-exponential factor (A) and Reaction enthalpy (H) interpolated from experimental data
A total of 60 design points simulated under ARC conditions



Statistical Studies of TR behaviour within pack (1/4)
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Statistical Studies of TR behaviour within pack (2/4)

17

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

Triggered cell

*60 cases



Statistical Studies of TR behaviour within pack (3/4)

Worst case scenario : All cells modeled with MostRisk parameters
Results in rapid TR propagation across entire battery pack
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Case #1 Case #9

Case #47 Worst Case Scenario



Statistical Studies of TR behaviour within pack (4/4)
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31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

Triggered cell

Most Risk cell

*40 cases *40 cases

Multiple cases showcase TR in Cell9 and some in adjacent cells TR propagation across the entire pack for 40/40 cases



Species Perturbation Studies
CPM study for 1% perturbation of all TR species (cyl propagation)

20

• Modeling propagation in a non-homogenous domain
• Isotropic or Gaussian perturbations can be applied on the initial 

spatial distribution of any or all TR species
• Differences arise after initial propagation, as expected

• Concurrent Perturbation Method can be utilized to obtain a 
confidence interval

• N parallel runs with different random seed for perturbation
• Cylindrical propagation showed high variability, outliers
• Further investigations needed for complete understanding, esp

on full 3D systems

Homogeneous / Uniform Non-Homogeneous / Perturbed 



Lagrangian Particle Modeling within Battery simulations

Battery fire control Vent gas ignition due to hot ejecta
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