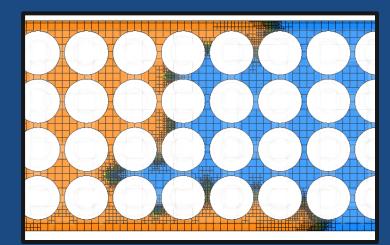
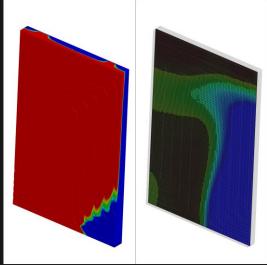
Capturing Battery Thermal Runaway and Venting Phenomena using Detailed 3D CFD Solutions

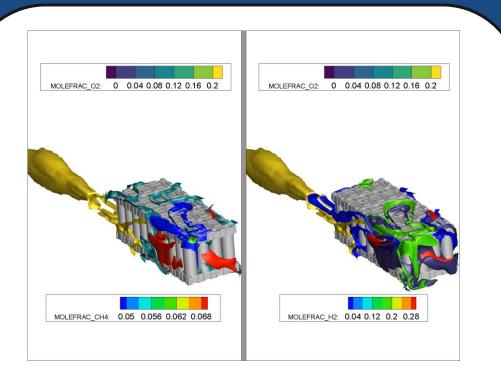
Kislaya Srivastava¹, Tristan Burton¹, Daniel Probst²

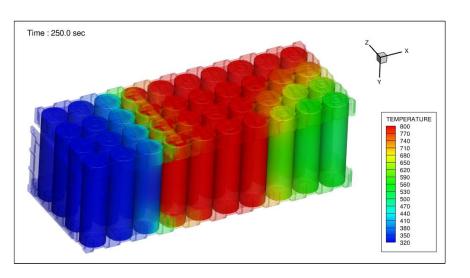
¹Convergent Science Inc., Northville, MI 48167


²Convergent Science Inc., Madison, WI 53719



Combustion using Detailed chemistry and AMR


- CONVERGE contains the SAGE detailed chemical kinetics solver, parallelized efficiently for fast run-times
- The SAGE detailed chemistry solver is efficient, even with a large mechanism
- Uses local conditions to calculate reaction rates based on principles of chemical kinetics
- Autonomous meshing is well-suited for complex geometries, eliminating user meshing time
- Adaptive mesh refinement (AMR) automatically resolves the flow, diffusion of vent gas, flame front and thermal runaway front propagation at low computational expense



Thermal Runaway Propagation and Vent Gas Analysis

CFD Modeling of Battery Thermal Runaway and Vent Gas Ignition Using Detailed Chemistry, *Tristan Burton,* 2020 NASA Aerospace Battery Workshop

CFD Modeling of Battery Thermal Runaway Propagation using Detailed Chemistry, *Kislaya Srivastava et.al,* 2021 NASA Aerospace Battery Workshop

Sample Thermal Runaway Mechanisms in CONVERGE

HATCHARD-KIM TR MECHANISM

- 4 Reactions, LCO battery chemistry
 - Kim et al., 2007

SEI decomposition (sei)

$$R_{sei}(T, c_{sei}) = A_{sei} \exp\left[-\frac{E_{a,sei}}{RT}\right] c_{sei}^{m_{sei}}$$

Anode and electrolyte (ne)

$$R_{ne}(T, c_e, c_{neg}, t_{sei}) = A_{ne} \exp\left[-\frac{t_{sei}}{t_{sei,ref}}\right] c_{neg}^{m_{ne,n}} \exp\left[-\frac{E_{a,ne}}{RT}\right]$$

Cathode and electrolyte (pe)

$$R_{pe}(T, \alpha, c_e) = A_{pe} \alpha^{m_{pe,p_1}} (1-\alpha)^{m_{pe,p_2}} \exp \left[-\frac{E_{a,p_1}}{RT}\right]$$

Electrolyte decomposition (e)

$$R_e(T, c_e) = A_e \exp\left[-\frac{E_{a,e}}{RT}\right] c_e^{m_e}$$

REN TR MECHANISM

- 6 Reactions, NMC battery chemistry
 - Ren et al., 2018

$$\kappa_{x} = A_{x} \cdot \exp\left(-\frac{E_{a,x}}{RT}\right) \cdot f_{x}(c_{x})$$

$$c_{x} = 1 - \int \kappa_{x} dt$$

$$f_{x}(c_{x}) = c_{x}^{n_{x}} \quad Q_{x} = m_{x} \cdot \Delta H_{x} \cdot \kappa_{x}$$

$$c_{SEI} = 1 - \int \kappa_{SEI} dt$$

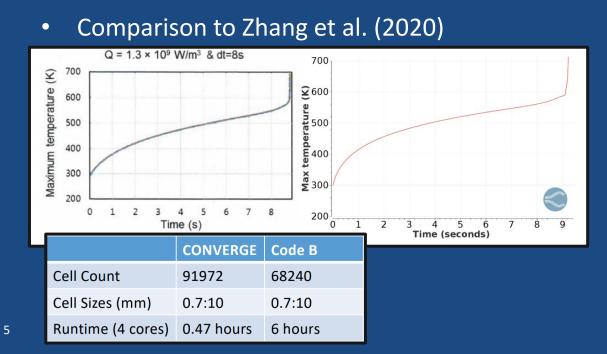
$$c_{x} = c_{x} = 1 - \int \kappa_{SEI} dt$$

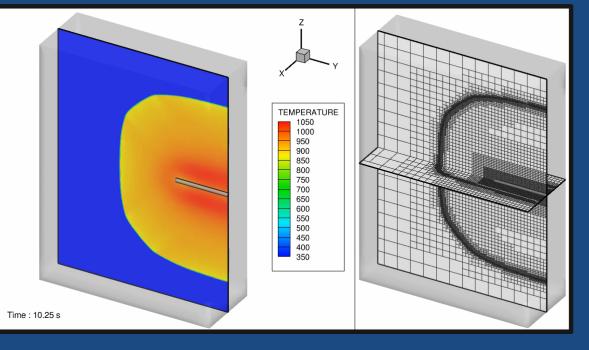
SEI film decomposition (SEI) Anode and electrolyte (An-E) Anode and binder (An-B) Cathode and anode (Cat-An) Cathode and binder (Cat-B) Cathode decomposition (Cat)

cat

$$c_{An-E} = c_{Cat-An} = 1 - \int (\kappa_{An-E} + \kappa_{Cat-An}) dt$$

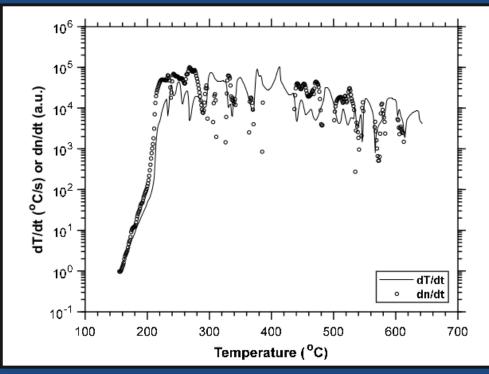
$$c_{An-B} = c_{Cat-B} = 1 - \int \left(\frac{\gamma}{1+\gamma} \cdot \kappa_{An-B} + \kappa_{Cat-B}\right) dt$$

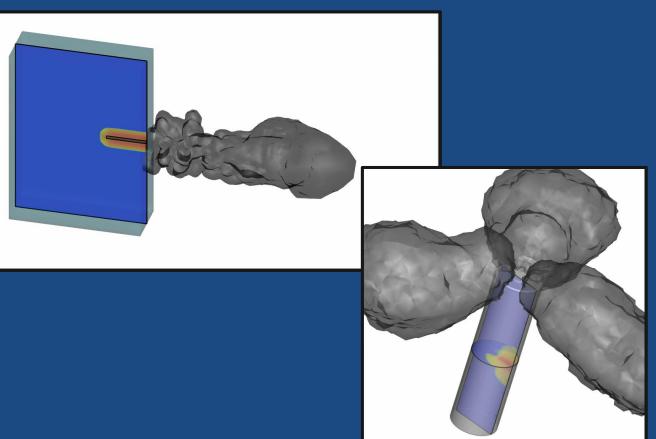

$$c_{Cat} = 1 - \int \kappa_{Cat} dt$$


$$Q_{gen} = Q_{SEI} + Q_{An-E} + Q_{An-B} + Q_{Cat-An} + Q_{Cat-B} + Q$$

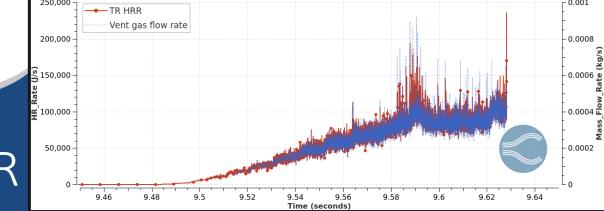
Thermal Runaway using Detailed chemistry and AMR

- Thermal runaway initiated through nail penetration into a prismatic LCO-type battery
 - Initial heat release due to short-circuiting specified
 - KIM TR mechanism employed for heat release within solid
 - Temperature-based adaptive mesh refinement (AMR) to closely track propagation

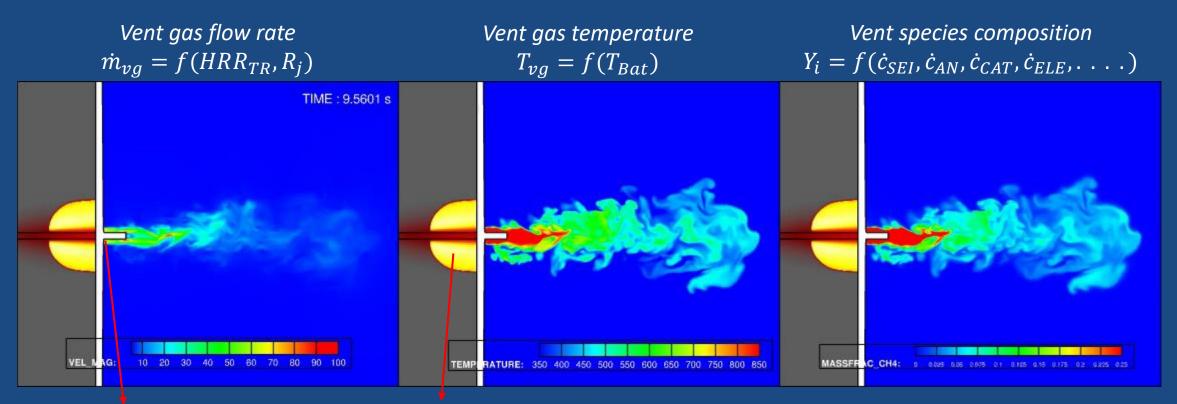




Coupling Thermal Runaway and Vent Gas Generation

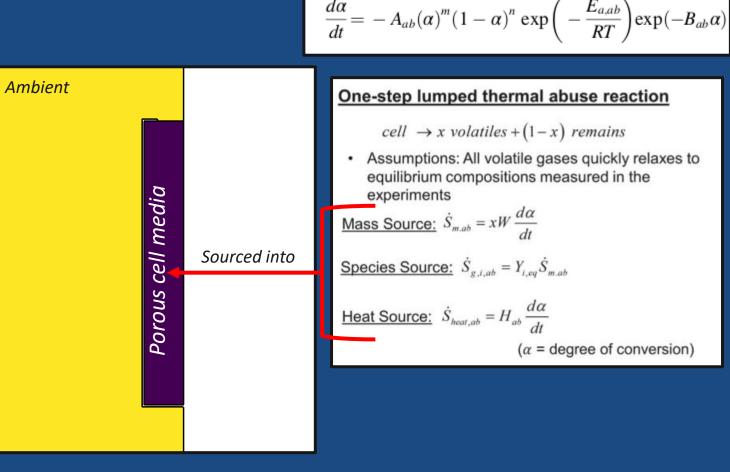

• Vent gas generation proportional to TR reaction rates

Cell heating rate and gas generation rate based on calorimetry measurements for an 18650 LCO cell (Ostanek et al., Jhu et al.)



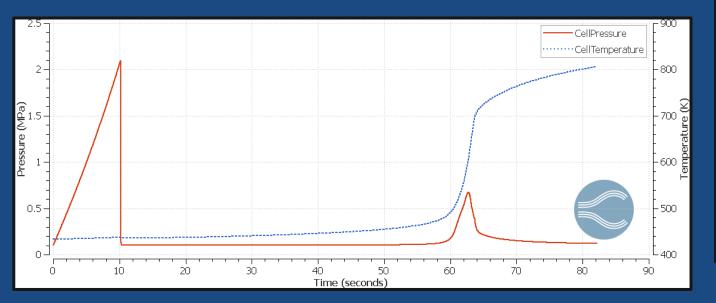
Option1: Solid-Gas Coupled TR

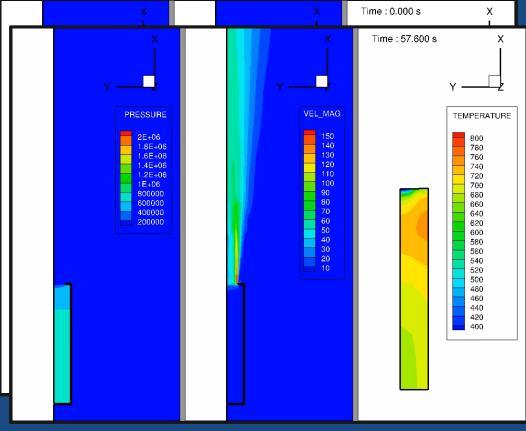
• TR predictions in solid streams coupled with vent INFLOW conditions in fluid streams



₇ Gas INFLOW BC \leftarrow coupled with \rightarrow TR mechanism predictions in Solid

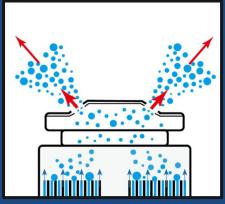
Option2: Porous Media Approach (1/2)


- Modelling the battery solid as a gaseous porous volume
 - Based on model presented by Kim et. al., "Modeling cell venting and gasphase reactions in 18650 lithium ion batteries during thermal runaway"
 - Model gas pressure within the battery porous volume
 - Change in porous solid density also incorporated



Option2: Porous Media Approach (2/2)

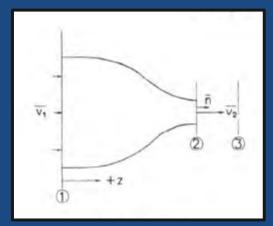
- First venting stage :
 - Pressure controlled event for cell cap burst
- Second venting stage :
 - Rapid gas generation due to thermal runaway



Option3: Lumped Battery Pressure Modeling (1/2)

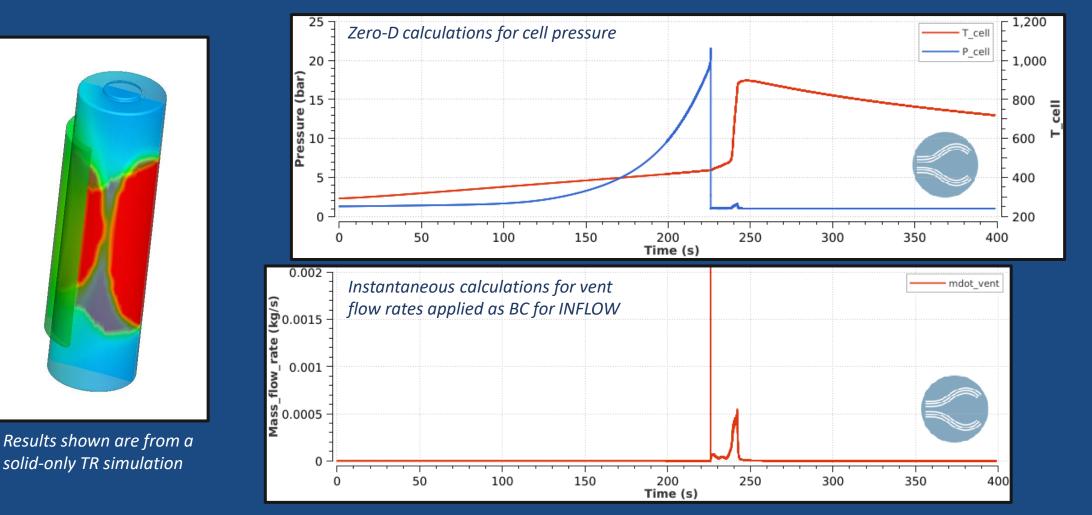
- Based on model presented by Ostanek et. al., "Simulating Onset and Evolution of Thermal Runaway in Liion Cells using a Coupled Thermal and Venting Model"
 - Vent gas mass generation coupled to individual TR reaction rates. Electrolyte vaporization can be included
 - Lumped pressure evaluated inside the battery
 - Use Option1 type setup to feed mass flow rates calculated as a function of pressure ratio across vent

 V_h : Headspace Volume T_{cell} : Mean temperature of battery R_j : TR rxn rate of j^{th} rxn Δm_j : Mass of vent gas from j^{th} rxn

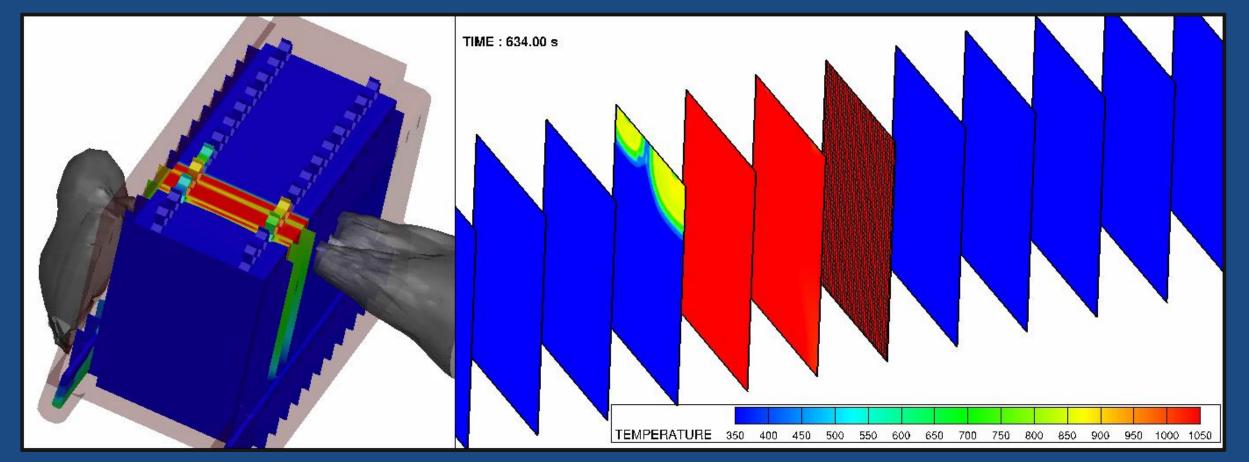

Calculating pressure inside the battery : Equation of state :

dt

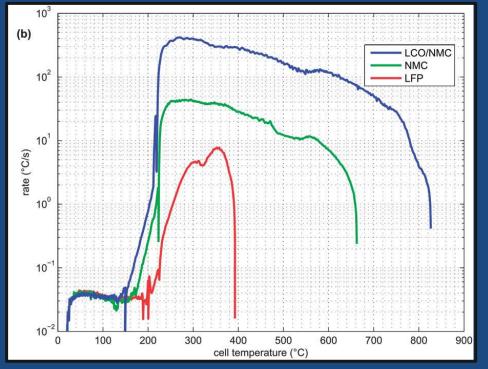
$$P_{ventgas} = \frac{m_{ventgas}R_{ventgas}T_{cell}}{V_h}$$
$$\frac{dm_{ventgas}}{V_h} = \dot{m}_{vent} + \sum \dot{m}_{aen}$$


$$\dot{m}_{gen,j} = \Delta m_j R_j$$

<u>Calculating mass flow rate, temperature out of vent:</u> *Isentropic, adiabatic equations for flow through a sharp edge orifice* : \dot{m}_{vent}



Option3: Lumped Battery Pressure Modeling (2/2)



Coupled Thermal Runaway and Venting within a Pack

Selecting suitable Thermal Runaway Mechanisms

A.W. Golubkov et. al., "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes"

SEI Decomposition Reaction			Anode and Electrolyte Reaction	1	
Reaction order, m_{SEI} :	1.0		Reaction order, m _{An} :	1.0	
Pre-exponential factor, A_{SEI} :	1.667e+15	1/s	Pre-exponential factor, A _{An-E} :	2.5e+13	1/s
Activation energy, $E_{\!\scriptscriptstyle a,S\!\! E\!\! I}\!:$	135080.0	J/mol		135080.0	J/m
Heat release, H _{set} :	257000.0	J/kg	Activation energy, $E_{a,An-E}$:	153060.0	
Initial amount of SEI, c _{sei} :	0.15		Heat release, H _{Arr-E} :	1.714e+06	
Initial measure of SEI layer thick	ness, t _{se} : 0.033		Initial amount of anode, $c_{\mbox{\tiny An}}$:	0.75	
Cathode and Electrolyte Reaction			Electrolyte Decomposition Read	ction	
Alpha reaction order, m _{Cat,1} :	1.0		Reaction order, m _E :	1.0	
(1-alpha) reaction order, $m_{Cat,2}$:	1.0		Pre-exponential factor, A _E : 5.14e+25		1/s
Pre-exponential factor, A _{Cat-E} :	6.667e+13	1/s		274000.0	
Activation energy, E _{a,Cat-E} :	139600.0	J/mol	Activation energy, $E_{a,E}$:		
Heat release, H _{Cat-E} :	314000.0	J/kg	Heat release, H _E :	155000.0	J/kg
Initial value of alpha, a:	0.04		Initial amount of electrolyte, $c_\epsilon \!\!:$ 1.0		
Cell Content					
	0.4 kg/m ³ Specific cathode	contont W	: 1221.0 kg/m ³ Sr	pecific electrolyte content, W _E : 406.9	kg/n
Specific carbon content, W _c : 61	kg/m ² Specific cathode	content, W _{Cat}	: 1221.0 Kg/m ² Sp	pecific electrolyte content, vv _E : 406.9	Kg/h

Experimental Studies on TR Behaviour

Cell-to-cell variability in Li-ion battery thermal runaway: Experimental testing, statistical analysis, and kinetic modeling

700

650

450

400 350

300

250

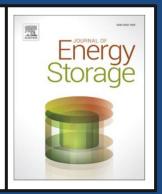
200 150

100

50

500

1000


Time [min]

1500

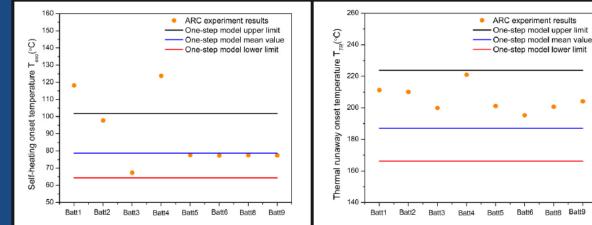
Cell Temperature [°C]

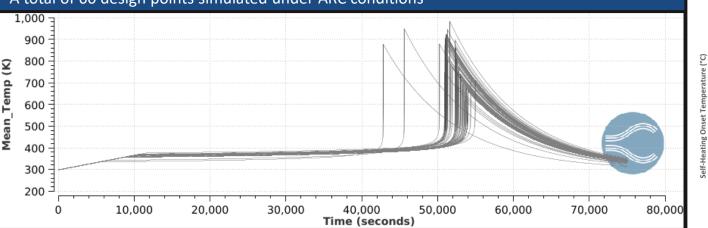
Liwen Zhang^a, Shiyou Yang^b, Lu Liu^a, Peng Zhao^{a,*}

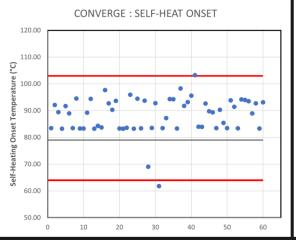
^a Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, TN 37388, USA ^b Ford Research and Advanced Engineering, Ford Motor Company, Dearborn 48121, MI, USA

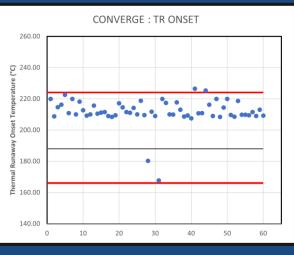
Experimental identification of cell-to-cell variation in thermal runaway of Samsung 18650 LCO batteries

Raw data from the ARC experiment

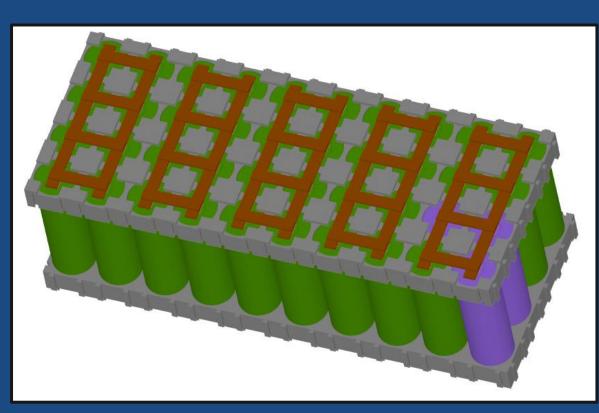

Batt1 Batt2 Batt3 Batt4 Batt5 Batt6		Exotherm onset Temp¹ <i>T_{exo}(℃)</i>	Thermal runaway onset Temp ² <i>T_{TR}</i> (°C)	Max Temp ³ <i>T_{max}</i> (℃)	TR delay time (min)	Mass change (g)
Batt7 Batt8 Batt9	Batt 1	118.17	211.36	365.38	204.33	N/A
J	Batt 2	97.73	210.06	716.45	720.5	26.967
	Batt 3	67.38	199.98	345.13	1308.96	9.951
	Batt 4	123.83	220.94	456.48	121.52	27.131
	Batt 5	77.69	201.14	384.15	897.43	21.674
	Batt 6	77.44	195.36	392.72	802.80	24.405
	Batt 7	76.89	228.62	390.33	1584.35	7.054
	Batt 8	77.54	200.65	726.68	911.74	23.718
2000 2500	Batt 9	77.47	204.19	414.42	1044.03	9.797

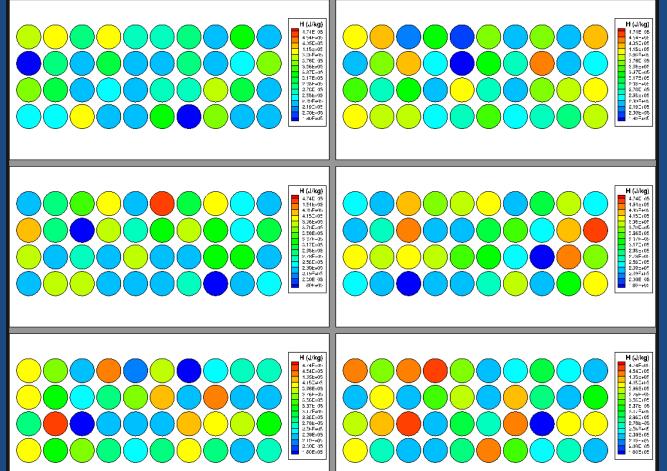

Statistical Studies of TR behaviour


Statistical analysis of	frequency factor	and global activ	vation energy of a	all 18650 Samsui	ng LCO cells.	dcE
	ΔT_{ad} (K)	$c_p (J/kg \cdot K)$	H (J/kg)	E (J/mol)	$A (\min^{-1})$	$\frac{dc}{dt} = -Ace^{-\frac{E}{RT}}$
Batt 1	247.2	730	1.80E5	9.65E4	2.00E9	.iT
Batt 2	618.7	730	4.52E5	9.33E4	4.10E8	$c_p \frac{dT}{dt} = HAce^{-\frac{E}{RT}}$
Batt 3	277.8	730	2.03E5	8.30E4	9.00E8	$\int_{a}^{b} dt$
Batt 4	332.6	730	2.43E5	8.39E4	4.50E7	
Batt 5	306.5	730	2.24E5	8.03E4	3.77E7	Zhana at
Batt 6	315.3	730	2.30E5	8.33E4	1.06E8	Zhang et.
Batt 8	649.1	730	4.74E5	8.24E4	2.99E7	(2022)
Batt 9	336.9	730	2.46E5	8.36E4	7.40E7	(2022)
Average	ΔT_{ave} : 385.5	c _{pave} : 730	Have: 2.29E5	Eave: 8.58E4	Aave: 3.49E8	
Standard deviation	ΔT_{SD} : 156.3	c_{pSD} : 0	H _{SD} : 1.73E4	<i>E_{SD}</i> : 5.80E3	A _{SD} : 6.95E8	


 $= HAce^{-\frac{E}{RT}}$ ng et. al. 22)

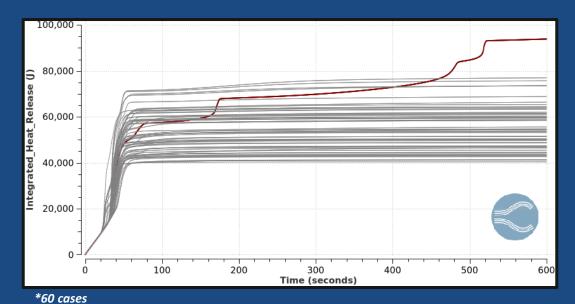
Randomized Activation Energy (E) value obtained from gaussian distribution of E_{ave} and E_{SD} Pre-exponential factor (A) and Reaction enthalpy (H) interpolated from experimental data A total of 60 design points simulated under ARC conditions

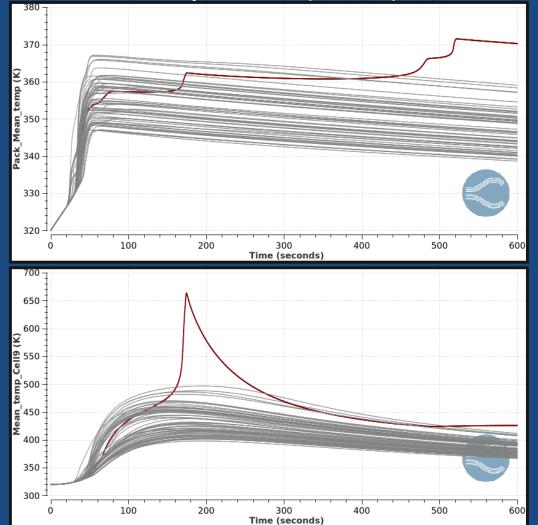




Batt8 Batt9

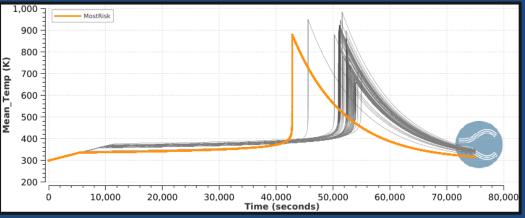
Statistical Studies of TR behaviour within pack (1/4)

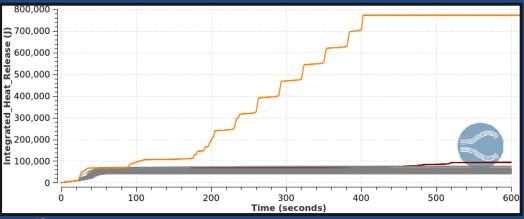


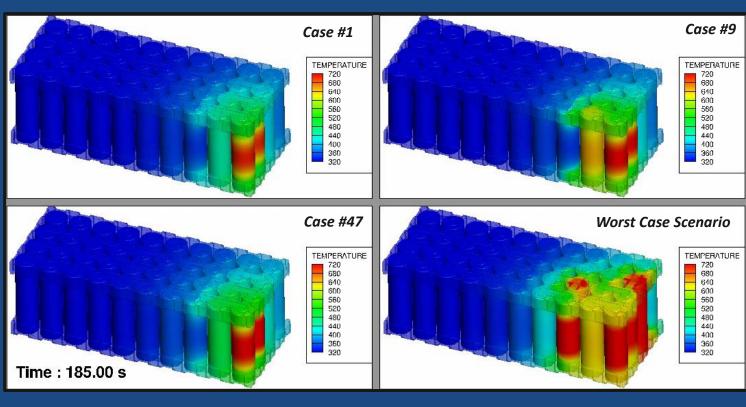


Statistical Studies of TR behaviour within pack (2/4)

31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	*	*
1	2	3	4	5	6	7	8	9	*

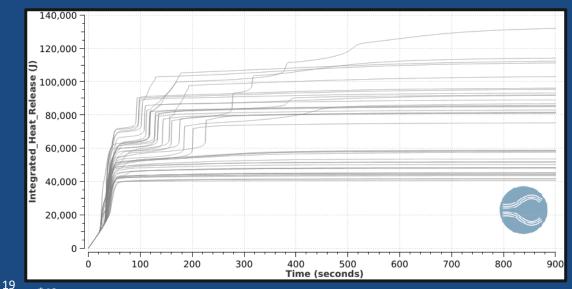



17

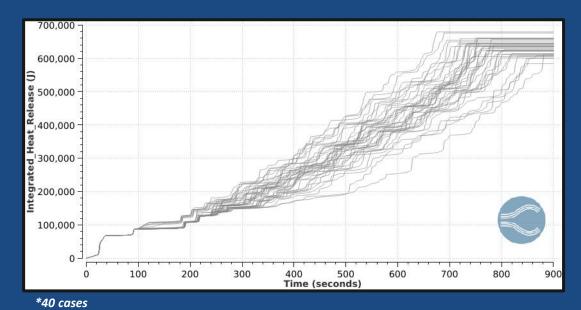


Statistical Studies of TR behaviour within pack (3/4)

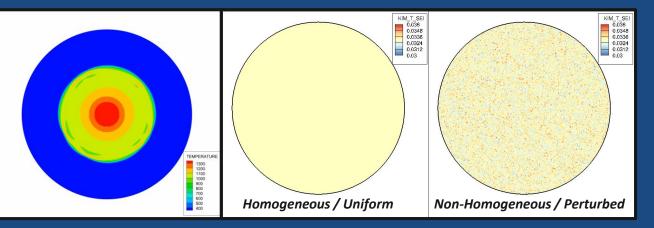
Worst case scenario : All cells modeled with MostRisk parameters Results in rapid TR propagation across entire battery pack



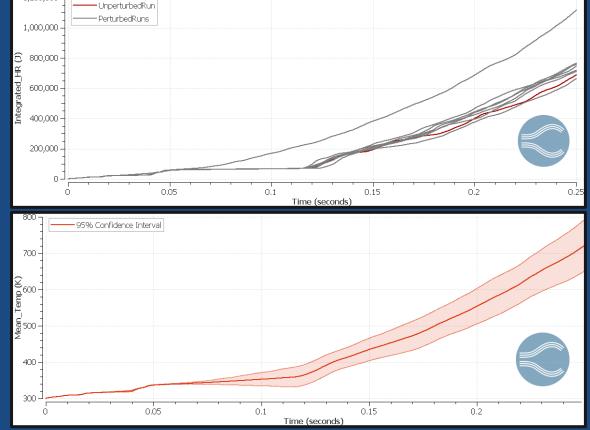
Statistical Studies of TR behaviour within pack (4/4)


31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	*	*
1	2	3	4	5	6	7	8	9	*

Multiple cases showcase TR in Cell9 and some in adjacent cells

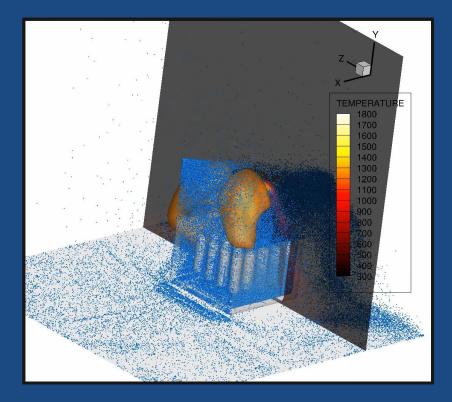

31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	A CONTRACTOR	3 And
1	2	3	4	5	6	7	8	9	

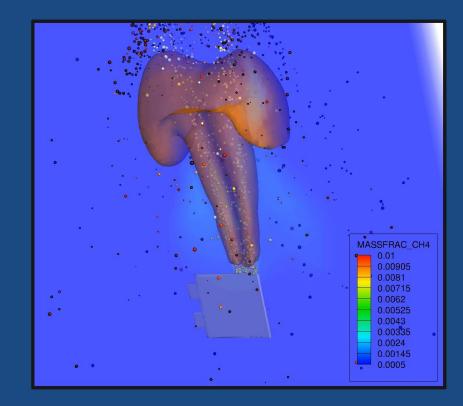
TR propagation across the entire pack for 40/40 cases



Species Perturbation Studies

- Modeling propagation in a non-homogenous domain
 - Isotropic or Gaussian perturbations can be applied on the initial spatial distribution of any or all TR species
 - Differences arise after initial propagation, as expected
- Concurrent Perturbation Method can be utilized to obtain a confidence interval
 - N parallel runs with different random seed for perturbation
 - Cylindrical propagation showed high variability, outliers
 - Further investigations needed for complete understanding, esp on full 3D systems


CPM study for 1% perturbation of all TR species (cyl propagation)



Lagrangian Particle Modeling within Battery simulations

Battery fire control

Vent gas ignition due to hot ejecta

THANK YOU! CONVERGECFD.COM

Kislaya Srivastava, Sr. Research Engineer, Convergent Science Inc. **kislaya.srivastava@convergecfd.com**

References

- Kim, G.H., Pesaran, A., and Spotnitz, R., "A three-dimensional thermal abuse model for lithium-ion cells," Journal of Power Sources, 170, 476-489, 2007.
- Ren, D., Liu, X., Feng, X., Lu, L. Ouyang, M., Li, J., and He, X., "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, 228, 633-644, 2018.
- Zhang, L., Zhao, P., Xu, M., and Wang, X., "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, 261, 2020.
- Ostanek, J.K., Li, W., Mukherjee, P.P., Crompton, K.R., and Hacker, C., "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, 268, 114972, 2020.
- Jhu, C.Y., Wang, Y.W., Wen, C.Y., Chiang, C.C., and Shu, C.M., "Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries," Journal of Thermal Analysis and Calorimetry, 106, 159-163, 2011.
- Kim, J., Mallarapu, A., Finegan, D.P., and Santhanagopalan, S., "Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway," Journal of Power Sources, 489, 229496, 2021.
- Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., Voitic, G., Thaler, A., and Hacker, V., "Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes," RSC Advances, 4, 3633-3642, 2014.
- Zhang, L., Yang, S., Liu, L., and Zhao, P., "Cell-to-cell variability in Li-ion battery thermal runaway: Experimental testing, statistical analysis, and kinetic modeling," Journal of Energy Storage, 56, 106024, 2022.