

11/21/2024

Xiangbo (Henry) Meng

Associate Professor

Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701

Email: xbmeng@uark.edu; Phone: 479-575-4912

Outline

- Research motivation
- Introduction to ALD and MLD
- ALD sulfide coatings for NMC811
- MLD lithicones for Li metal
- The promising resultant Li||NMC LMBs
- Conclusions
- Acknowledgements

Research motivation

Lithium metal batteries (LMBs)

Atomic and Molecular Layer Deposition (ALD & MLD)

Atomic Layer Deposition (ALD)

A *surface-controlled* chemical vapor deposition process enabling <u>conformal</u> and <u>uniform</u> films

ALD of Al_2O_3

Overall reaction 2Al(CH₃)₃ (i.e., TMA)+ $3H_2O \rightarrow Al_2O_3 + 6CH_4$

ALD/MLD

Pure Organic Materials

- Polyamides
- Polyimides
- Polyazomethines
- Polythioureas
- Polyureas
- Other polymers

Organic-inorganic Hybrid Materials

- Metalcones (alucones, zincones, titanicones, vanadicones, zircones, hafnicones)
- Metal quinolones
- Metal organic frameworks
- Others

ALD/MLD

Unique Capabilities of ALD/MLD

- A surface-controlled process proceeded with self-terminating surface reactions
- Atomic/molecular-scale control over materials growth: 1 -2 Å /cycle for ALD; several Å /cycle for MLD
- Uniform and conformal coating
- Highly tunability in composition and crystallinity
- Low growth temperature: < 300 °C

• Nearly any materials, ranging from inorganic to organic materials

ALD Sulfide Coatings for NMC811 Cathodes

ARKANSAS Ni-rich NMC cathodes

Hexagonal (H1) to monoclinic (M) and hexagonal (H2 and H3) phases

The voltage for the H2 \rightarrow H3 phase transition decreases with increased Ni contents, which is ~4.7 V (all voltages in this proposal are against Li/Li⁺) for NMCs of $x \le 0.6$ (e.g., NMC622 and NMC532), but is ~4.3 V for NMC811

2

ARKANSAS Ni-rich NMC cathodes

Issues of NMCs

Hexagonal (H1) to monoclinic (M) and hexagonal (H2 and H3) phases

Oxygen release

Occurred near the onset of H2 \rightarrow H3

- Oxidization of electrolyte solvents with generation of gases and H₂O
- □ Ni/Li cationic mixing
- **Irreversible layered-spinel-rocksalt phase** transition
- Transition metal ion dissolution
- Microcracking

Residual lithium compounds (RLCs: Li₂CO₃ and LiOH)

- **Battery** gassing
- **Electrode structural degradation**

Atomic layer deposition (ALD) for better batteries

ALD can coat either electrode materials or prefabricated electrodes.

ALD is to date *the only technique* enabling coatings over electrodes directly.

ALD coatings of NMCs

Journal of Energy Chemistry, 2022, 69, 531 – 540.

The first study investigating sulfides as surface coatings via ALD, in which Li_2S showed excellent protection over NMC811.

UNIVERSITY OF ARKANSAS

Li₂S on NMC811 electrodes

J. Energy Chem. 2022, 69, 531 - 540

We for the first time revealed that sulfides are an unexplored class of coating materials having some unique benefits!

Effects of ALD Li₂S on NMC811 electrodes

J. Energy Chem. 2022, 69, 531 - 540

Effects of ALD Li₂S on NMC811 electrodes

J. Energy Chem. 2022, 69, 531 - 540

Effects of ALD Li₂S on NMC811

J. Energy Chem. 2022, 69, 531 - 540

NMC811 suffer from serious cracking during cycling

ALD Li₂S coating well protected NMC811 from cracking

Effects of ALD Li₂S on NMC811 electrodes

J. Energy Chem. 2022, 69, 531 - 540

Large cracks

- Thick CEI
- Evident formation of NiO-like rocksalt phase

Effects of ALD Li₂S on NMC811 electrodes

J. Energy Chem. 2022, 69, 531 - 540

Li₂S-coated NMC811 after 500 ch/disch cycles

Unnoticeable cracks

ALD Li₂S coating protected NMC cathodes from structural degradation.

Thin CEI Thin NiO-like rocksalt phase

J. Energy Chem. 2022, 69, 531 - 540

ALD Li₂S coating protected electrolytes from oxidation and any further side reactions:

 $2Li_2S + 3O_2 \rightarrow 2Li_2SO_3$ (lithium sulfite)

 $2Li_2SO_3 + O_2 \rightarrow 2Li_2SO_4$ (lithium sulfate)

MLD Lithicone Coatings for Li Metal Anodes

Challenges facing lithium metal anodes

Adv. Sci. 2021, 8, 2101111

A variety of strategies developed

- Physical vapor deposition (PVD)
- Wet chemistry
- Atomic layer deposition (ALD)
- Molecular layer deposition (MLD)

MLD processes for lithicones

Lithicones: are polymeric lithium alkoxides with carbon-containing backbones, i.e., -Li-O-R-O-Li-.

QCM measurements of LiGL

SEM and XPS analyses of LiGL

Effects of LiGL on Li metal anode

Effects of LiGL on Li metal anode

Energy Mater. Advances 2021, 9786201

 2 mA/cm^2 , 48 mAh/cm^2

Energy Mater. Advances 2021, 9786201

 2 mA/cm^2 , 48 mAh/cm^2

Energy Mater. Advances 2021, 9786201

LiGL MLD coating could well protect Li metal from SEI formation and Li dendrite growth.

2. MLD lithicones – LiTEA on Li anode

Chemical Engineering Journal 2023, 475, 146156

GPC:

LiTEA coating improved cell performance

Chemical Engineering Journal 2023, 475, 146156

LiTEA protection Li anodes from corrosion

Chemical Engineering Journal 2023, 475, 146156

After 500 Li-stripping/plating cycles at 2 mA/cm² and 1 mAh/cm².

3. MLD lithicones – LiHQ on Li anode

Nano Energy 2024, 128, 109840

Effects of LiHQ on Li metal anode

Nano Energy 2024, 128, 109840

Effects of LiHQ on Li metal anode

Nano Energy 2024, 128, 109840

After 500 Li-stripping/plating cycles at 2 mA/cm² and 1 mAh/cm².

The Promising Resultant Li||NMC LMBs

Small Structures 2024, 2400174.

ARKANSAS LIINNC811 cells

Chemical Engineering Journal 2023, 475, 146156

Li||NMC811 cells

Nano Energy 2024, 128, 109840

Cycle number

LiHQ

Conclusions

- □ ALD and MLD are two powerful techniques for growing novel coatings in a controllable mode.
- Sulfide coatings via ALD were first reported for tackling issues of NMC cathodes and showed exceptional protection effects.
- □ Lithicone coatings via MLD were first reported for tackling issues of Li metal anodes and exhibited tremendous potential.
- □ The resultant modified Li | NMC cells showed very promising performance in long-term cyclability and high energy.

Acknowledgements

Office of Science

Thanks for your attention!

