

BATTERY QUALITY CONTROL VIA HIGH-Throughput ct scanning

Peter Attia, Glimpse 2024 NASA Aerospace Battery Workshop November 19, 2024

THREE PROBLEMS FACING THE INDUSTRY

SAFETY

RELIABILITY

MANUFACTURABILITY

All three problems are closely related to **battery quality**

CELL-LEVEL DEFECTS

Subtle structural defects can cause reliability and safety issues

LATENT DEFECTS

Metallic particle present, but not yet Metallic particle present and connecting anode and cathode connecting anode and cathode X No electrochemical signal **V** Electrochemical signal

Latent defects have no electrochemical signal until failure

INSPECTION TECHNIQUES

	Non-destructive	Scalable to ≤10s/cell	Full cell inspection	Spatially resolved	Resolution of ≤50 µm
Cycling & Storage	×	×		×	
Ultra High Precision Coulometry (UHPC)	×	×		×	
Electrochemical Impedance Spectroscopy (EIS)		×		×	
OCV decay during formation		×		×	
High Potential testing (HiPot)				×	
Dissection	×	×			
Cross section	×	×	×		
In-line vision			×		
Acoustics		\checkmark			×
2D X-ray imaging		\checkmark	×		
3D X-ray imaging (CT scanning)		Ĝ			

GLIMPSE: IMPROVING SCAN TIME

Optimized hardware (X-ray source, detector, fixturing...)

Optimized scan recipe (source, detector, positions...)

Image enhancement (corrections, denoising, ...)

Glimpse's standard cylindrical cell scans take 2 minutes

FASTER SCANS VIA THE "SUPERSCANNER"

Focal spot size (µm)

VisiConsult + Glimpse "superscanner"

≤10 seconds/scan with next-generation CT scanner (VCB2)

GLIMPSE: IMPROVING ANALYSIS TIME

Each scan of a 2170 battery is ~50 GB 😻

10 sec/scan = 18 TB/hour. How do we extract insights from it?

Fast scan time + fast analysis time = fast "time to insights"

THE GLIMPSE PORTAL™: SINGLE SCAN VIEWER

Condon et al. (2024). Data in Brief 10.1016/j.dib.2024.110614

THE GLIMPSE PORTAL™: AUTOMATED INSPECTION DASHBOARDS

Condon et al. (2024). Data in Brief 10.1016/j.dib.2024.110614

SOME CT-DETECTABLE DEFECTS

Gas bubbles

Folded anode tip

Metallic contaminant

Electrode overhang violation

Buckled jellyroll

Dented can

Missing electrode coating

Wrinkled electrode

NASA Aerospace Battery Workshop, November 19, 2024

STUDYING BATTERY SWELLING AND AGING VIA CT

EVE 18650 LIB cell

Radial slice

Magnified

Axial slice

STUDYING BATTERY SWELLING AND AGING VIA CT

Buckling present at cycle 0

Buckling **not** present at cycle 0

Vapcell F56 LIB cell

VALIDATION: X-RAY BEAM DAMAGE

Min, Condon, Attia (2024). ECSarXiv 10.17605/OSF.IO/R9VEM

VALIDATION: SCAN TIME VS. IMAGE QUALITY

VALIDATION: ALGORITHM REPEATABILITY

GLIMPSE'S WORK WITH NASA: SAMSUNG ICR18650–26F EVA SCAN REVIEW

Pits in cell cap crimp area

Poor core circularity

Delamination/cracking of active material

Delamination/cracking of active material

Delamination/cracking of active material

Liberated active material

Gap in active material

Credit: <mark>Douglas Zupan</mark> Sean Murray Martin Martinez Sam Russell

GLIMPSE'S WORK WITH NASA: NAIL PENETRATION CELL

GLIMPSE'S WORK WITH NASA: INTERNAL SHORT CIRCUIT DEVICE (ISCD) CELLS

Angle: 130°

Angle: 93°

Angle: 122°

PROPOSALS FOR JOINT FORWARD WORK

Goal: Drive down cost & effort for aerospace organizations to evaluate battery quality via CT

- 1. Glimpse: Reduce scan time/cost ("superscanner" + new algorithms)
- 2. Glimpse + NASA: Understand impact of defects for NASA mission profiles (cycling studies)
- 3. Glimpse + NASA: Map out confidence in defect detection vs. scan time/cost
- 4. Glimpse + NASA: Develop automated defect detection algorithms for relevant defects

G

CONCLUSIONS

1. Battery quality is a big problem

- 2. Glimpse's mission is to enable battery quality at scale by driving down the scan time & analysis time of battery CT scanning
- 3. Glimpse's technology is unlocking new insights into NASA's cell quality
- 4. Glimpse and NASA can continue to work together to reduce cost and improve effectiveness of defect screening

CGCGCDMPSE

ENABLING BATTERY QUALITY AT SCALE