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Motivation

• Batteries increasingly used in more 
and more systems as a power source
– Electric cars
– Electric aircraft
– Space missions/small sats
– Other electric utility vehicles

• Prediction of end-of-discharge (EOD) 
and end-of-life (EOL) are critical to 
system functions
– How much longer can the system be 

used, given expected usage conditions?
– How many more usage cycles until 

battery capacity is not sufficient for 
required system operations?

Sceptor

Edge

Rover

Solve using model-based prognostics 
approach.

Ref: www.nasa.gov



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Outline

• Goals
– Understand battery behavior through dynamic models
– Develop model-based algorithms for state estimation, end of 

discharge (EOD) prediction, and end of life (EOL) prediction
– Validate algorithms in the lab and fielded applications

• Algorithms
– Prognostic Architecture
– Dynamic state and state-of-charge estimation

• Modeling
– Electric circuit equivalent (for EOD prediction)
– Electrochemistry-based model (for EOD and EOL prediction)

• Applications
– Edge 540-T electric UAV
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Why Prognostics?

• Prognostics can enable:
– Adopting condition-based maintenance strategies, instead of time-

based maintenance
– Optimally scheduling maintenance
– Optimally planning for spare components
– Reconfiguring the system to avoid using the component before it 

fails
– Prolonging component life by modifying how the component is used 

(e.g., load shedding)
– Optimally plan or replan a mission

• System operations can be optimized in a variety of ways
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Why Prognostics?

Example: UAV Mission
Visit waypoints to accomplish science objectives. Predict aircraft battery end of discharge to 
determine which objectives can be met. Based on prediction, plan optimal route. Replan if 
prediction changes.

Home 
Base

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft

Prognostics: 
Full discharge 
before mission 

completion
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The Basic Idea : Batteries Example

Time

Cell 
Voltage

Voltage Threshold

tEOD

ΔtEOD

t

E = End of Discharge (EOD)
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The Basic Idea : Batteries Example

Threshold as a Function 
of System State

System
State Space

Future Evolution 
of System State

x(t)
x(tE)

1. What is tE?
2. What is tE-t?
3. What is x(tE)?
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Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age 

parameters
• EOD prediction computes prediction of time of EOD, given state and 

age parameter estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging 

rate progression
• EOL prediction computes prediction of time of EOL, given age 

parameter and age rate parameter estimates
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State Estimation

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Estimate Aging/Degradation
• Use unscented Kalman filter (UKF)

– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)
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Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)
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Battery Modeling

− Equivalent Circuit Empirical Models
§ Most common approach
§ Various model complexities used 
§ Difficulty in incorporating aging effects



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Battery Model– Tuned using laboratory data

§ Equivalent circuit battery model represents 
the battery terminal voltage as a function 
of current and the charge stored in 3 
capacitive elements

§ Two laboratory loading experiments are 
used to fit the following parameterization 
coefficients
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Discharge
Reduction at pos. electrode:
Li1-nCoO2 + nLi+ + ne- à LiCoO2
Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –
Electrons flow – to +

Lithium ions flow – to +

Charge
Oxidation at pos. electrode:
LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:
nLi+ + ne- + C à LinC

Current flows – to +
Electrons flow + to –

Lithium ions flow + to –

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related changes in 

battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters

Battery Modeling
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Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister expansion
– Concentration overpotential à split electrodes into surface and bulk control 

volumes
– Surface overpotential à

Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances

− Electrochemical Models vs. Empirical Models
• Battery physics models enable more direct representation of age-

related changes in battery dynamics than empirical models
• Typically have a higher computational cost and more unknown 

parameters
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Battery Aging

• Contributions from both decrease in mobile 
Li ions (lost due to side reactions related to 
aging) and increase in internal resistance

– Modeled with decrease in “qmax” parameter, 
used to compute mole fraction

– Modeled with increase in “Ro” parameter 
capturing lumped resistances

Simulated
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Fielded Applications
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Edge 540T subscale electric aircraft: EOD, 
reaming flight time prediction, SOH

Rover testbed: EOD, SOH  and 
remaining driving distance 

prediction

Cryogenic valve 
testbed: EOD 

prediction

Orion EFT-1 mission: SOC estimation, EOD 
prediction, mission success probability 

computation
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Edge 540-T

• Electric aircraft operated at NASA 
Langley

• Piloted and autonomous missions, 
visiting waypoints
– 50+ Flights with Battery Prognostics 

algorithm onboard
– 40+ HIRF chamber tests with Battery 

Prognostics algorithm
• Require 2-minute warning for EOD 

so pilot/autopilot has sufficient time 
to land safely
– This answer depends on battery age
– Need to track both current level of 

charge and current battery age
– Based on current battery state, current 

battery age, and expected future 
usage, can predict EOD and correctly 
issue 2-minute warning
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Edge 540-T

• Accuracy requirements for the two 
minute warning were specified as:
– The prognostic algorithm shall raise 

an alarm no later than two minutes 
before the lowest battery SOC 
estimate falls below 30% for at least 
90% of verification trial runs.

– The prognostic algorithm shall raise 
an alarm no earlier than three minutes 
before the lowest battery SOC 
estimate falls below 30% for at least 
90% of verification trial runs.

– Verification trial statistics must be 
computed using at least 20 
experimental runs
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Predication over Flight Plan ( HIRF Chamber Test)

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps
• The min, max and median 

predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for 
entire flight plan
• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts 
down.

Ref : E. Hogge, C. Kulkarni et al, “Verification of Prognostic Algorithms to Predict Remaining Flying Time for Electric Unmanned Vehicles”, IJPHM 2017 (accepted – in review)
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Performance of Predicted Flying Time Warning 

• Use UKF for state estimation with electric circuit equivalent model
• Aerodynamics and powertrain kinematics modeling used to 

determine battery load predictions based on flight plan

Box plots of the SOC estimation error measured over 
15 verification flights that each use 4 batteries Two-minute alarms for 15 flights ( 2014)  

Ref : E. Hogge, C. Kulkarni et al, “Flight Tests of a Remaining Flying Time Prediction System for Small Electric Aircraft in the Presence of Faults”, PHM 2017 
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Battery parameters deterioration with Aging 
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Two-minute alarms for additional runs done a 
year later using out-of-date battery capacity 

parameters. 

Two-minute alarms for additional runs 
done a year later using updated battery 

capacity parameters. 

Ref : E. Hogge, C. Kulkarni et al, “Verification of Prognostic Algorithms to Predict Remaining Flying Time for Electric Unmanned Vehicles”, IJPHM 2017 (accepted – in review)
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Offline Results over Flight Data

• Use UKF for state estimation with Battery 
Electro-chemistry ( EC) model

Predicted Flying Time for Flight # 53Flight # 53

Predicted Flying Time for Flight # 54

Flight # 54
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Data Sets Available for Download

• https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

27
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Conclusions

• Focus on model-based approaches for battery state 
estimation and prediction

• Validate models and algorithms with data from lab 
experiments and fielded systems

• Defining operational requirements for different systems
• Future work in progress : 

– Temperature models
– Higher fidelity models
– More efficient algorithms
– Additional applications (TES7,8,9 small sats, R5)
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