Aerospace Battery Workshop

Aviation Propulsion
Battery Challenges
and EPiC Solutions

Joseph L. James MS, PE

11/18/2021

2021 NASA Aerospace Battery Workshop

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION AND, EXCEPT WITH WRITTEN PERMISSION OF ELECTRIC POWER SYSTEMS, SUCH INFORMATION SHALL NOT BE PRODUCED IN WHOLE OR IN PART, PUBLISHED OR DISCLOSED, OR USED FOR ANY OTHER PURPOSE.

Jeff.belt@ep-sys.net

Joseph.james@ep-sys.net

https://www.linkedin.com/company/electric-power-systems-inc/mycompany/

U Outline

- Electric Power Systems Introduction
- Electrified Aviation Obstacles
 - Cycle Life
 - Cost
 - Performance/Mass
 - Containment: Thermal Runaway (TR)
- Thermal Runaway EPS Process
 - Chaos Management
 - Thermal Management
 - Venting
- EPIC Ecosystem Solutions

U EP-SYSTEMS HIGHLIGHTS

> 20

UNIQUE AEROSPACE
BATTERY
PROPULSION
SYSTEMS IN
DEVELOPMENT

6

ALL-ELECTRIC DEMONSTRATORS FLYING WITH EPS BATTERY SYSTEMS 16,000 SQ FT

LIMITED
PRODUCTION AND
HQ FACILITY
COMPLETION AND
OCCUPANCY

> 2 MWh

EXPERIMENTAL
FLIGHT
BATTERIES
DELIVERED PER
YEAR

25,000 SQ FT

MFG. FACILITY IN DEVELOPMENT

TSO-C179B

LAUNCHED FAA
CERTIFICATION
EFFORT FOR
PROPULSION
BATTERY

Unique Challenges for eVTOL Batteries

	Automotive EV	Part 23 Fixed Wing	eVTOL - AAM
Charging:	Low-Rate Charging	Fast Charge	Extreme Fast Charge
Discharging:	Energy Cell	Moderate Power Cell	High Power Cell
Energy Density:	Current Cell Technology	Near to Mid-Term Cell Technology	Mid to Long-Term Technology Targeted
Thermal Management:	Environment Dominated Thermal Constraints	Low to Moderate Thermal Constraints	High Thermally Taxing Mission Segments Bookend the Mission
Depth of Discharge:	Low Nominal Depth of Discharge	>50% DoD on Each Flight Cycle	~25% DoD for Each Mission Leg
	56 55 54 53	BOX Energy Limit	Nominal Sprint

DoD vs Cycle Life

- For 20% Capacity loss, preliminary testing expects ~2000 cycles for 80% depth of discharge
- Testing based on 1C/1C profiles at 25°C

W Key Measures of Effectiveness for Electric Air Vehicle Battery Design

Battery and Battery
Installation Design is a
Process of MultiObjective Optimization

- Focus on the value to operator
- Understand the interaction between technology constraints
- EPS has industry leading
 Operational Costs with the EPIC system

Cell Specific Energy

Thermal Runaway Mitigation

How EPS Engineers Thermal Runaway Management

EPS Thermal Runaway Design Process Cell Characterization (calorimeter data) **Hand Calculations** Thermal Management FEA/CFD Thermal Model Component level TR testing Cell Characterization (TR cell failure mode) Previous program lessons learned Containment Chaos Full Module Approach Management Cell protection design review (CAD) TR Test Component level TR testing Process is iterated until Single Cell Containment specification compliance Module Containment is achieved. **Explosion Containment** Containment approach directs thermal runaway Cell Characterization (gas emission) design focus. Cell Characterization (burn behavior) Venting Previous program lessons learned Hydraulic diameter path review Thermal runaway is stochastic. Sufficient

sample sizes for cell characterization is needed.

THERMAL MANAGEMENT EXAMPLE

Containment Approach	Requirement	Thermal Management	Chaos Management	Venting
Single-Cell Containment (DO-311A 2.4.5.4, JSC-20793)	Cell to cell propagation prohibited	Highly Critical Cell to cell propagation prevention dependent on heat TMS	Highly Critical Violent cell ejecta can damage other cells propagating TR	Critical Typically, low volume of exhaust. Vent path can heat other cells
Module Containment (DO-311A 2.4.5.5)	Module to module propagation prohibited	Critical Cells expected to propagate. Need to consider adjacent module propagation	TR cannot damage the containment of the module	Highly Critical High volume of exhaust if full module propagation occurs
Explosion Containment (DO-311A 2.4.5.6)	Structural fragments prohibited (typically in a fire zone)	Critical Bat teries are expected to propagate. Damage to vehicle structure to be considered	Critical Damage to vehicle structure to be considered	Critical Highest volume of exhaust, fire zones can have large exhaust ports

CHAOS/THERMAL MANAGEMENT

FINAL DESIGN

- 35% packaging overhead
- Certified to DO-311A Single Cell Containment
- Proprietary Single Cell TMS Technology

Violent ejections of the "jelly role" can produce projectile motion of debris in the module.

VENT MANAGEMENT EXAMPLE FINAL DESIGN

x64 playback

TR Venting
Acceptable Exhaust
Behavior

TR Cool Down Module Contained

EPiC Battery Solution

How a modular battery approach can overcome these issues.

(A Solution for Every Application

ALL-ELECTRIC

HYBRID-ELECTRIC

MICRO-HYBRID

EPIC ENERGY

TRAINER | THIN HAUL | EVTOL

SYSTEM: 205WH/KG

20% PACKAGING OVERHEAD

2000+ CYCLES @ 80% DoD

10C DISCHARGE

3C CHARGE RATES

EPIC POWER

HYBRID | EVTOL | MILITARY

SYSTEM: 180WH/KG

23% PACKAGING OVERHEAD

2000+ CYCLES @ 80% DoD

30C DISCHARGE

3C+ CHARGE RATES

EPIC ULTRA

HYBRID | APU | REGIONAL | MILITARY

SYSTEM: 115WH/KG

25% PACKAGING OVERHEAD

7500+ CYCLES @ 80% DoD

70C DISCHARGE

4C CHARGE RATES

40, 60, 80AH APU

13

ELECTRIC PROPULSION ION CORE (EPIC)

Module

VENTING

DO-311a Venting Category B
Gang Vent Attachment Points and Sealing Interface
Optional Gang Vent with Attachment Hardware
Module-to-Module Propagation Mitigation

DATA/COMMS CONNECTOR

Complex Wiring Elimination Less Wiring Leading to Reduced Mass Redundant Communication Signals EMI Protected

ENCLOSURE

DO-160G Structure & Environmental Compliance High-Temperature Composite Case Low Sidewall Temperature During Thermal Runaway No Additional Vehicle Firewall Needed

THERMAL MANAGEMENT

Embedded Thermal Management Minimal Coolant Volume Requirements Low-Maintenance Connection Ports On-Board/Off-Board Reservoir Integration

POWER CONNECTOR

Patented Module-Module Connector Complex Wiring Elimination High-Current Capabilities Robust Thermal Runaway Survivability Finger-Safe for Handling

MOUNTING LOCATIONS

Configuration in Any Orientation Mounting in Any Direction Space-Claim Flexibility Mounting Hardpoints in All Corners 16 Total Mounting Points

U Containment

- 20% packaging overhead
- Certified to FAA Standards
- Proprietary Technology

SYSTEMS 1

(EPiC Module Enables Integrated Ecosystem

RETROFIT

TRADITIONAL AERO

FIXED WING