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Overview

• The need for direct imaging of batteries

• Li-ion cathode characterization using X-ray 
nanotomography

• Particle scale intercalation studies

• Li-ion cathode characterization using X-ray 
microtomography (µCT)

• Analyzing electrode structure for fast charging of 
thicker electrodes

• Summary
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The Need for Direct Imaging

• Batteries are heterogeneous 
multiscale functional material 
systems.
• Multiscale design is a necessity.
• Direct imaging methods are a 

key tool for multiscale design.
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Goodenough and Park, J. Am. Chem. Soc., 135, 1167−1176, 2013.

https://www.electricbike.com/inside-18650-cell/



Nanotomography and µCT
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APS Beamline 32-ID-C TXM
• X-ray energy: 7-40 keV
• 60 nm spatial resolution

APS Beamline 2-BM-A
• X-ray energy: 11-35 keV
• 1.3 µm spatial resolution

Sample 
Installation

Argonne National Lab 
Advanced Photon Source



NMC Cathode Nanotomography
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Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.

• Processing variants
• Cathode 1: Gradual drying
• Cathode 2: Rapid drying
• Cathode 3: Rapid drying 

followed by calendering
• Cathode 4: Ball milling 

followed by gradual drying
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Cathode	1 Cathode	2

Cathode	3 Cathode	4

Particle Size and Sphericity

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.



Particle Intercalation Studies
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Li Concentration (mol/m3)

Particle Characteristics
• Radius: 1.3 μm
• Sphericity: 0.7

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.

• Simulation of lithium diffusion, particle as sole domain (COMSOL Multiphysics).
• Butler-Volmer with fixed overpotential and galvanostatic operation.
• Intercalation characterized based on mass transfer Biot number and Fourier number.



Geometry Effect on Intercalation
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• Four particles 
extracted from 
cathode data sets.
• Compared to spheres 

of equivalent Bim

• Departure from 
spherical particle 
model depends on 
sphericity (ψ) and Bim.

Ψ = 0.8

Ψ = 0.7

Metric Cathode 1 Cathode 2 Cathode 3 Cathode 4
Characteristic Length (nm) 330 900 250 200
Mean CSD Length (nm) 370 910 270 230
Particle Biot Number 0.35 0.95 0.26 0.22

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.
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Assessing the Spherical Model
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Shin et al., Under Review, 2019.



Galvanostatic Case Studies

10
• Departure from spherical behavior seen at high C-rate.
• Increased discrepancy observed for lower sphericity.

Shin et al., Under Review, 2019.



Galvanostatic Case Studies
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Shin et al., Under Review, 2019.
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NMC Cathode Microtomography
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• White beam 
µCT applied 
with phase 
contrast 
capability.

• Two sample 
encapsulation 
methods used: 
epoxy and 
Kapton tape. 

• Phase contrast 
data preserved 
with Kapton 
tape samples.

• Watershed 
segmentation 
applied for AM.

• Secondary 
phases 
segmented 
using histogram 
data.

Rajendra et al., ACS Appl. Mater. Interfaces, 2019 (10.1021/acsami.8b22758).



Micron Scale Processing Effects
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• Subresolution active material shown 
from XNT data.

• Ball milling displays only significant size 
reduction for the active material.

• Calendering yields size reduction for the 
carbon/binder regions

• Little variation is observed for the 
macropore regions.

Rajendra et al., ACS Appl. Mater. Interfaces, 2019 (10.1021/acsami.8b22758).



Electrode Performance Effects
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1C

5C

• Phase sizes yield aggregate diffusion 
time estimates based on Fom = 1.

• Simulated rate capability follows 
electrode diffusion time estimates.

Rajendra et al., ACS Appl. Mater. Interfaces, 2019 (10.1021/acsami.8b22758).



Response to Fast Charging
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P. Patel and G. J. Nelson, J. Energy Resour. Technol., Accepted, 2019.

Thin Electrodes Thick Electrodes



Thin Electrode Thick Electrode 

Microstructural Influence
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P. Patel and G. J. Nelson, J. Energy Resour. Technol., Accepted, 2019.



Summary

• Multiscale nature of batteries predicates multiscale direct 
imaging methods.

• X-ray nanotomography 
• Processing alters particle geometry.
• Particle geometry influences charge/discharge capabilities.

• X-ray µCT
• Processing alters active material and secondary phase geometry.
• Phase geometry influences charge/discharge capabilities.

• The role of geometry can be assessed with appropriate 
dimensionless metrics.

• Geometry at the microscale and macroscale may be altered to 
enhance performance, reliability, and safety.
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Thank you for your time
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X-ray and Neutron Imaging

Multiscale Transport and Energy Conversion
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3D Data Analysis & Multiphysics Modeling

Projects include:
• X-ray and neutron 

imaging (3D and in 
operando)

• Microstructural analysis
• Multiphysics FEA
• Device testing
• Materials synthesis

Further details:
george.nelson@uah.edu
http://mtec.uah.edu

mailto:George.nelson@uah.edu
http://mtec.uah.edu/

