

Analysis of Structure Transport Interactions in Lithium Ion Batteries Supported by X Ray Imaging

Thushananth Rajendra, Prehit Patel, SeungYoon Shin, and **George J. Nelson**

Mechanical and Aerospace Engineering University of Alabama in Huntsville

NASA Aerospace Battery Workshop Huntsville, Alabama November 19, 2019

Overview

- The need for direct imaging of batteries
- Li-ion cathode characterization using X-ray nanotomography
- Particle scale intercalation studies
- Li-ion cathode characterization using X-ray microtomography (μCT)
- Analyzing electrode structure for fast charging of thicker electrodes
- Summary

The Need for Direct Imaging

Goodenough and Park, J. Am. Chem. Soc., 135, 1167–1176, 2013.

- Batteries are heterogeneous multiscale functional material systems.
- Multiscale design is a necessity.
- Direct imaging methods are a key tool for multiscale design.

https://www.electricbike.com/inside-18650-cell/ 3

Nanotomography and μCT

Argonne National Lab Advanced Photon Source

Sample

Installation

APS Beamline 32-ID-C TXM

- X-ray energy: 7-40 keV
- 60 nm spatial resolution

APS Beamline 2-BM-A

- X-ray energy: 11-35 keV
- 1.3 µm spatial resolution

NMC Cathode Nanotomography

- Processing variants
 - Cathode 1: Gradual drying
 - Cathode 2: Rapid drying
 - Cathode 3: Rapid drying followed by calendering
 - Cathode 4: Ball milling followed by gradual drying

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.

Particle Size and Sphericity

Particle Intercalation Studies

- Simulation of lithium diffusion, particle as sole domain (COMSOL Multiphysics).
- Butler-Volmer with fixed overpotential and galvanostatic operation.
- Intercalation characterized based on mass transfer Biot number and Fourier number.

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.

Geometry Effect on Intercalation THE UNIVERSITY OF

- Four particles extracted from cathode data sets.
- Compared to spheres of equivalent Bi_m

$$Bi_m = \frac{k_{eff}L_C}{D_{Li}} \qquad Fo_m = \frac{D_{Li}t}{r^2}$$

 Departure from spherical particle model depends on sphericity (ψ) and Bi_m.

Nelson et al., J. Electrochem. Soc., 164(7) A1412-A1424, 2017.

Metric	Cathode 1	Cathode 2	Cathode 3	Cathode 4
Characteristic Length (nm)	330	900	250	200
Mean CSD Length (nm)	370	910	270	230
Particle Biot Number	0.35	0.95	0.26	0.22

Assessing the Spherical Model

9

Galvanostatic Case Studies

- Departure from spherical behavior seen at high C-rate.
- Increased discrepancy observed for lower sphericity.

Galvanostatic Case Studies

11

NMC Cathode Microtomography THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

- White beam µCT applied with phase contrast capability.
- Two sample encapsulation methods used: epoxy and Kapton tape.
- Phase contrast data preserved with Kapton tape samples.
- Watershed segmentation applied for AM.
- Secondary phases segmented using histogram data.

Rajendra et al., ACS Appl. Mater. Interfaces, 2019 (10.1021/acsami.8b22758).

Micron Scale Processing Effects

- Subresolution active material shown from XNT data.
- Ball milling displays only significant size reduction for the active material.
- Calendering yields size reduction for the carbon/binder regions
- Little variation is observed for the macropore regions.

Rajendra et al., ACS Appl. Mater. Interfaces, 2019 (10.1021/acsami.8b22758).

Electrode Performance Effects

Response to Fast Charging

P. Patel and G. J. Nelson, J. Energy Resour. Technol., Accepted, 2019.

Microstructural Influence

16

P. Patel and G. J. Nelson, J. Energy Resour. Technol., Accepted, 2019.

Summary

- Multiscale nature of batteries predicates multiscale direct imaging methods.
- X-ray nanotomography
 - Processing alters particle geometry.
 - Particle geometry influences charge/discharge capabilities.
- X-ray μCT
 - Processing alters active material and secondary phase geometry.
 - Phase geometry influences charge/discharge capabilities.
- The role of geometry can be assessed with appropriate dimensionless metrics.
- Geometry at the microscale and macroscale may be altered to enhance performance, reliability, and safety.

Acknowledgments

- Support
 - NSF Collaborative Research Project (CBET-1438683)
 - NSF CAREER Award (CBET-1454437)
- Students
 - Logan Ausderau, Joseph Buckley, Hernando Gonzalez Malabet, Piyush Jibhakate, Zachary van Zandt
- Collaborators
 - Partha Mukherjee, Aashutosh Mistry, Daniel Juarez-Robles (Purdue)
 - Vincent De Andrade, Xianghui Xiao (Argonne National Lab)

Thank you for your time

Multiscale Transport and Energy Conversion

