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Introduction
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 ldentification of causes of temperature rise is important particularly

at high C rate and low temperature.
« Estimation and measurement of HGR is important.

Optimal design of coolant system.




Lack of current thermal model and measurement
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* Not accurate measurement of HGR
« Temperature control using thermal
chamber — not able to control
temperature accurately

* Only for lumped model.
* No detail information for HGR
* No heat of mixing

« Thermal model for physic based electrochemical model
:> « Accurate measurement of heat generation rate and control of

temperature
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Measurement of heat generation rate
design of calorimeter
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Principle of calorimeter

Requirement of new experiment method
1. Accurate regulation and tracking control of temperature.
2. Accurate measurement of heat generation rate.
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Theory of heat generation rate
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Reformulation of heat source terms

The first law of thermodynamics in closed system du = dQ — dw

Addition of (Neglected in
new particles closed system)
Heat added U Heat given off
o system (Internal energy) by system
Work done
by system

Enthalpy H =U + PV
» Defined as internal energy plus product of pressure and volume.
« Given battery volume, change of enthalpy is equal to the change of internal energy.

» Change of enthalpy consists of

1. Enthalpy reaction change d Uocy
2. Change of temperature aH — |T? T .¢ ar + J‘( H— HaVE)@dV
3. Heat of mixing dt dT " dt ot
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Charging process considering internal behavior

1. Transport of electrons
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= lon transport = 2. Transpo!rt of_ ions
= = Migration (larger)
3 5 Diffusion (neglected)
Concentration overpotential
Electron transport Electron transport

decreases potential gradient

<¥> 3. Activation overpotential
* For intercalation
» Additional heat from SEI

nge of ion concentratio

4. Actual work to battery
» Change surface ion concentration

/

5. Useful chemical energy
» From averaged ion concentration

6. Change of enthalpy Uoey
« Change of entropy dH T dT —  —ae) OC
« Change of battery temperature dt =IT* dT +C, dt + _[( H-H" e)a dv

* Heat of mixing
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Irreversible heat source terms

¢ Simulation results of 2C CC charging / discharging from physic based electrochemical model.
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+ Dominant heat sources: migration in electrolyte, contact resistance, work — delivered energy.

* Negligible sources: migration in electrode, heat of mixing, SEI at BoL.

+ Negative heat from concentration overpotential in electrolyte phase.

*

» Remaining heat can be estimated using designed thermal model.

e
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Heat source — reversible heat source
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Pulse test analysis (50% SOC)

Comparison of the heat during pulse discharge and charge test.
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Empirical equation for reversible heat
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Empirical equation for reversible heat

 Measured HGR — estimated irreversible HGR at different C rate
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« Similar tendency and mirrored behavior from charging and discharging.

o : du
« Assume no heat of mixing, Qptar = Qirr — IT%
dUocvy — Qirr_Qtotal
ar IT

« Obtain entropy coefficient as a function of SOC and temperature from least

sguare estimation e
%PRL‘;_/
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Empirical equation for entropy coefficient

s Obtain entropy coefficient as a function of SOC from least square estimation.
s Based on 2C measurement.

* 95% of confidence level for the bounds
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Dominant at low SOC range.
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Reversible heat source term — measurement of
entropy coefficient

CAPRES
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Measurement method of entropy coefficient

— 1, T : directly measureable during experiment
dUOCV

dl

Qrev = —IT
dUycy/dT : entropy coefficient, a function of
— temperature, SOC

How to measure the entropy coefficient?

Fix temperature and varies SOC. Fix SOC and varies temperature.
Compares at different temperature. Compares at different SOC.

OCV varies linearly with temperature around
room temperature.
More accurate.

OCV varies nonlinearly with SOC.
Less accurate.

Select the number of SOC points and varies

Find OCV-SOC relationship at different temperature.
temperature. The accuracy is directly related to the number of
Less time consuming. SOC points.

I More time consuming. @
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Measurement of dU,,/dT

Measure Uq,, by varying T at a fixed SOC 5 5
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Comparison of measured entropy coeff. with empirical equation

, x 107 < Measurement of dOCV/dT;
: : : : « Afixed SOC, but temperature
: . : change at the every 5% of SOC
ok----- N g ' interval.
M .
|
> ¢ Good agreement of measured entropy
S 2k S o coefficient with empirical equation.
> : : 1
Q I I Empirical equation B :
S : ' o Measured data » Negative at low SQC range, the
ud i 2 P Fitted curve T reason for the negative peak of heat
: : : : generation rate during charging.
| | | |
'60 0.2 0.4 0.6 0.8 1 ** One fitted curve for all temperature

SOC ranges from -30°C to 45°C.
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Model validation — comparison of HGR
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Validation of HGR

= Validation results from 25°C, 2 upper temperature (35°C and 45°C), and 2 lower
temperature (-15°C and -30°C).
» Results using a pouch type NMC 622 cell (26Ah)

Results at 25°C
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* HGR validation using physic based electrochemical model.
¢ Heat generation rate can be accurately estimated from 1C to 4C.
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Validation of HGR

Results using a pouch type NMC 622 cell (26Ah )
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*» HGR validation using physic based electrochemical model.
¢ Heat generation rate can be accurately estimated from 1C to 4.5C.
*» Negative peak at low SOC during charging is due to reversible heat.
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Validation of HGR

» Results using a pouch type NMC 622 cell (26Ah)
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* Due to extremely low temperature, current is limited and no charging is
recommended at -30°C
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Heat source analysis — effect of C rate on HGR
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Heat source analysis — effect of charging current

e

w» Based on the validation results at 35°C.
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% Proportional relationship of Joule heating

% Less total heat from charging caused by
and square of current. : :
. : L : negative reversible heat.
% Reduction of charging time with C rate. . . : :
& Linearlv increasing total heat s At low C rate, reversible heat is dominant.
y J s At high C rate, irreversible heat is dominant.

Less total heat from charging.
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Heat source analysis — effect of temperature on HGR

CAPRES

&L’ Minseok Song, mms0086@auburn.edu ; Research on HEV&EV 26 Copying this presentation is illegal and strictly forbiddeh —J)



Reversible heat generation rate at different temperature

The reversible heat generation rate over time and SOC (1C CC discharge).

Reversible heat generation rate

Reversible heat generation rate
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¢ Most dominant factor for low C rate.

¢ Same shapes regardless of operating temperature (more dependent on SOC), but slight
increase at elevated temperature.

% Mirrored behavior at charging that causes a negative peak at the beginning of charging.
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Irreversible heat — Joule heating

« The irreversible heat during 1C CC discharge.

From contact resistance 10 Heat from work-delivered energy
12 1 ! 1 1 !
| | | I __300C
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I | 1
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Time/min Time/min
¢ Overall magnitude. ¢ Peak of HGR.
¢ The similar profile to that of the % -30°C: reduced HGR due to short
applied current profile. discharging time.
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Conclusion and future work

Achievement

« Accurately validated new thermal model from physic based model.
« New experimental method that control temperature and measure HGR
accurately.
» Analysis of heat sources based on new thermal model.
YEYAY
Future work Q,, = f(1,T,SOC,aging, location,---)

1. Effect of aging (side reaction and lithium plating) on heat
generation rate.

2. Estimation of heat generation rate and temperature distribution on
3D model.

~APRLS
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Thank you!
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