Analysis and Measurement of Heat Sources of Lithium-Ion Polymer Battery Using Electrochemical Thermal Model and Calorimeter

> 2019 NASA Aerospace Battery Workshop Nov. 20, 2019 Minseok Song, Yang Hu, and Song-Yul Choe Mechanical Engineering Auburn University





### Table of contents

Introduction – The need for new thermal model and measurement system

- 1. Measurement of heat generation rate of battery design of calorimeter
- 2. Heat source analysis
  - 1) Irreversible heat generation rate
  - 2) Reversible heat generation rate
    - Empirical equation for reversible heat generation rate
    - Measurement of reversible heat generation rate
- 3. Model validation results using measured heat generation rate
- 4. Heat source analysis Effect of C rate and temperature on heat generation rate



#### Introduction



- Identification of causes of temperature rise is important particularly at high C rate and low temperature.
- Estimation and measurement of HGR is important.
- Optimal design of coolant system.



| <b>Classical equation for HGR</b>                                                                            | <b>Measurement of HGR</b>                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Only for lumped model.</li> <li>No detail information for HGR</li> <li>No heat of mixing</li> </ul> | <ul> <li>Not accurate measurement of HGR</li> <li>Temperature control using thermal chamber – not able to control temperature accurately</li> </ul> |

- Thermal model for physic based electrochemical model
- Accurate measurement of heat generation rate and control of temperature



# Measurement of heat generation rate design of calorimeter





# Principle of calorimeter

Requirement of new experiment method

- 1. Accurate regulation and tracking control of temperature.
- 2. Accurate measurement of heat generation rate.



#### Theory of heat generation rate





# Reformulation of heat source terms

**The first law** of thermodynamics in closed system dU = dQ - dW



#### Enthalpy H = U + PV

- Defined as internal energy plus product of pressure and volume.
- Given battery volume, change of enthalpy is equal to the change of internal energy.
- Change of enthalpy consists of
  - 1. Enthalpy reaction change
  - 2. Change of temperature
  - 3. Heat of mixing

$$\frac{dH}{dt} = IT^{2} \frac{d \frac{U_{OCV}}{T}}{dT} + C_{p} \frac{dT}{dt} + \int \left(\bar{H} - \bar{H}^{ave}\right) \frac{\partial c}{\partial t} dv$$



## Charging process considering internal behavior



• Heat of mixing

#### Irreversible heat source terms

Simulation results of 2C CC charging / discharging from physic based electrochemical model.



- ✤ Dominant heat sources: migration in electrolyte, contact resistance, work delivered energy.
- ✤ Negligible sources: migration in electrode, heat of mixing, SEI at BoL.
- ✤ Negative heat from concentration overpotential in electrolyte phase.
- Remaining heat can be estimated using designed thermal model.

#### Heat source – reversible heat source





Minseok Song, mms0086@auburn.edu; Research on HEV&EV 11 Copying this presentation is illegal and strictly forbidden.

# Pulse test analysis (50% SOC)

Comparison of the heat during pulse discharge and charge test.





# Empirical equation for reversible heat





Minseok Song, mms0086@auburn.edu; Research on HEV&EV 13 Copying this presentation is illegal and strictly forbidden.

# Empirical equation for reversible heat

• Measured HGR – estimated irreversible HGR at different C rate



- Similar tendency and mirrored behavior from charging and discharging.
- Assume no heat of mixing,  $\dot{Q}_{total} = \dot{Q}_{irr} IT \frac{dU_{OCV}}{dT}$

• 
$$\frac{dU_{OCV}}{dT} = \frac{\dot{Q}_{irr} - \dot{Q}_{total}}{IT}$$

• Obtain entropy coefficient as a function of SOC and temperature from least square estimation

# Empirical equation for entropy coefficient

- ✤ Obtain entropy coefficient as a function of SOC from least square estimation.
- ✤ Based on 2C measurement.



# Reversible heat source term – measurement of entropy coefficient





Minseok Song, mms0086@auburn.edu; Research on HEV&EV 16 Copying this presentation is illegal and strictly forbidden.

### Measurement method of entropy coefficient

- *I*, *T* : directly measureable during experiment

$$\dot{Q}_{rev} = -IT \frac{dU_{OCV}}{dT} \quad -$$

 $dU_{OCV}/dT$  : entropy coefficient, a function of temperature, SOC

How to measure the entropy coefficient?

| Fix temperature and varies SOC.<br>Compares at different temperature.       | Fix SOC and varies temperature.<br>Compares at different SOC.                                                                                          |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCV varies nonlinearly with SOC.<br>Less accurate.                          | OCV varies linearly with temperature around<br>room temperature.<br>More accurate.                                                                     |
| Find OCV-SOC relationship at different temperature.<br>Less time consuming. | Select the number of SOC points and varies<br>temperature.<br>The accuracy is directly related to the number of<br>SOC points.<br>More time consuming. |

# Measurement of $dU_{OCV}/dT$



Minseok Song, mms0086@auburn.edu; Research on HEV&EV 18 Copying this presentation is illegal and strictly forbidden

#### Comparison of measured entropy coeff. with empirical equation

![](_page_18_Figure_1.jpeg)

- ✤ Measurement of dOCV/dT;
  - A fixed SOC, but temperature change at the every 5% of SOC interval.
- Good agreement of measured entropy coefficient with empirical equation.
- Negative at low SOC range, the reason for the negative peak of heat generation rate during charging.
- One fitted curve for all temperature ranges from -30°C to 45°C.

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

# Model validation – comparison of HGR

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

# Validation of HGR

- Validation results from 25°C, 2 upper temperature (35°C and 45°C), and 2 lower temperature (-15°C and -30°C).
- Results using a pouch type NMC 622 cell (26Ah )

![](_page_20_Figure_3.jpeg)

- ✤ HGR validation using physic based electrochemical model.
- ✤ Heat generation rate can be accurately estimated from 1C to 4C.

![](_page_20_Picture_6.jpeg)

## Validation of HGR

• Results using a pouch type NMC 622 cell (26Ah )

![](_page_21_Figure_2.jpeg)

- ✤ HGR validation using physic based electrochemical model.
- ✤ Heat generation rate can be accurately estimated from 1C to 4.5C.
- ✤ Negative peak at low SOC during charging is due to reversible heat.

APR

Minseok Song, mms0086@auburn.edu; Research on HEV&EV 22 Copying this presentation is illegal and strictly forbidden.

#### Validation of HGR

• Results using a pouch type NMC 622 cell (26Ah )

![](_page_22_Figure_2.jpeg)

Due to extremely low temperature, current is limited and no charging is recommended at -30°C

![](_page_22_Picture_4.jpeg)

## Heat source analysis – effect of C rate on HGR

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

Minseok Song, mms0086@auburn.edu; Research on HEV&EV 24 Copying this presentation is illegal and strictly forbidden.

#### Heat source analysis – effect of charging current

Based on the validation results at 35°C. \*\*

![](_page_24_Figure_2.jpeg)

- \*\* Proportional relationship of Joule heating and square of current.
- Reduction of charging time with C rate.
- Linearly increasing total heat.
  - Less total heat from charging.

- Less total heat from charging caused by negative reversible heat.
- At low C rate, reversible heat is dominant. \*\*
- \*\* At high C rate, irreversible heat is dominant.

### Heat source analysis – effect of temperature on HGR

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

Minseok Song, mms0086@auburn.edu; Research on HEV&EV 26 Copying this presentation is illegal and strictly forbidden.

# Reversible heat generation rate at different temperature

• The reversible heat generation rate over time and SOC (1C CC discharge).

![](_page_26_Figure_2.jpeg)

- ✤ Most dominant factor for low C rate.
- Same shapes regardless of operating temperature (more dependent on SOC), but slight increase at elevated temperature.
- ✤ Mirrored behavior at charging that causes a negative peak at the beginning of charging.

#### Irreversible heat – Joule heating

• The irreversible heat during 1C CC discharge.

![](_page_27_Figure_2.jpeg)

- ✤ Overall magnitude.
- $\clubsuit$  The similar profile to that of the
  - applied current profile.

- ✤ Peak of HGR.
- ✤ -30°C: reduced HGR due to short

discharging time.

![](_page_27_Picture_9.jpeg)

# Conclusion and future work

## Achievement

- Accurately validated new thermal model from physic based model.
- New experimental method that control temperature and measure HGR accurately.
- Analysis of heat sources based on new thermal model.

**Solution Solution Solution** 

- 1. Effect of aging (side reaction and lithium plating) on heat generation rate.
- Estimation of heat generation rate and temperature distribution on 3D model.

![](_page_28_Picture_8.jpeg)

# Thank you!

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

Minseok Song, mms0086@auburn.edu; Research on HEV&EV 30 Copying this presentation is illegal and strictly forbidden.