

Advanced Solutions Group 4880 Venture Drive, Suite 100 Ann Arbor, MI 48108 Advanced Anodes and Electrode Coating Technology for High Energy Lithium Ion Batteries

> Pu Zhang, Robert Sosik, Felix Nunez, and Mike Wixom

Navitas Systems, LLC Ann Arbor MI

NASA Battery Workshop Huntsville AL Nov 15, 2017

- Who is Navitas
- Navitas high capacity anode
- Navitas advanced electrode drying technology
- Navitas high energy cell demonstration

Who are we?

- Navitas is a Small, Women owned, company Headquarter in Chicago, IL with manufacturing facilities in Ann Arbor, Michigan.
- Navitas is a Cell and battery design and manufacturing company with Electrical Assembly (PCB), Cable and Harness design and contract manufacturing capabilities
- Navitas has a state of the Art Research and Development facilities and full Product Engineering team with extensive Cell and Battery development and manufacturing experience and capabilities

Navitas Capability

	Lithium Battery Solutions	System Design and Assembly	Electronics & Battery Management Systems (BMS)	Custom Cell Development	Analytical and Testing	Cell Chemistry R&D Advanced Chemistry and processing
Capability				Start 1 March 1		
Scope	 Custom battery development, prototyping, and manufacturing 12V NATO 6T Battery 24V NATO 6T Battery Multi-kWh motive application batteries PowerForce™ Idle Reduction Battery Frontierion™ Photovoltaic Interface Energy Storage Mission-critical UPS Systems 	 Cell form factor and chemistry agnostic >1kWh solutions System mechanical and electrical design Custom power electronics Finite element analysis Thermal modeling Prototype and low- volume assembly in house 	 Custom PCBA and wiring harness design and assembly In-house SMT line Customized configurable software Box builds 	 Custom prismatic cells 2x2 to 12x22 cm form factors In house slot-die coating 650 sq. ft. dry room Various Li-ion chemistries developed Extreme high power and high energy density chemistries available; 100-600 Wh/L 	 500+ MACCOR test channels Environmental control -70 to +200°C Electrochemical Impedance Spectro- scopy Scanning Electron Microscope with elemental mapping and inert gas sample transfer device Analytical chemistry instrumentation Cell tear down analysis 	 Wet lab Controlled atmosphere tube furnaces for synthesis Custom anode, cathode, and electrolyte development Battery materials and concepts evaluation Advanced Chemical processing

Si Anode Overview

Goal: Produce a practical and economical high capacity silicon-based anode material for lithium ion batteries

Anode Property	Metrics
Primary particle size (nm)	50 - 200
Secondary particle size (µm)	1 - 10
BET surface area (m²/g)	< 20
Tap density (g/cm ³)	0.85
Specific capacity (mAh/g)	650 - 1350

HIGH CAPACITY

650 – 1350 mAh/g reversible capacity: 70% ~ 385% higher than graphitic carbon anodes (350 mAh/g).

HIGH REVERSIBILITY

Proprietary process reduces initial capacity loss below 12%.

CYCLE LIFE

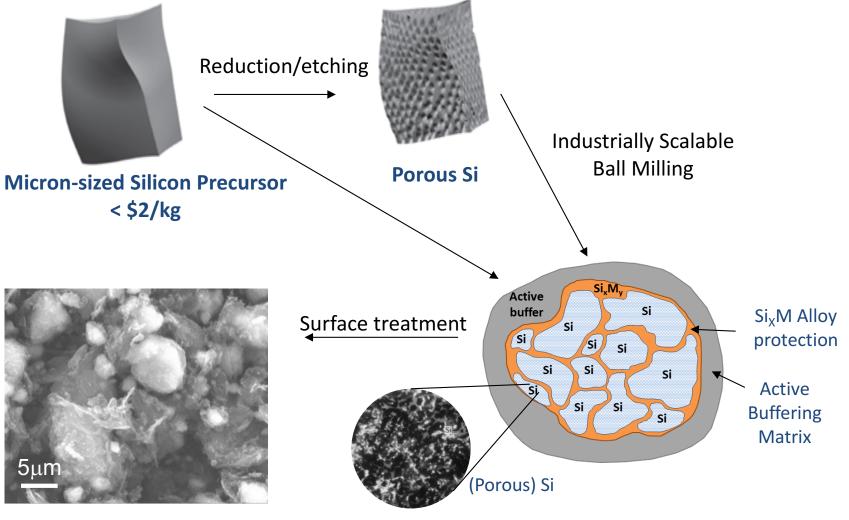
>800 cycles at 80% DOD in a Li ion cell (with Si anode 650 mAh/g and 3 mAh/cm² loading).

LOW COST

Based on commodity pricing for micron-sized silicon starting materials and using scalable, low-cost processing.

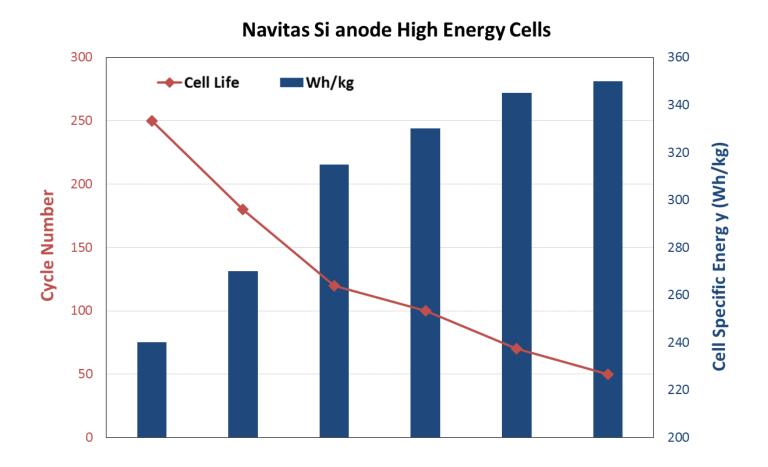
TAP DENSITY

0.85 g/cm³ comparable to commercial anode powders.


>90% capacity retention at 2C (at 3 mAh/cm² electrode loading).

PROCESSING

Slot-die coated electrodes from stable slurry using established water-based binder formulation.

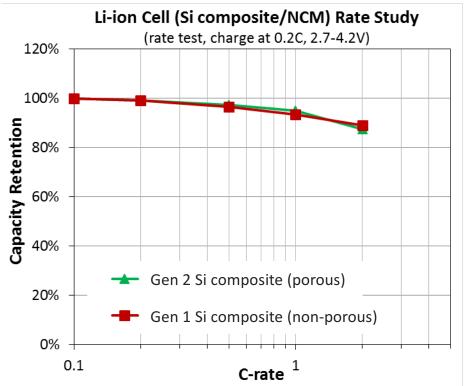


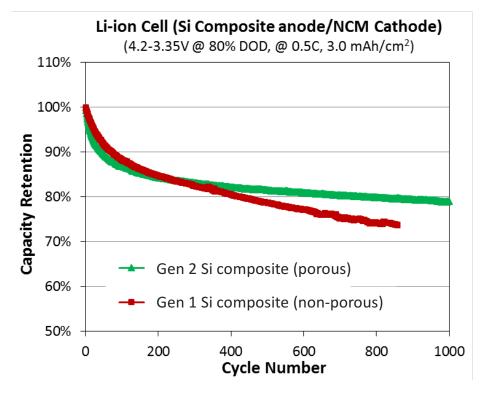
High capacity Si composite with a cost comparable to graphite

Si Anode Cell: Energy vs. Cycle Life

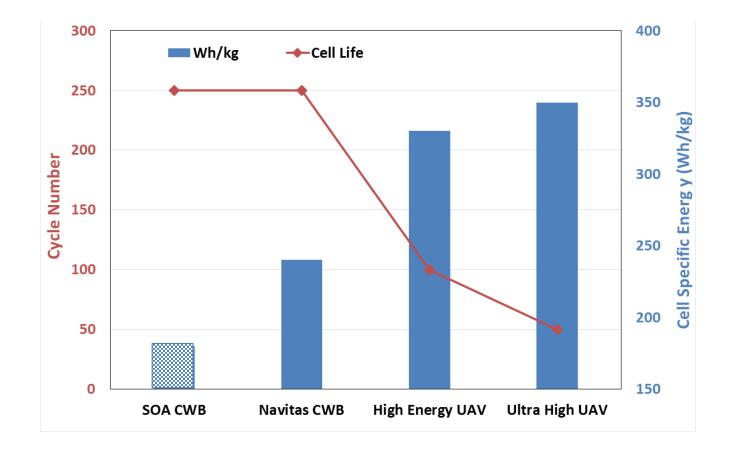
- Navitas Si anode high energy cell cycle life vs. specific energy
 - Customized cell design to balance life and energy
 - Higher energy density cells have shorter cycle life than lower energy ones

• Pilot scale electrode production readily scalable to manufacturing

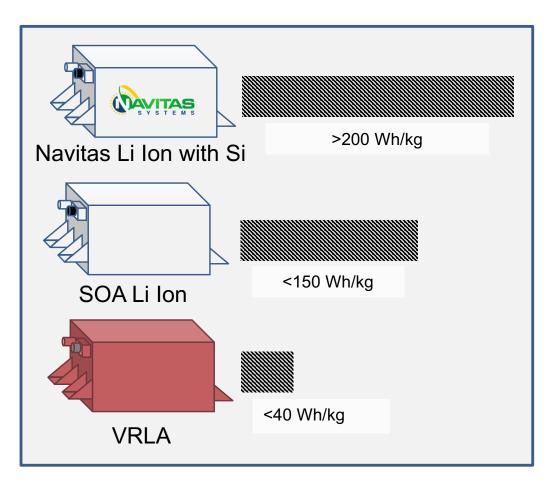

Electrode loading (mAh/cm ²)	3.0 - 8.0	
Active material content	92 wt.%	
Binder	Aqueous binder	
Porosity	30 - 45%	
Coating method	Slot-die	
Double sided	Yes	
Roll-to-roll	Yes	



Si Composite Anode Full Cell Demonstration


- Electrode fabrication
 - -Si anode: 92% active with aqueous binder
 - -Si composite capacity 650 mAh/g
 - -NCM cathode: 93% active with PVDF binder
 - -Loading 3.0 mAh/cm² and A/C = 1.1
- Cell assembly:
 - -250 mAh double-layer-pouch cell (active area: 47 cm²)
 - -270 Wh/kg if in EV format (cell level)

- Rate capability: 90% capacity retention at 2C
- >800 cycles at 80% DOD and 80% capacity retention (or 250 cycles at 100% DOD)
- LiB cells with mpSi composite anode showed 2X life performance improvement over reference


Navitas Si Anode Cell: Energy Comparison Conformal Wearable & UAV

- Navitas reinforced Si anode in CWB and UAV cells:
 - Significant weight saving
 - Energy advantage 30-100% more energy than SOA LiBs
 - Superior safety and abuse tolerance

Si Composite Anode: Energy Comparison Aviation Battery

- Navitas reinforced Si anode Aviation LiB:
 - Significantly lower weight
 - Has 400% and 40% higher energy density than that of VRLA and SOA LiB
 - Superior safety and abuse tolerance

Future work

- Conduct critical performance evaluations on the large format cells:
 - Cycle life demonstration
 - Dimensional stability (swelling, gassing) during cycling
 - High temperature storage
 - Abuse tolerance (e.g., over-charge, over-discharge, short-circuit, and nail-penetration)
 larger format cells (≥ 2 Ah)
- Establish cost model for the Si material
- Continue to develop next generation Si anode with enhanced safety

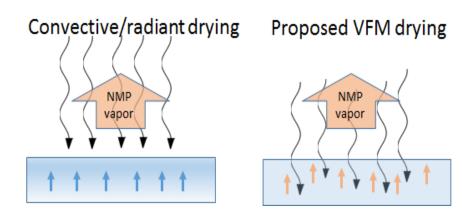
Strategy to High Energy Li-ion Cells MATERIALS & PROCESSING

MATERIALS:

- High capacity proprietary Si anode 500 - 1000 mAh/g
- High nickel content lithium metal oxide cathode

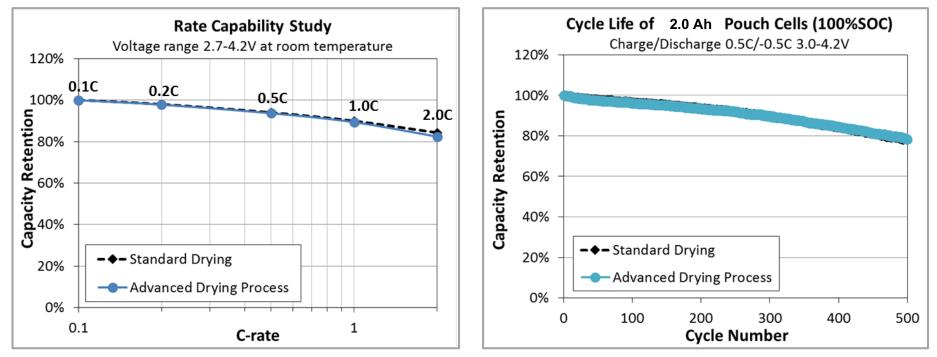
PROCESSING:

- High loading electrode up to 8 mAh/cm²
- Enabled by an advanced drying process (ADP)


Cell Type	Baseline	High Energy	Advanced High Energy
Cathode	NCM811	NCM811	NCM811
Anode	Graphite (360 mAh/g)	Si Composite (1000 mAh/g)	Si Composite (1000 mAh/g)
Electrode Loading (mAh/cm ²)	3.5	3.5	7.0
Specific Energy (Wh/kg)	260	300	354
Energy Density (Wh/L)	500	610	685

How does Navitas get to 7 mAh/cm² Cathode?

Advanced Drying Process (ADP) VFM & Hot Air



Compared to baseline convective electrode drying, VFM transfers energy to the electrode bulk, vaporizing NMP (orange) and avoiding dragging electrode binder (blue arrows) which creates a gradient with low binder content at the current collector interface.

- Electrodes slurries, especially thicker coatings are slow to dry because of the surface heating by convection or infrared radiation (IR frequency is much higher than microwaves).
- Use Variable Frequency Microwaves (VFM) to penetrate the thickness of the thick slurry electrode coatings.
- Water and other solvent molecules are polar. Microwaves selectively target these polar molecules and sets these molecules into rotation.
- The enhanced mobility rapidly drives the water or solvent vapors out of the electrode coatings.
- The hot air flowing over the electrode carries these solvent vapors away through the exhaust ports on the equipment.
- The result is a rapid drying cycle which saves drying time and cost.

Navitas Continuous Coating/Drying: Validation in 2 Ah Li ion Cell

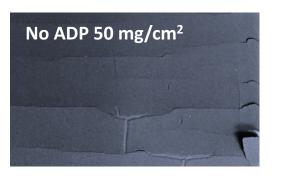
Drying Method			Initial Capacity	# Life Cycles @
Anode	Cathode	(mAh/cm ²)	(mAh/g)	100%SOC (C/2 rate)
Navitas	Navitas	3.1	141.9	500
ADP	ADP	3.1	142.6	500

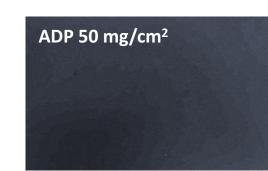
✓ Pilot continuous drying using ADP confirms that the process does not sacrifice cell performance when compared to standard drying

ADP Electrode: Rapid Drying

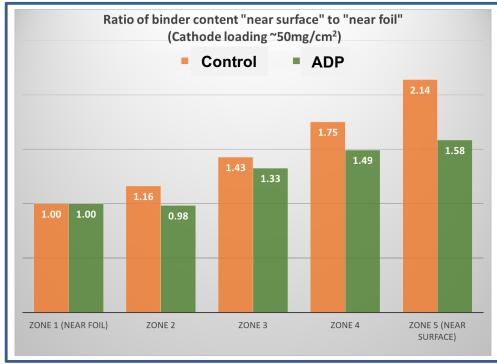
Electrode	Drying Method	Loading (mg/cm²)	Drying speed (mm/min)	Drying length (m)
	Standard	10.4	500	2.5
Anode (graphite,	Advanced drying	10.6	500	0.5
water based binder)	ADP Advantage	5X		
	Standard	18.2	350	2.5
Cathode (NCM523,	Advanced drying	18.9	225	0.5
NMP based binder)	ADP Advantage		3X	

- Electrodes were coated using Navitas pilot coating system and dried using either standard or advanced drying process (ADP)
- Electrode testing at Navitas constituted: solvent content, adhesion, binder distribution experiments
- Electrochemical validation included: full lithium ion electrochemical testing


Advantage of using ADP over conventional drying system was 5X for aqueous anodes and 3X for NMP based cathodes



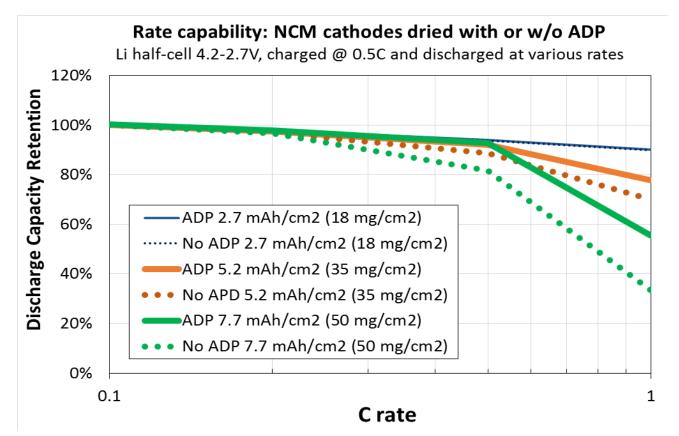
Ultra-High Loading Cathode: Coating Characterization


Slot-die NCM cathode coatings dried with and without ADP

Without ADP: surface cracks and nonuniform spots

With ADP: No surface defects

Binder Distribution


- ADP dried sample shows lower level of binder migration than control
- ADP dried sample shows more uniform binder distribution than control

Characterization method

- Divide the electrode cross-section to five zones (Zone 1 near the foil → Zone 5 near the surface)
- Use SEM/EDS to analyze binder ("F") content and compare the ratio among different zones (normalized to Zone 1)

Ultra-High Loading Cathode: Rate Capability

- At high loadings (>5 mAh/cm²), ADP dried electrodes show improved performance compared to the control samples
- The ADP dried electrodes maintain the rate capability up to 0.5C with the loadings from 2.7 to 7.7 mAh/cm²
- The ADP dried electrodes also show lower impedance than the control samples by using EIS characterization

Adaptable chemistry platform; based on lithium metal oxide cathode and Si composite anode; capable of being packaged into a wide variety of cell form factors

Cell	Navitas HEC			
Mechanical Design	Form Factor Prismatic Pouch Ce			
	Dimensions	55 x 105 mm		
	Terminals	10mm wide Ni(-) & Al(+)		

Performance	Capacity	2 – 10 Ah	
	Voltage	3.6-3.7 V	
	Discharge Rate	0.5C continuous	
	Specific Energy (Wh/kg)	240 - 350	
	Energy Density (Wh/L)	500 - 700	
	Cycle Life*	50- 250 cycles	
*Higher energy density cells have shorter cycle life than lower energy ones			

Navitas High Energy Cell Capability

Electrode Coating

- Lab/Pilot Slot-Die Coater
- 2 Gallon Anode and Cathode Mixers
- Small Scale Mixer for Experimental Materials
- Efficient Coating Development at 1g 5kg Batch Levels
- Materials Coated: Graphite, Silicon Anodes, LTO, LFP, NCM, NCA, LMO, LCO

Cell Prototyping

- Custom Cell Development
- 700 sq ft Dry Room
- Enclosed Formation
- Semi-Auto Cell Assembly Equipment
- Pouch and Metal Can Packaging Supported

Navitas would like to thank the following agencies to support this work:

- Defense Advanced Research Projects Agency (DARPA)
 - High energy cell development
- Department of Energy (DOE) SBIR
 - High performing low cost Si anode
- DOE VTO OPPORTUNITY (two programs)
 - Porous Si process
 - Advanced Drying Process
- US Navy SBIR
 - High energy aviation battery (with Si anode)