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CONVERGE CFD for Battery Simulations
• CONVERGE CFD software is well-suited for battery simulations of 3D coupled flow, heat transfer, and chemistry 

in complex geometries, with autonomous mesh generation to reduce total time-to-solution

• CONVERGE contains the SAGE detailed chemical kinetics solver, parallelized efficiently for fast run-times and 
adopted to model battery vent gas combustion and thermal runaway chemistry inside the solid

• Adaptive mesh refinement (AMR) automatically resolves the flow, diffusion of vent gas, flame front and 
thermal runaway front propagation at low computational expense

• Wide variety of other physics-based 3D modeling capabilities that have been utilized for battery simulations
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Thermal Runaway Propagation and Vent Gas Simulations
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Capturing Battery Thermal Runaway and Venting Phenomena using Detailed 3D CFD 
Solutions
Kislaya Srivastava et.al,
2022 NASA Aerospace Battery Workshop

*40 casesAn+E reaction

Coupled thermal runaway and vent gas 
modeling frameworks

Thermal runaway mechanism fitting tools
Statistical analysis of thermal runaway 
propagation in battery packs



Phase-Change Materials : An Overview
• Heat storage device : Absorbs heat during melting, releases heat during solidification

• Temperature regulators

• Passive cooling approach : Lightweight, compact, efficient, consistent, sustainable

• Versatile : Variety of PCMs with broad spectrum of transition temperatures
• Selection based on optimal battery operating temperature 

• Drawbacks : Low conductivity, possible leakages, possible structural failures at high temperatures
• Conductivity/heat transfer can be enhanced using fins
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PCMs with CFD : Solidification and Melting Model 
• Solid-liquid phase change modeled using the enthalpy-

porosity method

• Porosity of PCM : 
• 1 : Solid, T < T_solidus
• 0: Liquid, T > T_liquidus
• Between 0 and 1 : Mushy zone with liquid volume 

fraction, T_solidus < T < T_liquidus

• Liquid flow modeled as laminar and incompressible 
Newtonian fluid

• Boussinesq approximation  to model buoyancy effect

• Transient 3D conjugate heat transfer simulations of 
PCM battery cooling investigated 

5 PCM : Paraffin wax (melting range : 314-317K)



Battery Equivalent Circuit Model
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• Lumped-parameter model for electrothermal response
• Simplistic and computationally inexpensive, empirical
• Lin. et. al., “ A lumped-parameter electro-thermal model 

for cylindrical batteries”
• Represent battery as an electrical network and calculate 

heat source based on current (charging or discharging)
• Inputs : battery capacity, initial SOC, current profile, 

1D/2D data tables
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PCM Simulations : Results (1/2)
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BEC for battery heat release under a discharge cycle
PCM : Paraffin wax (melting range : 314-317K)



PCM Simulations : Results (2/2)
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BEC for battery heat release under a low C-rate 
charge cycle

PCM : Paraffin wax (melting range : 314-317K)

Temperature regulation (warming) during cooldown : 
Latent heat released during solidification

Temperatures within the PCM material



PCM Material 
Selection
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Paraffin RT50 N-Eicosane Lauric acid

Temp_liquidus (K) 317.15 324.15 310.50 321.35

Temp_solidus (K) 314.15 318.15 306.50 316.65
Specific Heat 
Capacity (K/Kg.K) 2000 2950 1926 2180
Latent heat capacity 
(J/kg) 255000 168000 248000 187210

Density (Kg/m3) 880 880 910 940

Conductivity (W/mK) 0.13 0.19 0.423 0.16



Addressing PCM Drawbacks : Low Conductivity
• Composites • Addition of fins
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Conductivity 
(W/m.K)

Specific heat 
capacity 
(J/Kg.K)

Latent heat 
capacity
 (J/kg)

Temp liquidus 
(K)

Temp solidus 
(K)

RT44HC 0.21 2250 270000 317.15 314.15

CPCM 11.00 2500 107800 318.15 314.15



Fluid Dynamics Within PCMs
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Fluid Dynamics Within PCMs : Natural Convection (1/2)
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Fluid Dynamics Within PCMs : Natural Convection (2/2)
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Fin Design Improvements : Helical Fin
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Fin Design Improvements : Double Helical Fin (1/2)
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Fin Design Improvements : Double Helical Fin (2/2)
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Incorporating 3D Effects : Short-Circuit Model
• Time or Temperature (ISC device) controlled short-circuit 

event, independent shape/size (for heat release)

• Resistance R_SC : User input
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ISC@240s, TR onset @250s



PCM/Fin Assembly Response to Short-Circuit Location
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*Thermal runaway model inactive



Non-Uniform Battery Heating
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Panchal et al., 2015



Coupled Electric Potential Solver : A 3D Analysis (1/2)
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Coupled Electric Potential Solver : A 3D Analysis (2/2)
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Thermal Runaway Mitigation with PCMs
• Impact of “PCM/Graphite matrix on thermal 

runaway propagation in a module : G.H. Kim 
et. al., 212th ECS, Washington, DC, Oct, 2007  

• Thermal runaway reaction model utilized for 
a predictive analysis

• Are TR simulation results reliable? : 
Reproducibility and repeatability
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Thermal Runaway Propagation Analysis: Chemistry
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• A comprehensive species-based reaction mechanism for thermal runaway chemistry? : 

• Calibrated reaction mechanisms required to 
reproduce experimental behavior
• Reliant on experimental DSC data

• Thermal runaway reaction kinetics
• Hatchard-Kim mechanism : 4 Reactions, LCO 

battery chemistry
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Thermal Runaway Propagation Analysis: Statistics
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Zhang et. al.
(2022)



PCMs as Fire Retardants

25 Vent gas ignition due to hot ejectaSelf ignition of vent gases after exit

Spark ignited vent gas combustion inside a battery pack

• Possible use of PCMs as flame retardants

• CONVERGE has established surface chemistry capabilities that can be utilized

• But what ignites the gases? 



Thermal Interactions Between Solid Ejecta and PCM
• Lagrangian solid particle wall film modeling approach for deposition of solid ejecta during thermal 

runaway and associated heat transfer to walls 
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Aluminum plate Solid with PCM thermal properties
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