Rechargeable Li-metal Cell Development for High Power and Low Temperature Applications

14 November 2023

ACKNOWLEDGEMENTS

Part of this material is based upon work supported by the Air Force Research Laboratory under contract No. FA864921P1618. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Air Force Research Laboratory

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC-PR-1479

Cornerstone Research Group, Inc.

Dr. Pasha Nikolaev*

Dr. John Hondred

Dr. Frank Zalar

Dr. Brian Henslee

Cornerstone Research Group, Power and Energy Center, Miamisburg, OH, USA

CRG

*Corresponding author, nikolaevpn@crgrp.com

What We Do

Applied Research & Development

CRG focuses on rapid innovation and delivering new capability to our customers

CRG

Cornerstone Research Group, Inc.

Core Competencies

Aerospace Systems

- Aircraft Design/Build/Fl
- Quiet Electric
 Propulsion
- Aircraft Repair and Sustainment
- Electromagnetics

© 2023 all rights reserved

Human Health & Al

- Casualty Care
- Wearable Sensors
- Environmental Sensors
- Autonomous Detection
 and Deterrence
- Edge Computing

Power & Energy

- Energy Storage
- Power Generation and Conversion
- Power Distribution and Management

Advanced Materials & Manufacturing

- Advanced Polymers
- Additive Manufacturing
- Affordable, Agile
 Composite Structures
- Manufacturing Process Development

Energy Storage

Li-ion and Li-metal cell development Pilot scale cell manufacturing line Battery pack integration

Power Generation & Conversion

Hybrid-electric power systems and solid-state power converters

Power Distribution & Management

Digital circuit breakers & intelligent electrical load management Digital twin, predictive maintenance

© 2023 all rights reserved

Power &

Energ

Battery & Cell Development Labs

Facility

- 174,000 ft² (total)
- >5400 ft² for cell and battery development, assembly, and test

Battery Cell Manufacturing

- 1000 ft² Dry Room
- Li-ion & Li-metal capable (dew point < -40°C)
- Semi-Automated Pilot Line
 - Pouch Cells (approximately 30 x 30 mm to 100 x 100 mm)
 - Li-metal compatible

Cornerstone Research Group, Inc.

Need: High Power Energy Storage

- Hybrid eVTOL needs high power batteries
 - Vertical take-off and transition to level flight
 - Emergency landings
 - Full discharge in 4 6 minutes: high power and discharge rate
- Battery charged on board during flight

Light weight, safe, powerful batteries enabling hybrid eVTOL/UAM platforms

aEro 2 VTOL Aircraft, Dufour Aerospace

- COTS Li-ion power cells (pouch, 18650, 21700, etc.)
- 145 160 Wh/kg typical to enable 10C – 20C discharge rates

CRC

Distribution A: Approved for Public Release

Power Cell Design

10.1 x 10.1 x 0.6 cm

Design:

- 6 Ah capacity
- 100 A terminals
- Large surface area format for heat rejection

Trade-offs:

- High discharge current
- Minimized impedance
- Lower specific energy

CRG

eVTOL Hybrid Aircraft Battery

Example of a battery requirements for a hybrid eVTOL urban mobility vehicle

Stage	Stage Definitions	Duration, min	Cell discharge rate
Idle	Aircraft sits on the ground		0
Hover	VTOL climb	5	5-10C
Transition	Transition from VTOL climb to fixed wing cruise	0.5	15-20C
Cruise	Fixed wing cruise, battery charged by generator	40	1C
Transition	Transition from fixed wing cruise to VTOL hold	0.5	15-20C
Hover	VTOL hold before descent	1	5-10C
Hover'	VTOL descent	5	5-10C
Idle	Aircraft sits on the ground		

^{10.1} x 10.1 x 0.6 cm

CRO

- First transition is the most demanding
 - High power & partially discharged
- Cell testing

- Rate stairs
- Simulated flight profile

Data Publicly Released at Power Sources 2023. "Development of a High Power Rechargeable Li-Metal Cell". Distribution A: Approved for Public Release

Power Pouch Cells

Rate performance

High energy cathode

- 4.3 Ah multilayer cells
- CRG proprietary electrolyte
- Compared to subscale 0.2 Ah cells
- C/2 Charge to 4.5 V, discharge to 2.7 V

10.1 x 10.1 x 0.4 cm

Moving from subscale pouches to full size cells: 8 C rate performance improved from 76% to 82% 16C performance improved from 60% to 61% Temperature increase during 16C = 68.6 A discharge: 25 °C -> 38°C Comparable Li-ion cells can reach 60-80 °C at these currents

CRG

Data Publicly Released at Power Sources 2023. "Development of a High Power Rechargeable Li-Metal Cell".

Distribution A: Approved for Public Release

Power Pouch Cells

Simulated take-off flight profile

High energy cathode

- 4.3 Ah multilayer cells ٠
- C/2 charge to 4.5 V, discharge to 2.7 V ٠

Simulated flight profile at increasing rates

- CC charge at 22 °C to 4.5 V ٠
- Discharge to 2.7 V •

First hover + transition (aircraft take-off)

- Always fails first (brown out at <2.7V) •
- High power output from a partially discharged state ٠

6 Ah cells demonstrated further improvement

13.6C maximum discharge rate in first transition. 61% total discharge capacity

Data Publicly Released at Power Sources 2023. "Development of a High Power Rechargeable Li-Metal Cell". Distribution A: Approved for Public Release

4.5

10.1 x 10.1 x 0.4 cm

CRG

Power Pouch Cells

Low temperature performance 4.5 4 Voltage, V 5² Low temperature performance 3 C/2 charge at 22 $^{\rm o}{\rm C}$ to 4.5 V 10.1 x 10.1 x 0.4 cm 4 hour soak 2.5 0% 20% 40% 60% 80% 100% C/2 discharge at low temperature to 2.7 V Capacity, % T, °C Discharge capacity

T, ℃

+22 -20 -30

-40

-50

	710/		22	92.9%
	71% capacity at -30 °C		-20	73.6%
	>34% at -50 °C		-30	71.2%
			-40	64.8%
			-50	34.8%
		Data Publicly Released at Power Sources 2023.		
		"Development of a High Power Rechargeable Li-Metal Cell".		
2023		Distribution A: Approved for Public Release		CRG

Preliminary Spec Sheets

	CRG Li-metal
	CRG Li-metal
Nominal capacity, Ah	6
Nominal specific energy, Wh/kg	230 - 257
Nominal voltage, V	3.86
Voltage range, V	2.7 – 4.5
Cell dimensions, cm	10.1x10.1x0.6
Cell weight, g	90 - 100
Cycle life, C/2 rate	~130 - 145 cycles
Max discharge, sustained	16 C

COTS Li ion comparison

100

	UNP19650-20P Sentschad Sch 125	
Kokam SLPB11543140H5	Samsung INR18650-20R	
5	2	
140	160	
3.6	3.6	
2.5 – 4.2	2.5 – 4.2	
14.25x4.3x1.17	6.5x1.83 diam.	
132	45	
1000	>250	
30 C	11 C	

Data Publicly Released at Power Sources 2023. "Development of a High Power Rechargeable Li-Metal Cell".

Distribution A: Approved for Public Release

Need: High Energy, Low Temperature Energy Storage

Deep space missions: Europa, Enceladus, Titan, etc.

- Operation to -200 °C
- 30 to 60 days duration

Lunar surface applications:

- Operation at -230 to +120 °C
- Lunar night survival and operations

Rechargeable cell-level goals:

- >250 Wh/kg specific energy
- >500 Wh/L energy density
- Eliminate or reduce battery management

COTS Li-ion cells (pouch, 18650, 21700, etc.)

- Typical: no energy at -30°C
- Exceptional: ~1/4 energy at -50°C

Distribution A: Approved for Public Release

Low Temperature Cell Design

10.1 x 10.1 x 0.6 cm

- 6 Ah capacity
- 100 A terminals
- Large surface area format for heat rejection

Trade-offs:

- High discharge current
- Minimized impedance
- Lower specific energy

- Heavier cathode
- Compact format
- Three new electrolytes

6.2 x 3.5 x 0.7 cm

- 3 Ah capacity
- 10 A terminals Trade-offs:
- High specific energy
- Discharge current limited by terminals
- Improved low temperature performance

CRG

Low Temperature Pouch Cells

Low temperature performance with three custom electrolytes: ET-1, ET-3 and ET-4

Low Temperature Performance, COTS Li-ion Cells

Specific Energy Vs. Temperature Comparison

CRG ET-1 cells have also been tested with charge voltage reduced to 4.3 V 10% specific energy reduction, same temperature performance

Distribution A: Approved for Public Release

. 187118°867

CRG

Low Temperature Pouch Cells

Rate performance

3 Ah multilayer cells

2023

- CRG proprietary electrolytes
- Gen 0 same as in power cell
- C/5 Charge to 4.5 V, discharge to 2.7 V

6.2 x 3.5 x 0.7 cm

Discharge capacity, %

Cells limited to 10 A by terminals, tested up to 2C discharge rate

1 C rate performance very similar, 91% to 93% 2 C rate performance very similar, 89% to 91%

Prototype Low Temperature Battery

Nominal capacity, Ah	6
Nominal specific energy, Wh/kg, room temperature	220
Nominal voltage, V	15.4
Configuration	4S:2P
Voltage range, V	10.8 - 18
Dimensions, cm	10 x 7.8 x 4.6
Weight, g	416.4
Cycle life, 1 A charge / 1.6 A discharge	~60 - 140 cycles
Max discharge, sustained	20 A

Nett Warrior connector


```
6.2 x 3.5 x 0.7 cm
```

Battery prototype is under testing

Distribution A: Approved for Public Release

Defense Applications: Man Portable Power

- Radio Battery
- Small Tactical Universal Battery (STUB)
- BB2590 Portable Battery
- Ballistic Conformal Battery
- Smart Rail Battery
- Helmet Communication Battery

Conclusions

2023

- Li-metal anodes improve energy density
 - 60-70% increases in Wh/kg
 - Battery weight reduction or capacity increase
- High energy cathode AM is beneficial for rate and temperature performance
 - Thinner cathode, less overpotential
- 4.5 V is beneficial for rate and temperature performance
 - Wider voltage window
- Electrolyte for -60°C is an exciting development

CRC

Thank You

Brian Henslee hensleeb@crgrp.com (937) 320-1877 x1210 330-635-9337

Pasha Nikolaev nikolaevpn@crgrp.com (937)-914-1353 CRG

Defense Applications

- Man portable power
- Unmanned air systems
- Hybrid/electric ground vehicle power
 - Fault tolerant high energy batteries
 - Directed energy weapons
 - 6T or custom format packs
- Maritime propulsion

Distribution A: Approved for Public Release

Vehicle Battery (6T)

Battery Assembly Level		
Config (S x P)	7x16	(S x P)
Total Cells	112	Cells
Nom. Voltage	25.9	V
Cell Fill	54%	%
Cell Mass	16.0	kg
Total Battery Mass	23.5	kg
Capacity	163	Ah
Specific Energy	179	Wh/kg

Distribution A: Approved for Public Release

