In-Operando Variable Charge Rate Monitoring and Prognostics for Battery Safety

Presenter: Jaya Vikeswara Rao Vajja

Meghana Sudarshan
Ritesh Gautam
Aishvarya Joshi
Vikas Tomar
R. Edwin García

1School of Aeronautics and Astronautics Engineering, Purdue University
2School of Materials Engineering, Purdue University
Benefits of Li-ion Batteries [1]

- Lithium-ion batteries have higher energy densities and greater design flexibility
- Different cell chemistries provide higher energy, power, and cycle life for different applications

Potential Hazards of Li-ion Batteries

LIB shipment fire [2]

USS Bonefish [4]

Boeing 787 [3]

Samsung Galaxy Note 7 [5]

EV crash fire [6]

Testing Standards

- NAVSEA 9310 [7], Sandia FreedomCAR [8], SAE International Surface Vehicle Recommended Practice [9], United Nations Manual of Tests and Criteria Section 38.3 [10]
 - Electrical abuse tests (overcharge/discharge, high rate charge/discharge, short circuit, separator integrity)
 - Thermal abuse tests (high temperature, thermal shock, thermal stability)
 - Mechanical abuse tests (penetration, drop, immersion, roll-over, mechanical shock, vibration, impact, pressure, crush)

Knowledge gaps

• Limited research on the use of machine learning algorithms for in-operando cycle life prediction of LIBs on a BMS incorporating accident effects.

• Limited investigation on the in-operando performance of machine learning models using public data for battery life prediction.

• Lack of publicly available datasets with high-quality data for training the neural network models for predicting battery capacity and life cycle.
Outline

• Battery Health Monitoring System helps track
 - Voltage
 - Current
 - Temperature

• Prediction of LIB capacity
 - CD-Net model developed at Interfacial Multiphysics Laboratory.

• Edge-cloud communication
 - Advanced Encryption Standard (AES) encrypted data transfer
BMS and SOH

- SOC and SOH monitoring are the main concerns and the basis to improve reliability and ensure LIB safety.
- Online measurement of chemical parameters inside batteries is limited to inputs from BMS- [Current, Voltage, Temperature]
- SOH estimation infers if LIBs need to be replaced with new ones.
 - SoH is the maximum possible charge a battery can hold compared to the rated capacity

\[
\text{SoH} = \frac{Q_{\text{max}}}{Q_{\text{nominal}}}
\]

Where:
- \(Q_{\text{nom}}\) : nominal capacity of the un-aged battery
- \(Q_{\text{max}}\) : maximum available capacity in battery

Safety Map – Lab Base Data

Risk Assessment Matrix

<table>
<thead>
<tr>
<th>Probability</th>
<th>Expected</th>
<th>Likely</th>
<th>Possible</th>
<th>Unlikely</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Med-low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Expected</td>
<td>Med-low</td>
<td>Medium</td>
<td>Med-low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Likely</td>
<td>Low</td>
<td>Med-low</td>
<td>Medium</td>
<td>Med-high</td>
<td>Med-high</td>
</tr>
<tr>
<td>Possible</td>
<td>Low</td>
<td>Med-low</td>
<td>Medium</td>
<td>Med-high</td>
<td>Med-high</td>
</tr>
<tr>
<td>Unlikely</td>
<td>Low</td>
<td>Med-low</td>
<td>Medium</td>
<td>Med-high</td>
<td>Med-high</td>
</tr>
<tr>
<td>Rare</td>
<td>Low</td>
<td>Low</td>
<td>Med-low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Negligible</td>
<td>Minor</td>
<td>Moderate</td>
<td>Considerable</td>
<td>Significant</td>
<td></td>
</tr>
</tbody>
</table>

© Interfacial Multiphysics Laboratory
Purdue University, 2023
Background

Predicting battery health is divided into three distinct styles [12]

• Experimental
• Physical Models
• Data-Driven Machine Learning

With recent advancements in machine learning and big data technology, data-driven algorithms have gained substantial popularity.

Requirements for modern RUL prediction approaches [13]

• Voltage
• Current
• Temperature

Background: BMS

Disadvantages to modern designs [19]

- Limited local computing resources
- Lack of flexibility in usage
- Hard-programmed models

https://doi.org/10.3390/batteries8020019
Review of Recent Testing

• Random forest regression [20]
 – Features from charging voltage and capacity measurements are used in a random forest regression to estimate capacity without requiring preprocessing

• Incremental capacity analysis for capacity estimation [21]
 – Incremental capacity peaks are used to develop a relationship with state of charge and estimate capacity

• Charging current for capacity estimation [22]
 – Adaptive capacity estimation method using incremental capacity curves from multiple charging conditions and cells with differing ages

Review of Recent Testing

- Failure mechanism during nail penetration [23]
 - Penetration at the center of a cell causes the most severe thermal runaway, surface temperature not positively correlated with penetration depth

- Thermal runaway induced by nail penetration [24]
 - Maximum temperature is higher and is reached in less time for radial penetrations as opposed to axial

- Deformation and failure under axial nail penetration [25]
 - Two possible failure modes (pinching or puncturing electrode layers), nail velocity has no clear effect on failure properties

Battery Health Monitoring System

Temperature Sensor

Voltage & Current Sensor

MAX31865

INA219

Micro-controller
Arduino Uno Rev 2

V, I, T

Encryption

Communicaton Platform
(ThingSpeak)

No-go operational signal

Edge-Cloud BMS
for Device swarm
at IML
Battery Health Monitoring System

Communication Platform (ThingSpeak)

CD-Net

© Interfacial Multiphysics Laboratory, CD-Net algorithm developed by Sudarshan et al.(Refer to paper) [26]

CD-Net testing on open source

Filtering Techniques

Unprocessed

Processed

Prediction Improvement

Unprocessed

Processed
Experiments - ground

Voltage (V) vs. Time (hrs)

Current (mA) vs. Time (hrs)

Temperature (°C) vs. Time (hrs)

Capacity (mAh) vs. Cycle Number
Experiment - Drone
Conclusion

BHMS

- BHMS showed close results to the Battery Analyzer values for the voltage and current.
- Edge and cloud communication was successfully established.

CD-Net

- Predicted capacity shows comparable values of capacity over the 10 cycles.
- By filtered data the prediction of CD-Net can be improved.

Drone versus ground

- Random current discharge were performed
- Discharge rate was at most 4C
- No-go signal based on SoC of battery
Acknowledgements

• Office of Naval Research (ONR)
• Dr. Tom Adams
• Dr. Corey Love
• Alex Serov, Meghana Sudarshan, Aishvarya Joshi, Dr. Casey Jones, Ritesh Gautam, Dr. Vikas Tomar (Interfacial Multiphysics Laboratory, Purdue University)
Lab/Contact Information

- Interfacial Multiphysics Laboratory
 - www.interfacialmultiphysics.com
- Jaya Vikeswara Rao Vajja
 - jvajja@purdue.edu
- Dr. Vikas Tomar
 - tomar@purdue.edu
Questions?
Background: Battery Cycling

Lithium-ion batteries degrade over time as they cycle
• A full cycle consists of a discharge and charge
• CC and CCCV are common charge algorithms
• C-rate of a battery
Lithium-ion Battery: Benefit and Market

Lithium-ion Battery World Markets: 2022-2032[2]

[1] Figure by Multiphysics Lab, data from http://batteryuniversity.com/learn/archive/whats_the_best_battery
To practice safe operation of LIB batteries
 - State of Health needs to be examined during battery abusing operations.
 - Thermal runaway needs to be detected.
- Continuous monitoring of LIB is necessary!

Data loggers (DAQs) exist, but they are bulky, expensive, and application-specific

- National Instruments
- Omega Eng
- Battery Analyzers (BAn)

Figure : omega Engineering USB DAQ [16]

Figure : Neware BTS400 Battery Analyzer [14]

Figure : National Instruments DAQ options [15]

Edge-Cloud communication

Data transfer from edge and cloud is Encrypted with AES.

CBC encryption [1]

Integrating LIB abuse

- Mechanical abuse testing, nail penetration
 - Previous study by Dr. Casey at Interfacial Multiphysics Lab

- Future work-
 - use nail penetration integrated with BHMS.