

High Specific Energy VL10ES Cell Qualification Status

Dr. C. Ma, Y.Borthomieu, V.Armel

2023 NASA Battery Workshop, Huntsville, AL Saft ref. S2743-23

Summary

- 1. VL10ES Cell Development
- 2. Cell Qualification
- 3. Conclusions

VL10ES Cell Development

VL10ES Performances Objectives – Compared with VES16

TECHNICAL PERFORMANCE -

- Over 220 Wh/Kg to reduce battery weight
- High DOD cycling ranges: LEO 30% and GEO 70%
- Innovation on densification of electrodes
- Specific materials to preserve long life

SAFETY ENSURED

- · Compatible with safety launch pad
- Robust stainless steel casing

PRICE REDUCTION

- Reduce the battery price
- Address LEO, GEO, MEO, constellation markets
- Less cells in large batteries

CELL TYPE	VES16 (D-size)	VL10ES (F-size)
Dimensions (Ø x H)	33 x 60 mm	33 x 103 mm
Weight	≤ 115 g	210 g
Volume	0.051 dm³	0.086 dm ³
Voltage range	2.7 V - 4.1 V	2.7 V - 4.2 V
Nominal capacity	4.5 Ah @ 4.1V, 20°C	12 Ah @ 4.2V, 20°C
Nominal energy	16 Wh @ 4.1V, 20°C	46 Wh @ 4.2V, 20°C
Specific energy	140 Wh/kg	220 Wh/kg
Internal resistance	≤ 35 mΩ @ 20% DoD	≤ 22 mΩ @ 20% DoD / TBC
Operating temperature	+10°C / +40°C	+10°C / +40°C
Mechanical design margins	EWR & ECSS compliant	EWR & ECSS compliant

VL10ES Cell Development Plan

VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, AI - Nov 2023

VL10ES Cell Qualification

2. BOL Electrical Performances EM2 /QM Design: Constant Power Discharge versus Temperature

Energy evolution vs Power at 20°C

Energy evolution at constant Power vs Temperature

 Increasing discharge power leads to cell polarization together with a decrease in available energy and an increase in cell temperature.

BOL Electrical Performances EM2/QM Design : discharge current versus temperature

Energy evolution vs discharge rate at 0°C

Energy evolution vs discharge rate at 20°C

Temperature = 20°C Discharge = C/10 4,2 -Discharge = C/5Discharge = C/34,0 Discharge = C/2Discharge = C/1.5 Cell voltage () 3,6 -3,4 -3,2 -Discharge = C 3,0 -2,8 0 10 15 20 25 30 35 45 50 5 40 Discharge energy (Wh)

Energy evolution vs discharge rate at 50°C

Average data	Temperature	0°C	20°C	50°C
Discharge energy	Discharge = C/10	40.3	46.0	46.9
	Discharge =C/5	38.7	44.9	46.4
	Discharge =C/3	37.3	43.7	45.7
	Discharge =C/2	36.2	42.7	44.8
	Discharge =C/1.5	35.5	42.0	44.3
	Discharge =C	34.4	40.9	42.9

BOL Electrical Performances EM2 Design : Discharge energy/capacity versus EOCV

4,4 4,2 4,0 charge EOCV = 3.9V €3,8 charge EOCV = 4.0V charge EOCV = 4.1V Cell voltage (^{9'2} · charge EOCV = 4.2V charge EOCV = 4.3V 3.2 Discharge EOCV = 3.9V Discharge EOCV = 4.0V Discharge EOCV = 4.1V 3.0 - Discharge EOCV = 4.2V Discharge EOCV = 4.3V 2,8 12 2 6 8 10 14 Δ Capacity (Ah)

Capacity evolution vs EOCV at 20°C

Gain in capacity and energy is 2.5 % from 4.2 V to 4.3V

Energy evolution vs EOCV at 20°C

BOL Electrical Performances EM2 Design: Pulse test

Pulse test : 3C 1second (current fault test)

Pulse test : 3C 15 seconds (Radar test)

Pulse test 1second	SN529	SN558	SN570
U (30% DOD)	3.138	3.135	3.141
T @ 30% DOD (°C)	21.5	22.0	22.0
U (80% DOD)	2.690	2.690	2.690
T@80%DOD (°C)	22.0	22.0	22.7

Pulse test	SN516	SN519	SN522
U (3C, 15 seconds)	3.272	3.290	3.280
T (°C)	20.5	20.2	20.7

As per EM1, EM2 Design cells are compliant with pulse current :

- 3C for 1 second starting from 30% DOD and 80% DOD,
- 3C for 15 seconds criteria.

C-EM1/EM2/QM Safety Results

VL10ES	Crush test 50 & 100% SOC	C/3 & C over- charge	Impact test 100% SOC	Pin test 100%SOC	Pin test 50% SOC	Heating test	External- short 10mohm 100%SOC	Over-discharge	Drop test 100%SOC	ARC test 100%SOC	Nail test 100% SOC	ISCD 100 %DOD
C-EM1-4 C-EM2 C-QM	100% SOC OK (2/2) EUCAR 2 50% SOC OK (2/2) EUCAR 2	C/3 OK (3/3) EUCAR 2 C OK (3/3) EUCAR 2	100% SOC OK (3/3) EUCAR 2 50% SOC OK (3/3) EUCAR 2	OK (3/3) EUCAR5	OK (3/3) EUCAR5	OK (3/3)	OK (2/2) EUCAR 3	(10/10 OK) (10 cycles) at - 0.5V	Ok (1/1) EUCAR 2	OK (1/1) EUCAR 5	OK (3/3) EUCAR 5	OK (3/3) EUCAR 5

Tests results as good as VES16 : high level of safety

VL10ES EM1/EM2/QM : C over-charge

DE011-20 - Test 2 - Surcharge@C - VL10ES - EM1-4 - SN366 10 70 **Circuit breaker** 9 opening 60 Ucell [V] 8 - Usense [V] - lovercharge (A) 50 7 - Tambiant [°C] — Tcell [°C] Ucell (V) & Current (A) 6 0 0 Temperature (°C) 5 4 3 20 2 10 1 0 0 0 10 20 30 40 Time (mins)

Before test

After test

T < 65°C EUCAR2

I VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, Al – Nov 2023

VL10ES C-EM1/EM2/QM : Pin test 100% SOC - 4.2V

Before test

After test

EUCAR5 2 vents opening No cover ejection No explosion

VL10ES QM : ISCD 100% SOC

After test

Tmax = 492 °C

EUCAR5 2 vents opening No cover ejection **No explosion**

Lifetests : Cell Performances during Calendar Test at Different SOC and Temperature

20 °C vs SOC

4.2 V at 20 and 40 °C

- Energy loss increases with SOC after 820 days : similar to previous VES and VL cells
- Stable internal resistance

Accelerated 100%DOD cycling

• EM2 cells (after 900 cycles) and QM are showing good trend

70 % GEO performances

45 GEO seasons (equivalent to 22.5 years) successfully done on EM0 and EM1 EM2 life test are running : 20 Seasons QM : 8 seasons

LEO cycling : Available capacity @ 20 and 30 % DOD

VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, AI – Nov 2023

VL10ES QM cells

QM Cell performances

	Acceptance Energy (Wh) @ 4.2V & C/2 , T= 20°C
Average	45.4
Minimum	43.0
Maximum	46.5
Standard deviation	0.5

QM Cell average weight : 208.3 g

VL10ES Cell Qualification Matrix

VL10ES cell qualification Plan

Electrical	Mechanical	Thermal	Life Tests	Safety
Dch vs T°	Vibration	T/V	LEO real time	Overcharge
Dch vs C rates	Shock	Dissipation	GEO semi-accelerated (EOR, PPS ,U cycles)	Over discharge / Reversal
Dch vs EOCV	T/V Cycling	Thermal Capacity	GEO accelerated	Ext. short
Dch vs Power rates	Leak Rate	Thermoneutral potential	Storage vs T° & SOC	Over temperature
Impedance, Ri	DPA		100% DoD	Nail / Pin Test
EMF vs SOC			Radiation Test	UN Transportation
			DPA	Exposure 60°C – 24 Hours

In green color: Tests performed on EM1 and EM2 cells are already covering the Qual Test Plan

VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, Al – Nov 2023

Conclusion

Conclusions

VL10ES cell qualification plan is running on 3 QM batches

- Performances are in line with expected values (Electrical, Mechanical, Safety and Cycle life)
- Battery qualification is running in parallel with 4 QM Models that are covering most used configurations

- 3 satellites contracts to be delivered starting :
 - 6 GEO's 2 LEO's with ESA 14 LEO's VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, AI – Nov 2023

- ESA and CNES for ARTES C&G support
 - Evelyne Simon ESA, Aurore Carré ESA, Diane Delbègue CNES and Christian Elisabelar CNES

Space Li-Ion Battery Book

Team work with most of the players: Authors/reviewers

- ABSL/Quallion : Sara Thwaite, Dave Curzon, Carl Thwaite, Joe Troutman
- Aerospace Corp : Margot Wasz, Albert Zimmerman, Valery Ang
- Boeing : Tom Barrera, Steven Core
- EPI : Rob Gitzendanner, Michel Lannes
- ESA : Evelyne Simon, Francois Bausier
- GS Yuasa : Curtis Aldrich, Tom Pusateri
- JPL : Marschall Smart, Kumar Bugga
- Lockheed Martin : Dick Shaw
- Nasa : Penni Dalton, Sam Russel, Eric Darcy
- Northrop Grumman : Dave Reuter
- Naval Surface Warfare Center : Lloyd Zilch, Samuel Stuart
- OHB : Aakesh Data
- TAS : Eloi Klein
- Saft : Yannick Borthomieu
 - VL10ES Cell Development Update- Nasa Battery Workshop Hunstville, Al – Nov 2023

Thank you

