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Introduction

Vehicle recalls:
GM Chevrolet Bolt recall: high-voltage battery pack catching fire
BMW and Ford recalls: battery fires, overheating, or failures.
Chrysler Pacifica Plug-in Hybrid minivans recall: investigating 12 fires.

Chevy bolt on fire [1]
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Cell Degradation Mechanism

* Vennam, G., A. Sahoo, and S. Ahmed. ”A survey on lithium-ion battery internal and external degradation modeling and state
of health estimation.” Journal of Energy Storage 52 (2022): 104720.
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Need

1 Advanced battery models which ac-
counts for SOH.

2 Algorithms which can simultaneously es-
timate SOC, SOH along with internal pa-
rameters.

3 Development of fault detection schemes
to detect faults at an incipient stage.

4 Development of estimation scheme that
can estimate the internal parameter un-
der faults
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Current State-of-the-Art: Modeling

Electro-thermal model [2]

Monitor internal temperature.
Study the thermal effects on
battery’s parameters.

Fig. 1: Thermal model of LFP cell
Electro-thermal-aging models [3, 4, 5, 6].
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Current State-of-the-Art

Limitations:

Constant parameter models [3, 9].

ECM employed is not coupled with the capacity fade dynamics.

Effects of capacity fade (SOH) on SOC and, in turn, the ECM
parameters and the terminal voltage are not reflected.
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SOH-inclusive Model of LIB

ECM is presented by integrating the capacity fade dynamics.

Alternatively ECM parameters can be represented to vary with temper-
ature, aging, Crate and capacity loss.
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SOH-inclusive Model of LIB

SOH-coupled model of LIB a) ECM, b) thermal model, c) capacity
fade model.
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SOH-coupled model

ECM
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SOH-coupled Model Validation

A 10A CC-CV input current is used to observe degradation over life

SOC for the first charge-discharge cycle

SOC for a time window at approximate mid-life

SOH decay for end of life cycle

1.1362 1.1364 1.1366 1.1368

10
7

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000

0.8

0.85

0.9

0.95

1

A Sahoo (UAH) Self-learning in BMS November 15, 2023 11 / 35



SOH-coupled Model Validation

Comparison results with experimental validation results in [10].

Proposed SOH-coupled model number of cycles is closer to the
experimental results [10].

Proposed SOH-coupled model more accurately represents the actual
cell dynamics and number of cycles of operation.
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Experimental Setup

Maccor test equipment
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Experimental Setup

A123 2.5 Ah 26650 LiFePO4 cell is selected for experiments

The capacity of the cell is measured experimentally by cycling the
battery at low rate (C/20) and found to be 2.4Ah.

The Voc(SOC) curve is obtained from OCV-SOC test

Identification of parameters using pulse charge/discharge test
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OCV-SOC Test

1 Conduced the charge-discharge test to find the SOC-OCV curve.
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Identification of ECM Parameters

Pulse charging and discharging test at different temperatures (15◦C,
25◦C, 35◦C, 45◦C)
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Experimental Results: A12326650 2.5Ah

A drive cycle current profile used as an input.
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Experimental Validation of SOH-inclusive Model

Output voltage RMSE: 0.0063V

Surface temperature RMSE: 0.0926◦C
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Fault Detection: Previous Works and Limitations

Previous works:

Two state electro-thermal model [11, 12] to detect internal thermal faults
using core and surface temperatures as residuals
Battery internal resistance estimator [12] to represent the changes in
core temperature due to fault.

Limitations:

ECM parameter (R0) varies with SOH and other degradation inducing
factors, such as Tc, Crate, and DOD.
Thermal model parameters, such as Cc, Cs, Ta also change with battery
aging.
Account for the changes in residuals due to the aging, change in oper-
ating conditions, and unmodeled dynamics (uncertainty) and eliminate
false positives.
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Fault Detection and Internal State Estimation Scheme

Fault detection scheme for SOC, SOH and core temperature
estimation during faults
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Fault Detection: Fault Mapping

Actual
faults

Description of fault Fault map

Fault 1 Convective cooling resistance
fault (∆Ru).

γ4 = 0, γ5 ̸= 0, γ7 ̸= 0

Fault 2 Internal thermal resistance fault
(∆Rc).

γ4 ̸= 0, γ5 ̸= 0, γ7 ̸= 0

Fault 3 Thermal runaway fault γ4 ̸= 0, γ5 = 0, γ7 ̸= 0

Fault 4 Internal side reaction fault γ4 ̸= 0, γ5 ̸= 0, γ7 ̸= 0
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Fault Detection: Fault Detection Scheme

The state space model in with the above faults can be expressed as

ẋf = Kxf +Π(xf ) + g(xf )u+ Γ(xf , u) (7)

where xf are the faulty states of the model, the vector
Γ(xf , u) = [0 0 0 γ4(t) γ5(t) 0 γ7(t) 0]

T are the faults added to the
dynamics of the battery.

γ4(t) represents fault in core temperature dynamics.

γ5(t) represents fault in surface temperature dynamics.

γ7(t) represents fault in internal resistance dynamics.
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Fault Detection Scheme

SOH-integrated cell model

ẋ = Kx+Π(x) + g(x)u

y = Cx
(8)

The nonlinear observer can be
represented by

˙̂x = Kx̂+Π(x̂) + g(x̂)u+ LT (y − ŷ)

ŷ = Cx̂
(9)

Healthy observer desing

A nonlinear observer is designed

The observer used SOH-coupled model to accurately estimate the
SOC, SOH, and internal resistance accurately
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Fault Detection Scheme

Adaptive threshold

Res1th = ỹ1(0)e
−σ5t +Ψ1, and

Res2th = ỹ2(0)e
−σ8t +Ψ2,

(10)

Ψ̇1 = −σ5Ψ1 + η5max,

Ψ̇2 = −σ8Ψ2 + η8max.
(11)

Adaptive threshold for fault detection

Change in model parameters due to health

Modeling uncertainty

An adaptive threshold is designed to account for the above
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Simulation Results: Validation of Observer

Only uncertainties and no-fault: Output residuals and adaptive
thresholds

Ts RMSE: 0.0038, Voltage RMSE: 0.0033

All the state estimation errors for SOH, SOC, R0, TC are within 1%
band.
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Simulation Results: Fault Detection

A convective cooling resistance fault 0.4Ru is introduced to the
system at t = 206 sec.

The residual Vt and Ts exceeds the threshold value after t = 206 sec.
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Internal State Estimation Under Fault

˙̌x = Kx̌+Π(x̌) + g(x̌)u

+ θ̌Tσ(x̌, u) + LTCx̃

y̌ = Cx̌

(12)

Neural network-based observer to learn faulty states

The healthy observer and a neural network.

The neural network kicks in once the fault is detected.
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Estimation of faulty states

The Major challenge is the limited available measurement

The estimated healthy states, as a substitute for the states that are
not measurable, are used in addition to the faulty measured output.

The weight update law, developed based on stability analysis, can be
represented by

NN Weight Update Law

˙̂
θ = −σ(x̌, u)ΞTυ − σ(x̌, u)σ(x̌, u)T θ̂Υ (13)

where υ,Υ ∈ Rn×n are the learning gains and Ξ = X̄ − x̌, with

X̄ = [ ˆSOC, V̂cp1, V̂cp2, T̂c, y1f , ˆSOH, R̂0, y2f ]
T
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Simulation Results

NN weight θ̂ was initialized at random from a uniform distribution in
the interval of [0 0.001], l = 20.
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Simulation Results: Multiple Faults

A convective cooling resistance 0.4Ru, internal thermal resistance
0.2Rc, and thermal runaway 0.02W faults are injected at t = 206 sec

The residual Ts and Vt exceeds the threshold value after t = 206 sec,
respectively.
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Simulation Results: Multiple Faults

NN weight θ̂ was initialized at random from a uniform distribution in
the interval of [0 0.001], l = 20.
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Conclusions

We presented a SOH-integrated model and validated the experimentally

Subsequently, we used the model for fault detection by developing a
fault detection observer.

We designed an adaptive threshold accounting for health degradation.

NN-based fault detection scheme to detect thermal and also estimate
the core temperature, SOC, and SOH during faults.

Current and Future Work

Extend the cell model to a pack level with electrical and thermal
interconnection

Develop an identification scheme to estimate pack model parameters.

Extend the learning capability to estimate spatial variables using
spatiotemporal learning.
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Questions?
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