

TEPCE: A Tethered Electrodynamic Propulsion CubeSat Experiment

Shannon Coffey, Cameron Crippa, Gil Dutchover, Matthew D. Brunner, Zachary Sibert, Scott Kindl, Ivan Gaylish, C. Lon Enloe, Joe Carroll, Eugene Levin

TEPCE: A Tethered Electrodynamic Propulsion CubeSat Experiment

Shannon Coffey, Cameron Crippa, Gil Dutchover, Matthew D. Brunner, Zachary Sibert, Scott Kindl, Ivan Gaylish, C. Lon Enloe, Joe Carroll, Eugene Levin

Overview

U.S.NAVAL

ABORATORY

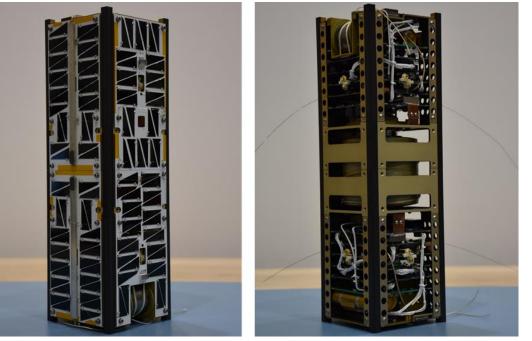
EARCH

- Team Composition
- Program History
- Hardware Systems
 - Mechanical Systems
 - Electronics Systems
- Flight Operations
 - Ground Station
 - Launch
 - Subsystem Checkout
 - End-Mass Deployment
 - Communication Lessons
 Learned
- Thrusting and Current Flow Results
- Summary

3D Rendering of Tether Deployment

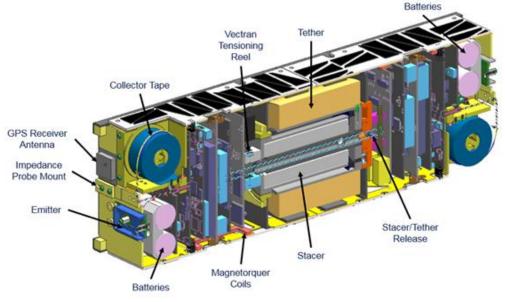
TEPCE was a 3U CubeSat that was developed to explore the feasibility of using electrodynamic propulsion for spacecraft. Propulsion is generated by conducting an electric current along a long wire, called a tether, that connects two spacecraft end-masses. As the spacecraft moves along its orbital path, the Earth's magnetic field induces a Lorentz force between the magnetic field and the electrons in the tether that results in thrust for the spacecraft. It requires no chemical or other traditional fuel source. TEPCE was one of the first self-contained electrodynamic propulsion spacecraft. TEPCE was launched on a SpaceX Falcon Heavy rocket on June 25, 2019. It was a successful spacecraft that demonstrated mechanical and electrical systems that can enable a spacecraft to maneuver using electrodynamic principles.

- Systems Integration Branch, Spacecraft Engineering Division
 - Shannon Coffey
 - Cameron Crippa
- Dynamics and Control Systems Branch, Spacecraft Engineering Division
 - Gil Dutchover
 - Matthew D. Brunner
 - Zachary Sibert
 - Scott Kindl
- Advanced Space PNT Branch, Space Systems Development Division
 - Ivan Galysh
- Charged Particle Physics, Plasma Physics Division
 - C. Lon Enloe
- Tether Applications, Inc.
 - Joe Carroll


~10 year program from concept to completion

- 2010 Initial research and development
- 2015 Hardware finalized and patented
- 2018 Ground station development and setup
- 2019 Launch
 - June 25, 2019 TEPCE was launched from Cape Canaveral, FL, on Space Test Program (STP-2) mission via SpaceX Falcon Heavy
 - July 16, 2019 First Positive Contact
 - November 16, 2019 Tether Deployment
 - At approximately 0140 EST, the command was given to deploy the tether, separating the two end-masses
 - Acknowledgement of successful deployment was not obtained
 - Subsequent passes showed an increase in the rotation rate about the roll axis, consistent with the rate of the stacer unwinding per prelaunch tests
 - November 17, 2019 A six-fold increase to the drag term further confirmed separation of the spacecraft
 - November 21, 2019 Imagery further confirmed separation of the end-masses but showed separation of only about 270m
 - November 22, 2019 Commands were given to deploy the impedance probes (iProbes) and collector tapes for both endmasses.
 - Confirmation was received from Ren
 - Due to communication limitation with Stimpy, confirmation could not be determined
 - November 27, 2019 Further imagery showed a separation of 450 m but also a reflective area in the center of the tether
 - February 1, 2020 TEPCE reentered Earth's atmosphere
 - Analysis predicted a post-tether deployment orbital lifetime between 30 and 60 days
 - Post-tether deployment lifetime was 78 days
 - This longer-than-expected lifetime is attributed to a partial deployment of the tether and therefore a smaller area-tomass ratio than expected.

- Mechanical
 - Mechanical Description of Ren
 - Mechanical Description of Stimpy
 - Mechanical Description of Center Module
 - Tether Design, Winding and Testing
- Electronics
 - Battery Board
 - Electrical Power System (EPS)
 - Command Data Handling Board (CDH)
 - Sensor Board
 - Radio Board
 - High-Voltage Board


TEPCE in Flight Configuration

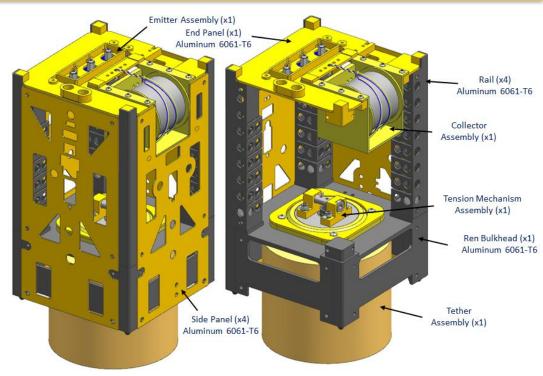
TEPCE Without Exterior Panels

Mechanical Description of TEPCE

- 3U Small Sat
- Two Near-Identical 1.5U Sub-CubeSats
- Connected by a 1 km Conductive Tether
- Each End-Mass Contains Independent Systems
- The Center Module Houses the Conductive Tether and Release Systems
- The Two End-Masses Were Held Together By a Pretensioned Vectran Line

CAD Cutaway Drawing of TEPCE

Mechanical Description of Ren

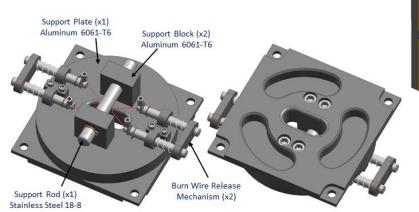

• Ren

U.S. NAVAL

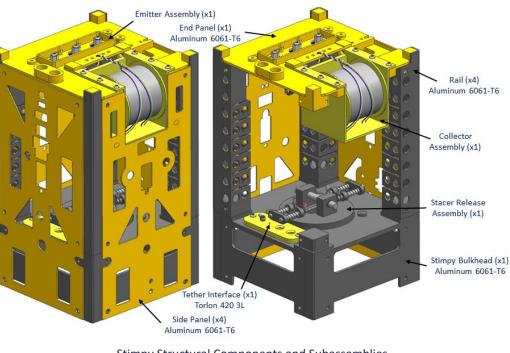
LABORATORY

EADCH

- End Panel
- Bulkhead
- Connected by 4 side panels
 - Emitter and collector assemblies mounted to end panel
 - Tether Assembly and Tension Mechanism Assembly mounted to bulkhead
 - Electronic component cards mounted to the rails



Ren Structural Components and Subassemblies



Mechanical Description of Stimpy

- Stimpy
 - Nearly Identical to Ren
 - Major differences
 - Stacer Release Assembly
 - Tether Interface

Stacer Release Mechanism

Stimpy Structural Components and Subassemblies


Mechanical Description of Center Module

Center Module

U.S. NAVAL

ABORATORY

- Composed of Bulkhead Sections of Both Ren and Stimpy
- Separation Interface of TEPCE
- Contains Tether Mechanism
- Tether Deployment Initiation
 - Current Applied to the Stacer Release Mechanism
 - Burn Wire Cuts the Vectran Tie Down
 - Stacer Spring Released
 - Loaded Spring Force Separates the Stacer Housing and the Tether Spool

Tether Assembly

Tether (x1)

9 Strand Flat Braid, Kevlar 6 Strand 200

Denier, Aracon (Metalized Kevlar) 3 Strand

Tether Spool (x1) Aluminum 6061-T6

Stacer Kickoff Spring (x1)

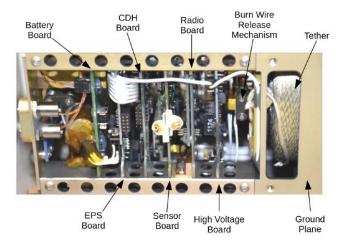
Stainless Steel 17-7 PH

Tether Design, Winding and Testing

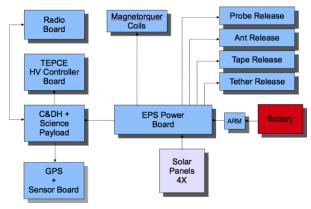
- Tether
 - 9 Strand Flat Braid Kevlar
 - 6 Strand 200 Denier
 - 3 Strand Copper/Nickel/Copper Coated Kevlar Fiber (Aracon)
 - Bare Conductor
 - Insulation Would Have Added Stiffness and Bulk
 - Bare Conductors Allowed for Electron Collection from Emitters
 - 1.6mm Width x 0.25 mm Thickness x 1030m Length
 - Electrical Resistance of 1.6 Ω/m
 - Wind Direction Was Reversed Five Times During Winding to Reduce Angular Momentum Caused by Free Endwise Deployment
 - 36 AWG Magnet Wire Braking Hooks Were Added to Provide 0.1-0.5N of Braking Force to Control Deployment

Completed Tether Winding

Tether Winding Reversal



Tether Braking Hooks

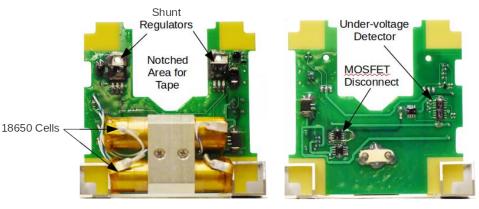


Electronic Description of TEPCE

- Both End-Masses Contained Six Identical Electronic Cards Mounted Directly to the Rails
 - Battery Board
 - Electrical Power System (EPS) Board
 - Computer Data Handling (CDH) Board
 - Sensor Board
 - Radio Board
 - High Voltage Board
- Boards Were Interconnected with Custom Harnesses

TEPCE Board Stack, Tether, Collector Tape, and Filaments

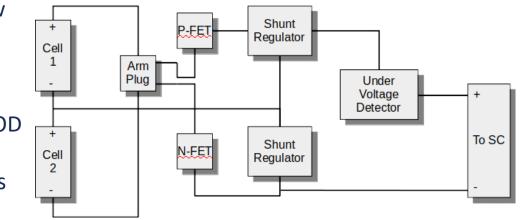
End-Mass Electronics Block Diagram


Battery Board

- Two 18650 Lithium Ion Cells (LG Brand)
 - 3.6V

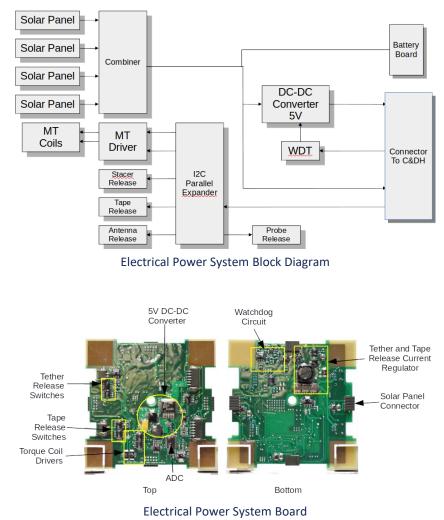
U.S.NAVAI

ABORATORY


- 2600 mAH
- Provided a Maximum of 3.75 A
- System Required 2A
- Shunt Regulator Clamped Maximum Voltage to 4.1V Per Cell
- Field-Effect Transistor
 - Disconnected Battery Systems from the Satellite if Total Voltage Below 6V
 - Allowed Charging via Solar Panel
- Release Switch
 - Activated Upon Ejection from PPOD
 - Turned on Transistors Connecting Battery Cells to Protection Circuits

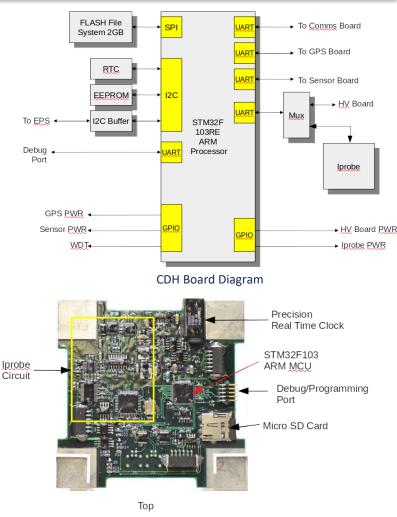
Front

Battery Board

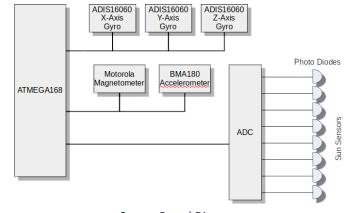


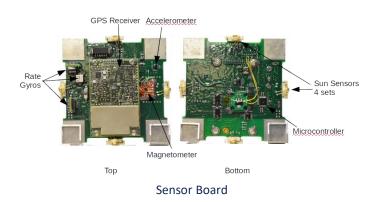
Battery Board Block Diagram

Electrical Power System (EPS)

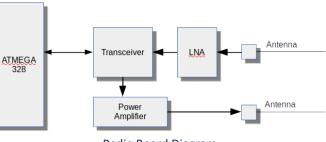

- Provide Consistent 5V Supply to the Command Data Handler, Sensor, Radio, and High-Voltage Board
- Included Watchdog Timer to Power-cycle Satellite in the Event of Software Error or Radiation Event
- Solar Panel Regulation
- Magnetic Torque Coil Controls
- System Deployment (Cutter) Controls
 - Antennas
 - iProbe
 - Tether
 - Collector Tape

Command Data Handling Board (CDH)

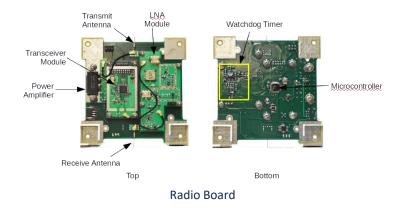

- STM32F103 Arm-Based 32-Bit Microcontroller
- Real-time Clock
- EEPROM IC to Store State Information
- P-Channel MOSFETS to Switch Power
 - GPS Receiver
 - Sensor Board
 - High-Voltage Board
- 2 GB microSD card
- 5 Serial Ports
 - Sensor Board
 - Radio Board
 - High-Voltage Board
 - GPS Board
 - iProbe Circuitry
 - Generated a Frequency Swept Signal to Measure Probe Impedance
 - Measured Plasma Field Density


CDH Board

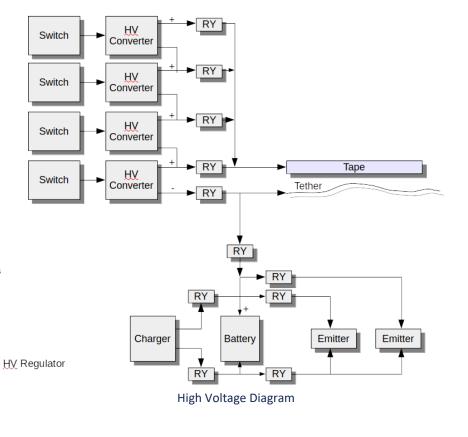
- ATMEGA168 AVR Microcontroller
- Interfaced with On-Board Sensors
 - Three-Axis Magnetometer (Motorola)
 - Three-Axis Accelerometer (Bosch BMA180)
 - Three Gyro Rate MEMS Sensors (ADIS16060)
 - Eight Photodiodes (Sun Sensors)
 - Two Per Side
 - Angle Offset to Allow for Calculation of Sun Direction
 - GPS Receiver
 - Independent Receiver Mounted to Sensor Board
 - Novatel Receiver



Sensor Board Diagram



- ATMEGA328 AVR Microcontroller
- Interface to Radio
 - Half-Duplex GMSK Radio Module
 - ADF7020-1 Transceiver
 - Low Noise Amplifier
 - Power Amplifier (1-4W)
 - Transmit and Receive Antenna (Nitinol Wire) Directly Connected
- 297.7 MHz
- 253 MHz


Radio Board Diagram

- ATMEGA128 AVR Microcontroller
- Routed High voltage to Tether and Collector Tape
- Measured Current Through Tether
- Two HV Modules Generating 150V and 300V (Total Combined Maximum of 450V)

Filament Voltage Regulator

Isolated DC-DC

Converter

for filaments

Bottom

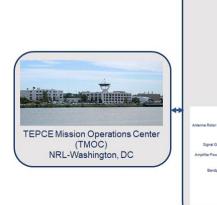
High Voltage Board

DISTRIBUTION STATEMENT A. Approved for public release: Distribution Unlimited

HV Modules

Flight Operations

- Ground Station
- Launch
- Subsystem Checkout
- End-Mass Deployment
- Communication Lessons Learned


Ground Station

- Tracking/Communication Challenges
 - TEPCE Team Based Out of Washington, DC
 - Interface software was proprietary
 - Limited Tracking to DoD Controlled Systems
 - Software Not Approved for Public Release
 - TEPCE was Planned for a Low Inclination Orbit
 - Visibility Over Washington DC Was Minimal or Nonexistent
 - Link budget established that TEPCE had insufficient transmit power to secure downlink to a ground station located in the Washington DC Area
- Solutions

U.S. NAVAL

ABORATORY

- Establish and Operate Our Own Ground Station
- Install Remote Ground Station at DoD Site at Lower Latitude
 - Utilize Space at NRL Installation at the Naval Air Station Trumbo Point, Key West, FL
 - High-Elevation Passes Over Key West
 - Low Range Passes Over Key West
 - DoD Network Systems Allowed for 22 Mbps Communication Between DC and Key West
- Ground Station Hardware
 - M2 Antenna Systems Inc. 2.4-m helical antenna
 - 10-foot-tall antenna mount
 - YAESU G-5500 antenna azimuth-elevation rotators & controller
 - On Site Computer (Ubuntu 16.04 LTS)
 - Motor Controls Via Custom Rotator Controller
 - The on-site laptop provided azimuth and elevation input based upon a custom-built tracker program that received input from an open-source satellite position tracking program called PREDICT[5].
 A custom motor controller and tracking program was built utilizing the
 - A custom motor controller and tracking program was built utilizing the PREDICT data, which allowed for automated control of the azimuth and elevation motor,
 - A custom-built satellite control program was developed to generate transmission signals and to process received data. Figure 37e shows the TEPCE graphical user interface used during operations.
 - Weather-Proof HD Camera
- TEPCE Mission Operations Center (TMOC)
 - Received Remote Video of the Ground Station
 - Remotely Accessed Ground Station Laptop to Update, Command, and Control RGS
 - Transferred Downlinked Data for Analysis

TEPCE Ground Architecture

Remote Ground Station (RGS)

NRL-Key West, FL

Ground Station (cont.)

U.S.NAVAL

LABORATORY

FARCH

== PREDICT v2.2.3 == Released by John A. Magliacane, KD2BD May 2006 ==[Main Menu]== [P]: Predict Satellite Passes [J]: Program Information [S]: Solar Illumination Predictions [G]: Edit Ground Station Information [L]: Lunar Predictions [D]: Display Satellite Orbital Data [L]: Lunar Predictions [U]: Update Sat Elements From File [O]: Solar Predictions [I]: Manually Edit Orbital Elements [T]: Single Satellite Tracking Mode [0]: Exit PREDICT	🤗 🔵 💿 Terminal File Edit View Search Term	ninal Help					
[P]: Predict Satellite Passes [I]: Program Information [V]: Predict Visible Passes [G]: Edit Ground Station Information [S]: Solar Illumination Predictions [D]: Display Satellite Orbital Data [L]: Lunar Predictions [U]: Update Sat Elements From File [0]: Solar Predictions [E]: Manually Edit Orbital Elements [T]: Single Satellite Tracking Mode [B]: Edit Transponder Database	Released by John A	. Magliacane, KD2BD					
[V]: Predict Visible Passes [G]: Edit Ground Station Information [S]: Solar Illumination Predictions [D]: Display Satellite Orbital Data [L]: Lunar Predictions [U]: Update Sat Elements From File [0]: Solar Predictions [E]: Manually Edit Orbital Elements [T]: Single Satellite Tracking Mode [B]: Edit Transponder Database	==[Main Menu]==						
	 [V]: Predict Visible Passes [S]: Solar Illumination Predictions [L]: Lunar Predictions [0]: Solar Predictions [T]: Single Satellite Tracking Mode 	[G]: Edit Ground Station Information [D]: Display Satellite Orbital Data [U]: Update Sat Elements From File [E]: Manually Edit Orbital Elements [B]: Edit Transponder Database					

PREDICT Software Used for TEPCE Tracking

😣 🖨 🕕 🛛 Te	ermina	l File	Edit \	/iew Se	arch Termi	nal Help					
PREDICT Real-Time Multi-Tracking Mode											
			Curre	nt Dat	e/Time: M	lon 20Apr20	14:1	2:09			
Satellite	Az	El	LatN	LonW	Range	Satellite	Az	El	LatN	LonW	Range
TEPCE46	89	- 37	6		8151 D	RS-20	325	- 35	54	185	8466 D
OSCAR-11	228	-20	- 12	118	5766 D	RS-22	164	+18	12	78	1612 D
PACSAT	40	-43	43	324	9733 D	PCSAT	231	-11	- 3	112	4694 D
LUSAT		- 56	12	316	11486 D		196	- 65	- 68	230	12258 N
ITAMSAT		- 56	- 3	325	11475 D	OS	221	- 25	-24	121	6964 D
OSCAR-27	75	- 54		325	11266 D	OSCAR - 58	344	- 36	70	212	8634 D
OSCAR-29	156	- 36	- 50	43	9039 D	NOAA-14		- 33		251	8423 D
OSCAR-32	359	- 22	81	87	6476 D	NOAA-15		- 19		26	5910 D
OSCAR-50	327	-20	59	137	5831 D	NOAA-17	352	-64	24	255	12365 N
OSCAR-51	266	- 77	-24	235	13261 N	UARS			- Dec	aved -	
CUTE-1	21	- 39	61	310	9294 D	FLTSATC~8	31	- 56		281	47310 D
RS-15	197	- 17	- 34	99	7698 D	ISS			- Dec	ayed -	
	Upcoming Passes										
Sun Moon											
PCSAT on Mon 20Apr20 14:16:26 UTC											
96.53	Az					Apr20 14:19				135.51	Az
+42.49	El		NOA	A-17 o	n Mon 20A	pr20 14:41	:40 U	тс	+	53.16	El

PREDICT Software Multi-Tracking Mode

🔊 🗇 🗊 Terminal File Edit View Search Terminal Help

PREDICT Real-Time Satellite Tracking Tracking: TEPCE46 On Mon 20Apr20 14:13:06

Satellite	Direction	Velocity	Footp	rint	Alti	tude	Slant I	Range
8.22 N. 359.94 W.	85.72 Az -37.91 El	17575 mi 28283 km	2456 3952	mi km	198 319	mi km	5182 8340	mi km
Eclipse Dept			l Model	Squi	nt Ang	le 	AutoTra	
-74.71*	242.1	SGI	P4		N/A		Not Ena	abled
	- Ochit	: Number: 449	5					
96.65 A		AOS: Mon 20A		37:57	υтс		135.80 Az	
+42.70 E		Spacecraft is currently in sunlight +53.31 El						

PREDICT Software Single-Tracking Mode

8	Terminal File Edit View	Search Terminal Help
		==[Main Menu]==
	Ante Azim Radi	llite Name : TEPCE46 nna Port : /dev/antenna uth Offset : n o Port : /dev/tuner uency (MHz): 436.847500
	[r]	Edit params Run tracker Quit program

Custom-Built Motor Controller/Tracking Software

Ground Station (cont.)

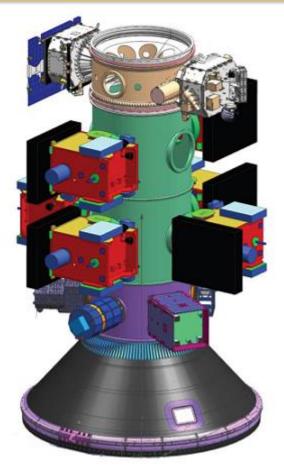
COMMANDING STIMPY

U.S.NAVAL

RESEARCHL LABORATORY

REN TELEMETRY STIMPY TELEMETRY Coil 1 FWD Coil 1 REV TIME: 0 2003/12/31 19:00:00 TIME: 48746 2004/01/01 08:32:26 CODE: 0 CODE: 1 RESET Coil 2 REV Coil 2 FWD BATTERY CURRENT: 0.000 0 Ping Count: 18946 BATTERY CURRENT: 3.275 2638 Packet Rcvd: 8 BATTERY VOLTAGE: 0.00 BATTERY VOLTAGE: 8.18 RESTART **Coils OFF** GET STATE PANEL 1 CURRENT: 0.00 PANEL 1 CURRENT: -0.00 PANEL 2 CURRENT: 0.00 PANEL 2 CURRENT: -0.00 ENABLE ANT PANEL 3 CURRENT: 0.00 PANEL 3 CURRENT: -0.21 **HV CALIBRATE** PANEL 4 CURRENT: 0.00 PANEL 4 CURRENT: -0.00 **DISABLE ANT** OPERATING STATE: NONE OPERATING STATE: NONE SCRIPT STEP: 0 SCRIPT STEP: 0 DOWNLOAD EEPROM TASKS RUNNING TASKS RUNNING COMMAND INTERFACE OFF COMMAND INTERFACE ON START **DEPLOY IPROBE** MONITOR OFF MONITOR ON END ACS OFF ACS OFF ACS ESTIMATE OFF **DEPLOY TAPE 1** ACS ESTIMATE OFF DEPLOY OFF DEPLOY OFF **DEPLOY TAPE 2** SCRIPT OFF SCRIPT OFF **DELETE FILE** ACS Telemetry ACS Telemetry **DEPLOY TETHER 1** TC ERR: 0 TC ERR: 0 File Name Magnetometer: 0.0000 0.0000 0.0000 gauss Magnetometer: 0.0000 0.0000 0.0000 gauss **DEPLOY TETHER 2** Rate Gyro : -99.9424 -99.9424 -99.9424 deg/sec Rate Gyro : -99.94 -99.94 -99.94 deg/sec Start Rate Gyro T : -253.7 -253.7 -253.7 Celcius Rate Gyro T : -253.7 -253.7 -253.7 Celcius **DEPLOY IPROBE** Light Sensor: 0 0 0 0 0 0 0 0 Light Sensor: 0 0 0 0 0 0 0 0 Number of Blocks NADIR T: 0 NADIR T: 0 **RADIO POWER** NADIR D:0 NADIR D:0 DOWNLOAD Estimator RET CODE: 0 Estimator RET CODE: 0 Estimator Run Time: 0 Estimator Run Time: 0 Estimator t0 0 Estimator t0 : 0 **Download Multiple Files** : 0 Estimator t : 0 Estimator t GPS TIME: 0 GPS TIME: 0 GPS X : 0 GPS X : 0 UPLOAD SCRIPT GPS Y : 0 GPS Y : 0 SELECT SCRIPT GPS Z : 0 GPS Z : 0 ACS OFF file SET CURRENT TIME FIND STATE ACS ON ACS UPLOAD Select Satellite 2 SET TIME Start Time Duration Cutter REN STIMPY **Deploy Tether** 0

TEPCE GUI – Controlling Stimpy


Launch

U.S.NAVAL

RESEARCH LABORATORY

- TEPCE was Launched from Cape Canaveral, FL, on June 25, 2019, as a Part of the Space Test Program (STP-2) Mission Onboard a SpaceX Falcon Heavy
- TEPCÉ was Stored Inside of a Poly Picosatellite Orbital Deployer (PPOD) Mounted to the Payload Attachment Fitting of the Upper Stage
- TEPCE was Deployed from the PPOD Approximately 19 Minutes After Liftoff.
- The STP-2 Mission Included the COSMIC-2 Constellation (Six Satellites) and 18 Other Satellites
- Tracking
 - Due to the Large Volume of Satellites Deployed, It Took Almost 2 Weeks to Positively Identify TEPCE
 - Trial-And-Error Communication of All Deployed Objects From the List of TLEs Published to Space-Track.org
 - Tracked Each TLE During Passes Over the RGS
 - Sent "Find State" Commands
 - Awaited Response Before Moving to Next Available Object
 - Developed Program to Send a Signal to Each End-Mass in Alternating, 3second Bursts
 - Command to Increase Transmitter Power to Maximum
 - Return State Telemetry
 - Satellite Number 44346 Consistently Caused the Control Software to Crash
 - Errors in the Software were Mishandling Positive Signals from TEPCE
 - Code was Corrected and Positive Contact was Made to Satellite Number 44346 on July 16, 2019
 - Contact First Was Made With the Ren End-Mass
 - Contact Was Made With the Stimpy End-Mass on July 22, 2019.

STP-2 Payload Stack

- Following Successful Contact, a Series of System Checks Were Initiated
 - Synchronization of Onboard Clocks
 - Activation of Attitude Control Systems
 - Activation of GPS Receivers
 - Download of Telemetry and Sensor Data
 - Upload of Configuration Files
- ACS Showed TEPCE was Tumbling End-Over-End at a Rate of 4.4 Revolutions per
 - Far Above the Maximum Acceptable Rate
 - Magnetorquers Engaged to Slow Tumble Below One RPM
- TEPCE's Orbit Encountered the South Atlantic Anomaly Causing Frequent System Resets
 - Likely Due to Non-Hardened Electronic Components
 - Flight Data Recorded to Correlate TEPCE's Resets to SAA Models

End Mass Deployment

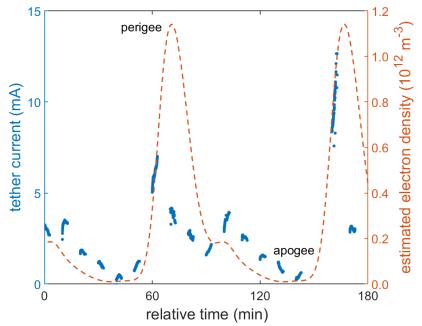
- At 0147 EST on November 16, 2019 the Command was Given to Deploy the Tether
 - Acknowledgement was Not Obtained
 - Increase in Rotation About the Roll Axis was Consistent with Stacer Unwinding per Prelaunch Tests
 - A Sixfold Increase to the Drag Term on November 17, 2019, Further Confirmed Separation
- On November 22, 2019, Commands were Given to Deploy the Impedance Probes (iProbes) and Collector Tapes
 - Confirmation was Received from Ren
 - Confirmation was Not Received From Stimpy
- Imagery on November 21, 2019, Confirmed Separation but Showed Separation of Only About 270 m.
- Further Imagery on November 27, 2019, Showed a Separation of 450 m
 - Also Showed an Anomalous Reflective Area in the Center of the Tether
 - Suspected to Be a Snag in the Tether or a Rebound
 - Possible Causes

U.S.NAVAL

ABORATORY

- Braking Hooks Did Not Release
- Braking Hooks Did Not Slow Release
- Snag of a Piece of Hardware
- Memory Effect Within the Tether.

Image of TEPCE After Tether Deployment Taken at the Air Force Maui Optical and Supercomputing Site



- TEPCE Suffered From Varying Communication Issues
 - Communication Difficulties Between the TMOC and RGS Computers (Resolved Prior to Launch)
 - Difficulties Closing the Link With the Satellite
 - Tracking Issues with the Ground Station
 - Power Management Issues
- Spacecraft Design and Construction Began Almost 10 Years Before Launch
 - Many Parts Were Outdated by Launch Date
 - Many Parts Could Not Be Changed Due to Budgetary Reasons
- Closing the Downlink With Stimpy Became Very Difficult Post-tether Deployment
 - Gravity Gradient Caused Stimpy to Remain at a Higher Altitude
 - It Was Hypothesized That the Tether May Have Modified the Antenna Pattern
 - Cause Could Not Be Definitively Determined
 - Operations Team Made 1,230 Communication Links with Ren, But Only 41 to Stimpy

Thrusting and Current Flow Results

- Tether Operations Limited By Power and Communication Issues
- Tests Involving Stimpy's Collection Tape Were Not Viable
- Tests Utilizing Ren Were Conducted
 - Tether Was Conductive
 - Ren Was Situated on the Negative End of the Tether
 - Ignition of Electron-Emitting Filament Allowed Flow in the Electrodynamic Circuit Driven by the Naturally Occurring Potential Drop in the Tether
- On December 6, 2019 Ren Was Able to Collect Data for a Significant Portion of Two Orbits
 - Due to Natural Negative Bias on Ren, the iProbe Was Not Able to Measure Electron Density
 - Electron Density Estimates Based on International Reference Ionosphere (IRI) Models Were Used and Behavior of Current in the Electrodynamic Circuit Was Consistent With the Estimated Level of Variation

Measured Tether Current and Estimated Plasma Electron Density Over Approximately Two Orbits, Taken Dec 6, 2019

- TEPCE demonstrated the feasibility of electrodynamic propulsion
- Data from the electrodynamics experiments demonstrated significant electron flow along the tether
- The tie-down mechanism and the stacer spring executed successfully
- The shortened distance between the end-masses is an area for future research for future missions
- The communication system was designed for a short-duration mission, but evidently, nonradiation-hardened components exhibited decreased performance as time went on

Questions?

Matthew D. Brunner

Mechanical Engineer Dynamics and Control Systems Branch Spacecraft Engineering Division Naval Center for Space Technology

202 767 7380 Matthew.brunner@nrl.navy.mil