

RADSAT-SK Lessons Learned

Dr. Sean Maw, Principal Investigator, RADSAT-SK

Ron & Jane Graham School of Professional Development, College of Engineering, University of Saskatchewan

Small Spacecraft Systems Virtual Institute (S3VI) Community of Practice Webinar Series NASA Ames Research Centre Nov 15, 2023

Presentation Overview

- A Brief History of RADSAT-SK
- Lessons Learned
 - Design
 - > Project Management
 - Student Supervision
- Summary & Final Thoughts
- Acknowledgements
- Q&A

- late 2017
 - Canadian Space Agency (CSA) AOA for Canadian Cubesat Project (CCP)
- mid-2018
 - Notification of Award/Contract
- late 2018
 - Mission Concept Review (MCR)
- late 2019
 - Preliminary Design Review (PDR)

 RADSAT-SK mission changes to radiation sensor testing, melanin radiation protection testing, and "tourist" camera

- early 2020 COVID hits
 - building clean room, progress slows
- early 2021
 - Critical Design Review (CDR)
- late 2021
 - Test Readiness Review (TRR), CSA forms 3 batches (we're in Batch 2)

- **2022**
 - work intensity ramps up steeply, many problems; we move to Batch 3
 - Flight Readiness Review (FRR) late in year and Batch 1 launches

- early 2023
 - software is the limiter; battery & OBC difficulties too
 - Batch 2 launches
 - final assembly, trouble shooting, abandon camera
 - vibration testing at Calian Advanced Technologies
 - integration at CSA in Montreal (with Nanoracks)

- early 2023
 - software is the limiter; battery & OBC difficulties too
 - Batch 2 launches
 - final assembly, trouble shooting, abandon camera
 - vibration testing at Calian Advanced Technologies
 - integration at CSA in Montreal (with Nanoracks)
- June/July 2023
 - Batch 3 (with us aboard!) launches on SpaceX in FL
 - deployment from ISS, and we get our TLE's

- last 8 Months of 2023
 - ground station completion (s/w and h/w)
 - ground station testing
- late 2023
 - refinement of ground station s/w and h/w
 - no contact with RADSAT-SK yet
 - Batch 3 orbits decaying (solar max)
 - still trying to talk with RADSAT-SK

Of Note: A Brief History of RADSAT-SK2

- late 2022
 - Canadian Space Agency AOA for CUBICS
- Winter 2023
 - Notification of Award/Contract
- late 2023
 - Mission Concept Review (MCR)
 - more/better/advanced radiation sensor testing, melanin radiation protection testing, and cloud measurement camera

- in no particular order of importance or chronology
- 1) fail early, fail often
 - fail early and recover
 - fail late and don't
 - fail often to pre-empt surprises

- 2) get references for OEMs
 - find out who has used the equipment that you want to use
 - talk with them
 - value good service

- 3) work at the same design level across systems
 - conceptual \rightarrow configuration/preliminary \rightarrow detailed
 - your satellite is a system
 - don't jump ahead to detailed design too fast
 - make sure "parts" fit together every step of the way e.g. our "satellite location" snafu

- 4) carefully choose between OTS and custom
 - CSA goal: HQP development
 - but ... success would be nice too ... and <u>nothing</u> is easy in space
 - so don't be too ambitious; it'll be hard enough anyways

- 5) beware of too much/little confidence and positive feedback
 - overconfidence just about killed our mission
 - ironically, so did a lack of confidence
 - find the sweet spot
 - initial strong encouragement can lead to sloppiness

- 6) create a supportive critique culture
 - good critiques = having each other's back/catching each other's errors
 - encourage/teach constructive questioning and critiques
- 7) talk across (sub) teams
 - ask/encourage (dumb) questions
 - check assumptions
 - talk about technical linkages between teams/sub-systems
 - build it into regular operations, don't save it for special occasions

- 8) host regular mentor/multi-team meetings
 - MCR/PDR/CDR/TRR/FRR all with CSA and other teams; very helpful
 - CSA weekly meetings mid-2022 to integration were HUGELY helpful
 - interaction with CSA mentors and other teams provided technical assistance and normalized progress

- again, in no particular order of importance or chronology
- 1) invest in succession planning
 - apprenticeship model for all leadership roles
 - co-lead before becoming the lead
 - don't leave before co-lead is trained
 - include freshmen/juniors in the team

- 2) recruit, orient, and train
 - always be recruiting by multiple means
 - provide orientation to new team members so all are on same page
 - train them for their role(s) and provide training opportunities

- 3) maintain healthy sub-teams
 - don't let sub-teams get too small
 - don't let them get too homogenous e.g. all same year (or discipline)
 - diversity (age, gender, discipline) in membership will create resilience

4) the three legs of finances

- fundraising, budgeting, accounting
- very different skill sets
- get someone to lead each

- 5) accelerate progress with summer students
 - volunteers can be challenging to manage
 - augment with summer/PT paid positions
 - it accelerates progress and builds skills

- 6) don't neglect the ground segment
 - have ground station ready pre-launch
 - else risk large loss of momentum
 - testing (as always) takes time
 - mission doesn't end with launch

7) if you do one cubesat, plan for a second

 you've built up experience, licenses, infrastructure, and a support network ... leverage it forward

8) you can work around COVID

- depends on what phase of development you're at though
- hand-offs of equipment
- online/remote meetings
- trade code, files remotely
- supplier delays can be hard
- fight to sustain momentum

- 9) non-technical activities are important/vital
 - celebrate milestones (reviews)
 - have social events
 - distribute the spotlight

- 10) approach academic tie-ins with caution
 - conflicts of interest will often occur
 - academic and project schedules rarely match
 - team buy-in can be compromised
 - if carefully managed, it can boost progress

Lessons Learned – Student Supervision

- let them do all the technical work (they can do it, with help)
- they will need your help with bureaucracy/logistics/project mngmnt
- have a tech PM, a financial PM, and an HR/PR PM (3 in total)
- interview, and retain final say on, all PM "hires" (and fires)
- weekly PM meetings are worthwhile, pre-launch
- make sure you show your face to the whole team periodically
- like the students, have a co-lead(PI), who will take over eventually

Summary

Design

- 1) fail early, fail often
- 2) get references for OEMs
- 3) work at the same design level across systems
- 4) carefully choose between OTS and custom
- 5) beware of too much/little confidence and positive feedback
- 6) create a supportive critique culture
- 7) talk across (sub) teams
- 8) host regular mentor/multi-team meetings

Summary

Project Management

- 1) invest in succession planning
- 2) recruit, orient, and train
- 3) maintain healthy sub-teams
- 4) the three legs of finances
- 5) accelerate progress with summer students
- 6) don't neglect the ground segment
- 7) if you do one cubesat, plan for a second
- 8) you can work around COVID
- 9) non-technical activities are important/vital
- 10) approach academic tie-ins with caution

Final Thoughts

- satellite design is unforgiving
- what's most important to remember?
 - everything
- don't be too ambitious
 - assume anything that can go wrong, will; and plan for that
- supported undergrads can do it

Acknowledgements

RADSAT-SK was made possible by ...

- the Canadian Space Agency and its great CCP staff, the USask College of Engineering, Sask Polytech, and our generous private donors
- all students who were members of the RADSAT-SK Team (especially the Team Leads and Project Managers)
- Drs. Brian Berscheid, Li Chen and Kate Dadachova
- Calian Advanced Technologies, Galaxia Mission Systems

Thank you for your attention

Any Questions?

