Answer Key

Example:

Convert [student's] mass to kilograms. (This will vary, but an average 6th-grader has a mass between 28 and 42 kg .)
Calculate cost to orbit. (This will vary, but expect answers between $\sim \$ 120,000$ and $\sim \$ 250,000$)
Example: $41 \mathrm{~kg} * \frac{\$ 4,990}{1 \mathrm{~kg}}=\$ 204,590$

1. What is the mass of a spacecraft with a launch cost of $\$ 2,205,580$ weigh?

$$
\$ 2,205,580 * \frac{1 \mathrm{~kg}}{\$ 4,990}=442 \mathrm{~kg}
$$

2. What is the mass of the laser telescope?

$$
\operatorname{masS}_{\text {radio }} * \frac{25}{100}=\text { mass }_{\text {telescope }} \rightarrow 76 \mathrm{~kg} * \frac{25}{100}=19 \mathrm{~kg}
$$

3. By what percentage have we reduced the mass?

$$
\begin{aligned}
& \quad \text { mass }_{\text {new }}=\text { mass }_{\text {old }}-\text { mass }_{\text {radio }}+\text { mass }_{\text {telescope }} \\
& \text { mass }_{\text {new }}=442 \mathrm{~kg}-76 \mathrm{~kg}+19 \mathrm{~kg}=385 \mathrm{~kg} \\
& \text { percentage of old mass }=\frac{\text { new mass }}{\text { old mass }}=\frac{385 \mathrm{~kg}}{442 \mathrm{~kg}}=87 \% \\
& \text { mass percentage reduction: } 100 \%-87 \%=\mathbf{1 3 \%}
\end{aligned}
$$

If students are confused by the different masses, suggest they organize the values that are being tracked (and the numbers that go with them):

- payload mass without any communications system
- payload mass with radio system
- payload mass with laser system

4. How many dollars in launch costs might we save with the laser system?

There are a few ways to tackle this problem, but it is simplest to recalculate launch costs with the new mass:

$$
\begin{aligned}
& \operatorname{cost}_{\text {new }}=385 \mathrm{~kg} * \frac{\$ 4,990}{1 \mathrm{~kg}}=\$ 1,921,150 \\
& \text { saving }_{\text {mass_reduction }}=\text { cost }_{\text {old }}-\operatorname{cost}_{\text {new }}=\$ 2,205,580-\$ 1,921,150=\mathbf{\$ 2 8 4}, \mathbf{4 3 0}
\end{aligned}
$$

5. By what percentage have we reduced cost?

$$
\begin{aligned}
& \text { percentage of old cost }=\frac{\text { new } \operatorname{cost}}{\text { old cost }}=\frac{\$ 1,921,150}{\$ 2,205,580}=\mathbf{8 7 \%} \\
& \text { cost percentage reduction }=100 \%-87 \%=\mathbf{1 3 \%}(\text { or } 12.9 \%)
\end{aligned}
$$

We see the same percentage reduction in cost as we do in mass because the mass and cost are directly proportional to one another.
6. The mass reduction of 13% is greater than the threshold of 10%, so we can use the smaller NMBS-2K! However, a mass reduction of 13% is not enough to fit on a COMET-180.
7. What are the total cost savings?

$$
\begin{aligned}
& \text { savings }_{\text {total }}=\text { savings }_{\text {mass_reduction }}+\text { savings }_{\text {rocket }}+\text { savings }_{\text {transport }} \\
& \text { savings }_{\text {rocket }}=\text { rocketcost }_{\text {CLNSWP-7 }}-\text { rocketcost }_{\text {NMBS2K }}=\$ 207,000 \\
& \text { savings }_{\text {transport }}=\text { transportcost }_{\text {CLNSWP-7 }}-\text { transportcost }_{\text {NMBS2K }}=\$ 22,180 \\
& \text { savings }_{\text {total }}=\$ 284,430+\$ 207,000+\$ 22,180=\$ 513,610
\end{aligned}
$$

