

INTRODUCTION

NASA

navigates throughout the solar system and beyond, revealing the mysteries of the universe. In this workbook, you'll use basic mathematic concepts to explore space navigation. We'll use simplified, real-world examples supplied by navigation engineers to delve deep into the exciting world of space exploration. As NASA goes forward to the Moon and journeys on to Mars, maybe you could be the one to plan our next big mission!

NASA's Space Communications and Navigation (SCaN) program office oversees much of NASA's work in navigation, particularly in the areas of technology development and navigation policy. Additionally, SCaN provides strategic oversight to NASA communications infrastructure and innovation. NASA's two major networks are the Near Space Network and the Deep Space Network.

NASA's Near Space Network provides communications and navigation services to user missions from the launch pad to two million kilometers away through a combination of commercial and government space communications infrastructure worldwide and in orbit. As a single, end-to-end network, they serve missions throughout their entire lifecycle. Users confidently rely on the expertise of NASA's Goddard Space Flight Center, which has a legacy of excellence in managing NASA communications services.

NASA's Deep Space Network uses antennas up to 230 feet in diameter to communicate with missions as far away as Voyager 1, over 13 billion miles from Earth. The Jet Propulsion Laboratory manages the network and its ground stations in California, Spain, and Australia.

KEEPING TIME \& FINDING DISTANCE

Distance equals velocity multiplied by time.

$d=v t$

This equation is the foundation of space navigation.
Waves of energy, or electromagnetic radiation, can communicate data from spacecraft. They propagate through the universe at a constant speed regardless o frequency. This speed, the speed of light, is $299,272,458$ meters per second, (to simplify, we'll use the value $300,000,000$ meters per second in this workbook). The speed of light is represented by the letter " c " in mathematical formulas.
$c=300,000,000 \mathrm{~m} / \mathrm{s}$
Since the velocity of electromagnetic radiation is always the speed of light:

$$
d=v t \text { becomes } d=c t
$$

Say a spacecraft communicates through a Near Space Network ground station in McMurdo, Antarctica. A ground antenna sends a signal to the spacecraft and the spacecraft returns the signal. That time, divided by wo, is the time it takes for electromagnetic radiation to al from the spacecraft to the antenna

Let's say the time elapsed was $10 / 6$ of a second. Half of that is $5 / 6$ of a second.

$$
d=c \times \frac{5}{6} \longrightarrow d=300,000,000 \times \frac{5}{6}
$$

The spacecraft is 250,000,000 meters from the antenna! Using this basic equation, NASA can find out a lot about our spacecraft.

ELECTROMAGNETIC RADIATION USED IN COMMUNICATIONS

RADIO

Radio, the tried and true method of space communications, has supported NASA missions since the inception of the agency. To this day, many spacecraft rely on radio antennas for communications services.

MICROWAVE

Microwave communications is very similar to radio, but occurs at a higher frequency on the electromagnetic spectrum. A higher frequency waveform allows communications equipment to transmit more data per second.

OPTICAL

Optical communications uses infrared lasers, which can offer even higher data rates than radio or microwave. Additionally, optical telescopes can have lower size, weight and power requirements
than radio antennas.

X-RAYS

NASA is also experimenting with X-ray communications, which will offer even higher high-energy nature, X-ray communications can only be used between two assets in space, and not in communications with the ground.

Let's say we calculate two distances for anothe spacecraft, one after another, 5 minutes apart.
For the first distance, we get $1,500,000$ meters. For the second distance, we get 1,800,000 meters.
That means the spacecraft moved 300,000 meters in 5 minutes
Since 5 minutes is 300 seconds, we know our spacecraft moving at 1,000 meters per second away from Earth. is moving af 1,000 meters per second away from Earth Using only the speed of light and the time it takes fo macerad co calculate the velocity of our space ve anged to calcula elative to Earth!
Let's say we calculate another distance, another five minutes later. We get 2,400,000 meters.

$$
2,400,000-1,800,000=600,000 \mathrm{~m}
$$

$$
600,000 \mathrm{~m} / 300 \mathrm{~s}=2,000 \mathrm{~m} / \mathrm{s}
$$

Since acceleration is the change in velocity over time:

$$
\begin{gathered}
a=\frac{\Delta v}{t} \longrightarrow a=\frac{600,000-300,000}{300} \\
a=1,000 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

The more distances we calculate, the more we know about the spacecraft's position and movement if gather distances from multiple sources and apply a litt geometry, we can accurately determine the spacecraft's location
In the next lesson, we'll learn about one way to determine ocation, a process called "trilateration

IT'S ALL IN THE TIMING

When calculating distances using the speed of light,
 like the Deep Space Atomic Clock (DSAC), which is

 accurate timekeeping is enormously important. A sma inaccuracy in time can lead to a huge inaccuracy in the distance calculated. To ensure correct calculations, we can derive time from atomic clocks, which use the ultra-regular oscillations of atoms and atomic particles to tick away the seconds.These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. Space-bound atomic clocks can be prohibitively large (as large as a refrigerator), but NASA is developing smaller ones
about the size of a four-slice toaster.
Additionally, spacecraft can look to the stars for accurate time measurements. Pulsars, rotating neutron stars, emit X -ray radiation at intervals regular enough to provide timekeeping with accuracy similar to atomic clocks. Instruments like NASA's Neutron star Interio Composition Explorer (NICER) are testing the use of pulsars for navigation purposes with investigations like the Station Explorer for X-ray Timing and Navigation (SEXTANT), which uses NICER instruments.

FINDNE YOURSEL IN THE BREATUNKNOWN

TERRESTRIAL TRI LATERATION

When we calculate distances using the time it takes signals to travel between objects, we have only determined an area where our spacecraft could be. The spacecraft could be on a sphere with a radius from he antenna equal to the distance we measured. We don't yet know where the spacecraft is specifically. If we gather multiple spheres from different signal sources, we can narrow potential positions down to a solitary point. The math you need to get to that point is called rilateration.

ild You KNow?

NASA's Search and Rescue (SAR) office has served as the technology development arm of the internationa satellite-aided search and rescue program since its inception in the 1970s. The SAR office has developed second-generation emergency beacons that take full advantage of a new constellation of satellite-based search and rescue instruments. These beacons will offer greatly improved location accuracy and detection times for users worldwide. For more information about their work, visit esc.gsfc.nasa.gov/sar.

On this page, we'll walk you through how to do some and you measure distances (rounded to the nearest of the math related to trilateration. Performing the math 1000 km)
an be exceedingly complex, so just practice setting up he equations for now.

$$
d_{a}=25,000 \quad d_{b}=24,000 \quad d_{c}=20,000
$$

magine you are at some unknown position on Earth
Your position is defined by coordinates $u_{x^{\prime}} u_{y}$ and u_{z} in a coordinate system with three dimensions: $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}.

If you know the position of GPS satellite \boldsymbol{a}

$$
\vec{a}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]
$$

Then your measurement of distance can be written

$$
d_{A}=|\vec{a}-\vec{u}|=\sqrt{\left(a_{x}-u_{x}\right)^{2}+\left(a_{y}-u_{y}\right)^{2}+\left(a_{z}-u_{z}\right)^{2}}
$$

Now, imagine you have measured the distance to three GPS satellites:
$d_{a}=\sqrt{\left(a_{x}-u_{x}\right)^{2}+\left(a_{y}-u_{y}\right)^{2}+\left(a_{z}-u_{z}\right)^{2}}$
$d_{b}=\sqrt{\left(b_{x}-u_{x}\right)^{2}+\left(b_{y}-u_{y}\right)^{2}+\left(b_{z}-u_{z}\right)^{2}}$
$d_{c}=\sqrt{\left(c_{x}-u_{x}\right)^{2}+\left(c_{y}-u_{y}\right)^{2}+\left(c_{z}-u_{z}\right)^{2}}$
You must find the coordinates of \vec{u} that make these equations true. Remember: you know the GPS satellite ositions \vec{a}, \vec{b} and \vec{c} as well as the distance measurement rom those satellites: $d_{a^{\prime}} d_{b}$ and d_{c}. If the GPS satellite positions in kilometers are,
which city are you in? Try plugging the coordinate below into the equations to find out!

Portland, Oregon:
$\vec{u}=\left[\begin{array}{c}-2,420 \\ -3,770 \\ 4,530\end{array}\right]$

Greenbelt, Maryland:
$\vec{u}=\left[\begin{array}{c}1,130 \\ -4,830 \\ 3,990\end{array}\right]$

Chicago, Illinois:
$\vec{u}=\left[\begin{array}{c}200 \\ -4,750 \\ 4,240\end{array}\right]$

Turns out you're in Greenbelt, Maryland!
The puzzle formed by these equations can be treated as a non-linear least squares problem by a GPS reciever These receivers use a variety of mathematical methods to olve this problem, finding the location that best agree with the distance measurements.

Of course, GPS trilateration is much more complicated than we make it seem here. Accurately locating math. There arel a numer advanced that engineers must overcome when using GPS signals

EARTH IS NOT FLAT

Rather than finding a location on a flat plane, you must find a location on an irregular spheroid with hills, valleys, mountains and trenches.

REFRACTION

As GPS signals move through parts of the atmosphere with different densities, the signals refract, changing direction slightly. If you don't adjust for these subtle changes in direction, your solutions can be inaccurate.

RELATIVITY

Einstein's theories describe how time flows slightly faster where there is less gravity. Therefore, navigation engineers must adjust for the subtle change in the speed of time between Earth and the satellites' orbits.

DID YOU KNOW?

Gladys West, a "hidden figure" of the space program, developed much of the math behind the Global Positioning System in the 1970 s and 80 s . West used her expertise in satellite geodesy - the measurement of Earth's form and dimensions from space - to improve dimensions from space - to improve he accuracy of location calculations Since then, many mathematicians and physicists have lent their knowledge and expertise to further refine GPS calculations and overcome the challenges mentioned on this page

ADVANEEDINVESTIGATIONS
 DOPPLER SHIFT
 LINK BUDGETS

Navigation engineers can also determine velocity using a phenomenon called the Doppler effect (further explanation on pg 21). When the distance between a ground station and a satellite is decreasing, the wavelengths of a signal received from the satellite compress, increasing the frequency. When the distance between a ground station and a satellite is increasing the wavelengths of the signal received from a satellite stretch, decreasing the frequency. By analyzing the change in frequency between transmission and reception, navigation engineers can determine satellite's velocity.

The frequency and wavelength of a wave are related by the speed of light, where frequency equals the speed of light divided by the wavelength, λ

$$
f=\frac{c}{\lambda}
$$

The frequency, measured in Hertz (Hz), observed by the ground station is equal to the initial frequency times the speed of light, divided by the speed of light minus the velocity of the satellite.

$$
f_{o b s}=f_{0} \times\left(\frac{c}{c-v}\right)
$$

Let's say a satellite sends us a signal of 100 MHz , but we receive that signal at 100.000333 MHz . Since the requency increased, we know the satellite is moving towards us. Now, let's calculate how fast:

$$
\begin{gathered}
100=100.000333 \times\left(\frac{c}{c-v}\right) \\
\frac{100}{100.000333}=\frac{300,000,000}{300,000,000-v}
\end{gathered}
$$

$999967 \times(300,000,000-v)=300,000,000$
$300,000,000-v=300,009,900$
$-v=9,900$ becomes $v=-9,900 \mathrm{~m} / \mathrm{s}$
Therefore, the spacecraft is travelling towards the ground station at a velocity of 9,900 meters per second

A link budget is a formula for calculating the powe received from a transmitter such as a GPS satellite. The power of the signal at the receiver depends on a number of factors, including the transmitted power, the distance between the transmitter and receiver, and the hardware used by both. Here is a simple link budget, where P_{R} is total power recieved

$$
P_{R}=P_{T}+G_{T}-A_{d}+G_{R}
$$

The signal is transmitted with a power \boldsymbol{P}_{T}. This power is typically focused in a desired direction by an antenna (such as toward the Earth, in the case of GPS satellites) This focusing has the effect of increasing the powe he receiver sees by G a quantity known as transm antenna gain. The signal must then travel across th space between the transmitter and receiver. Signal weaken with distance traveled, decreasing according to the free space path loss, $A_{d^{\prime}}$ defined as:

$$
A_{d}=10 \log 10\left[\left(\frac{4 \pi d f}{c}\right)^{2}\right]
$$

where f is the frequency of the signal and \boldsymbol{d} is the distance it travels. This free space path loss is proportional to the inverse square of the distance between the transmitter and receiver. Finally, the signal is received by an antenn whose design adds some receive antenna gain, G_{R}
The exact values for these parameters vary, but the signal leaving a GPS satellite (including transmit powe and antenna gain) may be approximately 14 decibe watts, dBW (further explanation of decibal watts ma be found on pg 19). This loses 125 dB as it travel to the surface of Earth from the satellite. With a 7 dB receive antenna gain, the GPS signal is only - 104 dBW - weaker than the power you would see from a car tai light 3,000 kilometers away!

GPS ACE

Members of NASA's navigation team used link budget analysis to reverse-engineer characteristics of GPS satellite antennas in a project called the GPS Antenna Characterization Experiment (GPS ACE) They documented how well these satellites could support spacecraft that fly well above the GPS satellite themselves. In fact, the team determined that GP signals are strong enough to be used in lunar orbit!

THE SPACE SERVIIE VOLUME

Many spacecraft close to Earth rely on the global navigation satellite system (GNSS), the collection of six international GPS constellations, for navigation. GNSS ignals provide these spacecraft with timing data crucia to determining their orbits and trajectories, just as they would a user on Earth.

The area of space supported by GNSS is called the Space Service Volume (SSV). The formal outer limi space Service Volume (SSV). The formal outer limit geosynchronous orbit.

Spacecraft with higher altitudes can also use GNSS signals, but they do not use the coverage traditionally joumented by GNSS service providers, Rather they rely on signals from GNSS antenna side lobes.

Communications engineers usually consider these side obes wasted energy, signals sent out in unwanted directions. However, because GNSS side lobe signals extend past Earth, satellites at higher altitudes on the opposite side of the globe can utilize their signals.

Documenting these side lobes can help extend GNSS services to spacecraft outside the current SSV. NASA simulations show GNSS services could even be used a unar orbit. Engineers are considering applications of GNSS in developing Gateway, a lunar-orbiting platform hat will enable sustained surface exploration of the Moon.

Currently, NASA navigation experts and internationa service providers are advocating for better GNSS documentation to make innovations like lunar GPS a possibility

Different orbits provide different views of Earth and deep space. Navigation experts at NASA must determine which type of orbit a spacecraft needs to complete its science mission.

The planets of our solar system orbit around the Sun in various elliptical orbits. Elliptical orbits resemble a long oval with an extreme high point called the apogee and low point called the perigee.
The United States launched its first satellite, Explorer-1, on January 31, 1958, as a part of the International Geophysical Year. This was a period of intense technological invention during the Cold War. Explorer-1 used an elliptical orbit to detect charged particle radiation trapped by Earth's magnetic field. The radiation belts discovered around Earth are known as the Van Allen Belts, named after James Van Allen, the engineer behind the Explorer series instruments. Today, NASA studies these regions with more advanced probes, but still uses elliptical orbits.
You might think that a circular orbit would be more common than an elliptical one, but that couldn't be further from the truth! Circular orbits at a fixed distance

LAGRANGE POINTS
Lagrange points, or libration points, are points in space near two large bodies where a small object can be "parked" stationary relative to the large bodies. There, the combined gravitational forces equal the centripetal force felt by a smaller body. Sun-Earth Lagrange points are useful for NASA science spacecraft!
with a stable speed and no apogees or perigees are one of the rarest kind of orbits. Earth's orbit around the Sun, compared to other planets in our solar system, is almost circular, which is a factor that makes it habitable.

Though completely circular orbits rarely occur naturally, NASA places satellites in circular orbits all the time!
Many of NASA's weather and communications satellites are in a circular orbit called geosynchronous orbit-about 22,000 miles above Earth's surface. Geosynchronous orbits match Earth's rotation on its axis, so it seems as though they remain in the same place relative to a fixed point on the ground at all times.
NASA's fleet of Tracking and Data Relay Satellites (TDRS) are in geosynchronous orbit, using radio frequency to transmit data to Earth from spacecraft located in lowEarth orbit, including the International Space Station.
Beyond elliptical and circular, there are other ways to describe an orbit: equatorial, polar and more. For example, many of NASA's Earth science spacecraft orbit around the poles, earning the name "polar orbiting satellites."

Calculating the velocity a spacecraft needs to maintain a stable, circular orbit requires the force of gravity to equal the centripetal force of the spacecraft orbiting the planet. Centripetal force is a force that keeps something moving along a curved path.
Below are the equations to calculate both the force of gravity $\left(F_{g}\right)$ and the centripetal force $\left(F_{d}\right)$.
$F_{g}=$ gravitational force of attraction (Newtons)

gravity $\left(F_{\mathrm{g}}\right)$ and the centripetal force $\left(F_{\mathrm{c}}\right)$.	MERCURY	Mass: $0.330 \times 10^{24} \mathrm{~kg}$
$F_{g}=$ gravitational force of attraction (Newtons)	VENUS	Mass: $4.87 \times 10^{24} \mathrm{~kg}$
$\qquad F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$	EARTH	Mass: $5.97 \times 10^{24} \mathrm{~kg}$
$m_{1}=$ mass of planet (kilograms)	MARS	Mass: $0.642 \times 10^{24} \mathrm{~kg}$
$m_{2}=$ mass of orbiting spacecraft (kilograms)	JUPITER	Mass: $1898 \times 10^{24} \mathrm{~kg}$
$r=$ distance between the spacecraft and the center of	SATURN	Mass: $568 \times 10^{24} \mathrm{~kg}$
the planet (meters)	URANUS	Mass: $86.8 \times 10^{24} \mathrm{~kg}$
$G=$ universal gravitational constant	NEPTUNE	Mass: $102 \times 10^{24} \mathrm{~kg}$
$G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$		

circular orbit around a planet is the square root of the gravitational constant times the mass of the planet divided by the distance between the spacecraft and the center of the planet.
Below, calculate the velocity necessary to maintain orbits $2,000,000,000$ meters away from each of the planets.

There are a number of factors that can make orbit determination challenging:

- In an elliptical orbit, the velocity of the orbiting body changes, becoming faster as it approaches the planet and slower as it moves away. This is because as the distance between two objects changes, the force of gravity between them does as well.
- When two large bodies orbit one another, the math becomes a little more complicated. In a binary system, the center of the orbit lies in between the two bodies, rather than at the center of one. We won't address these calculations in this workbook, but you can find further information on orbit calculation from a teacher or online.

EXPLORING DEEP SPACE

Some NASA missions venturing deep into space use the gravitational pull of other planets to speed up, slow down or change direction. These gravitational assists are often planned years in advance and require a specific launch window.
In the 1970s, the twin Voyager missions took advantage of a rare alignment of Jupiter, Saturn, Uranus and Neptune that takes place only once every 175 years This arrangement allowed the two spacecraft to swing rom one planet to the next without the need for large, onboard propulsion systems. Each flyby bent the spacecraft's path and increased their velocity enough to deliver them to the next planet. Using these gravitational assists and the unique four-planet arrangement, the flight to Neptune was reduced from 30 years to 12 Now to Neploys reduced for 30 years to 12 . Now, both Voyager spacecraft are in interstellar space over our Sun.

Another flagship mission that utilized gravitational assists was NASA's Galileo mission, which launched in 1989. The Galileo spacecraft, bound for Jupiter, wa hamed after the Italian Rencissance scientist Galile Gamed after the Italian Renaissance scientist Galileo Galiel. Galileo discovered Jupiter's major moons in 1610 with the first astronomical telescope. Three gravity assists were needed for the Galileo spacecraft or reach Jupiter. In February 1990, the spacecraft used Venus' gravitational pull to increase the spacecraft's speed, followed by two additional gravity assist flybys of Earth. The spacecraft reached Jupiter in 1995. The Galileo mission also played an important role in early demonstrations of optical communications technology with the Galileo Optical Experiment (GOPEX), which demonstrated a laser "uplink" from Earth to a spacecraft. Since NASA's inception, the study of our Sun has been
a top priority to the agency. 60 years of technology lopment led to the Parker Solar Probe, which launched toward the Sun in 2018. Parker will use seven Venus flybys to gradually shrink its orbit, coming as close as 3.83 million miles from the Sun - seven times closer than any previous mission.

Most navigation experts consider the near-Earth region determine the orientation and attitude of a spacecraft to be within two million kilometers of Earth. Deep A star tracker is an optical device that acts as the eyes space navigation does not typically benefit from nearEarth systems like GNSS, but over the years, NASA has developed a number of ways to navigate the solar system safely - techniques that go beyond ranging th satellites with ground stations to judge their distances.
The concept of a star tracker can be traced back to mariners navigating the oceans in a time before GPS, They used bright and commonly known star patterns to determine their position and the direction they faced.
Today's star trackers are vastly more complex but use the same concept, searching for familiar star patterns to

ADVANGED INVESTIGATION

Delta-Differential One-Way Ranging (DDOR) a navigation technique that relies on two widely parated ground stations receiving signals from separated ground stations receiving signals from e same spacecraft. The difference in time berwee he arrival of the signal at the ground stations can

These times are affected by several factors. Particularly, when radio waves travel through the Particularly, when radio waves travel through the
atmosphere, the different densities of air cause disturbances that must be accounted for. NASA

A star tracker is an optical device that acts as the eye
of the spacecraft. The device captures star field images, measures their position in relation to the spacecraft and dentifies particular stars so that they can be logged and entered into a star catalog
Typically, a star tracker will include a processor to compare the star field pattern it observes to previously ogged star field patterns. NASA's Lunar Reconnaissance Orbiter (LRO) and Solar Dynamics Observatory (SDO) host two star trackers each. Having two star trackers increases position accuracy and provides redundancy if one fails, the second one can take over

has ways of adjusting for this.
DDOR corrects the error by looking for a quasar - a galactic nucleus - in a direction close to the pacecraft. Since the quasar's direction is known, the delay time of the quasar can be subtracted from the delay time of the spacecraft to account for the atmosphere.

DDOR, alongside other navigation techniques, offers increased spacecraft targeting accuracy, improved mission reliability, reduced tracking time and reduced cost.

OPTICAL NAVIGATION

THE MOON. CREDIT: NASA

NASA can also navigate spacecraft relative to a target using images taken from the spacecraft. In optical navigation, a camera takes images of a target, producing measurements that can be used to estimate distance and rajectory. Optical navigation works similarly to human eyes, collecting light from a target and processing the information in the spacecraft's 'brain.

Cameras, like eyes, have lenses. Generally, these lense ake the subject in view and magnify it, like a telescope Complex lenses can distort images, like a fisheye lens.
A camera collects the light at its lens and focuses the ight on the sensor array creating a picture out of individual pixels on a grid. The size of the image we see is directly related to the size of the target, the distance to he object, focal length of the camera and the pixel size, otherwise known as the pixel pitch
In optical navigation, we use geometry and trigonometry longside known characteristics of a camera's lens and sensor to calculate distances. Below is a diagram of a simple pinhole camera looking at a tree
$S=$ height of the target.
$D=$ the distance from the Target to the camera lens.
$f=$ the focal length, the distance between the sensor array and the camera lens.
$S^{L}=$ the height of the target on the sensor array.
$\Theta=$ the field of view for the camera, the angle between the focal point and the edge of the sensor array.
$\Theta^{t}=$ the angular size of the target, the angle between the focal point and the height of the target.
The focal length (F) and field of view (Θ) are generally known variables for a camera - they are designed with those specifications in mind. Once the camera takes a picture, we can easily measure the height of the targe on the sensor array, the number of pixels on the y-axis of the sensor array times the pixel height.
Drawing a right triangle using the height of the target on the sensor array $\left(S^{\prime}\right)$, and a perpendicular line from on the sensor array $\left(S^{\prime}\right)$, and a perpendicular line from
the focal point to the lens with the known focal length (f), we can use the tangent function to determine the angular size of the target.

$$
\tan \Theta_{1}=\frac{S_{1}}{f}
$$

Drawing a right triangle using the distance from the arget to the camera lens (D) and the height of the target S), we can use the tangent function again

$$
\tan \Theta_{1}=\frac{S}{D}
$$

Combining these equations, we see that:

$$
\frac{S_{1}}{f}=\frac{S}{D}
$$

Because S^{t} and f are known variables, if we have a value for either S or D, we can easily calculate the other Optical navigation calculations like this can be used for a wide variety of applications in space

JOSH LYZHOFT

A MINNESOTAN BATTLING ASTEROIDS

In 2016, Joshua Lyzhoft drove over 17 hours from Minnesota, his home state, to Maryland to begin his career at Godd̈ard Space Flight Center with a Pathways Program internship. Josh came to NASA with a doctorate in aerospace engineering focused on planetary defense; a rapidly advancing field that examines the risks of near-Earth asteroids and develops technologies to alleviate their danger.
At NASA, he works on the Double Asteroid Redirection Test (DART) spacecraft, which will slam into the smaller of two asteroids in a binary system. In the ffermath, NASA will study how the spacecraft changed the relationship aftermath, NASA will study how the spacecraft changed the relationship berween the two asteroids. The mission will serve as a proof of concept for
future planetary defense efforts. In addition to DART, Josh lends his talents in future planetary defense efforts. In adaition to DART, Josh
optical navigation and orbit determination to other missions.
When not hunting•down asteroids, Josh enjoys hunting for mushrooms. A true .
Midwesterner, he loves the outdoors: fishing, foraging and chopping wood.

Imagine that NASA launches a rover to the Moon to prospect for resources like water. Missions like this are becoming more common as NASA expands human and robotic presence on the lunar surface with the Artemis missions.
The rover needs to navigate from its original location to a deep crater. Scientists believe that water ice might exist in the extremely cold, permanently shadowed regions at the bottoms of craters like the one our rover is exploring.
A large boulder in our rover's field of view marks the spot right at the edge of the crater where our rover must park. Mission controllers on Earth need to command the rover to move the exact distance to place it on the spot. Move too far and the rover may fall into the crater Move too little and scientists will lose valuable science data

We know the focal length of the rover's camera is .5 m . Based on observations from previous missions, we know the boulder is 10 m tall. The boulder appears to ke .01 m in the sensor array. Each pixel is $1 \times 10^{-5} \mathrm{~m}$ tall.

PROBLEMS

Commanding the Rover

a. What is the distance from the boulder to the rover's lens in meters?
b. If the rover drives at a speed of $.08 \mathrm{~m} / \mathrm{s}$, how long should mission control instruct the rover to move in order oreach the boulder?

Learning More About the Rover
c. Given that the height of the sensor array (h) is 2000 pixels, what is the field of view (Θ) in degrees?

Advanced Investigation: Thinking Critically d. If we do not have the size of the object, how might an individual determine the distance? (Hint: There might need to be more than one camera.)

JENNY DONALISOON

JOEL PARKER

DANCING AMONG THE STARS.

In 2016, two teams of engineers combined two technologies to create a powerful navigation tool, NavCube, that could demonstrate advanced X-ray communications technologies in space. For their profound creativity, the teams won a NASA Innovators of the Year award.
Jenny Donaldson led the development of NavCube. Previously, she worked on the team that developed one of the contributing technologies, the Navigator GPS, the team that developed one of the contributing technologies, the Navigator GPS an instrument uniquely suited to "hearing" GPS signals at ultra-high altitudes. In addition to helping adapt the Navigator into NavCube, Jenny used the Navigato to perform the GPS Antenna Characterization Experiments (ACE), which helped define the characteristics of GPS antennas.
As a child and young adult, Jenny pursued a career as a ballerina. In fact, she continues to dance in her spare time! She didn't become interested in engineering until she read a piece about Mars rovers, falling in love with space exploration. She then pursued a degree in engineering, eventually coming to NASA as an intern and then a full-fledged employee.

PRAGUE. MUNICH. SOCHI. BREMEN. VIENNA. KYOTO.

Maps neatly frame Joel Parker's desk. Each creased leaflet marks a meeting conducted - a milestone crossed. He collects one for every city he visits while representing NASA as a navigation expert.
Joel's work occupies the intersection of engineering and policy. He leads the effort to extend the Space Service Volume, working with domestic and the effort to extend the Space Service Volume, working with domestic and
international GNSS providers. Joel's goal is to ensure that GNSS navigation international GNSS providers. Joel's goal is to ensure that GNSS navigation signas are a robust option for high-alifude NASA missions. He also serves as PACE) PACE) mission, which will launch in 2022 into polar orbit. PACE will advance the assessment of ocean health by measuring the distribution of phytoplankton, tiny plants that sustain the marine food chain.
When not at work, Joel finds creative outlets by cooking for his family and working with his wife to restore their 1930s, Craftsman-style home in Hyattsville, Maryland. Raising a young daughter, Madeline, and taking care of two dogs takes up the rest of his time.

Orbital mechanics is the study of the motion of spacecraf moving under the influence of forces such as gravity. Most orbits around a large central gravitational body, such as Earth, are elliptical, which means they follow a repeating path in the shape of an ellipse, as seen in the diagram below. A special case of the ellipse, when the major and minor axes are the same, is called a circle.

n the 17th century, Johannes Kepler described elliptical orbits when studying the patterned motion of planets rbiting the Sun. Kepler's third law of planetary motion tates that the square of the orbital period of a satellite is directly proportional to the cube of the semi-major axis of its orbit. In other words, how long it takes to complete one revolution of an orbit (period, T), is directly related to size of the orbit (semi-major axis, a) and can be calculated with the following formula

$$
T=2 \pi \sqrt{\frac{\mathrm{a}^{3}}{G m}}
$$

G is the universal gravitational constant, and m is the mass of the object the satellite is orbiting.

PROBLEMS

Earth's elliptical orbit around the Sun has a semi-major axis of 1.496×10^{11} meters and the mass of the Sun is 1.989×10^{30} kilograms.
a. Calculate the period of Earth's orbit around the Sun in seconds.
b. Calculate the period of Earth's orbit around the Sun in days.

The orbit of the International Space Station around Earth has a semi-major axis of 6.7981×10^{6} meters. Earth's mass is $5.97 \times 10^{24} \mathrm{~kg}$
a. Calculate the orbital period of the space station in minutes.
b. How many times does the space station orbit Earth in one day?

How do we know if a navigation signal is strong enough o be received by our spacecraft?
Link budget calculations use known features of a signal like transmit power and the distance to the receiverto determine unknown features, such as how large an antenna is needed to receive a signal. The largest source of loss in signal strength is path loss, which happens as signals travel vast distances, becoming weaker.

To perform a link budget calculation, we use units of decibels (dB), which express common numbers in exponential form. This is useful for expressing very large or very small numbers. To convert watts $\left(P_{w}\right)$ to decibel watts $\left(P_{d B W}\right)$, use a logarithm, like so:

$$
\mathrm{P}_{\mathrm{ABW}}=10 \log _{10}\left(\frac{\mathrm{P}_{\mathrm{w}}}{1 \mathrm{~W}}\right)
$$

Given the .001 watts, we get:

$$
\mathrm{P}_{\mathrm{dBW}}=10 \log _{10}\left(\frac{.001 \mathrm{~W}}{1 \mathrm{~W}}\right)
$$

Here we express the quantity 0.001 W in terms of decibels relative to 1 Watt. The benefit of working in decibels is that complex equations can be expressed using simple additions and subtractions. The equations for the signal power at the receiver (P) and the path or me signal power at the receiver $\left(P_{R}\right)$ and the path loss $\left(A_{d}\right)$ - found on page nine of this workbook -
take advantage of this.

PROBLEMS

GPS satellites orbitabout 20,200 km above Earth. The international Space Station flies at about 400 km . What is the path loss in dBW as the signal travels between the two, assuming the GPS signal has a frequency of 1575.42 MHz ?
b. What is this path loss in Watts?

Hint: Reverse the decibel equation.l
c. GPS signals are transmitted at about 13 dBW , using an antenna with a gain of about 15 dBW . Assuming the space station has a receive antenna with a gain of 10 dBW , what is the signal power it receives?
d. Now consider that receiver and antenna are mounted on a spacecraft going to the Moon. The Moon is about $400,000 \mathrm{~km}$ from the center of the Earth, which has radius of $6,378 \mathrm{~km}$. What is the path loss in dBW?
e. What is the signal power received by this lunar spacecraft in dBW ?

BEN ASHMAN

CHERYL GRAMLING

PINBALL WIZARD. GPS PIONEER.

One Sunday, Ben Ashman drove a cherry-red moped from his home in the nation's capital to the Visitor Center at Goddard Space Flight Center. He spoke with a group of children and their parents about an issue that plagues most on a daily basis:
How do we get where we need to go?
Today, mobile devices with continuous access to GPS technology make navigation easy. However, Ben isn't concerned with GPS on Earth; he runs simulations to show that GPS signals could be used in lunar orbit, guiding astronauts around the Moon!
In addition to this work, Ben serves on the navigation team for the Origins Spectral Interpretation Resource Identification Security - Regolith Explorer (OSIRIS-REx), a sacecraft designed to return a sample from Bennu, a distant asteroid. Outside work, Ben plays keys in local bands and enjoys pinball.

EARTH? MOON? JUPITER? SWING ON BY!

Cheryl Gramling is a practical person, so her innovative spirit comes from the need for practical, economical solutions to problems. This spirit led her to create robust navigation tools and adapt those tools to the needs of new missions.
Cheryl creates complex trajectory designs for missions like the Wind mission, which launched in 1994 and studied plasma in the solar wind and the Earth's magnetosphere. The spacecraft flew a trajectory of double-lunar swingbys, where engineers used the Moon's gravity to chañge a satellite's orbit. In order visualize the myriad trajectories of Wind, she developed Swingby, a software tool that helps flight dynamics engineers plan their missions.
Cheryl currently serves as head of the Navigation and Mission Design Branch at Goddard Space Flight Center. A key thrust of Cheryl's career and the branch's work is the development of autonomous navigation, guidance and contro systems. These allow spacecraft - especially those at libration points or further out in the solar system - to perform fime-critical maneuvers without the time delay involved in receiving commands from Earth.

In the Bryce Canyon National Park, wildlife biologists rack bears using GPS collars. For this problem, imagine a bear's location is tracked using distance measurements from terrestrial navigation beacons rather than GPS satellites. Two beacons are indicated above: beacon A, a blue circle, and B, a red square. The distance between grid lines is 1 kilometer (km).

PROBLEMS

a. If the reading from the bear's collar indicates a distance of 5 km from beacon A and 7 km from beacon B, write the equations showing the relationship between these distances and the bear's location, $[x, y]$. Assume altitude variation is negligible and write the beacon coordinates in km relative to an origin at the bottom left corner. (The math for this is complicated, so just write out the equations -don't try and solve them.)
b. How many possible solutions are there to the equations in part a ?
c. Where is the bear? Assume that the bear's location falls solely within the map's presented area. The equations are difficult to solve analytically or numerically, so draw circles on the map to pinpoint the bear's location.

Have you ever heard a car pass you while blowing its horn? The sound of the horn changes as the car comes closer and moves away from you.
That change in sound comes from a shift in the frequency of the sound wave the horn makes. This Doppler Effect - named after Christian Doppler who described the - nenomenon in 1842 - is a change in the frequency and wavelength of a wave, in this case a sound wave This is caused by the change in distance between the creator of the wave (the car horn) and the observer that hears the wave.

What can you learn about a spacecraft using the Doppler Effect? When a spacecraft passes over a ground station, it communicates with the station using a radio signal at a certain frequency. This is like the sound wave produced by the car horn.
As the spacecraft comes closer to the ground station the speed of the spacecraft appears to change at the ground station, and the frequency of that signal increase because of the Doppler effect. The spacecraft's speed and direction, together known as velocity can be computed from the Doppler shift of the signal. You can find the equations for this on page nine

PROBLEMS

b. When a spacecraft is almost done sending its climate change data to a ground station in Svalbard, Norway, it has passed over the ground station and is nearing the horizon. The spacecraft transmits to Svalbard at a frequency of $15 \times 10^{9} \mathrm{~Hz}$, and Svalbard receives that signal at $14.9998 \times 10^{9} \mathrm{~Hz}$. What is the spacecraft's velocity as observed by Svalbard?

NASA is expanding our reach among the stars, a ham radio? As the station orbits overhead, you can establishing a sustained presence at the Moon, send messages to it! Amateur Radio on the Internationa ourneying to Mars and studying the cosmos. The Artemis Space Station (ARISS) is a program that connects missions to the Moon, bold inquiry into the origins of the students worldwide with astronauts on the orbiting missions to the Moon, bold inquiry into he origins of he universe and continued examination of our changing brightest. NASA looks to you the Artemis generation for the innovations and breakthroughs we need.

You've completed this workbook. Presumably, you're a tudent interested in science, technology, engineering or mathematics. aboratory over ham frequencies.

To learn more about ARISS, visit: ariss.org

APPLY FOR AN NTEENSHHP

How do you navigate your way to NASA?
BECOME A CITIZEN SGIENTIST
There are many ways to get involved. You can become citizen scientist, joining NASA investigations into he world around us and the stars above. This doesn always require fancy equipment. Many citizen science opportunities can be done by anyone, anywhere, with ust a cellphone or laptop.

To learn more about citizen science, visit: science.nasa gov/citizenscience.

EXPLORE ON YOUR OWN
nterested in communications technologies? Study or your ham radio license! Ham, or amateur, radio hobbyists build and operate their own radios and communicate with other ham operators recreationally.

Did you know that the International Space Station has

CONGRATULATONS

You've completed the workbook

For more information about the work of NASA's Space Communications and Navigation (SCaN) program office, visit:

For information the role Goddard Space Flight Center plays in communications and navigation, visit:
esc.gsfc.nasa.gov

EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION Goddard Space Flight Center

SPACE COMMUNICATIONS AND NAVIGATION (SCaN) PROGRAM OFFICE

National Aeronautics and Space Administration

[^0]
[^0]: National Aeronautics and Space Administration
 Goddard Space Flight Center
 8800 Greenbelt Road
 Greenbelt, MD 20771
 esc.gsfc.nasa.gov
 www.nasa.gov

