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Orbit Determination 
Practice Problem (pg. 13) 
We calculate the velocity necessary to maintain orbits 2,000,000,000 meters away from each of 
the planets using this equation: 
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𝐺𝐺𝐺𝐺1
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1
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 =  𝑣𝑣 

The variable G is the gravitational constant below: 

𝐺𝐺 =  6.67 × 10−11 m3kg−1s−2 

MERCURY  Mass: 0.330 x 1024 kg 
 

�
6.67 × 10−11 × 0.330 × 1024

2,000,000,000
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1
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 =  𝑣𝑣 

𝑣𝑣 = 104.907 m/s 

VENUS  Mass: 4.87 x 1024 kg 
 

�
6.67 × 10−11 × 4.87 × 1024

2,000,000,000
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 =  𝑣𝑣 

 

𝑣𝑣 = 403.006 m/s 

 
EARTH   Mass: 5.97 x 1024 kg 
 

�
6.67 × 10−11 × 5.97 × 1024

2,000,000,000
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 =  𝑣𝑣 



 

𝑣𝑣 = 446.205 m/s 

 
MARS   Mass: 0.642 x 1024 kg 
 

�
6.67 × 10−11 × 0.642 × 1024

2,000,000,000
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 =  𝑣𝑣 

 

𝑣𝑣 = 146.324 m/s 

 
JUPITER  Mass: 1898 x 1024 kg 
 

�
6.67 × 10−11 × 1898 × 1024

2,000,000,000
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 =  𝑣𝑣 

 

𝑣𝑣 = 7956.023 m/s 

 
SATURN  Mass: 568 x 1024 kg 
 

�
6.67 × 10−11 × 568 × 1024

2,000,000,000
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 =  𝑣𝑣 

 

𝑣𝑣 = 4352.333 m/s 

 
 
URANUS  Mass: 86.8 x 1024 kg 
 

�
6.67 × 10−11 × 86.8 × 1024

2,000,000,000
 �

1
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 =  𝑣𝑣 

 



𝑣𝑣 = 1701.405 m/s 

 
NEPTUNE  Mass: 102 x 1024 kg 
 

�
6.67 × 10−11 × 102 × 1024

2,000,000,000
 �

1
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 =  𝑣𝑣 

 

𝑣𝑣 = 1844.370 m/s 

  



Joshua Lyzhoft  
Practice Problem (pg. 17) 
 
Imagine that NASA launches a rover to the Moon to prospect for resources like water. Missions 
like this are becoming more common as NASA expands human and robotic presence on the 
lunar surface with the Artemis missions. 
 
The rover needs to navigate from its original location to a deep crater. Scientists believe that 
water ice might exists in the extremely cold, permanently shadowed regions at the bottoms of 
craters like the one our rover is exploring.  
 
A large boulder in our rover’s field of view marks the spot right at the edge of the crater where 
our rover must park. Mission controllers on Earth need to command the rover to move the 
exact distance to place it on the spot. Move too far and the rover may fall into the crater. Move 
too little and scientists will lose valuable science data.  
 

 
 
We know the focal length of the rover’s camera is .5 m. Based on observations from previous 
missions, we know the boulder is 10 m tall. The boulder appears to be .01 m in the sensor array. 
Each pixel is 1x10-5 m tall. 
 



a) What is the distance from the boulder to the rover’s lens in meters? 

 
To determine the distance from the boulder to the rover’s lens, we can use the tangent 
function, just as we learned on page 16 of the workbook. Since the angle (𝜃𝜃) is on both 
sides of the lens, we know that we can form two similar triangles, one for the left of the 
lens and one for the right of the lens. 

tan(𝜃𝜃′) =
𝑆𝑆′

𝑓𝑓
 

tan(𝜃𝜃′) =
𝑆𝑆
𝐷𝐷

 

By substituting  tan (𝜃𝜃′) is in both equations, we get: 

𝑆𝑆
𝐷𝐷

=
𝑆𝑆′

𝑓𝑓
 

Replacing them with the values from the problem, 

10𝐺𝐺
𝐷𝐷

=
. 01 𝐺𝐺
. 5 𝐺𝐺

 

To solve for 𝐷𝐷, we cross-multiply: 

𝐷𝐷 = (. 5𝐺𝐺/.01𝐺𝐺) × 10𝐺𝐺 = 50 × 10𝐺𝐺 = 500𝐺𝐺 

The rover is 500 meters away from the boulder.  

b) If the rover drives at a speed of .08 m/s, how long should mission control instruct the 
rover to move in order to reach the boulder? 

 
Since we have the distance in meters, we can use d=vt to calculate how much time our 
rover needs to drive: 

 
d = 500 meters 
v = .08 meters per second 

 
500 =  .08𝑡𝑡 

t = 6,250 seconds 
 
So, mission control must instruct the rover to drive for 6,250 seconds, or just over 104 
minutes. 
 



c) Given that the height of the sensor array (h) is 2000 pixels, what is the field of view (Θ) 
in degrees?  

 
Given that we have the pixel size of .1 m and the number of pixels to be 2000, we can 
find the overall height of the sensor array.  This is simply the pixel size times the number 
of pixels: 
 

𝑆𝑆′′ =
1𝑥𝑥10−5 𝐺𝐺

𝑝𝑝𝑝𝑝𝑥𝑥
× 2000𝑝𝑝𝑝𝑝𝑥𝑥 ×

. 01 𝐺𝐺
1 𝑥𝑥 10−2𝐺𝐺

= .02 𝐺𝐺 

 
Then, using the tangent function with a right triangle: 
 

tan(𝜃𝜃) =
𝑆𝑆′′

𝑓𝑓
=

. 02 𝐺𝐺
. 5 𝐺𝐺

= 0.04 

 
Thereafter, we can use an invert tangent function to convert that number to degrees: 
 

𝜃𝜃 = arctan(0.04) × �
180𝑑𝑑𝑑𝑑𝑑𝑑
𝜋𝜋𝑟𝑟𝜋𝜋𝑑𝑑 � = 2.29061004 𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑  

d) If we do not have the size of the object, how might an individual determine the distance?  
(Hint: There might need to be more than one camera.) 

This is a complicated scenario that requires thinking in three dimensions. If an individual 
had two cameras, they could pin-point the same spot on the target and measure where 
it is in both cameras’ sensors. To finish calculating the distance, they must also have the 
location of each camera with respect to each other.  Then, some simple geometry can 
give you an estimate of the distance to the body (see image below).  

 

 

 

 

  



Jenny Donaldson 
Practice Problem (pg. 18) 

Orbital mechanics is the study of the motion of spacecraft moving under the influence of forces 
such as gravity. Most orbits around a large central gravitational body, such as Earth, are 
elliptical, which means they follow a repeating path in the shape of an ellipse, as seen in the 
diagram below. A special case of the ellipse, when the major and minor axes are the same, is 
called a circle.  
 

 
 
In the 17th century, Johannes Kepler described elliptical orbits when studying the patterned 
motion of planets orbiting the Sun. Kepler’s third law of planetary motion states that the square 
of the orbital period of a satellite is directly proportional to the cube of the semi-major axis of 
its orbit. In other words, how long it takes to complete one revolution of an orbit (period, T), is 
directly related to size of the orbit (semi-major axis, a) and can be calculated with the following 
formula: 

𝑇𝑇 =  2𝜋𝜋�
𝜋𝜋3

𝐺𝐺𝐺𝐺 

 
 
G is the universal gravitational constant, and m is the mass of the object the satellite is orbiting. 
 
Earth’s elliptical orbit around the Sun has a semi-major axis of 1.496 x 1011 meters and the 
mass of the Sun is 1.989 × 1030 kilograms.  

 
a) Calculate the period of Earth’s orbit around the Sun in seconds. 

Plug the numbers into the equation supplied, using 3.14159 as the value for pi (л).  

𝑇𝑇 =  2𝜋𝜋�
𝜋𝜋3

𝐺𝐺𝐺𝐺
 



𝑇𝑇 = 2 × 3.14159 × � (1.496×1011)3

(6.67×10−11×1.989×1030
  

𝑇𝑇 = 6.28318 × �3.348071963 × 1033

13.26663 × 1019
 

𝑇𝑇 = 6.28318 × �0.25236792885 × 1014 

𝑇𝑇 = 6.28318 × 5023623.48167 

𝑇𝑇 = 31564330.5876 

Rounding that and converting that to exponential notation: 

T = 3.156433 x 107 seconds 

The period of Earth’s orbit is 3.156433 x 107 seconds. 

b) Calculate the period of Earth’s orbit around the Sun in days. 
 
First, we must calculate how many seconds there are in a day. 

There are 24 hours in a day. 

There are 60 minutes in each hour. 

There are 60 seconds in each minute. 

Therefore: 24 x 60 x 60 = 86,400 seconds per day. 

Dividing that by the number of seconds we calculated in the previous question, we get 
the correct answer: 

3.156433 × 107

86,400
= 365.327893519 days 

So, there are just over 365 days in a year! The small amount of time over the 365 is the 
reason there is a leap day every four years. 

 
The orbit of the International Space Station around Earth has a semi-major axis of 6.7981 x 
106 meters. Earth's mass is 5.97 x 1024 kg. 

 
c) Calculate the orbital period of the space station in minutes.  

Similarly to the first example, we plug the values into the equation provided. 



𝑇𝑇 = 2 × 3.14159 × � (6.7981 × 106)3

6.67 × 10−11 × 5.97 × 1024
 

𝑇𝑇 = 6.28318 × �314.168505637 × 1018

39.8199 × 1013
 

𝑇𝑇 = 6.28318 × �7.88973617807 × 105 

𝑇𝑇 = 6.28318 × 888.241868979 

T = 5580.98354633 seconds 

Since there are 60 seconds per minute, we divide that number by 60 to calculate the 
orbital period in minutes. 

𝑇𝑇 =
5580.98354633

60
 

T = 93.0163924389 minutes 

Rounding to the thousandths: 

T = 93.0164 minutes 
 
So, the space station orbits the Earth once every 93 minutes. This means that astronauts 
experience a sunrise every hour and a half! 
 

d) How many times does the space station orbit Earth in one day? 
 
First, we need to know the number of minutes in a day.  
 
24 hours times 60 minutes per hour is 1440 minutes per day. 
 
Then, we divide that by the orbital period we calculated in the previous question: 

1440
93.0164

= 15.4811409601 

 
Rounding to the thousandths, we get: 
 

15.4811 orbits per day 
 
So, the space station completes 15 orbits around the Earth per day. That’s 15 sunrises! 

  



Joel Parker 
Practice Problem (pg. 19) 
How do we know if a navigation signal is strong enough to be received by our spacecraft?  

Link budget calculations use known features of a signal—like transmit power and the distance to 
the receiver—to determine unknown features, such as how large an antenna is needed to receive 
a signal. The largest source of loss in signal strength is path loss, which happens as signals travel 
vast distances, becoming weaker. 

 

To perform a link budget calculation, we use units of decibels (dB), which express common 
numbers in exponential form. This is useful for expressing very large or very small numbers. To 
convert watts  (PW) to decibel-watts (PdBW), use a logarithm, like so: 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 10 log10 �
𝑃𝑃𝑤𝑤

1 W� 

Given the .001 watts, we get: 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 10 log10 �
0.001 W

1 W � 

Here we express the quantity 0.001W in terms of decibels relative to 1 Watt. The benefit of 
working in decibels is that complex equations can be expressed using simple additions and 
subtractions. The equations for the signal power at the receiver ( PR ) and the path loss ( Ad  ) — 
found on page nine of this workbook — take advantage of this. 

a) GPS satellites orbit about 20,200 km above Earth. The International Space Station flies 
at about 400 km. What is the path loss in dBW as the signal travels between the two, 
assuming the GPS signal has a frequency of 1575.42 MHz? 

 
First, we need the equation for free space path loss, (Ad), found on page nine of the 
workbook: 



𝐴𝐴𝑑𝑑 = 10 log10 ��
4л𝑑𝑑𝑓𝑓
𝑐𝑐
�

2

� 

 
We’ve been supplied the frequency (f) so we need to gather the distance (d) by 
subtracting the altitude of the space station from the altitude of the GPS satellite: 
 

22,200 − 400 = 19800 km 
 
Converting to meters, we have: 19,800,000 meters. We plug that in, along with the 
frequency (converted from 1575.42 MHz to 1,575,420,000 Hz) and the values 3.14159 
for pi (л) and 300,000,000 for the speed of light (c) into the equation: 
 

𝐴𝐴𝑑𝑑 = 10 log10 ��
4 × 3.14159 × 19,800,000 × 1,575,420,000

300,000,000 �
2

� 

 
Ad = 182.322995746 dBW 

So, the signal lost about 182 dBW of strength travelling to the space station.  
 

b) What is this path loss in Watts? (Hint: Reverse the decibel equation.) 
 

Because we know the path loss in dBW, we can write the decibel equation as follows: 
 

182.322995746 = 10 log10 �
𝑃𝑃𝑤𝑤
1 �

 

18.2322995746 = log10 �
𝑃𝑃𝑤𝑤
1 �

 

 
 Reversing the logarithm, we can write this as: 

1018.2322995746 = Pw 

Pw = 1.7072596 x 1018 Watts 

So, the GPS signal lost about 1.71 x 1018 Watts of strength travelling to the space 
station. 
 

c) GPS signals are transmitted at about 13 dBW, using an antenna with a gain of about 
15 dBW. Assuming the space station has a receive antenna with a gain of 10 dBW, 
what is the signal power it receives? 

 
We know the link budget equation from page 9 of the workbook, which we can use to 
solve this problem: 

𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑇𝑇 + 𝐺𝐺𝑇𝑇 − 𝐴𝐴𝑑𝑑 + 𝐺𝐺𝑅𝑅 



Plugging in the values supplied and our answer from the first part of the question, we 
see that:  

𝑃𝑃𝑅𝑅 = 13 + 15 − 182.32 + 10 

𝑃𝑃𝑅𝑅 = −144.32 dBW 

 So, the power received by the space station is -144.32 dBW. 

d) Now consider that receiver and antenna are mounted on a spacecraft going to the 
Moon. The Moon is about 400,000 km from the center of the Earth, which has a radius 
of 6,378 km. What is the path loss in dBW?  

 
Looking back at page 11 of the workbook, we remember that a spacecraft headed to the 
Moon would receive GPS signals from a GPS spacecraft on the opposite side of the 
Earth. So, to get the total distance, we need to add the altitude of the GPS spacecraft to 
the radius of Earth and the distance from the center of Earth. (Note that usually these 
signals would be received at an angle off of Earth, so these calculations would ordinarily 
involve a bit of geometry, but we’ve simplified here.) 
 

𝑑𝑑 = 400,000 + 6,378 + 20,200 
 

𝑑𝑑 = 426,578 km 
 

Converted into meters, that’s 426,578,000 m. We can plug that into our equation for 
free space path loss:  
 

𝐴𝐴𝑑𝑑 = 10 log10 ��
4л𝑑𝑑𝑓𝑓
𝑐𝑐
�

2

� 

 

𝐴𝐴𝑑𝑑 = 10 log10 ��
4 × 3.14159 × 426,578,000 × 1,575,420,000

300,000,000
�

2

� 

 
𝐴𝐴𝑑𝑑 = 208.989661015 dBW 

 
So, the signal lost about 209 dBW of strength travelling to the Moon.  
 

e) What is the signal power received by this lunar spacecraft in dBW? 
 
Returning to the link budget equation: 
 

𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑇𝑇 + 𝐺𝐺𝑇𝑇 − 𝐴𝐴𝑑𝑑 + 𝐺𝐺𝑅𝑅 

𝑃𝑃𝑅𝑅 = 13 + 15 − 208.989661015 + 10 



𝑃𝑃𝑅𝑅 = −170.989661015 dBW 

 

 So, the signal power received by our lunar GPS receiver is about -171 dBW. 

 
f) What is this received signal power in Watts? 

 
Using the logarithmic equation to turn dBW to W:  
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 10 log10 �
𝑃𝑃𝑤𝑤

1 W� 

−170.989661015 = 10 log10 �
𝑃𝑃𝑤𝑤

1 W� 

−17.0989661015 = 10 log10 �
𝑃𝑃𝑤𝑤

1 W� 

 

10−17.0989661015 = 𝑃𝑃𝑤𝑤 

 

𝑃𝑃𝑤𝑤 = 7.962215 × 10−18 W 

 

 The received signal power is about 8 x 10-18 Watts. 

   



Ben Ashman 
Practice Problem (pg. 20) 
In the Bryce Canyon National Park, wildlife biologists track bears using GPS collars. For this 
problem, imagine a bear’s location is tracked using distance measurements from terrestrial 
navigation beacons rather than GPS satellites. Two beacons are indicated above: beacon A, a blue 
circle, and B, a red square. The distance between grid lines is 1 kilometer (km). 

 
a) If the reading from the bear’s collar indicates a distance of 5 km from beacon A and 7 

km from beacon B, write the equations showing the relationship between these 
distances and the bear’s location, [x, y]. Assume altitude variation is negligible and 
write the beacon coordinates in km relative to an origin at the bottom left corner. (The 
math for this is complicated, so just write out the equations —don't try and solve 
them.) 
 
Looking back at page 7 of the workbook, we know we would write the equations as: 
 

5 =  �(1 − 𝑥𝑥)2 + (1 − 𝑦𝑦)2  

7 =  �(10 − 𝑥𝑥)2 + (5 − 𝑦𝑦)2 

 



b) How many possible solutions are there to the equations in part a? 
 
Because we’re working in two dimensions and there are two variables, we know there 
are two possible solutions to these equations. Put another way, circles drawn around A 
and B with 5 km and 7 km radii, respectively, intersect at two points. 
 

c) Where is the bear? Assume that the bear’s location falls solely within the map’s 
presented area. The equations are difficult to solve analytically or numerically, so 
draw circles on the map to pinpoint the bear’s location. 
 
Drawing circles on the map, we can see where the bear is by where the lines intersect: 

 
 

�
𝑥𝑥
𝑦𝑦� ≈ �58� or at 5, 8 on the grid. 

  



 

Cheryl Gramling 
Practice Problem (pg. 21) 
Have you ever heard a car pass you while blowing its horn? The sound of the horn changes as the car 
comes closer and moves away from you.   

That change in sound comes from a shift in the frequency of the sound wave the horn makes. This 
Doppler Effect — named after Christian Doppler who described the phenomenon in 1842 — is a change 
in the frequency and wavelength of a wave, in this case a sound wave. This is caused by the change in 
distance between the creator of the wave (the car horn) and the observer that hears the wave. 

 

What can you learn about a spacecraft using the Doppler Effect? When a spacecraft passes over a 
ground station, it communicates with the station using a radio signal at a certain frequency. This is like 
the sound wave produced by the car horn.  

As the spacecraft comes closer to the ground station, the speed of the spacecraft appears to change at 
the ground station, and the frequency of that signal increases because of the Doppler effect.  The 
spacecraft’s speed and direction, together known as velocity, can be computed from the Doppler shift of 
the signal. You can find the equations for this on page nine. 

a) A ground station in Hawaii sends a signal to a spacecraft with a frequency of 2x109 
Hertz. After traveling at the speed of light, the signal that the spacecraft receives has 
been Doppler shifted up by 600 Hz. What is the observed change in velocity of the 
spacecraft? 
 
Looking at the doppler shift equations on page nine, we find that: 
 

𝑓𝑓𝑜𝑜𝑜𝑜𝑑𝑑 =  𝑓𝑓𝑜𝑜 �
𝑐𝑐

𝑐𝑐 − 𝑣𝑣
� 

The observed frequency is the initial frequency plus 600 Hz and we have a value for the 
speed of light (c) so: 

2 × 109 + 600 = (2 × 109) �
300,000,000

300,000,000 − 𝑣𝑣�
 



2 × 109 + 600 = (2 × 109) �
300,000,000

300,000,000 − 𝑣𝑣�
 

1.0000003 = �
300,000,000

300,000,000 − 𝑣𝑣�
 

1.0000003(300,000,000 − 𝑣𝑣) = 300,000,000 

300,000,090 − 1.0000003𝑣𝑣 = 300,000,000 

−1.0000003𝑣𝑣 = −90 

𝑣𝑣 = 89.999973 m/s 

The spacecraft is travelling at about 90 m/s. 

 
b) When a spacecraft is almost done sending its climate change data to a ground station 

in Svalbard, Norway, it has passed over the ground station and is nearing the horizon. 
The spacecraft transmits to Svalbard at a frequency of 15x109 Hz, and Svalbard 
receives that signal at 14.9998x109 Hz. What is the spacecraft's velocity as observed by 
Svalbard? 
 
Looking at the doppler shift equations on page nine, we find that: 
 

𝑓𝑓𝑜𝑜𝑜𝑜𝑑𝑑 =  𝑓𝑓𝑜𝑜 �
𝑐𝑐

𝑐𝑐 − 𝑣𝑣
� 

 Plugging in our variables: 

14.9998 × 109 = (15 × 109) �
300,000,000

300,000,000 − 𝑣𝑣
� 

 

0.99998666666 = �
300,000,000

300,000,000 − 𝑣𝑣
� 

 

0.99998666666 × (300,000,000 − 𝑣𝑣) = 300,000,000 

299995999.998 − 0.99998666666𝑣𝑣 = 300,000,000 

−0.99998666666𝑣𝑣 = 4000.00199997 

𝑣𝑣 = −4000.05533407 m/s 

The spacecraft is travelling away from the ground station at about 4,000 m/s. 

 


