

NASA Student Launch ARW Flysheet Overview

PRESENTED BY NASA Student Launch

DATE July 24, 2023

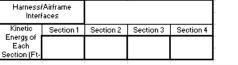
Milestone Review Flysheet 2022-2023

Institutio

Mileston
overy System Properties
Primary Altimeter Make/Model
Secondary Altimeter Make/Model
Other Altimeters (if applicable)
Rocket Locator (MakelModel)

Vehicle Prop	erties
Total Length (in)	
Diameter (in)	
Aspect Ratio	
Gross Lift Off Weight (lb)	
Ballast Amount (lb) / Material / Location	
Launch Vehicle Burn Out Weight (Ib)	
Airframe Material(s)	
Fin Material and Thickness (in)	
Coupler Length(s)/Shoulder Length(s) (in	

Motor Properties		
Motor Brand/Designation		
Max/Average Thrust (lb)		
Total Impulse (Ibf-s)		
Mass Before/After Burn (oa		
Liftoff Thrust (N)		
Motor Retention Method		


Stability Ana	lysis
Center of Pressure (in. from nose)	
Center of Gravity (in. from nose)	
Static Stability Margin (on pad)	
Static Stability Margin (at rail exit)	
Thrust-to-Weight Ratio	
Rail Size/Type and Length (in)	
Rail Exit Velocity (ft/s)	

Ascent Anal	ysis
Maximum Velocity (ft/s)	
Maximum Mach Number	
Maximum Acceleration (ft/s^2)	
Target Apogee (ft)	
Predicted Apogee (From Sim.) (ft)	

Recovery System Properties - Overall				
Total Descent Tim	ne (s)			
Total Drift in 20 mph v	vinds (ft)			
 Recovery System 	m Proper	ties - Energetics		
Recovery System rotion System Energetics (e		_		
	x. Black Pow	_		

Energenes Mass - Drogue		Filling	
	Chute (grams)	Backup	
		Primary	
	Chute (grams)	Backup	
		Primary	
	(grams) - If Applicable	Backup	

overy Sy	stem Pro	perties -	Recovery	Electro
Primary /	Altimeter Mal	ke/Model		
Secondaru	Altimeter M			
Other Al	timeters (if ap			
	.ocator (Mak			
	Locators (if	,		
Transmitting) Frequencies and payload)	s (all - vehicle I		
Plan (batteri	ledundancy es, switches, c.)			
	me (Launch uration)			
covery S	System P	roperties	- Drogue	Parach
Ma	nufacturer/M	odel		
Size o	or Diameter (ii	n or ft)		
Main Altim	ieter Deployn	nent Settina		
	meter Deploy	-		
	y at Deployme	-		
	ninal Velocity			
Type (exam or 1i	arness Mater ples - 1/2 in, tu n, flat Kevlar s ry Harness Lo	ubular Nylon strap)		
Harnessi Interi	Airframe faces			
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-				
	_	Properties	s - Main I	Parach
Ma	nufacturer/M	odel		
Size o	or Diameter (i	n or ft)		
Main Altim	ieter Deployπ	nent Setting		
Backup Alti	meter Deploy	ment Setting		
Velociti	at Deployme	ent (ft/s)		
	ninal Velocity			
Recovery H	arness Mate	rial, Size, and		
	ples - 1/2 in. ti			
	n, flat Kevlar s m Hereoge La			
	ry Harness Le	ength (rt)		
	Airframe faces			

Vehicle Properties				
Total Length (in)	109			NASA NASA
Diameter (in)	6			
Aspect Ratio	18.166			
Gross Lift Off Weight (lb)		45		
Ballast Amount (lb) / Material / Location	4 / aluminum / nosecone			
Launch Vehicle Burn Out Weight (lb)		41.13		
Airframe Material(s)	Carbon Fiber			
Fin Material and Thickness (in)	3/16" Carbon Fiber DragonPlate			
Coupler Length(s)/Shoulder Length(s) (in)	12" / 4" nose cone		Μ	lotor Properties
	Motor Brand/D		Designation	Cesaroni L1720
		Max/Average Thrust (Ib)		437/398
		Total Impulse (lbf-s)		822.8
		Mass Before/After Burn (oz)		117.9/56.0
		Liftoff Thrust (N)		1730
		Motor Retenti	on Method	Retaining Ring

Stability Analysis				
Center of Pressure (in. from nose)	70.9			
Center of Gravity (in. from nose)	57			
Static Stability Margin (on pad)	2.28			
Static Stability Margin (at rail exit)	2.35			
Thrust-to-Weight Ratio	9.1			
Rail Size/Type and Length (in)	NAR/144 in (12 ft 1515 rail)			
Rail Exit Velocity (ft/s)	59.2			

Ascent Analy	vsis
Maximum Velocity (ft/s)	540
Maximum Mach Number	0.48
Maximum Acceleration (ft/s^2)	287
Target Apogee (ft)	4000
Predicted Apogee (From Sim.) (ft)	4031

Report: We calculated our thrust to weight ratio by doing the following:

- The mass of our launch vehicle is 45lbs and has a liftoff thrust of 1730N.
- To convert N to lbs. we multiply by 0.2248 so we have 1730N*0.2248 = 388.904lbs.
- When we divide 388.904 by 45, we get a thrust to weight of 8.64

Note the discrepancy on the flysheet

• Online calculators are fine for BP calculations

INSPIRE-ENGAGE-EDUCATE-EMPLOY The Next Generation of Explorers

• Backup charge MUST be larger than primary

- 90 second limitation
- 2500 feet limitation

• 8 and 10 grams too large

Recovery System Properties -	Energetics
-------------------------------------	------------

Ejection System Energetics (ex. Black Powder)		4F Black Powder
	Primary	3
Energetics Mass - Drogue Chute (grams)		
	Backup	4

Recovery System Properties - Overall			
Total Descent Time (s) 76.7			
Total Drift in 20 mph winds (ft)	2250		

Energetics Mass - Main Chute	Primary	3.5
(grams)	Backup	4.5
Energetics Mass - Other (grams) - Lander Jettison	Primary	8
	Backup	10

 Prefer teams to use two separate manufacturers altimeters (software bug)

 Transmitters – Important to "know your stuff" can't have 60 teams operating same frequency

• Transmitter data Google sheet sent later in the year

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make/Model		PerfectFlite StratoLogger CF	
Secondary Altimeter Ma	ke/Model	PerfectFlite StratoLogger CF	
Other Altimeters (if app	olicable)	2x PerfectFlite StratoLogger CF	
Rocket Locator (Make/	Mo <mark>del)</mark>	BigRedBee BeeLine TX	
Additional Locators (if ap	oplicable)	2x BigRedBee BeeLine TX	
Transmitting Frequencies (all payload)	- vehicle and	433.91 MHz, 433.92 MHz, 433.93 MHz	
Describe Redundancy Plan (batteries, switches, etc.)	Two altimeters in each avionics bay, all with dedicated independent power supplies and mechanical arming switches.		
Pad Stay Time (Launch Configuration)	3 hours		

- Most drogues are apogee (maximum 2 second delay).
- Deployment velocity should be 0 (unless a delay is used)

• Terminal Velocity – what is the velocity of the launch vehicle when the parachute is fully functioning.

 Kinetic Energy – 75 ft-lbs, but for landing. We understand under drogue you'll never be anywhere close to 75.

Recovery System Properties - Drogue Parachute				
Manufacturer/Model			Fruity Chute/Classic Elliptical	
Size c	or Diameter (in (or ft)	18 in	
Main Altim	neter Deployme	ent Setting	apogee	
Backup Alti	meter Deploym	ent Setting	1 second after apogee	
Velocity	y at Deploymen	it (ft/s)		0
Terr	ninal Velocity (f	ft/s)		86
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1/2" <mark>f</mark> lat Kevlar strap		
Recovery Harness Length (ft)			30/15	
Harness/Airframe Interfaces Eye-k			oolts, quick links + swivel links	
Kinetic Energy of	Payload Section	Tail + Vehicle Recovery Section	Section 3	Section 4
Each Section (Ft-Ibs)	2210	2144	N/A	N/A

TE-EMPLOY Explorers

- Deployment velocity of main parachute SHOULD match terminal velocity of drogue.
- Terminal velocity of main is what should be used for KE calculations.

• Terminal Velocity – what is the velocity of the launch vehicle when the parachute is fully functioning.

Recovery System Properties - Main and Payload Parachutes			
Manufacturer/Model	Fruity Chute/Iris Ultra		
Size or Diameter (in or ft)	72 in (96 in payload parachute)		
Main Altimeter Deployment Setting (ft)	850 (600 ft payload jettison)		
Backup Altimeter Deployment Setting (ft)	750 (500 ft payload jettison backup)		
Velocity at Deployment (ft/s)	86 (24 fps prior to payload jettison)		
Terminal Velocity (ft/s)	24 (vehicle terminal velocity is 20 fps after payload jettison; payload terminal velocity on parachute is 10 fps)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)	1/2" flat Kevlar strap		
Recovery Harness Length (ft)	15/10 (payload is harnessed with 45 ft of shock cord)		

• Kinetic Energy – 75 ft-lbs for each independent section at landing.

Harness/Airframe Interfaces		U-Bolt, Eye-Bolt, Quick Links + Swivel Links		
Kinetic Energy of	Vehicle Recovery Section	Tail Section	Payload Bay	Payload
Each Section (Ft-lbs)	59.2	56.7	40.2	19.8

	Payload
	Overview
Payload 1 (official payload)	The payload will locate the launch vehicle's landing grid box by using a single gimballed camera deployed at separation. The camera will take images of the ground under the launch vehicle and align them to create a map of the field. Once the map is created it will be compared with the gridded satellite image to determine the grid box. The grid box value will then be wirelessly transmitted to the ground station.
	Overview
Payload 2 (non-scored payload)	

	Test Plans, Status, and Results			
Ejection Charge Tests	Separation Testing will be conducted to test the black powder deflagration on all separation points on both sub-scale and full-scale vehicles. This testing will confirm the black powder mass calculations are correct and confirm . The sub-scale separation test is in progress as it is scheduled for November 11th, 2021. The full-scale separation test will be in January 2022.			
Sub-scale Test Flights	Sub-scale test flights will be conducted on the 13th of November with a backup launch date of November 20th. The November 13th flight will take place in Dalzell, South Carolina which is approximatly 2 hours south of the backup flight on November 20th will take place in Bayboro, North Carolina which is approximatly 4.5 hours east of the scale of the scale flights will be the goal for the sub-scale flights. If more testing is reqired and the team succesfully flies on the 13th of November, additional testing will be done in Bayboro, North Carolina.			

Vehicle Demonstratio n Flights	The first full scale vehicle demonstration flight is tentativly scheduled for the 15th of January. Following succesful sub-scale launches, a full scale vehicle schedule will be better constructed to ensure the team is on track for the vehicle demonstration flight deadline of March 7th.
Payload Demonstratio n Flights	The team is aiming for the payload demonstration flight to take place on the next avaliable launch after the first full scale vehicle flight. This is to allow for the vehicle to be seen as safe to retain and launch the compeition payload with the least likelyhood of failure.

Transmitter #1				
Location of transmitter:	Nosecone			
Purpose of transmitter:	Verification of payload determined location via GPS			
Brand	EggTimer Rocketry	RF Output Power (mW)	100 mW	
Model	EggFinder TX	Specific Frequency used by team (MHz)	902 MHz	
Handshake or frequency hopping? (explain)	Handshake with ID code matched between receiver and transmitter			
Distance to closest e-match or altimeter (in)	9 inches to e-match/charge bay, 10.5 inches to nearest altimeter			
Description of shielding plan:	The GPS has a 0.5 inch carbon fiber bulkhead between the GPS and the nearest altimeter and e-match			

	Transmitter	#2	
Location of transmitter:	Tethered to booster section main parachute shock cord		
Purpose of transmitter:	To find the location of the booster section		
Brand	Featherweight Altimeters	RF Output Power (mW)	100 mW
Model	Featherweight GPS Tracker	Specific Frequency used by team (MHz)	915 MHz
Handshake or frequency hopping? (explain)	Handshake with ID code matched between receiver and transmitter		
Distance to closest e-match or altimeter (in)	14 inches to nearest e-match/charge bay, 15 inches to nearest altimeter		
Description of shielding plan:	1/4 inch bulkhead shields altimeter and e-match connections from RF signals		

Transmitter #1				
Location of transmitter:	Vehicle			
Purpose of transmitter:	Location tracking			
Brand	BigRedBee RF Output Power (mW) 16			
Model	BRB900	Specific Frequency used by team (MHz)	433.91	
Handshake or frequency hopping? (explain)	Frequency User Defined			
Distance to closest e-match or altimeter (in)	9			
Description of shielding plan:	Separated from avionics by mylar-coated (for RF-opaqueness) bulkplate			

Vehicle Properties				
Total Length (in)	70			
Diameter (in)	5			
Gross Lift Off Weigh (lb)	10			
Airframe Material(s)	Brown Kraft Paper			
Fin Material and Thickness (in)	Bass word .25			
Coupler Length(s)/Shoulder Length(s) (in)	5			

Motor Properties				
Motor Brand/Designation	K1050W AeroTech			
Max/Average Thrust (lb)	2172			
Total Impulse (lbf-s)	2476			
Mass Before/After Burn (oz)	2203			
Liftoff Thrust (N)				
Motor Retention Method	RMS-54/2800			

Stability Analysis				
Center of Pressure (in. from nose)	68.62			
Center of Gravity (in. from nose)	49.91			
Static Stability Margin (on pad)	1.18			
Static Stability Margin (at rail exit)				
Thrust-to-Weight Ratio				
Rail Size/Type and Length (in)				
Rail Exit Velocity (ft/s)				

Ascent Analysis		
Maximum Velocity (ft/s)		
Maximum Mach Number		
Maximum Acceleration (ft/s^2)		
Target Apogee (ft)	5280	
Predicted Apogee (From Sim.) (ft)		

Recovery System Properties - Overall		
Total Descent Time (s)		
Total Drift in 20 mph winds (ft)		

Recovery System Properties - Drogue Parachute			Recovery System Properties - Main Parachute			hute				
Ma	anufacturer/Mo	del			Manufacturer/Model					
Size c	or Diameter (in	or ft)	2	24	Size o	Size or Diameter (in or ft)		84		
Main Altin	neter Deployme	ent Setting	52	280	Main Altimeter Deployment Setting (ft)		1000			
Backup Alti	meter Deploym	ent Setting	50	000	Backup Altim	Backup Altimeter Deployment Setting (ft)		Chute F	Chute Release	
Velocit	y at Deploymen	it (ft/s)	17.75		Velocity	y at Deploymen	nt (ft/s)	17.	17.26	
Recovery Harr	ninal Velocity (f ness Material, S	Size, and Type			Terminal Velocity (ft/s) Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat					
	2 in. tubular Ny <u>Kevlar strap)</u> ry Harness Len	lon or 1 in. flat gth (ft)	Naylon			Kevlar strap) ry Harness Len				
Harness/Airfra	me Interfaces				Harness/Airfra	me Interfaces				
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	Kinetic Energy of Each	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft- lbs)	24.4	47.97			Section (Ft- lbs)	24.4	47.97			

Milestone Review Flysheet 2022-2023

Mileston

Institution

 Payload1

 (official payload)

 Payload2

 (non-scored payload)

	Test Plans, Status, and Results				
Ejection Charge Tests					
- Sub-scale - Test Flights -					
Vehicle Demonstrati on Flights					
Payload Demonstrati on Flights					

Mileston

Institutior

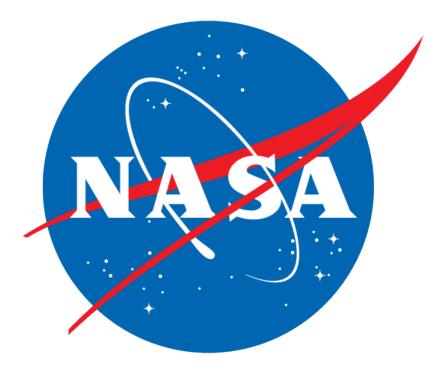
N	SA
X	

Transmitter #1					
Location of transmitter:					
Purpose of transmitter:					
Brand	RF Output Power (mW)				
Model	Specific Frequency used by team (MHz				
landshake or frequency hopping? (explai					
istance to closest e-match or altimeter (i					
Description of shielding plan:					

Transmitter #2					
Location of transmitter:					
Purpose of transmitter:					
Brand	RF Output Power (mW)				
Model	Specific Frequency used by team (MHz				
landshake or frequency hopping? (explain					
istance to closest e-match or altimeter (i					
Description of shielding plan:					
Description of shielding plan:					

Transmitter #3				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mV)			
Model	Specific Frequency used by team (MHz			
landshake or frequency hopping? (explain				
istance to closest e-match or altimeter (i				
Description of shielding plan:				

Transmitter #4	
Location of transmitter:	
Purpose of transmitter:	
Brand	RF Output Power (mW)
Model	Specific Frequency used by team (MHz
landshake or frequency hopping? (explai	
istance to closest e-match or altimeter (i	
Description of shielding plan:	



Questions?

