DLR'S SOLUTIONS FOR OPTICAL COMMUNICATIONS ON CUBESATS

Institute of Communications and Navigation German Aerospace Center (DLR)

Benjamin Rödiger et. al.

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

Outline

Optical Satellite Links department

- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

Optical Satellite Links Department in a nutshell

Staff

- 46 Scientists, 6 DLR-DAAD fellows (PhD students)
- 5 Groups
 - Compensation of Atmospheric Turbulence (Andrew Reeves)
 - Optical Technologies for Space Applications (Juraj Poliak)
 - Optical Communication Terminals (Christopher Schmidt)
 - Optical Ground Stations (Christian Fuchs*)
 - Quantum Communication Systems (Florian Moll)

Main Research Topics

- Optical satellite communications and quantum key distribution
- Optical time- and frequency transfer
- Channel modeling and turbulence mitigation techniques

Optical Ground Station Oberpfaffenhofen

OSIRIS terminal for Cubesats

Heritage in Free-Space Optical Communication

2004: First link from a tethered balloon

2005: First link from the stratosphere, 22 km height 1.25 Gbps, 100 mW

2008: First air-to-ground link 1.25 Gbps, d=120 km

2011: First QKD air-to-ground link

2013: First air-to-ground link Mach 0.7, 1.25 Gbps, d=60 km jointly with ViaLight (now Mynaric) contract by Airbus

5

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

Commercialization by

ETESAT

Jan 2021

2017

OSIRISv3 High performance with pointing assembly

Data rate: 10 Gbit/s

OSIRIS4CubeSat CubeSat Terminal with active beam steering Data rate: 100 Mbit/s

OSIRIS Program

Proof of Concept

OSIRISv1 – Flying Laptop

Flying Laptop, Univ. of Stuttgart

OSIRIS Flight Model integrated in satellite

OSIRISv1 – First "flash"

- Relying on Satellites ADCS
 - Open-Loop body pointing
 - No feedback from ground
- Zig-zag search pattern
- Decreasing pointing error
 - Hexagon pattern
 - Axial swipes
 - Correlation between measured power and ADCS

Zig-zag pattern

OSIRISv1 – Signal Reception

- 21st September 2018
- Pointing Optimization

- Acquisition at 0.4° elevation
- 10 minutes duration

Point Acquisition and Tracking

Evaluation Copy Laser-To-OGS-OP Range Rate No Access Found Time (UTCG): RangeRate (km/sec): BURD HER ANNES Time Steps 0.50 sec

OSIRISv3

Payload Parameters

- Key system parameters:
 - Weight: 9 kg
 - Power consumption:
 - 130 W (operation)
 - 16 W (Stand-By)
 - Downlink data rate: 10 Gbit/s
- Equipped with a Coarse Pointing Assembly (CPA)
- Data handling included in the TOSIRIS terminal
- ARQ system for reliable data transmission (space segment)
- Modular system concept for different missions and applications

OSIRISv3 EQM

Commercialization partner:

OSIRIS4CubeSat

Parameters

Highly miniaturized OSIRIS

- Data Rate: 100 Mbps
- Size: 90 x 95 x 35 mm³ (0.3 U)
- Weight: 395 g
- Power: 8.5 W

Fine Pointing Assembly (FPA) OSIRIS4CubeSat Flight Model

- Compensate satellite pointing inaccuracy up to ±1°
- PAT system with L-Band beacon
- Compatible to CCSDS O3K standard
- Handover to Industry
 - Tesat produces "CubeLCT" as product
- Basic technology for further developments
 - Modular design
 - Standard interfaces
- CCSDS: Consultative Committee for Space Data Systems O3K: Optical On-Off-Keying

First sold "CubeLCT"

TESAT

14

OSIRIS4CubeSat – PIXL-1

Mission Status

3U CubeSat "CubeL"

- Demonstration of capabilities of OSIRIS4CubeSat / CubeLCT
 - Quasi-operational scenario
 - Transfer of RGB-pictures to Optical Ground Station
- Operation via UHF and S-band by GSOC
 - Integration of a CubeSat into a professional ground segment

Launch

- SpaceX Mission "Transporter 1"
 - Date: 24th of January 2021
 - Launcher: Falcon 9
 - Site: Cape Canaveral

CubeL

GSOC: German Space Operation Center

OSIRIS4CubeSat – PIXL-1

- Pointing of CubeL corrected
- Reproducible link establishment
 - When STR is valid
- Tracking performance verified
 - Immediate re-acquisition after link loss
 - Compensating inaccuracies up to +1°
- Link Budget verified
 - Signal below 10° elevation
- In orbit verification
 - Payload fully functional
 - No degradation observed
 - In orbit operation $> 2\frac{1}{2}$ years

IR-Image at the OGSOP-NG

4QD summed power over all four Quadrants

STR: Star Tracker FSM: Fast Steering Mirror 4QD: Four-quadrant diode

16

CubelSL

Research Goals

- Development of a laser communication terminal for Optical Intersatellite Links on CubeSats
- Demonstrator Mission in Space
- Increasing data rate from the satellite to the ground
- Bidirectional Communication via Laser
 - ISL: 100 Mbps up to 1.500 km
 - DTE: 1 Gbps over whole flyover (10° to 10° elevation)

<u>Mission</u>

- LEOP and Operation done by RSC^{3*}
- Two identical 6U CubeSats
- S-Band Communication for TM/TC
- High precision star sensor
- High accuracy ADCS required

CubeISL Mission concept

17

CubelSL – Terminal Concept

Payload

- Technology transfer from DTE to ISL
- Basic Technology OSIRIS4CubeSat (O4C)
 - Shorter Development times
 - Subsystem partially already gualified
 - Modular design allows easy adaptions and extension
 - FPA based on O4C
- Rx- and Tx-Separation by Wavelength
- ISL and DTE possible with the same termining

Optical Terminal from O4C

Parameters

- Data rate ISL: up to 100 Mbps
- Data rate DTE:
- Weight:
- Size: 10 x 10 x 10 cm³ (1 Un

up to 1 Gbps

< 1 kg

Power Consumption: < 30 W

CubelSL – Mission Concept ISL

- Two identical 6U CubeSats
- Low Earth Orbit ~550 km
- trailing constellation on the
- same orbital plane
- Thrusters for orbit control
- Distance between satellites
 (x) in steps up to 1500 km
- launch in 2024

CubelSL – Mission Concept DTE

- DTE up to 1 Gbps
- second mission phase: ٠ demonstrate different use cases for LEO based Lasercomm Networks
- use DLR's other OGS in ٠ Almeria and Trauen

Cube1G

Laser Communication Terminal for high-rated Data Transmission

- Based on CubeISL
- Independancy from Satellite Attitude
- Extended by CPA
 - 20 mm CPA
 - Evolution from Airborne project (DODfast)
 - Suitability for Space
- Improved Data Rate
 - Optical DTE: 1 Gbps

Cube1G terminal design

Cube1G – SeRANIS

- SeRANIS: Seamless Radio Access Networks for Internet of Space
- Publicly accessible experimental laboratory in orbit
- Worldwide unique on small satellites
- More than 10 innovative experiments
- Funding by German government
- Lead by Universität der Bundeswehr Munich
- SeRANIS Multifunctional Satellite Laboratory | UniBw M | dtec.bw

Optical feeder links

- Usage of optical links instead of RF as GEO feeder link, e.g. for television- and/or multimedia satellites
- Single GEO-satellite sufficient to serve Europe
- Multiple ground stations required both for RF and optical links
 - RF: Frequency re-use to boost capacity
 - Optical: Mitigation of cloud coverage (~11 stations for >99.9 % availability)
- Advantages of optical feeder-links
 - Spectrum freed up for user links
 - High optical bandwidth available
- Extremely high data-rates
 - Terabit per seconds

0,5 Feeder Link Capacity [Tbps] 1,5

KA-SAT

THRUST – Optical GEO Feeder Links Testbed

- Link emulating a GEO Uplink testbed with worst-case turbulence conditions
 - Scenario: 337m altitude difference, 10,5km link with 1,9°elevation

→ World Record (2017): 13.2 Tbps

- Single-mode fiber coupling
- Pointing-by-tracking system
- Emulation of point-ahead angle
- Comparison with atmospheric turbulence characterization measurements
- DWDM Technology
- Collaboration with ADVA

24 DWDM: Dense Wavelength Division Multiplexing OGS: Optical Ground Station

DLR Weilheim - OGS

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler

Quantum communications

- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

Satellite Based QKD

Challenges

- Large Distance
- Channel (background light, turbulence, weather)
- Research Topics
 - Space qualified QKD transmitter
 - Laser terminals (high gain antennas, beam steering)
 - Ground interface (system concepts, fiber coupling)
 - Filter concepts for night and day operation
 - Channel models (background light, turbulence, clouds, QBER, extinction)
 - QKD with single satellites or constellations
 - Concepts with trusted nodes (BB84) and entanglement distribution
 - and other...

QUBE

Project

- Cooperation between DLR, LMU, MPL, ZfT and OHB
- Goal: Develop and Demonstrate Technologies in Preparation for Quantum-Key-Distribution (QKD) from CubeSats
- Funded by BMBF

Main goals for DLR

- Transfer technology of OSIRIS4CubeSat to QKD capabilities
- Adapt mechanical design to satellite bus of ZfT
- Couple signals of different wavelengths into OSIRIS
- Adapt optical system for different wavelengths

LMU: Ludwig-Maximilan University
MPL: Max Planck Institute for Scinece of Light
ZfT: Center for Telematics
BMBF: Federal Ministry of Education and Research

QUBE – Optical System

Adaptations compared to OSIRIS4CubeSat

- Additional wavelength at 850nm
- Longer telescope required
 - Telescope separated from rest of optomechanics
- Fiber coupling of the three different signals
 - Triplexer design

Adapted telescope

QUBE – Satellite Integration

Test at ZfT with transportable OGSE

- Payload integrated in final satellite
- Verification of all interfaces
- Tracking tests successful

OSIRIS integrated in QUBE satellite

30

Tracking results – Sensor Feedback

Bundesministerium für Bildung und Forschung

Project

- Cooperation between DLR, LMU, MPL, ZfT and OHB
- Goal: Demonstrate full Quantum-Key-Distribution (QKD) implementation between a CubeSat and a ground station

Main goals for DLR

- Further development of the QUBE terminal to an aperture of 85 mm (external telescope)
 - Adapt optical system for operation with two wavelengths
 - Couple signals of different wavelengths into OSIRIS
- Implement receiving path to allow bi-directional classical communication
- Upgrade Optical Ground Station (OGS) to enable QKD

QUBE-II terminal design

QUARTZ / EAGLE-1 Satellite Mission with full QKD Implementation

- Funded by ESA Scylight / SAGA
- Partners: SES (Prime), MPL, LMU, Tesat, AIT, TNO, IDQ, LUXtrust, itrust consulting, Univ. of Palacky, DLR
- Goal: Develop operational LEO satellite-based QKD system
- Phase 1: QUARTZ End-to-End system level tests with channel simulator in lab
- Phase 2: EAGLE-1 In orbit demonstration (Launch 2024), LCT by Tesat Spacecom
- Main DLR-KN contributions
 - QKD transmitter design, manufacturing, qualification, ...
 - Optical Ground Station for In-Orbit validation
 - System testbed in DLR lab
- Key elements of QUARTZ / EAGLE-1 are designed in Germany (QKD protocol, QKD Tx & Rx, ...)

AIT: Australian Institute of Technology IDQ: ID Quantique LCT: Laser Communication Terminal

32

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

OGSOP-NG

Improved performance and sensitivity

- 80 cm aperture
- Measurements with better spatial resolution
- Supports links in GEO-, deep space- and quantum key distribution-applications

Multiple foci, including Coudé

- High flexibility to change between setups, enabling multi-mission support
- Adaptive Optics on coudé bench

Characterization of the atmosphere

 Measurement instruments for recording of key atmospheric parameters

OGSOP-NG

OGSOP-NG – Coudé setup

OGSOP-NG including Coudé setup

OGSOP-NG with Nasmyth ports

Three Nasmyth Ports

Old 40cm OGS

Transportable Optical Ground Station

- 60 cm Ritchey-Chrétien telescope
- Aluminum mirrors
- Carbon fiber fork mount, foldable
- 500kg
- Operations room in truck
- Worldwide use within a couple of hours

What about the clouds?

Applications from space-to-ground require **OGS-diversity**: Multiple OGS at suitable locations

Example of European wide OGS-network for LEO-Downlinks (taken from ESA-project ONUBLA; DLR, HHI, LOA, ABDS)

Investigated scenarios

- Several OGS network topologies:
 - Europe only (LEO 1)
 - Europe + Africa (LEO 2)
 - Europe + polar sites (LEO 3)
 - Worldwide Sites (LEO 4)
 - Space Agency Sites (LEO 5)
- Optimized OGS locations based on large pool of selected sites
- Key system parameters under investigation
 - Data rates
 - Satellite orbit
 - Buffer sizes
 - Sensor acquisition rates
 - Link planning lead time
 - ..

Combined network availability for selected optimized OGS networks

Fuchs and Moll, "Ground Station Network Optimization for Space-to-Ground Optical Communication Links", J. Opt. Comm. Netw., Vol. 7, No. 12, December 2015

Influence of buffer size – Scenario LEO 4 (Worldwide Sites)

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

Atmospheric Effects

System

Focus PSF Simulation > fibre coupling

Uplink

Intensity at satellite

Propagation of uplink beam to satellite (with or without "predistortion")

Launch Intensity

FSO Modems

LETs

- Demonstrated in ground to ground scenarios (e.g. Hi-CLASS, HIPERON-T)
- Demonstrated in ground to air scenarios (e.g. VABENE++) including hybrid FSO/RF
- Enabled the study of ARQ schemes and higher level FEC (LDPC and Raptor Codes)
- Legacy development for OSIRISv3 Modems and influenced O3K CCSDS Standardization
- Several DLR Patents

Adaptive Optics

AO System Concept

Coudé Laboratory

Meas. with Alphasat-LCT Without AO

With AO

Gefördert durch Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

44

Laser Guide Stars

- Laser Guide Stars are a tool to provide an artificial Adaptive Optics reference
- Useful when "pre-distorting" the transmitted beam path, where the Rx light cannot be used
- DLR Activities
 - Tests of advanced Laser Guide Star launch schemes to stabilise beam
 - Development of Laser Guide Star Adaptive Optics demonstrator for ESA OGS

Sodium Laser Guide Stars [ESO]

ESA Optical Ground Station [ESA]

Coherent technologies for communications

Intradyne (digital homodyne) concept developed and tested for 30G BPSK ^[1]

- Robustness against fading
- Less HW complexity compared to OPLL (advantageous in DWDM)
- Later ^[2]
 - 40G QPSK receiver
 - More robust timing recovery (Lee algorithm) + equalization
- Now: online DSP based on FPGA

[1] J. Surof, J. Poliak, and R. Mata Calvo, "Demonstration of intradyne BPSK optical free-space transmission in representative atmospheric turbulence conditions for geostationary uplink channel," Opt. Lett. 42, 2173-2176 , 2017

[2] P. Conroy, J. Surof, J., J. Poliak, J. and R. Mata Calvo, "Demonstration of 40GBaud intradyne transmission through worst-case atmospheric turbulence conditions for geostationary satellite uplink," in Appl. Opt., OSA, 2018, *57*, 5095-5101

BPSK: Binary Phase-Shift Keying OPLL: Optical Phase-Locked Loops DWDM: Dense Wavelength Division Multiplexing

46

Photonics Integration Circuit (PIC)

- Coherent optical transceiver optimized for time-transfer
- Ist generation completed
 - Design & Testing at DLR
 - Manufacturing at external foundry
- 2nd generation design finished and submitted to foundry for manufacturing
 - Improved optical interface
 - Laser re-design for continuous tunability and higher efficiency
 - Improved testability

1st gen DLR PIC after wire-bonding

Outline

- Optical Satellite Links department
- Selected projects and applications
 - OSIRIS
 - CubeSat developments
 - Optical feeder links
 - Kepler
- Quantum communications
- Optical Ground Station technologies
 - Optical Ground Stations at DLR
 - OGS Networks
- Optical transmission technologies
- Standardization

What is CCSDS?

The Consultative Committee for Space Data Systems (CCSDS) is a multi-national forum for the development of communications & data systems standards for spaceflight.

i Leading space communications experts from 28 nations collaborate in developing the most well-engineered space communications & data handling standards in the world.

The goal to enhance governmental & commercial interoperability & cross-support, while also reducing risk, development time & project costs.

✤ More than <u>1000 space missions</u> have chosen to fly with CCSDS-developed standards.

BLUE BOOKS Recommended Standards

Normative and sufficiently detailed (and pretested) so they can be used to directly and independently implement interoperable systems (given that options are specified).

MAGENTA BOOKS Recommended Practices

Normative, but at a level that is not directly implementable for interoperability. These are Reference Architectures, APIs. operational practices, etc.

GREEN BOOKS

Informative Documents

Not normative. These may be foundational for Blue/Magenta books, describing their applicability, overall archtecture, ops concept, etc.

RED BOOKS

Draft Standards/Practices

Drafts of future Blue/Magenta books that are in agency review. Use caution with these... they can change before release.

ORANGE BOOKS Experimental

Normative, but may be very new technolog that does not **yet** have consensus of enough agencies to standardize.

YELLOW BOOKS Administrative

CCSDS Procedures, Proceedings, Test eports, etc.

SILVER BOOKS

Historical

Deprecated and retired documents that are cept available to support existing or legacy implementations. Implication is that other agencies may not cross-support.

PINK BOOKS/SHEETS Draft Revisions For Review

Draft Revisions to Blue or Magenta books that are circulated for agency review. Pink Books are reissues of the full book. Pink Sheets are change pages only.

CCSDS SLS-OPT

O3K

(Low Complexity LEO-GND)

Books

- 💟 Physical layer
 - Coding and Synchronization layer
 - Supporting green books
 Verification Yellow books
 - O3K C&S orange book JAXA

		CCSDS Manag (CI General Secreta CMC DOCUMENTS	ement Council MC) ary: Sami Asmar CMC POLLS		
		CCSDS Engineerin (CE CESG Chair: Klau Deputy Chai	n <u>g Steering Group</u> <u>SG)</u> Is-Juergen Schulz Ir: Tim Pham		
		CESG DOCUMENTS	CESG POLLS		
Systems Engineering Area (SEA) Director: Peter M. Shames Deputy: Hiroshi Takeuchi SEA DOCUMENTS	<u>Mission</u> <u>Operations and</u> <u>Information</u> <u>Management</u> <u>Services Area</u> <u>(MOIMS)</u> Director: Mario Merri Deputy: Marc	Cross Support Services Area (CSS) Director: Erik Barkley Deputy: Holger Dreihahn CSS DOCUMENTS	<u>Spacecraft</u> <u>Onboard</u> <u>Interface</u> <u>Services Area</u> <u>(SOIS)</u> Director: Jonathan Wilmot Deputy: Xiongwen	Space Link Services Area (SLS) Director: Ignacio Aguilar Sánchez Deputy: Gilles Moury SLS DOCUMENTS	Space Internetworking Services Area (SIS) Director: Tomaso de Cola Deputy: Rodney Grubbs
Systems Architecture Working Group (SEA-SA) Chair: Peter Shames	Duhaze MOIMS DOCUMENTS Data Archive Interoperability Working Group (MOIMS-DAI)	Service Management Working Group (CSS-SM) Chair: Erik Barkley Deputy: Marcin	He SOIS DOCUMENTS Application Support Services Working Group (SOIS-APP)	KF Modulation Working Group (SLS-RFM) Chair: Dennis Lee Deputy: Gunther Sessler Space Link	SIS DOCUMENTS Motion Imagery and Applications Working Group (SIS-MIA) Chair: Rodney
Security Working Group (SEA-SEC) Chair: Howard Weiss	Co Chair: David Giaretta Co Chair: John Garrett Navigation	Gnat Transfer Services Working Group (CSS-CSTS) Chair: Holger	Chair: Jonathan Wilmot Deputy: Richard Melvin Onboard	Coding and Synchronization Working Group (SLS-C&S) Chair: Andrea Modenini	Grubbs Deputy: Osvaldo Peinado Delay Tolerant Networking Working Group
Deputy: Daniel Fischer Delta-DOR Working Group (SEA-D-DOR) Chair: Javier de	Working Group (MOIMS-NAV) Chair: David Berry Deputy: Frank Dreger Spacecraft Monitor and Control Working Group (MOIMS-SM&C) Chair: Mehran Chair: Mehran	Dreihahn Cloud Computing Brids of a Feather (CSS-CLOUD) Chair: Erik Barkley	Wireless Working Group (SOIS-WIR) Chair: Kevin Gifford Deputy: Yuriy	Deputy: Kenneth Andrews Data Compression Working Group (SLS-DC) Chair: Mark Wong Deputy: Lucana Santos Space Link Protocols	(SIS-DTN) Chair: Keith Scott Deputy: Kiyohisa Suzuki Voice Working Group (SIS-VOICE) Chair: Osvaldo Peinado Deputy:Ivan Antonov
Christopher Volk			Sheynin Subnetwork Services Working Group (SOIS-SUBNET)		
(SEA-TIME) Chair: Jon Hamkins Deputy: Sinda Mejri	Mission Planning		Chair: Glenn Rakow Deputy: Marco Rovati	Working Group (SLS-SLP) Chair: Greg Kazz Deputy: Matthew Cosby	CCSDS CFDP Revisions Working Group (SIS-CFDPV1) Chair: Felix Flentge
in Book)	(MOIMS-MP) Chair: Peter van			Space Data Link Layer Security Working Group (SLS-SEA-DLS) Chair: Gilles Moury	Deputy: Dai Stanton
ata (Green Book) m (Orange Book) ange Book) I Link Op. (Magenta	a Book)		ſ	Optical Optical Communications Working Group (SLS-OPT) Chair: Bernard Edwards	

1) CCSDS 141.0-B-1, Optical Communications Physical Layer (Blue Book)
 2) CCSDS 142.0-B-1, Optical Communications Coding and Synchronization (Blue Book)
 3) CCSDS 140.1-G-1, Real-Time Weather and Atmospheric Characterization Data (Green Book)
 4) CCSDS 141.11-O-1, Optical High Data Rate (HDR) Communication – 1064 nm (Orange Book)
 5) CCSDS 141.10-O-1, Optical High Data Rate Communications – 1550nm (Orange Book)
 6) CCSDS 141.1-M-1, Atmospheric Characterization and Forecasting for Optical Link Op. (Magenta Book)

Contact

Name: Affiliation: E-Mail: Phone: Benjamin Rödiger German Aerospace Center (DLR) – Optical Satellite Links Benjamin.Roediger@dlr.de +49 8153 28 -2944

"... we really want to make things fly.

Impressum

Title:

Date:

Author:

Institute:

Picture credits:

DLR's Solutions for Optical Communications on CubeSats 13.09.2023

Benjamin Rödiger et. al

Institute of Communications and Navigation

Slide 4: top right: Airbus Defence and Space Slide 7: left: Uni. Stuttgart Slide 14: right: Exolaunch Slide 21: Universität der Bundeswehr Munich Slide 46: top: ESO, bottom: ESA rest: DLR