

National Aeronautics and Space Administration

Advances in Cognitive Communication, Rapid Devices, and Artificial Intelligence/Machine Learning (AI/ML) Flight Experiments

> M. Murbach, A. Salas, M. Mooney-Rivkin, K. Boateng, S. Krzesniak, J. Alvarellos, T. Hector, A. Brock, J. Adams, TechEdSat Team

> > 08/09/2023

BrainStack

An orbital testbed for AI/ML processors and software

- Previous TES-n/NOW AI/ML experiments (GPUs, neuromorphic processors), expanding to multielement stack
- Permits different software experiments on each layer of the stack:
 - Spacecraft autonomy/prognostics
 - Radiation damage accommodation
 - Extension of EOL for the spacecraft
 - Celestial Navigation (Earth zenith pointing)
 - Earth surface object identification
 - Remote sensing optimization
 - Cognitive communication / autonomously scheduled data downlink

Notable Payloads

INTEL Kapoho Bay

- Loihi
 Neuromorphic
 Processor
- Power-efficient
 AI/ML

NVIDIA Jetson TX2

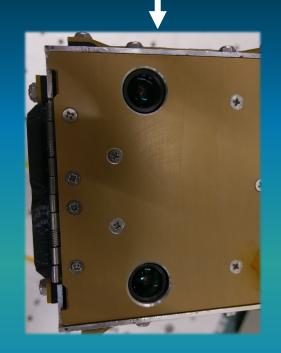
- GPU Video
 Processing
 - Cameras in stack (pictured) for on-orbit video

Initial BrainStack Flights: TES-8 and TES-10

- First tests of an AI/ML payload for the program
- Selected Payload: NVIDIA Jetson TX2 + stereoscopic camera system meant to record the ExoBrake ejection event
- from the ISS

TechEdSat-8

- Launched in 2019 from the ISS
- First flight of the NVIDIA
 Jetson TX2 Image processing
 payload



TechEdSat-10

- Launched in 2020 from the ISS
- Re-flight of the NVIDIA Jetson TX2 Payload from TES-8

NVIDIA Jetson TX2 payload and Camera

Developed in conjunction with San Jose State University

TES-8 Avionics Stack

Neuromorphic BrainStack: TES-13

TechEdSat-13

Launched January 13, 2022

Virgin Orbit *Above the Clouds* mission

Status

- Satellite fully operational
- Mission comprehensive success achieved

AI/ML Experiment

Intel Loihi neuromorphic processor

Objectives

- Establish the hardware, electrical, and software interfaces necessary to build an on-orbit neuromorphic platform
- Run simple AI/ML applications that utilize the Intel Kapoho Bay

Ames Research

The "So What" Factor:

Neuromorphic/DNN processor

100x-1000x power efficiency vs. CPUs/GPUs

Higher performance learning/computation for small spacecraft with limited power

Potential to greatly improve nano-sat data processing while decreasing power consumption

Future BrainStack Options

AI/ML Architectures					
<u>Processor</u>	<u>Developer</u>	<u>Dimensions</u>	Power	Supported APIs	<u>Comments</u>
Tegra X2	NVIDIA	256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA cores	15W	TensorFlow (TF), CUDA	Flown on TES-8/10 Ready for TES-11 flight
Loihi 1 Kapoho Bay	Intel	128K neurons per chip in 2D mesh of 128 neural cores	<1.5W	NxSDK	TES-13 in orbit (first test flight) TES-12 in dev.
Loihi 2	Intel	1M+ neurons per chip in 3D mesh of 128 neural cores	<1W	LAVA	TES-17 in dev. Core capacity significantly higher than Loihi 1
Akida	Brainchip	1.2 million neurons, 256 nodes	<4W	TF, Keras, BrainChip MetaTF	Minimal CPU intervention needed, mini PCIe board with Brainchip
Movidius™ Myriad™ X Vision	Intel	16 SHAVE cores (916 billion operations per second)	1.5W TDP	Flic Hub SDK	14mm x 14mm x 0.84mm 105°C max & -40 °C min
Coral TPU	Google	85x56mm	2 TOPS/W	TFLite	Low power usage
Apple A16 Bionic	Apple	16 Apple neuron Engine cores	17 TOPS 8W TDP	Swift	iPhone GPU, not tested for flight, very small size
HPSC	NASA	8x X280 at 4.6TOPS/c 4x TBD RISC-V cores	7W	TFLite, ROS	Scalability: less than 1W or up to 10 cores 2025 delivery