CubeSat X-ray Telescope for Lunar Elemental Abundance Mapping & Millisecond X-ray Pulsar Navigation

Jaesub Hong (Deputy-PI, Harvard), Suzanne Romaine (PI, SAO), Almus Kenter (SAO), Larry Nittler (Carnegie), Ian Crawford (Birbeck), David Kring (LPI), Noah Petro (GSFC) and NASA Ames Mission Design Center

Jan 2018
Identify and measure compositions of lunar lower crust and upper mantle outcrops excavated within and around impact craters.

Example target sites guided by data from missions like GRAIL, LRO, Kaguya, covering diverse crater sizes in both the nearside and farside of the Moon.

Depth of excavated material is ~1/10th – 1/20th of crater diameters.

Assist site selection for future sample collection and provide the larger context of the sample.
How did the Moon form and evolve?
Science goal of CubeX is to understand the origin and evolution of the Moon through lunar elemental composition from X-ray fluorescence (XRF) excited by Solar X-rays.

- Remote-sensing XRF sensitive to most major rock-forming elements (e.g., Na, Mg, Al, Si, S, Ca, Ti, Fe)
- XRF Spectroscopy is a demonstrated remote-sensing geochemical technique in planetary science: CubeX adds high resolution imaging to XRF spectroscopy
CubeX resolves outcrop features with high angular resolution (~2 – 3 km, 10x higher) while providing a large context with wide footprint (~110km).

(A) The morphology of a peak ring is evident in this view of the ~320-km-diameter Schrödinger basin on the Moon (NASA's Scientific Visualization Studio).

(B) A close-up view of a segment of the peak ring with rocks uplifted from mid- to lower-crustal levels by the impact event. LRO Camera image M1192453566 [Kring+16 & 17].

Anorthositic outcrops are generally considered to be from highlands, whereas olivine-rich outcrops are associated with the mantle or lower crust origin.
II. Can We Navigate Deep Space Autonomously?

• Deep space navigation is a critical issue for interplanetary missions.

• Current deep space navigation relies on a global network of large ground-based radio antennas such as NASA DSN and ESA ESTRACK.
  • Performance degrades while the operational cost increases as the S/C travels farther away from Earth.

• A new era of low-cost SmallSats/CubeSats based space exploration will require more autonomous deep space navigation.
• Measure the peak of the pulsation profile from stable millisecond pulsars (MSPs)

\[ \hat{n} \cdot \Delta r = c \Delta t \]

Solar System Barycentre (SSB)

initial estimated spacecraft position

true spacecraft position

corrected spacecraft position estimate

\( \hat{n} \)

pulsar

\( \Delta r \)

Pulsar 1

Pulsar 2

Pulsar 3

Pulsar 4

• Repeat the measurements for 3 or 4 pulsars to locate the S/C position or determine the S/C trajectory

• MSPs are “GPS” of the Galaxy
~6U CubeSat X-ray Telescope: 5.8 kg with 8.6W (S/C: ~40U)

**X-ray Imaging Spectrometer (XIS) and Solar X-ray Monitor (SXM)**

- XIS covers 0.4 – 7 keV with <150 eV FWHM @ 1 keV, 1 sq. deg FoV with < 1 arcmin Ang. Res.: 2 – 3 km resolution with 110 km foot print at 6000 km; < 1 µsec timing resolution for XNAV
- SXM covers >130 deg FWZI with energy range of 1 – 8 keV
Miniature Lightweight X-ray Optics (MiXO)

- Achieve <1 arcmin resolution over 1 sq. deg and 24 cm² on-axis & 12 cm² off-axis (@ 33 arcmin) effective area at 1 keV
- 34 lightweight NiCo ENR shells (200 µm thick) in a butterfly design with 10 cm dia. x 8 cm length envelope (~1.5 kg) for 50 cm focal length

Cross-sectional view of 34 shells

Effective area (left) and angular resolution in HPD (right) as a function of off-axis for several discrete energies (color-coded) estimated by ray-tracing simulations.
- 2 monolithic CMOS X-ray sensors: \(16 \mu m\) pixel, <150 eV FWHM at 1 keV for XRF imaging spectroscopy
- Amptek SDD: <1 \(\mu\)sec timing for XNAV
- Enable both XRF measurements and XNAV observations without moving parts
**Solar X-ray Monitor (SXM)**

- A simplified version of SXM in OSIRIS-REx / REXIS
- SDD: off-the-shelf item from Amptek
- REXIS SXM functions normally since launch in Sep. 2016

**SDD TO-8 Module**
- COTS item from Amptek
- Be Optical Blocking Filter
- SDD Cooling with 2-Stage TEC
- SDD substrate and detector

**Pre-amp Board**
- Initial signal conditioning for the output signals from the SDD
- Routing for TEC power and BIAS
- ~3.5 cm x 3.5 cm

**Collimator and Bracket**
- Correct Angle to the Sun
- Correct FoV
- Throughput Regulation
### CubeX Spacecraft

**Resource** | **Current best estimate**
--- | ---
Total launch mass | 43 kg
Total power draw | 72 W
S/C delta-V | 300 m/s
S/C data storage volume | 8 GB
Data rate | 256 kbps
Pointing control & knowledge | 30 arcseconds & 6 arcseconds
Mission lifetime (science operation) | 1.5 yr (1 yr)

**Total Vol:** 35 x 23 x 68 cm  
**Total Mass:** 43 kg
• **CubeX** is currently designed as a secondary spacecraft, deployed into a common lunar orbit.

• Launch during solar maximum (2023 – 2027)

**CubeX** canister mount orientation fits all fairings

**CubeX** ESPA-mount orientation option

**CubeX** size: L x W x H (cm) 68 35 23

**Lunar Orbit Insertion based on past missions:** 500 x 5000 km

4 orbit transfer maneuvers to science orbit
($\Delta V \sim 300$ m/s raise)

**SCIENCE ORBIT:**

◆ 1 yr science operation (1.5 yr mission lifetime)

◆ Quasi frozen circular polar orbit at 6000 km, 17 hour period, ideal for both lunar XRF and XNAV operations
• ~90% of 1 year science operation

• Targeted observations during day time
  • except for calibration sites at North and South poles during night time
  • > 2 hr per orbit for each target site
  • ~2 – 3 km resolution with ~110 km FOV to cover and resolve key features

• 6 prime science targets and 3 calibration sites

• Accumulate > 0.5 Msec exposure/site at C1 solar state to meet science requirements
  e.g., < 30% error of abundance ratio at ~3 km scale
CubeX can perform XNAV in more realistic environments for deep space navigation than NICER on ISS (only 20 min per orbit for each pulsar)

CubeX science requirements & mission ops are compatible with XNAV tech demo.
• *CubeX* will identify and measure elemental abundance of lunar mantle and lower crust material, which will deepen our understanding of the formation and evolution of the Moon, in time for next lunar sample return missions.

• *CubeX* will demonstrate semi-autonomous deep space navigation using X-ray millisecond pulsars. Autonomous navigation becomes essential in a new era of interplanetary exploration with a large number of SmallSats/CubeSats.

• Advances in X-ray telescopes and detectors such as *Miniature lightweight X-ray Optics (MiXO)*, monolithic CMOS X-ray imaging sensors and high timing resolution SDDs enable these ambitious objectives with a small form factor, opening a new era of planetary XRF spectroscopy and deep space navigation.

• The *CubeX* mission design closes for science requirements, spacecraft and mission implementation. The design fits mass, volume and cost constraints of the PSDS3 call.
Backup Slides
CubeX Team

**Management, SOC, MOC**
- Suzanne Romaine (SAO)
- Jaesub Hong (Harvard)
- Janet Evans (SAO)
- NASA ARC

**Instruments**
- PI; MiXO Lead
- D-PI; Instrument Design
- SOC
- Msn Design, S/C Design, MOC
- Ralph Kraft (SAO) XIS Lead
- Almus Kenter (SAO) CMOS Lead
- Gregory Prigozhin (MIT) SDD Sensor Lead
- Rebecca Masterson (MIT) Instr Mgmt, SXM Lead

**Lunar and XRF Science**
- Ian Crawford (Birkbeck)
- David Kring (LPI)
- Noah Petro (GSFC)
- Larry Nittler (Carnegie)
- Lunar Science Lead
- Lunar Scientist
- Lunar Scientist
- Planetary XRF Scientist

**XNAV**
- Keith Gendreau (GSFC) XNAV Lead
- Jason Mitchell (GSFC) GEONS Lead
- Luke Winternitz (GSFC) XNAV Plan and GEONS Sim