Ross (née, CAESAR)

PSDS3 Workshop

Beau Bierhaus¹, Josh Hopkins¹, Ben Clark^{1,2}, Robert Jedicke³, Michael Ravine⁴, Driss Takir⁵

¹Lockheed Martin, ²Space Science Institute, ³University of Hawaii, ⁴Malin Space Science Systems, ⁵SETI

18 March 2018

LOCKHEED MARTIN

CAESAR Renamed for Mary Ross

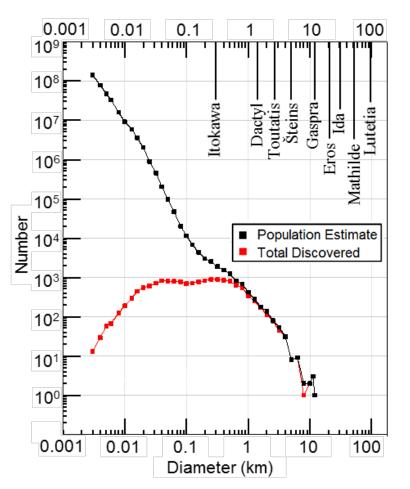
- Our mission was originally named CubeSat Asteroid Encounters for Science And Reconnaissance (CAESAR)
- A comet mission selected for New Frontiers Phase A is also named CAESAR
- To avoid confusion, we changed our mission name to Ross
- Mary G. Ross was an engineer at Lockheed from 1942-1973, and one of the first American Indians in aerospace engineering
 - She worked on P-38 aerodynamics, Constellation aeroelasticity, Polaris hydrodynamics, the Agena rocket, and interplanetary trajectory design to Mars and Venus
 - We honor her trailblazing role and her contributions to orbital mechanics with this mission

Image courtesy of Society of Women Engineers National Records, Walter P. Reuther Library

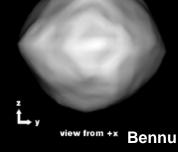
Ross Mission Overview

Study objective

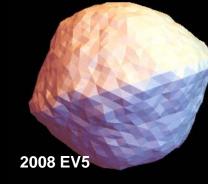
 Demonstrate that a fleet of small, low-cost spacecraft provides an affordable means to explore an incredibly diverse smallbody population via flybys


Why flybys?

- A well-planned and executed flyby on an unexplored object provides a wealth of information on multiple fundamental physical parameters
- Flybys provide an excellent balance between valuable data and implementation with small-scale spacecraft

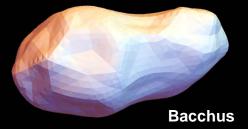

Numbers & Processes Matter

- Most objects in the solar system belong to a physical scale that has never been visited by spacecraft
- Small (< a few km) objects are . . .
 - The vast majority of planetary bodies (NEOs, MBAs, KBOs)
 - A window into early stages of planet formation
 - The greatest remaining unknown risk for Earth impact
 - Candidate targets for ISRU and / or human exploration


Small asteroids are among the most numerous objects in the solar system

Why small NEOs?

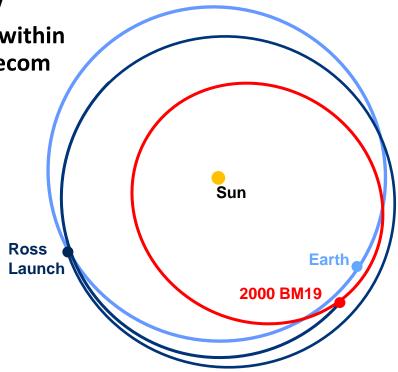
Ast. 153591



Ra-Shalom

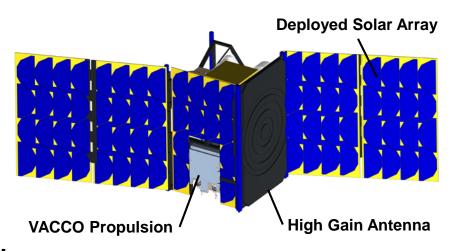


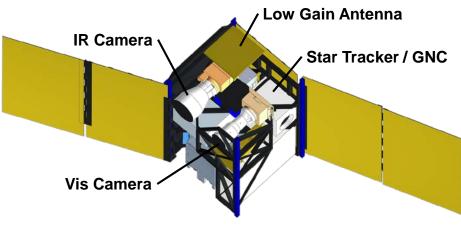
Castalia



YORP

Mission Architecture


- 4
- Multiple identical CubeSats launch as secondary payloads on the same launch.
- Each CubeSat targets one flyby of a different NEO. Asteroid 2000 BM19 used as an example throughout this presentation.
- CubeSats reside in heliocentric orbit before encounter
 - Dozens of feasible targets with low ΔV
 - 1 year phasing orbit keeps spacecraft within
 ~0.7 AU of Earth, which simplifies telecom
- Feasible target selection considers:
 - Mission duration & ΔV
 - Encounter velocity & phase angle
 - Earth range at encounter
 - Max Earth & Sun range in cruise
 - Asteroid size, orbit determination
 - Science merit of target



Spacecraft Configuration

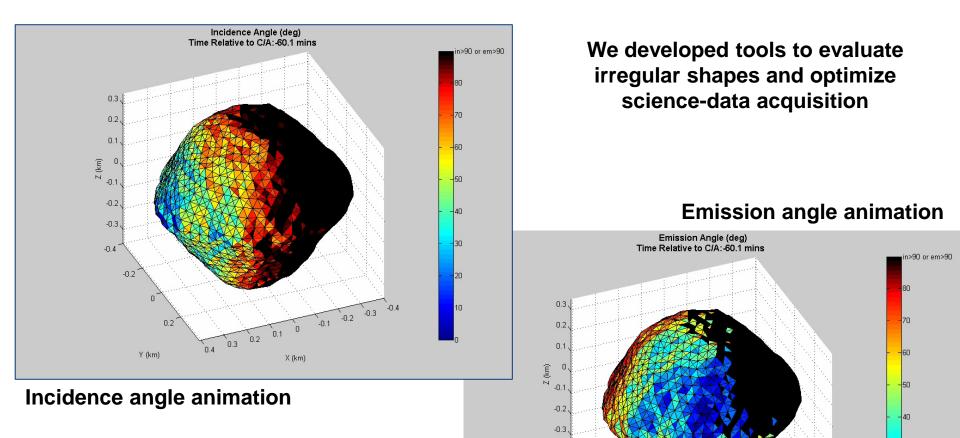
4

- 12U spacecraft, compatible with rail or tab dispensers
 - 24 kg launch mass with margins
- Two science cameras
 - Malin ECAM visible
 - Malin IR3 microbolometer
- X-band telecom: IRIS v2 radio and high-gain + low gain patch antennas
- Green propellant propulsion system from VACCO
- Deployed, non-gimbaled solar arrays

Overall Concept of Operations

- Simple, low-activity operations during cruise prior to encounter
 - Periodic system check-outs and status
- Observe target several hours before closest approach
 - science observations (next slides)
 - Refines ephemeris
- Update flyby timing based on point-source observations
- Conduct flyby observations (next slides)
- Data downlink after flyby observations end

Time (UTCG):	6 Mar 2023 21:20:02.410	
Solar Phase Angle (deg)	62.207	
BM19 Range (km):	808.364437	
Earth Range (Au):	0.206875	
Sun Range (Au):	0.979669	



Red box is IR camera FOV

Shape Matters

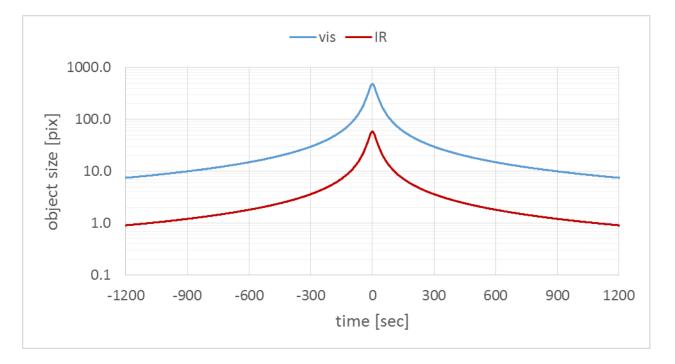
-0.4

-0.2

0.2

Y (km)

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3


X (km)

-0.4

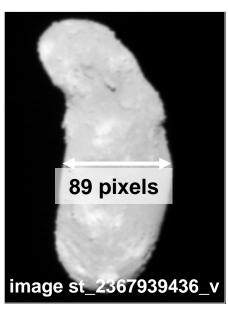
10

Encounter Performance (2000BM19)

- 474 pix Maximum object size in pixels in visible
- 2.53 m/pix Best pixel scale in visible
- 57 pix Maximum object size in pixels in IR
- 20.90 m/pix Best pixel scale in IR

For a closest-approach distance of 125 km

How does this compare with existing asteroid data sets?

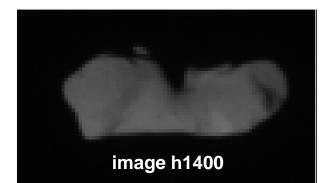

Itokawa

enveloping pixel dimensions of object: white box height: 186 pixels width: 97 pixels

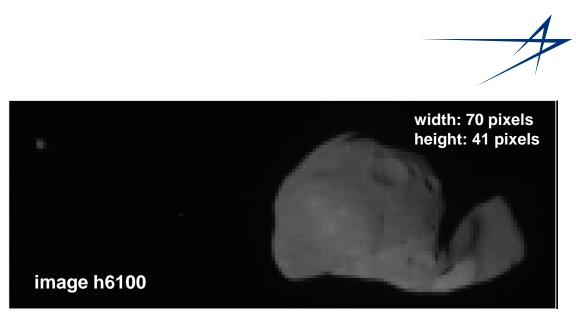

height: 167 pixels width: 111 pixels

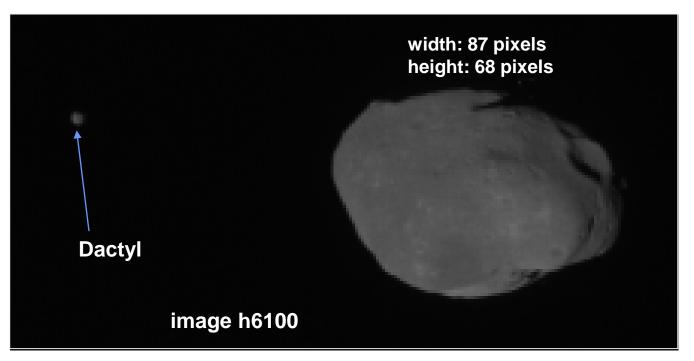
height: 224 pixels width: 111 pixels

height: 154 pixels width: 108 pixels



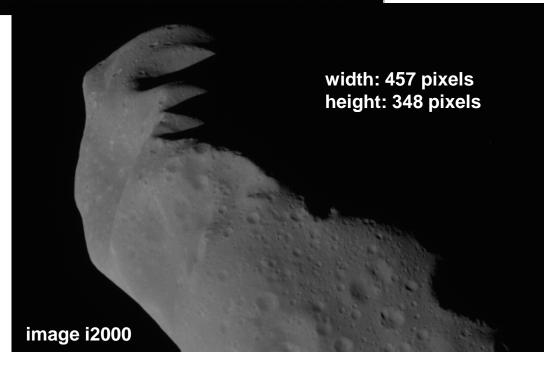
height: 156 pixels width: 100 pixels

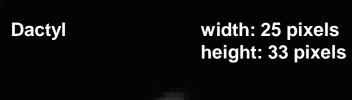

PSDS3-18 MARCH 2018



Ida (and Dactyl)

enveloping pixel dimensions of object width: 58 pixels height: 23 pixels





width: 220 pixels height: 144 pixels

image i0600

image i2278

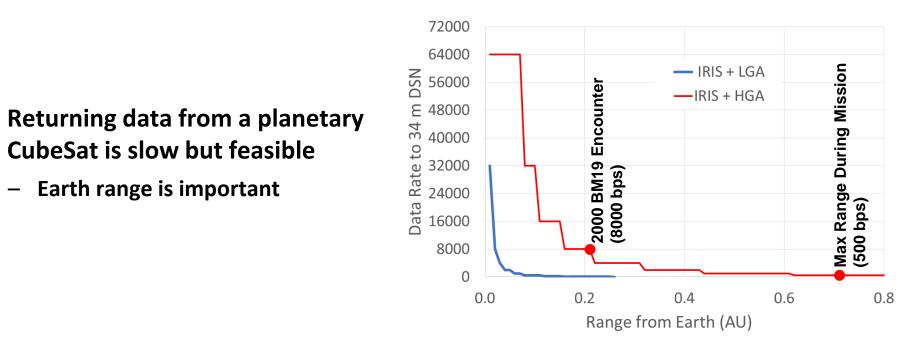

width: 297 pixels height: 439 pixels

image i2439

Ross Provides Data to Advance Planetary Science

- Ross flyby data provide the needed resolutions and coverage to address fundamental science objectives for size, shape, bulk properties, and fundamental surface processes
 - Significant contribution to small-body science, and planetary formation
- Flybys naturally provide a range of phase angles, incidence angles, and emission angles
 - High-phase angle imaging (typically approach and departure) provides shape and surface geomorphology
 - Low-phase angle imaging (typically near closest approach) provides information on albedo and shape
- Other discoveries possible: satellites, and other environmental effects
 - Dactyl was detected as a satellite when just a few pixels across

- Data downlink strategy leverages low-overhead, initial return of "thumbnail" images to:
 - Select highest priority images for return

Telecom

- Of those images, the "windowed subset" of each image that contains the object
- Enables fully-informed decision making to return highest-priority images, and preserves all data for complete download in the future if contacts available

Propulsion

- Even trajectories with near-zero nominal ΔV need a non-trivial propulsion budget
 - Correction for launch vehicle dispersions
 - Trajectory modifications across the ~3 week launch period
 - Statistical trajectory correction maneuvers
 - Reaction wheel desaturation
- Options considered:
 - cold or warm gas systems, insufficient impulse
 - electric propulsion, needs larger solar arrays with gimbals, has more mission ops complexity
- We selected a ~2U VACCO green monopropellant integrated propulsion unit, which provides higher thrust and sufficient Isp

Technology Development

- Receiver noise floor improvements
 - Current CubeSat radios do not have sufficient performance to receive DSN commands through omni-directional antennas. Improved noise performance would support more robust contingency scenarios.
- Ka-band development
 - Ka-band communications would improve data rates from sizeconstrained small spacecraft. However, CubeSat-class radios that support Ka-band from deep space have not yet finished development.
- Low power / high efficiency telecom
 - current low-power telecom systems tend to be least efficient

Summary

- Ross explores a largely unknown class of planetary object and returns compelling new observations, complementary to larger-scale missions
- We examined a broad range of tradespace, and have found small-body encounters that fit within CubeSat capabilities
- Though small in scale, these are fully functional planetary spacecraft and missions and need systems engineering, design, and test strategies appropriate to deep space missions