

A SmallSat to Explore Jupiter's Magnetospheric Boundaries and Image its Energetic Neutral Atom Emissions

## JUMPER: JUpiter MagnetosPheric boundary ExploreR

R. W. Ebert<sup>1</sup>, F. Allegrini<sup>1</sup>, F. Bagenal<sup>2</sup>, C. Beebe<sup>1</sup>, M. A. Dayeh<sup>1</sup>, M. I. Desai<sup>1</sup>, D. E George<sup>1</sup>, J. Hanley<sup>1</sup>, P. Mokashi<sup>1</sup>, N. Murphy<sup>3</sup>, P. W. Valek<sup>1</sup>, D. Wenkert<sup>3</sup>, A. Wolf<sup>3</sup>, C.-W. L. Yen<sup>3</sup>

<sup>1</sup>SwRI, <sup>2</sup>CU/LASP, <sup>3</sup>NASA/JPL

Planetary Science Deep Space SmallSat Studies Sunday March 18, 2018









## What is JUMPER?

- A Jupiter orbiting SmallSat mission concept.
  - It rides to Jupiter on a primary spacecraft.
- Science focuses on Jupiter's magnetosphere.
- Spacecraft details.
  - ESPA-class.
  - Solar powered.
  - Direct-to-Earth (DTE) communications.
  - Hydrazine propulsion.
- Final report delivered to NASA on 12/29/17.
  - 7 month project.



Mission Concept Study NASA Grant: NNX17AK32G

Principal Investigator: Dr. Robert W. Ebert







## **Jupiter's Magnetosphere**



### JUMPER focuses on two science topics:

JUMPER

- 1. The solar wind's impact on Jupiter's magnetosphere.
- 2. Mass and energy transport through Jupiter's magnetosphere.

# JUMPER

## **Science Question #1**

## How does the solar wind (SW) influence the configuration and dynamics of Jupiter's magnetosphere?

#### Processes with evidence of SW influence

- Motion of Jupiter's bow shock and magnetopause.
- Opening and closing of magnetic flux at the magnetopause.
- Transport of mass & energy into the magnetosphere.
- Variations in UV aurora brightness and morphology.
- Radio emission enhancements.
- Current sheet asymmetries in magnetotail.









## **Science Question #2**

### How does the SW interact with Jupiter's magnetopause?



Evidence of Magnetic Reconnection ons [keV/Q] 10 0.0 200 Reconnection jet [s/w]/-200 Vx -400 B Bx Eu m Anti-parallel magnetic field 21:18 21:19 21:20 21:22 21:23 21:21 TA010271-JUMPER

Delamere & Bagenal 2010

JUMPER











## **Science Question #3**

What are the flux and energy spectra of energetic neutral atoms (ENAs) escaping Jupiter's magnetosphere?





## **Science Payload**











**Mission Design** 













## **Mission Design**



California Institute of Technolog



University of Colorado Boulder



## **Mission Design**



|                     | Table A: Tour traiectory details by orbit |              |       |               |                  |                        |          |          |                         |  |
|---------------------|-------------------------------------------|--------------|-------|---------------|------------------|------------------------|----------|----------|-------------------------|--|
|                     |                                           |              |       |               | Table            | 19: Satellite Flybys   |          |          |                         |  |
| O                   | rbit                                      | Nome         | -     | Flyby         | Orbit#           | Date                   | C/A(km)  | +        | Colonna Dhana           |  |
| Number              | Duration                                  | Name         |       | G1            | 1                | 07/12/25               | 100      | Flyby    | Science Phase           |  |
| 0                   | 85.0                                      | -            | 1/7/  | G2            | 2                | 09/21/25               | 461      |          | Separation & Capture    |  |
| 1                   | 136.7                                     | AJ1          | 4/1/  | 63            | 3                | 10/27/25               | 269      | G1       |                         |  |
| 2                   | 53.5                                      | AJ2          | 8/16  | 03            | 3                | 10/21/25               | 200      | G2       | Magnetotail             |  |
| 3                   | 32.1                                      | AJ3          | 10/9  | G4            | 4                | 11/25/25               | 2155     | G3       |                         |  |
| 4                   | 24.9                                      | AJ4<br>A 15  | 12/5  | G5            | 5                | 12/16/25               | 475      | G4<br>G5 | +                       |  |
| 6                   | 18.8                                      | AJ6          | 12/26 | C1            | 6                | 01/03/26               | 262      | C1 & G6  |                         |  |
| 7                   | 17.7                                      | AJ7          | 1/14  | G6            | 6                | 01/06/26               | 797      |          | Inner Magnetosphere     |  |
| 8                   | 26.4                                      | AJ8          | 2/1/  | 67            | Q                | 02/09/26               | 100      | G7       | I                       |  |
| 9                   | 26.5                                      | AJ9          | 2/27  | 60            | 0                | 02/03/20               | 100      | G8       |                         |  |
| 10                  | 17.5                                      | AJ10         | 3/25  | 68            | 9                | 03/1//26               | 112      |          |                         |  |
| 11                  | 26.5                                      | AJ11         | 4/12  | G9            | 11               | 04/20/26               | 133      | G9       | Davsido / Solar Wind    |  |
| 12                  | 82.3                                      | AJ12<br>AJ13 | 7/1/  | G10           | 12               | 05/26/26               | 372      | G10      | Dayside / Solar Willd   |  |
| 14                  | 46.4                                      | AJ14         | 9/21  | G11           | 13               | 08/05/26               | 6510     | G12^     | ^End of nominal mission |  |
| 14*                 | 93.1*                                     | AJ14         | 9/21  | G12*          | 14               | 11/07/26               | 0*/50591 | G12*     |                         |  |
| 15*                 | 93.1                                      | AJ15         | 12/23 | C12           | 46               | 00/00/07               | 4700     | G13      | Extended*               |  |
| 16*                 | 93.0                                      | AJ16         | 3/26  | <u>G13</u>    | 15               | 02/08/21               | 4/80     | G14      |                         |  |
| 17*<br>TA010659- II | 46.8                                      | AJ17         | 6/27  | G14           | 16               | 05/12/27               | 2289     | G15      |                         |  |
|                     |                                           |              |       | G15*          | 17               | 08/13/27               | 0*       |          |                         |  |
|                     |                                           |              |       | * indicates f | lybys with poten | tial end of mission in | npacts   |          |                         |  |



viiu. AT HUSSIAH HUBAA

 $\sim$ 



Laboratory for Atmospheric and Space Physics University of Colorado Boulder



## **Spacecraft**



### **Key Performance Characteristics**

| Spacecraft<br>Configuration        | 3-axis stable, sun pointing, ESPA class                                                                                            |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mass (Dry/Wet)                     | 126 kg/149 kg (CBE)                                                                                                                |
| Solar Panels                       | 4 x tripled deployed, 1994 cells at 29.5% efficiency total area = 5.34 m <sup>2</sup>                                              |
| Raw Power (solar)                  | 64 W Beginning Of Life (BOL)<br>48 W End Of Life (EOL)                                                                             |
| Spacecraft Power<br>(Science Mode) | 42.5 W (BOL margin=34%; EOL margin=11%)                                                                                            |
| Communications                     | 2 kbps X-band Direct-to-Earth with > 3 dB link margin (DSN 34m)<br>8 kbps X-band Direct-to-Earth with > 5 dB link margin (DSN 70m) |
| Propulsion                         | 22 kg Hydrazine propellant<br>336.8 m/s of delta-V (21% margin)                                                                    |
| Radiation in Vault                 | 10 kRad TID (RDM=2)                                                                                                                |
| Mission Duration                   | Prime: 1.84 years; Extended: up to 2.63 years                                                                                      |

### **ESPA-Class Limits**

#### Mass: 180 kg;

Volume: 61 cm x 71.1 cm x 96.5 cm





Laboratory for Atmospheric and Space Physics University of Colorado **Boulder** 

# JUMPER Commun. & Data System

| Al Table 16: Data Vo<br>TI JUMPER Prime & E | Table 16: Data Volume Production & Availability for<br>JUMPER Prime & Extended Mission (3 Scenarios) |                               |                   |     |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----|--|
| -                                           | Only 70 m<br>Ant.                                                                                    | Half 70 m,<br>half 34 m Ant.* | Only 34 m<br>Ant. | ۸n  |  |
| <ul> <li>S/C Eng Production (Mb)</li> </ul> | 6,348                                                                                                | 4,793                         | 3,755             | ane |  |
| - MAG Production (Mb)                       | 5,797                                                                                                | 4,980                         | 662               | ЭC  |  |
| NAI Production (Mb)                         | 835                                                                                                  | 700                           | 348               | 20  |  |
| IES Production (Mb)                         | 13,779                                                                                               | 8,099                         | 4,240             | A   |  |
| Total Production (Mb)                       | 26,759                                                                                               | 18,571                        | 9,005             |     |  |
| I Total Available (Mb)                      | 40,781                                                                                               | 25,488                        | 10,195            |     |  |
| - Total Margin                              | 34%                                                                                                  | 27%                           | 12%               |     |  |
| *Default case for this study                |                                                                                                      |                               |                   |     |  |







# JUMPER Hydrazine Propulsion System

- Orbit adjustments are made using a a monopropellant (hydrazine) blowdown thruster system (Moog, inc).
- Total propellant mass is 22 kg.
- 336 m/s of  $\Delta V$  for the mission.

| Delta-V                         | Allocated | Number  | Value     |
|---------------------------------|-----------|---------|-----------|
| Deterministic 1                 | 199.8 m/s | 1       | 199.8 m/s |
| Statistical (flyby corrections) | 4 m/s     | 14      | 56 m/s    |
| Deterministic <sup>2</sup>      | 12 m/s    | 1       | 12 m/s    |
| Total Required                  | -         | -       | 267.8 m/s |
| Total Available                 | 336.8 m/s | [22 kg] | 336.8 m/s |
| DV Margin                       | -         | -       | 69 m/s    |
| % Margin                        | -         | -       | 20%       |



JUMPER hydrazine propulsion system (from Moog, Inc.)







# JUMPER Electrical Power System

The EPS is build around a battery backed main 28V bus and consists of:

Solar Arrays

- 12 (4 x triple deployed solar panels).
- 1944 cells at 29.5% efficiency

### A peak-power tracker (PPT)

- 94% efficiency; supplies 60 W BOL (45 W EOL) to main 28V bus.

### Low-voltage power supply (LVPS)

- Regulates low voltages for use by the SATYR single board computer & PPT.

### **Batteries**

- 640 Whr. of primary and secondary battery capacity.



# JUMPER Flight Avionics Subsystems

### SATYR Single Board Computer (SBC)

- Performs all on board processing.
- 4 GB of flash memory

## Flight Software (FSW)

 Re-use of CYGNSS and CuSP FSW wherever possible.

### Attitude Determination and Control System

- Uses COTS components.
- Star trackers are used for pointing.
- Magnetorquers to de-saturate reaction wheels.





## **JUMPER** Primary Spacecraft Accommodation





Figure 27: JUMPER launch vehicle and primary spacecraft interface configuration (baseline).









## JUMPER Launch Vehicle Interface











University of Colorado Boulder

## **Separation Profile**





JUMPER

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**  HIGH According to the second s



- JUMPER is a Jupiter orbiting SmallSat mission concept to study (i) the solar wind's influence on and (ii) the contribution from ENAs to mass loss from Jupiter's magnetosphere.
- It rides to Jupiter with a primary spacecraft and uses a series of Ganymede and Callisto flybys to achieve its desired orbit.
- It has undergone a mission concept study through NASA's PSDS3 program.
  - Mission details can be found in 2018 IEEE Aerospace Conference publication.
- This mission concept is applicable to other planetary systems.



JUMPER





## JUMPER

# **Mission Summary**

Mission Design



#### Science Questions

- How does the solar wind (SW) influence the configuration and dynamics of Jupiter's magnetosphere?
- 1. How does the SW interact with Jupiter's magnetopause?
- 1. What are the flux and energy spectra of energetic neutral atoms escaping from Jupiter's magnetosphere?







#### **Key Performance Characteristics**

| Spacecraft<br>Configuration        | 3-axis stable, sun pointing, ESPA class                                                                                            |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mass (Dry/Wet)                     | 126 kg/149 kg (CBE)                                                                                                                |
| Solar Panels                       | 4 x tripled deployed, 1994 cells at 29.5% efficiency total area = 5.34 m <sup>2</sup>                                              |
| Raw Power (solar)                  | 64 W Beginning Of Life (BOL)<br>48 W End Of Life (EOL)                                                                             |
| Spacecraft Power<br>(Science Mode) | 42.5 W (BOL margin=34%; EOL margin=11%)                                                                                            |
| Communications                     | 2 kbps X-band Direct-to-Earth with > 3 dB link margin (DSN 34m)<br>8 kbps X-band Direct-to-Earth with > 5 dB link margin (DSN 70m) |
| Propulsion                         | 22 kg Hydrazine propellant<br>336.8 m/s of delta-V (21% margin)                                                                    |
| Radiation in Vault                 | 10 kRad TID (RDM=2)                                                                                                                |
| Mission Duration                   | Prime: 1.84 years; Extended: up to 2.63 years                                                                                      |