Sampling the surface from above the surface without landing...

Phobos/Deimos Regolith Ion Sample Mission (PRISM): Determining Origins

Michael R. Collier^{1,2}, Micah Schaible³, William M. Farrell^{1,2}, David Folta¹, Kyle M. Hughes¹, John W. Keller^{1,2}, Ben Malphrus⁴, Aaron Zucherman⁴, Kevin Brown⁴, Amanda Holbrook⁴, Andrew S. Rivkin⁵, Scott Murchie⁵, Dana Hurley^{2,5}, Jasper Halekas^{2,6}, Pamela Clark⁷, Richard Vondrak^{1,2}, Timothy Stubbs^{1,2}, Rosemary Killen^{1,2}, Menelaos Sarantos^{1,2}, Sarah L. Jones¹, Jared Espley¹, Gina Dibraccio¹, Michael Choi¹, and Michael Tsay⁸

NASA/GSFC, Greenbelt, MD
SSERVI/DREAM2, Ames Research Center, Mountain View, CA
Georgia Institute of Technology, Atlanta, GA
Morehead State University, Morehead, KY
JHU/APL, Laurel, MD
University of Iowa, Iowa City, IA
Jet Propulsion Laboratory, Pasadena, CA
Busek Space Propulsion Systems, Natick, MA

Sampling the surface from above the surface without landing...

Phobos/Deimos Regolith Ion Sample Mission (PRISM): Determining Origins

Solar wind, energetic oxygen in the Martian magnetotail, and micrometeorites bombard the regolith continuously liberating material from the surface in a process called sputtering.

Solar Wind H⁺ Mars O⁺ Micro-meteoroids

Mg⁺

Fe+

Si⁺

Aĺ+

What is the Origin of Phobos/Deimos?

Composition provides the key to determining their origins

Phobos Origin Hypothesis	Predicted Composition	Elemental Abundance	
Capture of organic and water-rich	Ultra-primitive or primitive like CI	Medium to high C and S, possibly	
outer main belt or outer solar system	(Ivuna-like) or CM (Mighei-like)	unique composition	
body	chondrites		
Capture of organic and water-poor	Anhydrous silicates plus elemental	High C, Mg/Fe ratio of 2-8	
outer solar system body	C [Emery and Brown, 2004]	(e.g., Fig. 1(a) - chondrites)	
Capture of inner solar system body	Composition similar to common	Mg/Si ratio of <6, Al/Si ratio of	
	meteorites [Brearley and Jones,	0.05-0.10, low C	
	1998]	(<i>e.g.</i> , Fig. 1(c) - HED)	
Co-accretion with Mars	Bulk Mars and ordinary chondrites	Mg/Si, Al/Si, Fe/Si typical of bulk	
	[Wanke and Dreibus, 1988]	Mars (<i>e.g.</i> , Fig. 1 - Mars), low C	
Giant impact on Mars	Evolved martian crust/mantle, Mars	High Al/Si, Ca/Si, lower Fe/Si (<1)	
	rocks and soil [McSween et al.,	and Mg/Si (<4)	
	2009] plus contribution from	(<i>e.g.</i> , Fig. 1(b)(c) - Mars)	
	impactor		

adapted from the Rivkin SSERVI Phobos talk

Composition Measurements Using SIMS

• The space environment continually liberates material from the regoliths of airless bodies throughout the solar system.

PRISM Primary and Secondary Science

SCIENCE OBJECTIVE	MEASUREMENT REQUIREMENT	SCIENCE CLOSURE	INSTRUMENT REQUIREMENT	MISSION REQUIREMENT
Primary: Determine the origin of the Martian moons Phobos and Deimos.	Measure diagnostic composition ratios globally over Phobos and Deimos.	Obtain global ratios of Fe/Si and Mg/Si.	lon Mass Spectrometer:	Orbit Phobos and Deimos
Secondary A: Is Deimos' composition similar to Phobos (as measured by MMX and PRISM)? Secondary B: Determine if Phobos and/or Deimos harbor potential resources like H ₂ O and other volatiles.	Compare in-situ and/or sample measurements of Phobos with PRISM Deimos observations. Search for ions of masses characteristic of the volatile species such as 18 amu.	Determine if global composition of Deimos is statistically different from Phobos. Obtain measurements above background of various volatile species.	Requirements:•G>10 ⁻⁵ cm ² sreV/eV (returnadequate countsover PRISMlifetime)• $M/\Delta M \ge 28$ (distinguishbetween Si ⁺ , Al ⁺ ,Mg ⁺)• $E: 0 - 50 \text{ eV}$	through a variety of SZAs and local times. Orbit Phobos and Deimos at a small radius. Occasionally orbit Phobos below 27 km.
Secondary C: How does the composition of Phobos' and Deimos' regolith compare to that of our own Moon and meteorite analogs?	Measure diagnostic composition ratios globally over Phobos and Deimos.	Compare global measurements of Fe/Si and Mg/Si as well as other species to lunar laboratory SIMS data [Elphic et al., 1991].	(measure at up to 50 km altitude) • $\Delta E/E < 30\%$ (eliminate non- moon sources) •ang res.: 5°x30°	IMS views in nadir direction. Mission lifetime 90 days. Threshold science
Secondary D: How much OH, as well as other volatiles, are on Phobos and Deimos and are they native or due to solar wind implantation?	Measure time variation of masses characteristic of volatile species, such as 18 amu and correlate with solar wind.	Correlate observations of volatile species with inferred or measured solar wind properties.	(eliminate non- moon sources) <u>Performance</u> : •G>10 ⁻⁴ cm ² sr eV/eV • $M/\Delta M \ge 50$	achievable in about a week.
Secondary E: Does Phobos' red unit have a Deimos-like character?	Compare measurements made in Phobos' red unit (determined by SZA and orbit position) with Deimos.	Determine if composition of Phobos' red unit is statistically different from Deimos' global composition.	• $E: 0 - 50 \text{ eV}$ • $\Delta E/E = 12.5\%$ •ang res.: 5°x10° FWHM Magnetometer:	
Secondary F: Do the red and blue units represent a single or multiple units?	Measure ion ratios above the Phobos' red and blue units (using SZA and orbit position).	Determine if composition above Phobos red and blue units are statistically different.	3 Axis Meas. Resolution 1 nT	

PRISM and MMX Synergy Resolving the Origin of the Martian Moon System

Mars Moons eXploration mission (MMX, 2024-2029)

Phobos/Deimos Regolith Ion Sample Mission (PRISM, TBD 2020s)

Even without MMX data, the elemental ratios measured by PRISM will establish the nature of the origins (capture versus accretion/cataclysmic) for Phobos and Deimos.

PRISM CubeSat Layout

The fluxes of sputtered ions from Phobos at an altitude of around 27 km are about 10-1000/cm²/s. Based on scaling published effective areas down to CubeSat form factors, these fluxes imply that between 0.01 and 1 counts per second per element will be observed. Even at a count rate as low as 0.01 Hz, this requires 10⁶ s or a bit over ten days to accumulate sufficient counts in all species shown in the figure, easily achievable over the mission lifetime. Some species will achieve the necessary statistics in hours allowing compositional mapping of the surface and the red and blue units.

PRISM Trajectory

Phobos Mission Design

Sample weakly stable (retrograde) orbit design

 Can get to the Mars system in about three and one half years and "orbit" the moons many hundreds of times.

CONOPS Overview

Conclusion

 Because using the space environment to obtain direct samples of Phobos' and Deimos' composition to determine the origin of these satellites using secondary ion mass spectrometry can be accomplished with a single instrument, within a CubeSat form factor, on a relatively small budget, and with current technology, a CubeSat SIMS mission to Phobos and Deimos will provide the tremendous science return for very little investment.

Special Thanks To: Pascal Lee, Edward Guiness, Michael Whalen, Roy E. Gladden, Neil Chamberlain, Lauren McNally, Jacob Englander, Al Banjhi, Les Deutch, Jay Friedlander, John Ratliff, and Bob Johnson.

PRISM Resources

Resources for PRISM's Subsystem Elements	Mass (kg)	Volume (U)	Power (W)	TRL
Structure and Thermal Management	3.2	n/a	n/a	7
C&DH	0.3	0.1	9.3	9
Harnessing, Cables, Coatings, etc.	1.0	Conformal	n/a	7
Power - Solar Panels and Structures (based		External	Generates	
on Lunar IceCube arrays)	3.6	1U Stowed	250W	6
Solar Panel Drive Articulators	0.6	0.5	10	6
Solar Array Constraint and Deploy System	0.4	0.2	one time use	6
EPS and Batteries	3.6	2.0	10 mW	7
Propulsion (1 BIT-3 - dry mass)	1.5	1.6	80	6
ACS - Thruster Heads, Cathode, PPU	1.3	1.2	8.0/thruster-1.0	4
ADCS/GNC: BCT XACT (50 mN·m·s RWA x3)	1.2	0.5	<3 W	7
Communication System (IRIS)	1.0	0.5	38.0 (T)/11.6 (R)	5
Ion Mass Spectrometer	2.2	2.0	3.0	6
Magnetometer	0.2	0.5	1.0	9
Payload Processor - assumed part of C&DH	(0.4)	(0.3)	(peak) 16	6
Reflectarray Antenna	1.3	0.3U Stowed	n/a (in IRIS)	5
Total (Dry):	21.4	10.4		
Dry Mass Margin (4.2%):	0.9			
Total Dry Mass with Margin:	22.3			
Fuel:	4.3			
Fuel Margin (10%):	0.4			
Total Wet Mass with Margin (5.1%):	27.0			

PRISM Budget

Component	Cost (\$K)	Sub (\$K)	Basis of Estimate	Notes	
1. Science Support	3,332.0	3,332.0	Previous proposals	14 sci*8.5 years*\$28K/yr	
2. PDS/Science Data Management	500.0	500.0	Lunar IceCube		
3. Instrument					
lon mass spectrometer	2,000.0		Previous missions	Phases A-D; includes labor	
Magnetometer	1,500.0		Previous missions	Lower for sub Class D; includes labor	
		3,500.0			
4. Avionics					
Avionics Personnel/Management	9,233.0		Lunar IceCube		
FlatSat Development	225.0		Lunar IceCube		
C&DH	280.0		Lunar IceCube	Space Micro	
Solar Panels and Structures	591.0		Lunar IceCube	Pumpkin/MSU supplied	
EPS and Batteries	230.0		Lunar IceCube	Pumpkin/MSU supplied	
ADCS	215.0		Lunar IceCube	Blue Canyon XACT-50 + 50 mNs RWA	
Communication - Iris Radio	2,722.0		JPL estimate	Uncertainty of hundreds of K	
Payload Processor	90.0		Lunar IceCube	DM-7	
Reflectarray Antenna	600.0		Iris experience	Cost could be significantly lower	
TiNi frangibolt	20.0		Morehead prev. mission		
BIT-3 Main Thrust System	3,950.0		Current costs + NRE		
ACS Thrusters	2,300.0		Deduct \$750K if Phase II	BET-300-P; 24 month lead time	
12U CSD Deployer	120.0				
		20,576.0			
5. Environmental and Other Testing					
Environmental Testing	60.0		Lunar Ice Cube	Morehead	
Thermal Vac Power Management	120.0			GSFC	
		180.0			
6. Flight Software	750.0	750.0	Lunar Ice Cube	GSFC Lead	
7. Mission Operations					
Manager	250.0		Lunar Ice Cube		
ACS	750.0			Goddard	
Flight Dynamics	750.0			Goddard - Nav and Trajectory	
Ground Operations	250.0			Aperture time/fees for ground stations	
		2000.0			
8. Ground Data Systems	250.0	250.0		GSFC Lead	
Total:		31,088.0			

PRISM Communication Scenarios

PRISM Communication Scenarios

scenario	asset	rate (bps)	passes/week	stare time (h)	bits/day	% total data
Direct to Earth	MSU 21 m	21	7	9.0	6.8x10 ⁵	1.7
Direct to Earth	DSN 34 m	460	4	4.0	3.8x10 ⁶	9.7
Direct to Earth	DSN 70 m	1200	4	4.0	9.8×10^{6}	25.1
Relay at Mars	MAVEN	8000	7	0.5	1.4×10^{7}	36.9

Notes:

- 1. Table above assumes that the PRISM instrument data rate is 600 bps and that the requirements for spacecraft housekeeping are an additional 300 bps for a total required telemetry rate of 900 bps or 7.8x10⁷ bits per day. Percent total data in the fifth column of the table assumes a factor of two compression.
- 2. The link margin analyses assume a nominal 2.5 AU distance between PRISM and Earth.
- 3. The bottle-neck for "Relay at Mars" using MAVEN is not MAVEN-to-ground but PRISM-MAVEN due to the 8 kbps.