

Planetary Science Deep Space SmallSat Studies

Planetary Science Deep Space SmallSat Studies

Carolyn Mercer Program Officer, PSDS3 NASA Glenn Research Center

Lunar Planetary Science Conference Special Session March 18, 2018 The Woodlands, Texas

SMD CubeSat/SmallSat Approach

Planetary Science Deep Space SmallSat Studies

National Academies Report (2016) concluded that CubeSats have proven their ability to produce highvalue science:

- Useful as targeted investigations to augment the capabilities of larger missions
- Useful to make highly-specific measurements
- Constellations of 10-100 CubeSat/SmallSat spacecraft have the potential to enable transformational science

SMD is developing a directorate-wide approach to:

- Identify high-priority science objectives in each discipline that can be addressed with CubeSats/SmallSats
- Manage program with appropriate cost and risk
- Establish a multi-discipline approach and collaboration that helps science teams learn from experiences and grow capability, while avoiding unnecessary duplication
- Leverage and partner with a growing commercial sector to collaboratively drive instrument and sensor innovation

- NASA Research Announcement released August 19, 2016
- Solicited concept studies for potential CubeSats and SmallSats
 - Concepts sought for 1U to ESPA-class missions
 - Up to \$100M mission concept studies considered
 - Not constrained to fly with an existing mission
- Objectives:
 - What Planetary Science investigations can be done with SmallSats?
 - What technology development is needed to enable them?
 - What's the anticipated cost range?
- Received 102 proposals
- Funded 19 Studies

Mars

Robert Lillis, <u>Mars Ion and Sputtering Escape Network (MISEN)</u> Anthony Colaprete, <u>Aeolus - to study the thermal and wind environment of Mars</u> Luca Montabone, <u>Mars Aerosol Tracker (MAT)</u> Michael Collier, <u>PRISM: Phobos Regolith Ion Sample Mission</u> David Minton, <u>Chariot to the Moons of Mars</u>

Venus

Valeria Cottini, <u>CUVE - Cubesat UV Experiment</u> Christophe Sotin, <u>Cupid's Arrow</u> Attila Komjathy, <u>Venus Airglow Monitoring Orbiter for Seismicity (VAMOS)</u> Tibor Kremic, <u>Seismic and Atmospheric Exploration of Venus (SAEVe)</u>

Icy Bodies and Outer Planets

Robert Ebert, <u>JUpiter MagnetosPheric boundary ExploreR (JUMPER)</u> Kunio Sayanagi, <u>SNAP: Small Next-generation Atmospheric Probe</u>

Small Bodies

Beau Bierhaus, <u>Ross (formerly CAESAR)</u> Jeffrey Plescia, <u>APEX: Asteroid Probe Experiment</u> Tilak Hewagama, <u>Primitive Object Volatile Explorer (PrOVE)</u>

Moon

Suzanne Romaine, <u>CubeSat X-ray Telescope (CubeX)</u> Charles Hibbitts, <u>Lunar Water Assessment, Transportation, and Resource Mission (WATER)</u> Noah Petro, <u>Mini Lunar Volatiles (MiLUV) Mission</u> Timothy Stubbs, <u>Bi-sat Observations of the Lunar Atmosphere above Swirls (BOLAS)</u> David Draper, <u>Irregular Mare Patch Exploration Lander (IMPEL)</u>

- Solicit formulation and development of planetary science investigations that require a spaceflight mission that can be accomplished using small spacecraft
 - ESPA-Class or smaller (< 180Kg)
 - Solicitation for secondary payload on specific primary missions, which will determine:
 - Launch readiness date
 - Initial release trajectory
 - Cost-capped missions: \$15M to \$55M
 - Continuously Open call with mission-specific deadlines

https://soma.larc.nasa.gov/simplex

Soon: Release Open Call for proposals (public comment period on draft closed March 14)

On-going: Regular Panel Reviews of submitted proposals

Mission Specific Milestones:

- L-4 years: Cut-off consideration for a specific mission
 - Select and award ~1 year Phase A/B studies; expected product is PDR-level design
 - Launch Vehicle is unknown
- L-3 years: Down-select secondary mission(s) for specific primary mission
 - May be possible to select multiple secondaries for a given primary mission
 - Selectability coordination with LV selection
 - Provided for Phase C design/build:
 - More detailed Launch Vehicle trajectory, environments and interfaces
- L-2 years: Build/test secondary payload
- L-1 years: Build/test/integrate secondary payload

SIMPLEx Launch Opportunities

NASA

Table A-1 https://soma.larc.nasa.gov/simplex

Primary Mission	SIMPLEx Proposal Cut-off Date	Payload Integration /Launch Readiness Dates	Launch Site	Primary Payload Destination	Launch Orbit	A	llowe	ed El	emen	ıts	Po- tential Launch Vehicle
						CubeSat Deployer	ESPA Ring	ESPA Grande	Propulsive ESPA ring	Radioactive elements	
LEO or GTO	On-going	On-going	Various	N/A	LEO or GTO	Y	Y	Y	Y	Ν	
Lucy	1 July 2018	August 2021 / 16 October 2021	Cape Canaveral Air Force Station	Jupiter L4 and L5 Trojan Swarms	Helio- centric Escape	Y	Y	N	N	Ν	Atlas V, Falcon 9, Antares,
Psyche	1 July 2018	June 2022 / August 2022	Cape Canaveral Air Force Station	(16) Psyche, with Mars gravity assist	Elliptic Helio- centric	Y	Y	Ν	Ν	Ν	Atlas V, Falcon 9, Antares,
IMAP*	ТВА	TBD	TBD	TBD	TBD	Ν	Υ	Ν	Ν	Ν	TBD
EM-x	ТВА	TBD	Kennedy Space Center	Lunar Orbit	TBD	Υ	Ν	Ν	Ν	Ν	SLS

It is expected that new technologies may be required to accomplish planetary science missions proposed under this PEA. Proposals must justify how the proposed technology will contribute to mission success.

For technologies and subsystems that **do not have flight heritage**, the proposal must include a reference to the details and the results of testing and/or analysis that demonstrate performance in a **relevant environment under conditions that simulate all known significant failure modes** of the technology to demonstrate technical maturity of TRL 6. If a combination of this testing and analysis is proposed to be accomplished in Phase A/B, then a reference must be included describing what testing/analysis is planned or has been completed at the time of proposal submission to demonstrate a plan for maturing these systems to TRL 6 by PDR. A summary of the test/analysis should be included in the body of the proposal. Proposals must include a limited life item list and for those items show plans for how they can **meet 1.5 times the worst-case expected operating life of the proposed mission**.

For technologies and subsystems that **do have flight heritage**, claims of heritage must be supported by a description of the **similarities in design and flight environments between the heritage and the proposed mission**.

Section 4.6.1 https://soma.larc.nasa.gov/simplex

MISEN Mars Ion and Sputtering Escape Network

(R_M)

Planetary Science Deep Space SmallSat Studies

As multi-point measurements have revolutionized our understanding of the Earth's magnetosphere, MISEN will build on MAVEN's legacy for a fraction of the cost and, for the first time, reveal the dynamic global picture of ion escape and precipitation at Mars.

constant data collection.Telemetry: relay and direct-to-earth

options available

Simple ops: spinning spacecraft,

Aeolus A Mission to Study the Winds of Mars

Planetary Science Deep Space SmallSat Studies

The Aeolus Spacecraft 28kkg/24U/117W-OAP Spacecraft VACCO Green UHF E-Hawk Solar Panels (x2) Monoprop · Patch System (x2) SHS VACCO Cold-Telescope (x2) gas System Mini-TES **IRIS Radio** SuRSeP **Frontier Lite** X-band Reflectarray **UHF** Radio BCT XACT-derived ADCS System

Team Members/Institutions:

•	PI: Anthony Colaprete	(ARC)
•	Deputy-PI: Amanda M. Cook	(ARC)
•	Co-I: Melinda Kahre	(ARC)
•	Co-I: Robert Haberle	(ARC)
•	Co-I: Phillip Christensen	(ASU)
•	Co-I: Greg Mehall	(ASU)
•	Co-I: David Landis	(Draper
•	Mission Design Center	(ARC)
	Engineering Team	

Aeolus will make the first direct observations of day and nighttime winds at all local times

Aeolus Science Objectives:

- 1. Produce a vertically resolved global wind speed map
- 2. Determine the global energy balance of Mars
- Correlate wind speeds and surface temperatures with CO2 and H2O clouds and dust column densities

Mission Overview:

6U Payload

- Aeolus's inclined orbit allows observations between ±75° and at all local times
- Spatial Heterodyne Spectrometers (SHS) and Mini-TES scan the atmosphere limb providing wind vectors, temperatures and aerosol/cloud densities
- SurSeP (Surface Radiometric Sensing Package) looks nadir measuring the total upwelling solar and thermal radiance as well as the surface temperature and column aerosol/cloud density

MAT

Mars Aerosol Tracker: An areostationary SmallSat to monitor Martian dust and water ice dynamics.

Planetary Science Deep Space SmallSat Studies

Figure: The MAT SmallSat overviews a regional dust storm on Mars from areostationary orbit, obtaining visible images in daytime and column dust optical depth measurements in daytime as well as inghttime.	Team Members/Institutions:Principal Investigator:Luca Montabone (Space Science Institute, CO)Co-Investigators:Michael VanWoerkom (ExoTerra Resource LLC, CO)Bruce A. Cantor (Malin Space Science Systems, CA)Michael J. Wolff (Space Science Institute, CO)Collaborators:Michael D. Smith (NASA GSFC, MD)François Forget (CNRS/LMD, France)Michel Capderou (CNRS/LMD, France)
---	---

Science Objectives:

- Monitor a large, fixed region of the planet where dust storms and water ice clouds are likely to occur, using visible and infrared wavelengths with a high sampling rate;
- Observe the temporal evolution of dust storms and water ice clouds in the monitored area throughout the diurnal cycle;
- Detect changes in surface physical properties (e.g. thermal inertia and albedo) throughout the diurnal cycle, and particularly after the occurrence and decay of large dust storms.

Mission Overview:

- Space craft: ESPA-class orbiter; 45 kg; electric propulsion (micro Hall thrusters, Xe gas propellant).
- Payload: 1 visible and 2 thermal infrared cameras; filters for 6 IR spectral ranges, from 7.9 to 16 μm.
- Journey to Mars: Rideshare on a primary mission to Mars; deployment before Mars capture (baseline).
- Orbit: Areostationary (i.e. equatorial, circular, planet-synchronous orbit) at 17,031.5 km above the equator at one of the 2 stable longitudes (baseline).
- > **Duration**: 1 Martian year (primary mission).

PRISM Phobos Regolith Ion Sample Mission

Planetary Science Deep Space SmallSat Studies

Team Members/Institutions:

- **NASA/GSFC:** Michael R. Collier, William M. Farrell, David Folta, John Keller, Richard Vondrak, Timothy Stubbs, Rosemary Killen, Menelaos Sarantos
- Morehead St. University, KY: Ben Malphrus
- JHU/APL: Andy Rivkin, Scott Murchie, Dana Hurley
- University of lowa: Jasper Halekas
- Georgia Institute of Technology: Micah Schaible
- JPL: Pamela Clark

Science Objectives:

The PRISM CubeSat mission will determine the origin of Phobos: Did it form in the outer solar system or *in situ* near Mars, perhaps through a collision or by coalescence of a debris disk left over from the formation of Mars? PRISM will measure Phobos' surface composition using secondary ion mass spectrometry or SIMS and answer this critical question.

Mission Overview:

PRISM, a 12U CubeSat, will be ejected from the upper stage of the launch vehicle a few days after launch and, using a low thrust Solar Electric Propulsion system, will arrive at Mars in about two years and begin taking data during an approximately six-month spiral-in period. At the end of this spiral-in phase, PRISM will be in a Phobos coorbit, making a pass and measurements near Deimos in the process. PRISM will probe the surface in a Phobos retrograde orbit at a distance as low as 27 km including the Mars facing and far sides of Phobos, both red and blue units, and craters on the leading edge.

Chariot to the Moons of Mars

Planetary Science Deep Space SmallSat Studies

Team Members/Institutions:

PI: David Minton (Purdue)
Co-ls:
Briony Horgan (Purdue)
David Spencer (Purdue)
Philip Christensen (Arizona State University)
Zachary Putnam (Univ. of Illinois at Urbana-Champaign)
Austin Williams (Tyvak Inc.)
Graduate Students
Jacob Elliot (Purdue), Rohan Deshmukh (Purdue)
Collaborators
Andrew Rivkin (JHU/APL), Matija Cuk (SETI),
Francesca DeMeo (MIT), Erik Asphaug (ASU)

Science Objectives:

- 1. Determine the origin of moons of Mars, Phobos and Deimos
- 2. Evaluate the potential for resource extraction to support human exploration on the moons
- Observe the effects of geologic processes contributing to the ongoing evolution of the Phobos-Deimos system

Mission Overview:

- Will piggyback on another Mars mission for launch, but will be a free flier after separation from the upper stage
- Cruise/aerocapture vehicle with drag modulation trajectory control
- 12U CubeSat, 3-axis stabilized, electric propulsion
- One Mars year mapping mission of Phobos & Deimos
- Remote sensing instrument suite
 - Spectroscopy and visible imaging
- Mission Operations Center at Purdue University
- Science Operations Center at Arizona State University

CUVE Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

Planetary Science Deep Space SmallSat Studies

Science Objectives:

- Nature of the "Unknown" UV-absorber (range 320 490 nm) which drives Venus' thermal radiative balance
- Abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber (range 190 – 320 nm)
- Atmospheric dynamics at the cloud tops using wind tracking (190 – 490 nm) and structure of upper clouds
- Nightglow emissions: NO (190-300 nm), CO (205-240 nm), O2 (400-500 nm)

Team Members/Institutions:

Principal Investigator: Valeria Cottini (University of Maryland College Park)

Co-Investigators: Shahid Aslam (NASA, GSFC) Nicolas Gorius (Catholic University of America) Tilak Hewagama (University of Maryland College Park) Giuseppe Piccioni (INAF-IAPS, Italy)

Collaborators: Lori Glaze (NASA, GSFC) Nikolay Ignatiev (IKI RAN, Russia) Emiliano D'Aversa (INAF-IAPS, Italy)

Mission Overview:

Baseline Spacecraft Configuration

6U to 12U Cubesat (e.g. Morehead or Dellingr)

- Cruise < 1.5 year, Science phase > 0.5 year
- Propulsion: Chemical, EP, cold gas
- Power Generation: solar arrays
- Polar orbit around Venus
- Nadir dayside and nightside observations

Payload includes (2U, 2kg)

- UV spectrometer 190 570 nm, 0.3 nm spectral resolution
- UV imager broadband centered at 365 nm

Cupid's Arrow

A small satellite to measure noble gases in Venus' atmosphere

Planetary Science Deep Space SmallSat Studies

Science Objectives:

- 1. Determine how did the atmosphere of Venus form and evolve?
- 2. Compare the primordial volatile compounds of the Earth, Mars, and Venus?
- 3. Determine the volcanic history of Venus

These objectives are achieved by measuring the abundances of noble gases (Ne, Ar, Kr, Xe) and their isotopic ratios in Venus' atmosphere below the homopause (well mixed atmosphere)

Team Members/Institutions:

Christophe SotinJFGuillaume AviceCaJohn BakerJFMurray DarrachJFAnthony FreemanJFGlenn LightseyGaBernard MartyUrStojan MadzunkovJFDaniel WenkertJFSterling PeetGaTerry Stevenson – graduate std.GaAtelier teamJF

JPL Caltech JPL JPL Georgia Tech Univ. Nancy JPL JPL Georgia Tech Georgia Tech JPL

Mission Overview:

- Several Venus-bound trajectory options to be studied:
 - a) Free-flyer launched directly from Earth
 - b) Drop-off on a gravity assist flyby
 - c) Drop-off from orbit
- Probe (mass <30 kg; diam. 60 cm) skims through the atmosphere
- At closest approach (below the homopause), spinstabilized probe grabs a sample of the atmosphere
- Sample is analyzed in a compact mass spectrometer (4 kg, 31 W, 4U CubeSat form factor)
- Sample analysis data are relayed back to Earth

VAMOS Venus Airglow Monitoring Orbiter for Seismicity

Planetary Science Deep Space SmallSat Studies

Science Objectives:

- Determine the global seismic activity of Venus (± 1 Moment magnitude)
- Determine the thickness of the crust
- Determine oxygen atom abundance and variability at 90-110 km altitude from O₂ emission
- Determine horizontal wind velocity amplitude (±30 m/s) and direction (±30°) from gravity waves detected in O₂ emission

Team Members/Institutions:

- Principal Investigator: A. Komjathy of JPL
- Team JPL: engineering, science
- U. of Illinois, U. of Michigan: modeling, signal processing
- IPGP, CNES, and Geoazur, France: modeling, science
- DLR, Germany: instrument design

Mission Overview:

- Launch SmallSat (<180 kg) into high earth orbit as rideshare with larger spacecraft
- Inject into trajectory to Venus using SEP (one Earth flyby and one Venus flyby)
- Insert into 24 hour Venus circular orbit in the Sun-Venus plane
- Infrared imaging in two channels: 1.17 µm and 4.3 µm building of atmospheric and ionospheric waves emanating from Venus quakes

SAEVe

Seismic and Atmospheric Exploration of Venus

Planetary Science Deep Space SmallSat Studies

SAEVe revolutionizes our paradigm for exploring the deep atmosphere, surface, and geophysical activity of Venus via enabling new technologies

• Leverages recent advances in high-temp electronics & systems

 Focuses on temporal science and incorporates innovative operations approach to make first ever long-duration measurements from the surface of Venus

Science Objectives:

1) Determine if Venus is seismically active and characterize the rate and style of activity

2) Determine the thickness and composition of the crust

3) Acquire temporal near surface meteorological data to guide global circulation models

- 4) Estimate moment exchange between the planet and its atmosphere
- 5) Measure atmospheric chemistry variability
- 6) Determine current rate of heat loss from the Venus interior
- 7) Examine rock and soil distribution and morphology $_{\ensuremath{\oslash}}$

Team Members/Institutions:

Tibor Kremic	NASA Glenn		
Richard Ghail	Imperial College London		
Martha Gilmore	Wesleyan University		
Gary Hunter	NASA Glenn		
Walter Kiefer	Lunar and Planetary Institute		
Sanjay Limaye	University of Wisconsin		
Michale Pauken	Jet Propulsion Lab		
Colin Wilson	University of Oxford		

Mission Overview:

Two probes delivered to Venus via ride along

- Probes enter Venus atmosphere via Stardust-like entry capsule
- Descend to surface through the thickening atmosphere
- Turn on and autonomously implement operations

Probes will

Measure seismic data, heat flux, wind speed and direction, abundance of atmospheric elements, radiance, temperature and pressure. Landers will also return images supporting context, morphology and instrument coupling information

Transmit data to orbiting spacecraft / comm relay at pre-set intervals for an **unprecedented 120 days, over 3 orders of magnitude > current record!**

Validate capabilities and technologies paving the way for larger, more complex Venus lander missions in the future

JUMPER A SmallSat to Explore Jupiter's Magnetospheric Boundaries and Image its Energetic Neutral Atom Emissions

Bow shock JUMPER is a Jupiter orbiting 100 Magnetopause SmallSat mission concept to JUMPER Orbits (i) understand the solar wind's interaction with Jupiter's magnetosphere Solar wind Prece ENAs→ and (ii) quantify the contri-۲_{]so} [R_] bution from energetic neutral atoms (ENAs) to mass loss Orbit from Jupiter's space Solar wind -ENAs→ environment. JUMPER will ride to Jupiter onboard another spacecraft -100 such as NASA's Europa Clipper. 50 -50 150 100 $X_{Jso} [R_J]$ TA010255-JUMPER

Science Objectives:

- Characterize the solar wind upstream of Jupiter's magnetosphere and provide additional context for studying magnetospheric dynamics by the primary spacecraft.
- 2. Investigate the modes of solar wind coupling (e.g. magnetic reconnection, Kelvin-Helmholtz waves) along Jupiter's dayside magnetopause.
- Determine the flux, energy spectra, and spatial distribution of energetic neutral atoms (ENAs) escaping from Jupiter's magnetosphere.

Team Members/Institutions:

Spacecraft Overview:

The spacecraft consists of an ESPA frame supporting four double-deployed solar array panels, and four science instruments. A CubeSat sized electronics vault will house a majority of the electronics, shielding them from radiation.

SNAP Small Next-Generation Atmospheric Probe

Planetary Science Deep Space SmallSat Studies

Team Members/Institutions:

Kunio M. Sayanagi	/	Hampton University
Robert A. Dillman	/	NASA Langley Research Center
David H. Atkinson	/	Jet Propulsion Laboratory
Amy A. Simon	/	NASA Goddard Space Flight Center
Michael H. Wong	/	University of California, Berkeley
Thomas R. Spilker	/	Independent Consultant
James M. Longuski	/	Purdue University
Sarag J. Saikia	/	Purdue University
Jing Li	/	NASA Ames Research Center
Drew Hope	/	NASA Langley Research Center

Supported by

NASA Langley Research Center Engineering Design Studio

Science Objectives:

SNAP will examine the physical and chemical processes in the atmosphere of Uranus to understand the origin and evolution of the giant planets and the Solar System.

Tier-1 Objectives

Determine spatial differences of the following atmospheric properties from the Main Probe entry site:

- 1. Vertical distribution of cloud-forming molecules
- 2. Thermal stratification
- 3. Wind speed as a function of depth

Tier-2 Objectives

Augment Main Probe Science Objectives:

- 4. Measure abundances of the noble gases (He, Ne, Ar)
- 5. Measure isotopic ratios of H, C, N, and S

Mission Overview:

Baseline SNAP Mission Configuration

Add SNAP to Uranus Orbiter and Probe Mission Orbiter delivers Main Probe and SNAP to Uranus

Baseline Probe Configuration

Mass: 30 kg Aeroshell Diameter: 50 cm Probe Power: Primary Batteries Heatshield Material: HEEET Target Atmospheric Pressure: 5 bar

Notional Payload

Atmospheric Structure Instrument: Measures thermal profile NanoChem: Detects cloud-forming molecules Ultrastable Oscillator: Measures wind speeds

Ross (Formerly CAESAR)

Planetary Science Deep Space SmallSat Studies

Build and launch several identical 12U CubeSats with Lucy or Psyche to encounter small Near Earth Asteroids.

Obtain fundamental data on size, shape, structure, and regolith properties during flyby

Example mission to asteroid 2000 BM19 shown

Dozens of feasible targets with low ΔV & encounter velocity

Team Members/Institutions:

Beau Bierhaus, P.I., Lockheed Martin Robert Jedicke, Co-I, University of Hawaii Michael Ravine, Co-I, Malin Space Science Systems Inc. Driss Takir, Co-I, SETI Institute Benton Clark, Co-I Lockheed Martin

Science Objectives:

- Evaluate bulk physical characteristics (size, shape, spin period, surface morphology) of several small Near Earth Asteroids to provide constraints on their formation and evolution
- Determine the thermal properties of these asteroids to evaluate Yarkovsky and YORP effects on trajectory dispersions.
- 3. Characterize objects that may pose a threat to Earth or offer resources for exploration

Mission Overview:

12U cubesats each with 1 Visible and 1 IR Camera24 kg launch mass, with marginX-band IRIS radio High Gain Antenna

Asteroid Probe Experiment

Planetary Science Deep Space SmallSat Studies

37284 19600 545 249 27.02 19544 4X 3478

Possible spacecraft configuration with deployment arm extended.

Seismometer draft configuration – includes sensor, solar cells, electronics and comm.

Science Objectives:

- 1. Determine the structure of Apophis and observe the tidal deformation during encounter with Earth 2029
 - 1. Determine rotational dynamics
 - 2. Establish physical dimensions
 - 3. Determine topography
 - 4. Determine interior structure
 - 5. Define surface morphology
- 2. Map Apophis before encounter to define the body
- 3. Remap Apophis after encounter to detect changes resulting from tidal forces during encounter

Team Members/Institutions:

Eric Asphaug – Arizona State Univ. Olivier Barnouin – JHU/APL Mark Boslough – Sandia National Lab. Brett Denevi – JHU/APL Carolyn Ernst – JHU/APL Jeff Plescia – JHU/APL Derrick Richardson – Univ. Maryland Andy Rivkin – JHU/APL Nicholas Schmerr – Univ. Maryland Hongyu Yu – Arizona State Univ.

Mission Overview:

Baseline Spacecraft Configuration

- 3 axis stabilized, solar power
- Solar electric propulsion (or possible chemical)
- Arm to deploy seismometer on surface

Baseline Instrument Payload

Panchromatic imager

Seismometer

Conops

Rendezvous with Apophis before encounter

- Map and characterize Apophis
- Deploy the seismometer
- Observe deformation during encounter

Remap and recharacterize Apophis

Prove Primitive Object Volatile Explorer

Planetary Science Deep Space SmallSat Studies

PrOVE will perform a close flyby of a Jupiter-family or new comet near perihelion when volatile activity is maximum, to probe the origin of the nucleus and the formation and evolution of our Solar System.

- *Investigate* chemical heterogeneity of nucleus by quantifying volatile species abundances and how these depend on solar insolation;
- <u>Map</u> spatial distribution of volatiles, especially CO₂ (which cannot be measured from ground based telescopes), and determine any variations;
- <u>Determine</u> the frequency and distribution of outbursts.

- *PrOVE* will be deployed from any launch platform and released above Earth's gravity well.
- Using onboard propulsion, *PrOVE* will navigate to a waypoint in space.
- *PrOVE* will remain at the waypoint until commanded to a transfer trajectory to intercept a known comet as it approaches encounter or hibernate indefinitely until an opportunistic new comet is identified and transfer orbit is uploaded.
- The *PrOVE* trajectory will be designed to encounter the comet at the ascending/descending node to mitigate large off-plane distances.

CubeX

CubeSat X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

Planetary Science Deep Space SmallSat Studies

WATER

Planetary Science Deep Space SmallSat Studies

Evaluate mission, payload and CONOPS feasible with a small Lunar orbiter to characterize the water on the Moon.

Science Objectives:

•

- What are the chemical form(s) of water on the Moon, including the PSRs, and how are they distributed spatially?
- How does surficial lunar water evolve over space and time?
- ls solar wind implantation responsible for the OH on the illuminated Moon?

Team Members/Institutions:

PI: C.A. Hibbitts, JHU-APL D. Blewett, P. Brandt, B. Clyde, D. Hurley, R. Klima, D. Lawrence, A. Mirantes, D. Moessner, W. Patterson, J. Plescia, J. Sunshine, J. Westlake; all JHU-APL L. Burke, NASA GRC

- B. Cohen, NASA GSFC
- J. Dankanich, NASA MSFC

Mission Overview:

Solar electric propulsion spacecraft,

3-axis stabilized with instruments on nadir facing deck Transit GTO to weakly captured lunar orbit, then spiral in Instrument suite:

- Mid-Infrared Multi-Spectral Imager (MIMSI)
- Active Multiband IR Reflectometer (WattIR)
- Neutron Spectrometer (NS)

Map surficial water and hydroxyl,

and near-surface polar hydrogen.

MiLuV Miniature Lunar Volatiles

Planetary Science Deep Space SmallSat Studies

Science Objectives:

Mapping lunar volatiles at the 3.0 and 1.5 μ m spectral absorption bands from pole to pole in nadir direction in day and night and in permanent darkness

- Detecting water ice on surface above 100 parts per million concentration
- Measuring distribution of surface volatiles in areas of permanent shadow
- Mapping the global distribution of H₂O/OH from pole to pole
- Monitoring diurnal cycle of surface H_2O/OH frost

Team Members/Institutions:

- N. E. Petro, NASA GSFC
- E. Mazarico, X. Sun, J. Abshire, G. Neumann, P. Lucey
- Mission Study Team: GSFC
 and WFF Mission Design Labs

Mission Overview:

ESPA-class spacecraft

GTO deployment to ~100 km circular lunar polar orbit Orbit allows for dense coverage of the poles

Instrument suite:

- Lunar Ice LIDaR Spectrometer (LILIS)
- Two bands to maximize water detection and discriminate multiple phases of water

Map the moon for 1 year (12 lunations)

Can act as a communications relay

BOLAS Bi-sat Observations of the Lunar Atmosphere above Swirls

Planetary Science Deep Space SmallSat Studies

Science Objectives:

Investigate the hydrogen cycle (including surface hydroxylation/hydration) at the Moon by determining:

- the mechanisms and dynamics of lunar hydrogen implantation, and their dependence on composition, regolith properties, local topography, plasma conditions, time-of-day, and crustal magnetic fields.
- 2. how this relates to the formation of the lunar "swirls" collocated with magnetic anomalies (crustal fields) and space weathering.

Requires repeated *in situ* measurements at very low altitudes (<10 km) – orbit-maintenance propulsion requirements are prohibitive for conventional SmallSats.

Team Members/Institutions:

- PI: Timothy J. Stubbs (NASA/GSFC, 695)
- GSFC Co-Is: Michael R. Collier, William M. Farrell, John W. Keller, Jared Espley, Michael A. Mesarch, Dean J. Chai, Michael K. Choi
- Morehead State Univ. Co-I: Benjamin K. Malphrus
- Tethers Unlimited Co-I: Robert P. Hoyt
- Busek Co., Inc. Co-I: Michael Tsay
- GSFC Collaborator: Richard R. Vondrak

Mission Overview:

<u>Flight Configuration</u>: BOLAS will deploy a thin, tens of kmlong tether between two CubeSats enabling them to fly in a gravity gradient formation.

The BOLAS center-of-mass (C.O.M.) will be in a quasistable, low maintenance orbit, such that the lower CubeSat can remain at low altitudes for long durations.

<u>Mission Architecture</u>: Two similar 12U CubeSats (24U total), leveraging existing bus and miniaturized subsystems.

Instrument Payload: Ion Spectrometer, Energetic Neutral Atom Imager, Plasma Wave System, and Magnetometer.

<u>Orbit</u>: Low inclination to observe magnetic anomalies/swirls that are clustered around the equator on short timescales.

Mission Lifetime: 1 year (desirable), 1 lunation (minimum).

Science Objectives:

- Sub-meter-scale imaging (<40 cm/pixel) to definitively discern small fractures or pits in Ina-D
 - This will enable determination of whether IMPs are made of young volcanic lavas
- Determine grain sizes and regolith components to understand the age and formation mechanism of Ina-D

Mission Overview:

Team Members/Institutions:

Dr. Brett Denevi (JHUAPL) Dr. Julie Stopar (LPI/USRA)

Lee Graham (NASA-JSC)

Zachary Fletcher (JHUAPL)

John Gruener (NASA-JSC) Susan Bertsch (NASA-JSC)

Joseph Hamilton (NASA-JSC)

Dr. Kristen John (NASA-JSC)

PI: Dr. David Draper (NASA-JSC) Dr. Samuel Lawrence (NASA-JSC)

- IMPEL will explore a site of potentially recent volcanism (an "Irregular Mare Patch") on the Moon, answering the question of when and how the materials found at Ina-D formed
- IMPEL consists of two 180 kg, tethered spacecraft (science module and descent module) attached to an ESPA ring
- The Descent Module deorbits the Science Module for a soft landing on the Moon, enabling a short, focused science mission