Planetary Mission Entry Vehicles

QUICK REFERENCE GUIDE | VERSION 4.1

NASA/SP-20230010341

PLANETARY MISSION ENTRY VEHICLES Quick Reference Guide Version 4.1

Content Editors: Kayla Parcero, AMA Inc.
Gary Allen, AMA Inc.
Parachute Editor: Al Witkowski, Katabasis Aerospace, LLC
Production Editors: Sharon McKee, NASA Ames
Leah Torres, AMA Inc.
\section*{Original Content Editor}
2002: Carol Davies, ELORET Corporation

Cover Photograph: Compliments of Advanced Concepts Lab (ACL), NASA Langley
Version 4.1: This version adds the Phoenix, InSIGHT, LOFTID and Artemis I missions and updates data entries to the missions from previous versions with corrected and/or added data.

To all those who have contributed to either previous versions of the "Blue Book" or have volunteered to send in information to our current release, thank you. Without the support of our community, this book would not be possible.

NASA STI Program

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.

Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION.

Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.

English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Phone the NASA STI Information Desk at 757-864-9658
- Write to:

NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

Planetary Mission Entry Vehicles QUICK REFERENCE GUIDE VERSION 4.1

Back in the era before ubiquitous portable electronics with instantaneous access to all the world's information at a fingertip, one had to rely on dead-reckoning to compare new concepts with historical analogs. This effect permeated all our endeavors and certainly so in the niche world of planetary entry vehicles. So, it was in the days of designing the Stardust return capsule that in meetings, more often than not, someone would ask, "how does this <heat rate, cone angle, g-load...> compare to <Apollo, Viking, Galileo...>?" Thus was born V1 of the Planetary Mission Entry Vehicles Quick Reference Guide, thereafter, dubbed the "Probe Blue Book," containing the high-level characteristics of past entry systems and easily tucked into a daily planner, notebook, or other carry-along work aid.

Now that cell phones with global internet access are here, seemingly the era of the Probe Blue Book has passed. Yet ironically, we now suffer too much information. To obtain that one useful, comparative number becomes an exercise of selecting judicious search terms then reconciling conflicting results. Persisting in its convenient form and function, this $4^{\text {th }}$ version contains an expanded set of missions as well as additional information on each mission. Inevitably, there are ambiguities and uncertainties in the data contained herein. There are often differences between design vs. construction, nominal vs. upper limit, and directly measured vs. inferred. In general, preference is given to best estimates of as-built construction and as-flown conditions. In some cases, references are cited. In other cases, the editors made best estimates. In all cases, an attempt is made to state the provenance of the listed value. References are included as an entry point into the publication record.

The editors would be appreciative of suggested corrections or clarifications to improve future versions of the guide. While it must be acknowledged that an Entry Vehicle is merely a tool (usually disposable!) toward achieving a greater goal of scientific discovery or expanding human presence, still there is excitement in the vehicle itself; our own shooting star containing and preserving the wishes of our collective human enterprise of discovery.

Dean Kontinos

Chief Engineer
NASA Ames Research Center

Explanation of data types:

Best-estimated: Derived from information on the as-built and as-flown spacecraft configuration and mission. These values are based on any available flight telemetry along with Best-Estimated Trajectory (BET) and follow-on simulation data.

Design: Derived from information from spacecraft project design documents. These may deviate from what a best-estimated value would be due to design unknowns and conservatisms.

Editor's Estimate: Derived from editor research and simulations, where design information is unavailable or in conflict. This is a credible engineering estimate.

Explanation of symbols used for each data type:

Geometry

Use 123 for Best-estimated
[123] for design
~123 for editor's estimate

Aerothermal

Use 123 for Best-estimated
[123] for design
~123 for editor's estimate

TPS

Use 123 for Best-estimated
[123] for design
~123 for editor's estimate
Use (1), (2), (3) to designate multiple materials

Parachutes

Use 123 for Best-estimated
[123] for design
~123 for editor's estimate
Use (1), (2), (3) to indicate multiple parachute stages, as per Table 3 of AIAA 20066792

Table of Contents

MISSION	LAUNCH DATE PAGE
FIREII	MAY 1965......... 1
Apollo AS-201.	FEB 1966......... 2
Apollo AS-202.	. AUG 1966......... 3
Apollo 4.	.. NOV 1967.......... 4
Apollo 6.	APR 1968.......... 5
Reentry F	APR 1968......... 6
PAET.	. JUN 1971......... 7
Viking Lander 1	.. AUG 1975......... 8
Viking Lander 2.	. SEP 1975......... 9
Pioneer-Venus: "North Probe".	.. AUG 1978......... 10
Pioneer-Venus: "Night Probe".	.. AUG 1978......... 11
Pioneer-Venus: "Day Probe".	.. AUG 1978......... 12
Pioneer-Venus: "Sounder Probe"	"... AUG 1978......... 13
Galileo........................	.. OCT 1989......... 14
OREX.	. FEB 1994......... 15
Pathfinder	...DEC 1996......... 16
Mirka.	.. OCT 1997......... 17
Huygens.	...OCT 1997......... 18
ARD..	.. OCT 1998......... 19
Deep Space 2.	JAN 1999.......... 20
Stardust	FEB 1999.......... 21

MISSION
LAUNCH DATE PAGE
Genesis SEP 2001 22
Hayabusa MAY 2003 23
Beagle 2 JUN 2003 24
Mars Exploration Rovers. JUN 2003 25
Phoenix AUG 2009 26
MSL 27
IRVE JUL 2012 28
Hayabusa 2. DEC 2014 29
Exploration Flight Test-1 DEC 2014 30
ExoMars 2016 MAR 2016 31
OSIRIS-REX SEP 2016 32
InSight. MAY 2018 33
Mars2020 JUL 2020 34
LOFTID 35
NOV 2022
Artemis 1. 36
Appendix 1: List of Space Vehicles and Missions 37
Appendix 2: Definitions 37
Appendix 3: Unit Conversion Factors 39
Appendix 4: References 39

MISSION: FIRE II
PLANET: EARTH
LAUNCH: MAY 22, 1965
ENTRY: MAY 22, 1965

MISSION DESCRIPTION: Pile driver flight test of a scaled Apollo CM geometry to measure reentry heating environment. Launched with Atlas D LV then pile driven into atmosphere to high speed with Antares II-A5 rocket motor.
INSTRUMENTATION: 3 forebody calorimeters, 11 forebody thermocouples, 12 offset radiometer thermocouples and one static pressure transducer on the afterbody.
NOTES: This aerothermal flight test was to evaluate radiative heating for Apollo. The reentry package consisted of three nested phenolic-asbestos heatshields sandwiched between three beryllium calorimeters that ablated or melted away, therefore the mass and OML changed with time.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -14.24°	Shape	spherical section	Velocity at peak heat	10.2 km/s	Forebody material designation	See note above	Type	N/A
Entry velocity: inertial \& relative	Inertial: $11.74 \mathrm{~km} / \mathrm{s}$ Relative: $11.35 \mathrm{~km} / \mathrm{s}$	Nose radius	$\begin{aligned} & 0.935 \mathrm{~m} \\ & 0.805 \mathrm{~m} \\ & 0.702 \mathrm{~m} \end{aligned}$	Peak convective heating	$\sim 920 \mathrm{~W} / \mathrm{cm}^{2}$	Forebody thickness \& mass	0.3 cm	Deployment method	N/A
Trim L/D (specify trim α)	$\begin{aligned} & 0^{\circ}(\text { spin } \\ & \text { stabilized }) \end{aligned}$	Base area	$\begin{aligned} & 0.354 \mathrm{~m}^{2} \\ & 0.312 \mathrm{~m}^{2} \\ & 0.271 \mathrm{~m}^{2} \end{aligned}$	Peak radiative heating	$\sim 350 \mathrm{~W} / \mathrm{cm}^{2}(.2-.4 \mu)$ implying ~650 total Traj value $487 \mathrm{~W} / \mathrm{cm}^{2}$	Ablating Ejected	Fore: ablated and melted Aft: ablated	Reference diameter / area	N/A
Control method	Ballistic, spin stabilized	Vehicle mass	86.57 kg	Integrated total heatload	16136 W/cm ${ }^{2}$	TPS Integration method	Nested/ layered TPS	Deployment Mach	N/A
Ballistic co-eff.	$164.1 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	1.046 atm	Aftbody material designation	Phenolic-asbestos and silicon elastomer	Deployment dynamic pressure	N/A
Peak deceleration	$\sim 77.2 \mathrm{~g}$	TPS mass fraction, inc. insul.		Peak stag. heating rate	1339 W/cm ${ }^{2}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: APOLLO AS-201 PLANET: EARTH
LAUNCH: FEB 26, 1966
ENTRY: FEB 26, 1966

MISSION DESCRIPTION: First unmanned suborbital flight to test the Saturn 1B launch vehicle, and the command and service modules.

INSTRUMENTATION: 36 pressure sensors all worked; 35 calorimeters worked initially.
NOTES: TPS thickness: Ablator $=4.32 \mathrm{~cm}$, braised stainless-steel substructure $($ PH 15-7 MO) $=5.08 \mathrm{~cm}$; Insulation: $($ TG-15,000 $)=$ 2.03 cm , aluminum honeycomb (2014-T6 and $5052-\mathrm{H} 39)=3.81 \mathrm{~cm}$ Peak heating is not at stagnation point. Manufacturer: AVCO Corp.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	$\begin{array}{\|c} \text { Inertial: } \\ -8.58^{\circ} \\ \text { Relative: } \\ -9.03^{\circ} \end{array}$	Shape	$\begin{gathered} \text { Capsule: } \\ 33^{\circ} \\ \text { cone } \end{gathered}$	Velocity at peak heat	$\begin{aligned} & 5.73 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Avco 5026-39 HC	Type	(1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial \& relative	Relative: 7.67 $\mathrm{~km} / \mathrm{s}$	Nose radius	$\begin{gathered} 4.69 \mathrm{~m}, \\ 3 \mathrm{~m} \\ \text { effective } \end{gathered}$	Peak convective heating	186 W/cm ${ }^{2}$ at peak	Forebody thickness \& mass	Ablator $=4.32 \mathrm{~cm}$ braised stainless-steel substructure $(\mathrm{PH} 15-7 \mathrm{MO})=5.08 \mathrm{~cm}$	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	$\begin{aligned} & -19.7^{\circ} \\ & <\alpha< \\ & 21.3^{\circ} \end{aligned}$	Base area	$\begin{gathered} 12.02 \\ \mathrm{~m}^{2} \end{gathered}$	Peak radiative heating	$\begin{gathered} 0 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.
Control method	No control: rolled	Vehicle mass	$\begin{gathered} 5027.48 \\ \mathrm{~kg} \end{gathered}$	Integrated total heatload	$\begin{aligned} & 7600 \\ & \mathrm{~J} / \mathrm{cm}^{2} \end{aligned}$	TPS integration method	Honeycomb bonded to substructure; cells filled w/ablative compound	Deployment Mach	~ 0.7
Ballistic co-eff.		Payload mass	N/A	PH stag. pressure	$\begin{aligned} & 0.85 \\ & \mathrm{~atm} \end{aligned}$	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration	14.3 g	TPS mass fraction, inc. insul.	13.7\%	Peak stag. heating rate	186 $\mathrm{W} / \mathrm{cm}^{2}$ at peak	Aftbody thickness \& mass		Parachute materials	

MISSION: APOLLO AS-202 (APOLLO-3)

PLANET: EARTH
LAUNCH: AUG 25, 1966
ENTRY: AUG 25, 1966

MISSION DESCRIPTION: Second unmanned suborbital flight to test the Saturn 1B launch vehicle, and the command and service modules.
INSTRUMENTATION: 36 pressure sensors all worked; 35 calorimeters worked initially. NOTES: TPS thickness: Ablator $=4.32 \mathrm{~cm}$, braised stainless-steel substructure (PH
15-7 MO) $=5.08 \mathrm{~cm}$. Insulation: $(T G-15000)=2.03 \mathrm{~cm}$, aluminum honeycomb (2014-T6 and 5052-H39) $=3.81 \mathrm{~cm}$ Manufacture: AVCO Corp.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial -3.57° Relative -3.74° Entry altitude 121.67 km	Shape	Capsule 33° cone	Velocity at peak heat	$\begin{aligned} & 7.94 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Avco 5026-39 HC	Type	(1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial \& relative	Inertial: 8.75° km / s Relative: 8.35 $\mathrm{~km} / \mathrm{s}$	Nose radius	$\begin{gathered} 4.59 \mathrm{~m}, \\ 3 \mathrm{~m} \\ \text { effective } \end{gathered}$	Peak convective heating	59.2 $\mathrm{W} / \mathrm{cm}^{2}$ at peak	Forebody thickness \& mass	Ablator $=4.32 \mathrm{~cm}$ braised stainlesssteel substructure $(\mathrm{PH} 15-7 \mathrm{MO})=$ 5.08 cm	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	0.372 Avg. Resultant L/D	Base area	12.2 m ${ }^{\text {2 }}$	Peak radiative heating	$\begin{gathered} 0 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia .
Control method	Roll modulation	Vehicle mass	$\begin{gathered} 5424.51 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{gathered}$	$\begin{array}{\|l\|l} 18789 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{array}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~ 0.7
Ballistic co-eff.	N/A	Payload mass	Apollo CM test flight	PH stag. pressure	$\begin{aligned} & 0.11 \\ & \mathrm{~atm} \end{aligned}$	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration		TPS mass fraction, inc. insul.	13.7\%	Peak stag. heating rate	$\begin{array}{\|c} 59.2 \\ \mathrm{~W} / \mathrm{cm}^{2} \\ \text { at } \\ \text { peak } \end{array}$	Aftbody thickness \& mass		Parachute materials	

MISSION: APOLLO AS-501 (APOLLO-4)

PLANET: EARTH
LAUNCH: NOV 9, 1967 ENTRY: NOV 9, 1967

MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations. INSTRUMENTATION: 17 pressure sensors all worked, and 23 calorimeters worked initially. Radiometer functioned well.
NOTES: TPS thickness: Ablator $=4.32 \mathrm{~cm}$, braised stainless-steel substructure (PH $15-7 \mathrm{MO})=5.08 \mathrm{~cm}$. Insulation: $(T G-15,000)=2.03 \mathrm{~cm}$, aluminum honeycomb (2014T6 and $5052-\mathrm{H} 39$) $=3.81 \mathrm{~cm}$ Manufacturer: AVCO Corp.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial -6.93 Relative-7.19 ${ }^{\circ}$ Entry altitude 121.92 km	Shape	$\begin{gathered} \text { Capsule: } \\ 33^{\circ} \\ \text { cone } \end{gathered}$	Velocity at peak heat	$\begin{aligned} & 10.04 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Avco 5026-39 HC	Type	(1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial \& relative	$\begin{array}{\|c} \text { Inertial: } 11.14 \\ \mathrm{~km} / \mathrm{s} \\ \text { Relative: } 10.73 \\ \mathrm{~km} / \mathrm{s} \end{array}$	Nose radius	$\begin{gathered} 4.66 \mathrm{~m}, \\ 3 \mathrm{~m} \\ \text { effective } \end{gathered}$	Peak convective heating	$\begin{gathered} 219 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	TPS thickness: Ablator $=4.32 \mathrm{~cm}$, braised stainless-steel substructure (PH 15-7 $\mathrm{MO})=5.08 \mathrm{~cm}$	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	$\begin{gathered} 0.37<L / D< \\ 0.44 \\ 24^{\circ}<\alpha<28^{\circ} \end{gathered}$	Base area	$12.08 \mathrm{~m}^{2}$	Peak radiative heating	$\left\lvert\, \begin{gathered} 317 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}\right.$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	$\begin{aligned} & \text { (1) } 4.9 \mathrm{~m} \text { dia. (2) } 2.2 \mathrm{~m} \\ & \text { dia. (3) } 25.5 \mathrm{~m} \text { dia. } \end{aligned}$
Control method	Roll modulation	Vehicle mass	$\begin{gathered} 5424.5 \\ \mathrm{~kg} \end{gathered}$	Integrated total heatload	$\begin{gathered} 24122 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~ 0.7
Ballistic coeff.	$\sim 340 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	$\begin{gathered} 0.542 \\ \text { atm } \end{gathered}$	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration	8.79 g	TPS mass fraction, inc.insul.	13.7\%	Peak stag. heating rate	527 W/cm ${ }^{2}$ peak	Aftbody thickness \& mass		Parachute materials	

MISSION: APOLLO AS-502 (APOLLO-6)

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -5.9°	Shape	Capsule: 33° cone	Velocity at peak heat	$\begin{aligned} & 8.32 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Avco 5026-39 HC	Type	(1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial \& relative	$\left\lvert\, \begin{gathered} \text { Inertial: } 10.00 \\ \mathrm{~km} / \mathrm{s} \\ \text { Relative: } 9.60 \\ \mathrm{~km} / \mathrm{s} \end{gathered}\right.$	Nose radius	$\begin{gathered} 4.69 \mathrm{~m}, \\ 3 \mathrm{~m} \\ \text { effective } \end{gathered}$	Peak convective heating	$\begin{gathered} 197 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	$\begin{gathered} \hline \text { TPS thickness: Ablator = } \\ 4.32 \mathrm{~cm} \text {, braised } \\ \text { stainless-steel } \\ \text { substructure } \\ (\mathrm{PH} 15-7 \mathrm{MO})=5.08 \mathrm{~cm} \\ \hline \end{gathered}$	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	$\begin{gathered} \hline 0.35<\text { L/D } \\ <0.4 \\ 24^{\circ}<\alpha<28^{\circ} \\ \hline \end{gathered}$	Base area	$12.02 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{array}{c\|} 43 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{array}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.
Control method	Roll modulation	Vehicle mass	5424.9 kg	Integrated total heatload	$\begin{gathered} 32000 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~ 0.7
Ballistic co-eff.	395.8 kg/m ${ }^{2}$	Payload mass	N/A	PH stag. pressure	$\begin{gathered} 0.354 \\ \text { atm } \end{gathered}$	Aftbody material designation		Deployment dynamic pressure	
Peak de- celeration		TPS mass fraction, inc-insul	13.7\%	Peak stag. heating rate	240 $\mathrm{W} / \mathrm{cm}^{2}$ peak	Aftbody thickness \& mass		Parachute materials	

PLANET: EARTH
LAUNCH: APR 4, 1968
ENTRY: APR 4, 1968

MISSION DESCRIPTION: Final qualification test for launch vehicle and command module for manned mission.

INSTRUMENTATION:

NOTES: TPS thickness: Ablator $=4.32 \mathrm{~cm}$, braised stainless-steel substructure $($ PH $15-7 \mathrm{MO})=5.08 \mathrm{~cm}$ Insulation: $(T G-15,000)=2.03 \mathrm{~cm}$, aluminum honeycomb (2014-T6 and $5052-\mathrm{H} 39)=3.81 \mathrm{~cm}$.
Manufacture: AVCO Corp Saturn-V malfunctioned causing the CM to follow a spurious return trajectory.

MISSION: REENTRY F PLANET: EARTH
LAUNCH: APR 27, 1968
ENTRY: APR 27, 1968

MISSION DESCRIPTION: To measure turbulent heating rates and transition onset in a flight environment.
INSTRUMENTATION: Multiple thermocouples and pressure sensors at 21 stations on cone, 4 heat-flux gauges and 2 pressure gauges on base. 3 thermocouples in nose-tip assembly.
NOTES: Nose-tip heating rate is not relevant for this flight, which was designed to measure heating on a sharp cone. The nose tip was
 meant to ablate during entry 3 . The beryllium heat shield melted for ~ 40 seconds after entry.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-20.78°	Shape	5° half cone, 3.962 m long	Velocity at peak heat	5.47 km/s	Forebody material designation	Nose-tip: ATJ graphite Body: beryllium	Type	N/A
Entry velocity: inertial \& relative	Inertial: $6.28 \mathrm{~km} / \mathrm{s}$ Relative: $5.96 \mathrm{~km} / \mathrm{s}$	Nose radius	0.254 cm	Peak convective heating	$32 \mathrm{~W} / \mathrm{cm}^{2}$	Forebody thickness \& mass	Be: 1.524 cm	Deployment method	N/A
Trim L/D (specify trim α)	$\begin{gathered} 0^{\circ} \\ \text { ballistic } \end{gathered}$	Base area	$0.3772 \mathrm{~m}^{2}$	Peak radiative heating	$\sim 0 \mathrm{~W} / \mathrm{cm}^{2}$	Ablating Ejected	Nose-tip: yes Ejected: no	Reference diameter / area	N/A
Control method	N/A	Vehicle mass	272 kg	Integrated total heatload		TPS integration method		Deployment Mach	N/A
Ballistic coeff.	$\begin{gathered} \sim 50000 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	Payload mass	N/A	PH stag. pressure	250 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration		TPS mass fraction, inc. insul.		Peak stag. heating rate	$32 \mathrm{~W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: PAET
PLANET: EARTH
LAUNCH: JUL 2, 1971
ENTRY: JUL 2, 1971
 of PAET Model in Ballistic Range Test

MISSION DESCRIPTION: To test the capability to determine the composition of unknown atmospheres during high-speed entry. INSTRUMENTATION: Multiple thermocouples and pressure sensors at 21 stations on cone, 4 heat-flux gauges and 2 pressure gauges on base. 3 thermocouples in nose-tip assembly.

NOTES:

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Relative: -41 ${ }^{\circ}$ Inertial: -38.98° 93 km altitude	Shape	Blunt-nose, 55° halfcone angle	Velocity at peak heat	5.7 km/s	Forebody material designation	Nose: Beryllium heatsink Conical frustum: ESA 3560 ablator	Type	N/A
Entry velocity: inertial \& relative	Inertial: 6.88 km/s Relative: 6.66 km/s	Nose radius	0.457 m	Peak convective heating	$\begin{gathered} \sim 228 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	Nose: 1-2.5 cm Conical frustum: 0.76 cm	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.66 m²	Peak radiative heating	Negligible	Ablating Ejected	Frustum ablated Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	62.1 kg	Integrated total heatload	Stag. pt. 1982 $\mathrm{J} / \mathrm{cm}^{2}$	TPS integration method	None (solid Be)	Deployment Mach	N/A
Ballistic co-eff.	$68.4 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	14 kg	PH stag. pressure	0.60 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	76 g	TPS mass fraction, inc. insul.	Forebody: 13.7\% Afterbody: 3.5%	Peak stag. heating rate	Max: 228 W/cm ${ }^{2}$ (no ablation)	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: VIKING LANDER 1 PLANET: MARS
LAUNCH: AUG 20, 1975
ENTRY: JUL 20, 1976

MISSION DESCRIPTION: To characterize the structure and composition of the atmosphere and surface of Mars.
INSTRUMENTATION: The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples. There was one pressure port off stagnation point and one on the base cover. Temperature gauges were on the back face and on both backshell frustums.
NOTES: Resin Material: silicone elastomer with glass microspheres and cork; Matrix material: fiberglass-phenolic honeycomb. RCS was used to maintain trim angle of attack.

	Trajectory	Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -17.00° Relative: -17.76° Entry altitude 242.8 km	Shape	$\begin{array}{\|c\|} \hline 70^{\circ} \\ \text { sphere } \\ \text {-cone } \\ \hline \end{array}$	Velocity at peak heat	$\begin{aligned} & 4.06 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	SLA561-V	Type	Single DGB parachute
Entry velocity: inertial \& relative	Inertial: $4.610 \mathrm{~km} / \mathrm{s}$ Relative: 4.418 km/s	Nose radius	$\begin{gathered} 0.8763 \\ \mathrm{~m} \end{gathered}$	Peak convective heating	$\begin{gathered} 21.1 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	$\begin{gathered} \text { Variable: (max) } 1.38 \\ \text { cm } \end{gathered}$	Deployment method	Main parachute directly deployed by 15 in. diameter mortar
Trim L/D (specify trim α)	$\alpha=-11.1^{\circ}$	Base area	$\begin{gathered} 9.84 \\ \mathrm{~m}^{2} \end{gathered}$	Peak radiative heating	0	Ablating Ejected	Ablator-pyrolyzed Ejected: yes	Reference diameter / area	16.2 m dia.
Control method	3-axis RCS rate limiting	Vehicle mass	$\begin{gathered} 982.9 \\ \mathrm{~kg} \end{gathered}$	Integrated total heatload	$\begin{gathered} \sim 1001 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~ 1.1
Ballistic co-eff.	At peak dyn. p.: $60.41 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	Peak heating stag. pressure	$\begin{aligned} & 0.06 \\ & \text { atm } \end{aligned}$	Aftbody material designation	Inner cone: laminated glass fabric/phenolic resin; outer cone: aluminum	Deployment dynamic pressure	$\sim 380 \mathrm{~Pa}$
Peak deceleration	$\sim 6.86 \mathrm{~g}$	TPS mass fraction, inc. insul.	2.8\%	Peak stag. heating rate	$\begin{array}{\|l} \text { Peak: } \\ 21.1 \\ \text { W/cm² } \end{array}$	$\begin{gathered} \text { Aftbody } \\ \text { thickness \& } \\ \text { mass } \end{gathered}$		Parachute materials	Dacron

MISSION: VIKING LANDER 2 PLANET: MARS
LAUNCH: SEP 9, 1975
ENTRY: SEP 3, 1976

MISSION DESCRIPTION: To characterize the structure and composition of the atmosphere and surface of Mars.
INSTRUMENTATION: The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples. There was one pressure port off stagnation point and one on the base cover. Temperature gauges were on the back face and on both backshell frustums.
NOTES: Resin material: silicone elastomer with glass microspheres and cork. Matrix material: fiberglass-phenolic honeycomb. RCS was used to maintain trim angle of attack.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -17.08° Relative: -17.62° Entry altitude 240.99 km	Shape	Blunt-nosed 70° half cone	Velocity at peak heat	$\begin{gathered} 4.1 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	SLA561-V	Type	Single GBD parachute
Entry velocity: inertial \& relative	Inertial: 4.61 km/s Relative: $4.48 \mathrm{~km} / \mathrm{s}$	Nose radius	0.876 m	Peak convective heating	$\left\lvert\, \begin{aligned} & \sim 21.95 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}\right.$	Forebody thickness \& mass	$\begin{aligned} & \text { Variable: (max) } \\ & 1.38 \mathrm{~cm} \end{aligned}$	Deployment method	Main parachute directly deployed by 15 in . diameter mortar
Trim L/D (specify trim α)	0.18 at $\alpha=-11.3^{\circ}$	Base area	$9.84 \mathrm{~m}^{2}$	Peak radiative heating	0	Ablating Ejected	Ablator-pyrolyzed Ejected: yes	Reference diameter / area	16.2 m dia .
Control method	3-axis RCS rate limiting	Vehicle mass	981.6 kg	Integrated total heatload	$\begin{array}{\|c} \sim 1043 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{array}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~ 1.1
Ballistic co-eff.	$61.44 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	$\begin{array}{\|c} \sim 0.041 \\ \text { atm } \end{array}$	Aftbody material designation	Inner cone laminated glass fabric/phenolic resin; outer cone: aluminum	Deployment dynamic pressure	~408 pa
Peak deceleration	$\sim 7.2 \mathrm{~g}$ trajectory $\sim 8.5 \mathrm{~g}$ chute snap	TPS mass fraction, inc insul	2.8\%	Peak stag. heating rate	$\begin{array}{\|c} \hline \text { Max: } \\ 21.95 \\ \text { W/cm } \end{array}$	Aftbody thickness \& mass		Parachute materials	Dacron

MISSION: PIONEER-VENUS: SMALL ‘NORTH PROBE’

PLANET: VENUS

LAUNCH: AUG 8, 1978
ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: A $60^{\circ} \mathrm{N}$ day entry to map atmosphere, including characterizing wind and turbulence.
INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heat-shield surface) at $\mathrm{s} / \mathrm{Rn}=2.2$.
NOTES: Heating rates and loads are based on Tauber correlations in radiative equilibrium (very model sensitive). Pioneer-Venus "North Probe" experienced 466 g which was greatest for a successful probe.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	 Relative: -68.74 ${ }^{\circ}$ @ 200 km	Shape	$\begin{array}{\|c\|} \hline \text { Blunt-nosed, } \\ 45^{\circ} \text { half- } \\ \text { cone angle } \\ \hline \end{array}$	Velocity at peak heat	$\begin{aligned} & 10.83 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	$\begin{gathered} \text { Carbon-phenolic FM } \\ 5055 \end{gathered}$	Type	N/A
Entry velocity: inertial \& relative	Inertial \& Relative: 11.54 km/s	Nose radius	0.19 m	Peak convective heating	$\begin{aligned} & \sim 3085 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	Forebody thickness \& mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	$0.46 \mathrm{~m}^{2}$	Peak radiative heating	~3273 W/cm ${ }^{2}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	Integrated total heatload	$\begin{gathered} \hline \text { At stag. pt } \\ \sim 10502 \\ \mathrm{~J} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	TPS integration method	Nose: chopped molded; conical section: tapewrapped	Deployment Mach	N/A
Ballistic co-eff.	$190 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	3.60 kg	Peak heating stag. pressure	$\begin{gathered} \sim 16.5 \\ \text { atm } \end{gathered}$	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	465.9 g	TPS mass fraction, inc. insul.	12.9\%	Peak stag. heating rate	6150 $\mathrm{W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: SMALL 'NIGHT PROBE'

PLANET: VENUS

LAUNCH: AUG 8, 1978
ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: To map the atmosphere, including temperature and pressure, from a night side entry.
INSTRUMENTATION: Thermocouples: one at 17° off stagnation point $(0.41 \mathrm{~cm}$ below heat-shield surface); another on conical frustum ahead of shoulder $(0.30 \mathrm{~cm}$ below heat-shield surface) at $\mathrm{s} / \mathrm{Rn}=2.2$.
NOTES: Heating rates and loads are probably for non-ablating conditions.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial \& Relative: -41.50 @ 200 km	Shape	Blunt-nosed, 45.2° halfcone angle	Velocity at peak heat	$\sim 10.79 \mathrm{~km} / \mathrm{s}$	Forebody material designation	Carbon-phenolic FM 5055	Type	N/A
Entry velocity: Inertial \& Relative	 Relative: 11.54	Nose radius	0.19 m	Peak convective heating	~ 2743 W/cm ${ }^{2}$	Forebody thickness \& mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	$0.46 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{gathered} \sim 2330 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	$\begin{array}{\|l} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{array}$	At stag.pt ~11413 $\mathrm{J} / \mathrm{cm}^{2}$	TPS integration method	Nose: chopped molded; conical section: tapewrapped	Deployment Mach	N/A
Ballistic co-eff.	$190 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	3.60 kg	Peak heating stag. pressure	$\sim 4.9 \mathrm{~atm}$	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	353.7 g	TPS mass fraction, inc. insul.	12.9\%	Peak stag. heating rate	$\begin{aligned} & \sim 4906 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: SMALL ‘DAY PROBE’

PLANET: VENUS
LAUNCH: AUG 8, 1978
ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: To map the atmosphere, including radiative energy, from a day side entry.
INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder $(0.30 \mathrm{~cm}$ below heat-shield surface) at $\mathrm{s} / \mathrm{Rn}=2.2$.

NOTES: Heating rates and loads are probably for non-ablating conditions.
Day Probe survived surface impact (accidentally) or 1 hour, 7.58 minutes.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -25.41 ${ }^{\circ}$ Relative: - 25.42° @ 200 km	Shape	$\begin{gathered} \text { Blunt-nosed, } \\ 45^{\circ} \text { half- } \\ \text { cone angle } \end{gathered}$	Velocity at peak heat	10.68 km/s	Forebody material designation	Carbon-phenolic FM 5055	Type	N/A
Entry velocity: inertial \& relative	Inertial \& Relative: $11.54 \mathrm{~km} / \mathrm{s}$	Nose radius	0.19 m	Peak convective heating	$\begin{gathered} \sim 2250 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	$0.46 \mathrm{~m}^{2}$	Peak radiative heating	~1363 W/cm ${ }^{2}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	Integrated total heatload	$\begin{gathered} \hline \text { At stag.pt } \\ \sim 13264 \\ \mathrm{~J} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	TPS integration method	Nose: chopped molded; conical section: tape-wrapped	Deployment Mach	N/A
Ballistic co-eff.	$190 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	3.60 kg	Peak heating stag. pressure	~ 8.1 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	227.7 g	TPS mass fraction, inc. insul.	12.9\%	Peak stag. heating rate	3476 $\mathrm{W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: LARGE PROBE ‘SOUNDER’
PLANET: VENUS
LAUNCH: AUG 8, 1978
ENTRY: DEC 9, 1978

MISSION DESCRIPTION: This probe contained 7 experiments, including 1 to measure the atmospheric composition.
INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heatshield surface) at $\mathrm{s} / \mathrm{Rn}=2.2$.
NOTES: Heating rates and loads are probably for non-ablating conditions.
Parachute deployed at 66.46 km to extract probe from heat shield. Parachute detached from probe at 1076 sec after entry Probe impacted surface (signal ended) 3261 sec . after entry.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial \& Relative: -32.37° @ 200 km	Shape	Bluntnosed, 45° halfcone angle	Velocity at peak heat	$\begin{aligned} & 10.82 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Carbonphenolic FM 5055	Type	(1) Ribless guide surface, 8 gore pilot chute, (2) Conical ribbon, 18 gore main chute
Entry velocity: inertial \& relative	Inertial \& Relative $11.54 \mathrm{~km} / \mathrm{s}$ @ 200 km	Nose radius	0.36 m	Peak convective heating	~1813 $\mathrm{W} / \mathrm{cm}^{2}$	Forebody thickness \& mass	1.60 cm at stagnation point	Deployment method	(1) Mortar (2) Pilot chute
Trim L/D (specify trim α)	0	Base area	$1.59 \mathrm{~m}^{2}$	Peak radiative heating	~2468 W/cm ${ }^{2}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	(1) 0.76 m dia. $(C d A=0.37$ m^{2}) (2) 4.94 m dia . $\left(C d A=10.4 \mathrm{~m}^{2}\right)$
Control method	Ballistic	Vehicle mass	316.483 kg	Integrated total heatload	At stag.pt ~ 11305 $\mathrm{~J} / \mathrm{cm}^{2}$	TPS integration method	Nose: chopped molded; conical section: tapewrapped	Deployment Mach	~ 0.82
Ballistic co-eff.	189.7 kg/m ${ }^{2}$	Payload mass	Science instr. 29.15 $\mathrm{~kg}(9.2 \%)$	$\begin{aligned} & \text { Peak heating } \\ & \text { stag. } \\ & \text { pressure } \\ & \hline \end{aligned}$	$\begin{gathered} \sim 10.2 \\ \mathrm{~atm} \end{gathered}$	Aftbody material designation		Deployment dynamic pressure	~3287 pa
Peak deceleration	286.4 g	TPS mass fraction incinsu	Forebody: 8.83\% Aft cover:1.52\%	Peak stag. heating rate	4145 W/cm	Aftbody thickness \& mass		Parachute materials	(1) Dacron $1.25 \mathrm{oz} / \mathrm{yd}^{2}$ (2) Dacron $2.25 \mathrm{oz} / \mathrm{yd}^{2}$

MISSION: GALILEO PLANET: JUPITER LAUNCH: OCT 18, 1989 ENTRY: DEC 7, 1995

MISSION DESCRIPTION: To descend into the Jovian atmosphere, collect atmospheric data and relay to the orbiter.
INSTRUMENTATION: Forebody TPS: ablation recession gauges. Afterbody TPS: thermocouples in the nylon phenolic. Galileo was the most difficult entry in the history of space exportation. Attempts to model Galileo's entry are little more than educated guesses with many phenomena poorly understood.
NOTES: Reported CG estimates varied widely. "Blockage" refers to reduction in outer wall heating due to ablation effects.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -6.65 Relative: -8.41° @ 450 km	Shape	Blunt-nosed 44.86° halfcone angle	Velocity at peak heat	39.4 km/s	Forebody material designation	Carbonphenolic	Type	(1) Pilot: 20° conic ribbon (2) Main: 20° conic ribbon
Entry velocity: inertial \& relative	Inertial: $59.83 \mathrm{~km} / \mathrm{s}$ Relative: 47.41 km/s	Nose radius	0.222 m	Peak convective heating		Forebody thickness \& mass	14.6 cm at stagnation	Deployment method	(1) Mortar launched with aft cover (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	$1.26 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{array}{\|c} \hline \sim 38055 \mathrm{~W} / \mathrm{cm}^{2} \\ \text { [unblocked] } \\ \sim 16272 \mathrm{~W} / \mathrm{cm}^{2} \\ \text { [blocked] } \\ \hline \end{array}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	(1) 1.14 m dia. $\left(\mathrm{CdA}=0.51 \mathrm{~m}^{2}\right)$ (2) $3.8 \mathrm{~m} \mathrm{dia} .\left(C d A=5.46 \mathrm{~m}^{2}\right)$
Control method	Ballistic	Vehicle mass	At entry: 338.93 kg	Integrated total heatload	$\begin{aligned} & \sim 210826 \mathrm{~J} / \mathrm{cm}^{2} \\ & \text { with ablation } \end{aligned}$	TPS integration method	Nose: chopped molded; conical section: tapewrapped	Deployment Mach	g-switch malfunctioned; chute deployed at 16.6 km above one bar altitude
Ballistic co-eff.	$\sim 267.6 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	Science 8.3\%	PH stag. pressure	7.55 atm	Aftbody material designation	Phenolic-nylon	Deployment dynamic pressure	See above
Peak deceleration	$\sim 228 \mathrm{~g}$	TPS mass fraction, inc. insul.	Forebody: 45.4\% Afterbody: 5\%	Peak stag. heating rate	16858 W/cm ${ }^{2}$ [unblocked] 3286 W/cm² [blocked]	Aftbody thickness \& mass		Parachute materials	Dacron

MISSION: OREX
PLANET: EARTH RETURN
LAUNCH: FEB 4, 1994 ENTRY: FEB 4, 1994

MISSION DESCRIPTION: To collect information on the design of a reentry vehicle to support Japanese unmanned space shuttle HOPE.
INSTRUMENTATION: Wall catalycity measurement, electrostatic probe, and heat shield temperature sensors.
NOTES: RCS was used to maintain a trim angle of attack of zero.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Relative -3.17°	Shape	50° spherecone	Velocity at peak heat	6.4 km/s	Forebody material designation	$\begin{aligned} & \text { Si Coated C-C } \\ & \text { for nose } \end{aligned}$	Type	N/A
Entry velocity: inertial \& relative	Inertial: $7.8 \mathrm{~km} / \mathrm{s}$ Relative: $7.43 \mathrm{~km} / \mathrm{s}$	Nose radius	1.35 m	Peak convective heating	$51 \mathrm{~W} / \mathrm{cm}^{2}$	Forebody thickness \& mass	4 cm	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	$9.08 \mathrm{~m}^{2}$	Peak radiative heating	0	Ablating Ejected	Ablated: no Ejected: no	Reference diameter / area	N/A
Control method	RCS	Vehicle mass	761 kg at entry	Integrated total heatload		TPS integration method	Tiled	Deployment Mach	N/A
Ballistic co-eff.	$56 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	0.078 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration		TPS mass fraction, inc. insul.	N/A	Peak stag. heating rate	$51 \mathrm{~W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: MARS PATHFINDER PLANET: MARS
LAUNCH: DEC 4, 1996
ENTRY: JUNE 4, 1997

MISSION DESCRIPTION: To demonstrate a simple, low-cost system for placing a science payload on the surface of Mars.
INSTRUMENTATION: TPS instrumented with thermocouples only
Rover called "Sojourner".
NOTES: Spin stabilized.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial -14.06 @ 130.86 km	Shape	$\begin{gathered} 70^{\circ} \\ \text { sphere-cone } \end{gathered}$	Velocity at peak heat	Relative: $6.62 \text { km/s }$	Forebody material designation	SLA-561 V	Type	DGB
Entry velocity: inertial \& relative	Inertial: $7.26 \mathrm{~km} / \mathrm{s}$ Relative: 7.48 km/s	Nose radius	0.66 m	Peak convective heating	$\begin{aligned} & 100.69 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	Forebody thickness \& mass	1.9 cm	Deployment method	Mortar fired
Trim L/D (specify trim α)	Ballistic (0° average)	Base area	$5.51 \mathrm{~m}^{2}$	Peak radiative heating	$\sim 5.27 \mathrm{~W} / \mathrm{cm}^{2}$ (with ablation)	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	12.7 m
Control method	Ballistic	Vehicle mass	At entry: 585.3 kg	$\begin{array}{\|c\|} \hline \text { Integrated } \\ \text { total } \\ \text { heatload } \end{array}$	$\sim 3834 \mathrm{~J} / \mathrm{cm}^{2}$ with ablation	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	1.71
Ballistic co-eff.	At peak dyn. p.: $\sim 61.5 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	$\begin{gathered} \sim 0.19 \\ \text { atm } \end{gathered}$	Aftbody material designation	SLA-561S	Deployment dynamic pressure	588 Pa
Peak deceleration	16 g	TPS mass fraction, inc. insul.	Forebody 6.2\% Backshell 2\%	Peak stag. heating rate	$\begin{aligned} & 105.96 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$	Aftbody thickness \& mass	1.27 cm	Parachute materials	Nylon, polyester, Kevlar

[^0]MISSION: MIRKA
PLANET: EARTH
LAUNCH: NOV 9, 1997
ENTRY: NOV 23, 1997

MISSION DESCRIPTION: To qualify a reentry heatshield concept, to assess and validate relevant gas-surface-interactions models, and to assess tumbling processes with scientific and engineering experiments conducted by German researchers.

INSTRUMENTATION: 3 acceleration sensors, 3 angular rate sensors, 24 thermocouples, RAFLEX (pressure, temperature \& heat flux sensors) and PYREX (pyrometric temperature measurements).

NOTES: CFRP: Carbon Fiber Reinforced Plastics. SPA: Surface Protected Ablator.
This was the first successful Western European reentry mission.

	Trajectory	Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Relative: - 2.51°	Shape	Spherical 1 m diameter	Velocity at peak heat	$\begin{aligned} & 6.51 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	CFRP: carbon fiber reinforced plastics SPA: surface protected ablator and fiber ceramic cover	Type	unknown
Entry velocity: inertial \& relative	Inertial: separation Velocity: $7.3 \mathrm{~km} / \mathrm{s}$ Relative: $7.6 \mathrm{~km} / \mathrm{s}$ at 120 km	Nose radius	0.5 m	Peak convectiv e heating	$\begin{gathered} 120 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	Front: 3 cm Back: 2 cm	Deployment method	
Trim L/D (specify trim α)	0	Base area	$0.785 \mathrm{~m}^{2}$	Peak radiative heating	0	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	
Control method	Ballistic	Vehicle mass	154 kg	$\begin{gathered} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{gathered}$	12000 $\mathrm{J} / \mathrm{cm}^{2}$	TPS integration method		Deployment Mach	
Ballistic co-eff.	$214 \mathrm{~kg} / \mathrm{m}^{3}$	Payload mass	N/A	PH stag. pressure	$\begin{gathered} 0.178 \\ \text { atm } \end{gathered}$	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration		TPS mass fraction, inc. insul.	36\%	Peak stag. heating rate	$\begin{aligned} & \text { Peak: } \\ & 120 \\ & \text { W/cm² } \end{aligned}$	Aftbody thickness \& mass		Parachute materials	

MISSION: HUYGENS
PLANET: TITAN
(A moon of Saturn)
LAUNCH: OCT 15, 1997
ENTRY: JAN 14, 2005

MISSION DESCRIPTION: To explore the atmosphere of Titan.
INSTRUMENTATION: No aeroheating data. A mass spectrometer for atmospheric composition was deployed after the heat shield was ejected.
NOTES: Huygens is a European Space Agency probe that was carried by the Cassini Saturn Orbiter. AQ60 silica fibers reinforced by phenolic resin.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -65.5 ${ }^{\circ}$ Relative: -65.4	Shape	60° spherecone	Velocity at peak heat	$\sim 5.1 \mathrm{~km} / \mathrm{s}$	Forebody material designation	AQ60/I	Type	(1) Pilot: DGB (2) Main: DGB (3) Descent: DGB
Entry velocity: inertial \& relative	Inertial: 6.0 km/s @ 1270 km Relative: $6.0 \mathrm{~km} / \mathrm{s}$	Nose radius	1.25 m	Peak convective heating	$\begin{gathered} \sim 29.3 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	At stag: 17.4 mm On flank: 18.2 mm 39 kg TPS, 76 kg w/ struct.	Deployment method	(1) Mortar (2) Pilot (3) Main
Trim L/D (specify trim α)	0	Base area	$5.73 \mathrm{~m}^{2}$	Peak radiative heating	$\sim 0 \mathrm{~W} / \mathrm{cm}^{2}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	(1) 2.59 m dia. (2) 8.31 m dia. (3) 3.03 m dia.
Control method	Ballistic	Vehicle mass	320 kg	Integrated total heatload	$\begin{gathered} \sim 1397 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Tiled	Deployment Mach	(1) 1.46 (2) 1.36 (3) 0.14
Ballistic co-eff.	$\begin{gathered} 34.5-37.5 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	Payload mass	44 kg	PH stag. pressure	$\begin{aligned} & 0.1 \\ & \text { atm } \end{aligned}$	Aftbody material designation	Prosial	Deployment dynamic pressure	(1) 309 Pa (2) 275 Pa (3) 10 Pa
Peak deceleration	12.36 g	TPS mass fraction, inc. insul.	Forebody: 12.2\% Aft: 1.64%	Peak stag. heating rate	$\begin{gathered} \sim 29.3 \\ \mathrm{~W} / \mathrm{cm}^{2} \\ \left(\begin{array}{c} 140 \mathrm{~W} / \mathrm{cm}^{2} \\ \text { design }) \end{array}\right. \end{gathered}$	Aftbody thickness \& mass	$\begin{gathered} 0.03-0.31 \mathrm{~cm}, 5.2 \mathrm{~kg} \\ \text { TPS, } 17 \mathrm{~kg} \mathrm{w} / \\ \text { struct. } \end{gathered}$	Parachute materials	Nylon fabric Kevlar structurals

MISSION: ARD 'Atmospheric Reentry Demonstrator'

PLANET: EARTH
LAUNCH: NOV 21, 1998
ENTRY: NOV 21, 1998

MISSION DESCRIPTION: To undertake a complete space flight cycle for ESA, with emphasis on reentry technologies.
INSTRUMENTATION: The capsule afterbody was instrumented with 7 surfaces pressure sensors, 2 thermal plugs with 2 thermocouples each on the back cover, and 4 surface-mounted copper calorimeters on the cylindrical section. The front cone contained 18 pressure sensors, 14 thermal plugs with 3 or 5 TC each.
NOTES: Aleastril: silica fibers with phenolic resin; Norcoat: cork powder and phenolic resin. 4 experimental Ceramic Matrix Composite (CMC) tiles and samples of Flexible External insulation (FEI).

| Trajectory | | Geometry | | Aero/thermal | | TPS | | | Parachutes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry angle | -2.6° | Shape | $\begin{array}{c}\text { Apollo-like } \\ \text { capsule, } \\ 33^{\circ} \text { cone }\end{array}$ | $\begin{array}{c}\text { Velocity at } \\ \text { peak heat }\end{array}$ | $\begin{array}{c}7.2 \\ \mathrm{~km} / \mathrm{s}\end{array}$ | $\begin{array}{c}\text { Forebody } \\ \text { material } \\ \text { designation }\end{array}$ | Aleastrasil | Type | $\begin{array}{c}\text { (1) Extraction parachute } \\ \text { (2) drogue parachute (3) } \\ \text { 3 ringsail main parachutes }\end{array}$ |
| $\begin{array}{c}\text { Entry velocity: } \\ \text { Inertial \& } \\ \text { Relative }\end{array}$ | $\begin{array}{c}\text { Inertial: } \\ 7.86 \mathrm{~km} / \mathrm{s} \\ \text { Relative: } \\ 7.45 \mathrm{~km} / \mathrm{s}\end{array}$ | $\begin{array}{c}\text { Nose } \\ \text { radius }\end{array}$ | 3.36 m | $\begin{array}{c}\text { Peak } \\ \text { convective } \\ \text { heating }\end{array}$ | $\begin{array}{c}120 \\ \mathrm{~W} / \mathrm{cm}^{2}\end{array}$ | $\begin{array}{c}\text { Forebody } \\ \text { thickness \& } \\ \text { mass }\end{array}$ | $40-65 \mathrm{~mm}$ | Deployment | |
| Method | | | | | | | | | | \(\left.\begin{array}{c}(1) Mortar

(2) Extraction parachute

(3) Drogue parachute\end{array}\right]\)

MISSION: DEEP SPACE 2
PLANET: MARS
LAUNCH: JAN 3, 1999
ENTRY: DEC 3, 1999

MISSION DESCRIPTION: To penetrate the Martian surface with two small probes.

INSTRUMENTATION:

NOTES: The DS-2 aeroshells were on the failed Mars Polar Lander. They were to be jettisoned 5 minutes before the lander entered the Martian atmosphere. No signals from the probes were received.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial - 13.25° @128 km	Shape	45° sphere-cone, spherical aft	Velocity at peak heat	$\begin{gathered} 5.94 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	SIRCA-SPLIT	Type	N/A
Entry velocity: inertial \& relative	Relative: 6.9 km/s	Nose radius	0.0875 m	Peak convective heating	$\begin{gathered} 194 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	$\sim 1 \mathrm{~cm}$	Deployment method	N/A
Trim L/D (specify trim a $^{\text {) }}$	0	Base area	$0.096 \mathrm{~m}^{2}$	Peak radiative heating	N/A	Ablating Ejected	Ablated: Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	3.67 kg	Integrated total heatload	$\begin{aligned} & 8712 \\ & \mathrm{~J} / \mathrm{cm}^{2} \end{aligned}$	TPS integration method	Monolithic	Deployment Mach	N/A
Ballistic co-eff.	36.2 kg/m ${ }^{2}$	Payload mass	N/A	PH stag. pressure		Aftbody material designation	FRCI: Fibrous refractory composite insulation	Deployment dynamic pressure	N/A
Peak deceleration	12.4 g	TPS mass fraction, inc. insul.	N/A	Peak stag. heating rate	$\begin{gathered} 194 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Aftbody thickness \& mass		Parachute materials	N/A

MISSION: STARDUST
PLANET: EARTH RETURN
LAUNCH: FEB 7, 1999
ENTRY: JAN 15, 2006

MISSION DESCRIPTION: To collect comet material from Wild 2 and return to Earth.
INSTRUMENTATION: Stardust has the highest successful Earth return velocity. Most heating models breakdown for Stardust. Classic Fay-Riddell is not trustworthy for Stardust.
NOTES: The rendezvous with Wild 2 occurred on Jan 2, 2004. The Stardust capsule made a successful return to Earth on Jan 15, 2006. Engineering methods and CFD disagree for heating rates. Traj. gives at stag. point $762 \mathrm{~W} / \mathrm{cm}^{2}$ peak total heat rate and $122 \mathrm{~W} / \mathrm{cm}^{2}$ peak radiative heat rate. Total heat load is $20978 \mathrm{~J} / \mathrm{cm}^{2}$.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-8.230 134.4 km	Shape	$\begin{array}{\|c} \hline \text { Blunt-nosed } \\ 60^{\circ} \text { half-angle } \\ \text { cone } \\ \hline \end{array}$	Velocity at peak heat	11.1 km/s	Forebody material designation	PICA-15	Type	(1) Pilot: DGB (2) Main: Triconical
Entry velocity: inertial \& relative	Inertial: 12.8 km/s Relative: 12.45 km/s	Nose radius	0.23 m	Peak Convective heating	~817 W/cm ${ }^{2}$	Forebody thickness \& mass	5.82 cm	Deployment method	(1) Mortar (2) Pilot pulled
Trim L/D (specify trim α)	0	Base area	$\begin{gathered} 0.52 \mathrm{~m}^{2}, \\ 0.50 \mathrm{~m}^{2} \\ \text { (ablated) } \end{gathered}$	Peak Radiative heating	~ 71 $\mathrm{W} / \mathrm{cm}^{2}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 0.83 m dia. (2) 7.3 m dia .
Control method	Ballistic, spinstabilized at 14.5 rpm	Vehicle mass	45.8 kg	Integrated total heatload	$\begin{gathered} \sim 26210 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	PICA: singlepiece, direct bonded to substructure with HT-424	Deployment Mach	(1) $1.4 m+/-0.3$
Ballistic co-eff.	$\begin{gathered} 60.0 \mathrm{~kg} / \mathrm{m}^{2} \\ 60.4 \mathrm{~kg} / \mathrm{m}^{2} \\ \text { (ablated) } \\ \hline \end{gathered}$	Payload mass	N/A	PH stag. pressure	$\begin{aligned} & 0.22 \\ & \mathrm{~atm} \end{aligned}$	Aftbody material designation	SLA-561V	Deployment dynamic pressure	(1) 713 Pa
Peak deceleration	32.89 g	TPS mass fraction, inc. insul.	22\%	Peak stag. heating rate	~880 $\mathrm{W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass	$\begin{gathered} \text { Design: } 1.397 \\ \mathrm{~cm} \end{gathered}$	Parachute materials	Canopy: nylon, Kevlar suspension lines

MISSION: GENESIS
PLANET: EARTH RETURN
LAUNCH: SEP 8, 2001
ENTRY: SEP 8, 2004

MISSION DESCRIPTION: To collect solar wind particles and return to Earth.
INSTRUMENTATION: Thermosensitive paint strips.
NOTES: The capsule crashed violently into the desert after failing to deploy the drag devices. Despite this mishap, many of the collectors remained intact and most of the mission goals should be accomplished.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-8°	Shape	59.81°	Velocity at peak heat	$\begin{gathered} 9.2 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	Carbon-carbon sheet over FiberForm®	Type	(1) Pilot: DGB (2) Main: Parafoil
Entry velocity: inertial \& relative	$\begin{gathered} \text { Inertial: } 11.0 \\ \mathrm{~km} / \mathrm{s} \\ \text { Relative: } 10.8 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Nose radius	0.43 m	Peak convective heating	$\begin{gathered} 670 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	3.8 cm C-C sheet; 2.2 cm carbon FiberForm®	Deployment Method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	$1.78 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{gathered} 30 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference Diameter / Area	(1) 2.07 m dia. (2) $325 \mathrm{~m}^{2}$ area
Control method	Spin-stabilized aero-ballistic	Vehicle mass	210 kg	Integrated total heatload	16600 $\mathrm{J} / \mathrm{cm}^{2}$	TPS integration method		Deployment Mach	(2) ~ 1.4
Ballistic co-eff.	$80 \mathrm{~kg} / \mathrm{m}^{3}$	Payload mass	N/A	PH stag. pressure	N/A	Aftbody material designation	SLA-561V	Deployment dynamic pressure	N/A
Peak deceleration	$\sim 25.7 \mathrm{~g}$	TPS mass fraction, inc. insul.	~18\%	Peak stag. heating rate	$\begin{gathered} 700 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Aftbody thickness \& mass		Parachute materials	nylon fabric Kevlar structural

MISSION: HAYABUSA
PLANET: EARTH RETURN
LAUNCH: MAY 9, 2003
ENTRY: JUL 13, 2007

MISSION DESCRIPTION: To collect samples from asteroid Itokawa (1998SF36) and return to Earth.

INSTRUMENTATION: A one-axis accelerometer for parachute deployment.
NOTES: The mission's name was changed from MUSES-C.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	$\begin{gathered} -12.79^{\circ} \\ @ 199.97 \text { km } \end{gathered}$	Shape	45° spherecone	Velocity at peak heat	$\begin{aligned} & 10.61 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody material designation	Carbonphenolic	Type	Cross-type
Entry velocity: inertial \& relative	$\begin{gathered} \text { Inertial: } 12.04 \\ \mathrm{~km} / \mathrm{s} \\ \text { Relative: } 11.65 \\ \mathrm{~km} / \mathrm{s} \\ \hline \end{gathered}$	Nose radius	0.202 m	Peak convective heating	$\begin{gathered} 1050 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	3.0 cm	Deployment method	Mortar fired
Trim L/D (specify trim α)	0	Base area	$0.128 \mathrm{~m}^{2}$	Peak radiative heating	264 $\mathrm{W} / \mathrm{cm}^{2}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	$2.8 \mathrm{~m}^{2}$
Control method	none	Vehicle mass	18 kg	Integrated total heatload	$\begin{gathered} 23051 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Segmented	Deployment Mach	0.8
Ballistic co-eff.	$133.72 \mathrm{~kg} / \mathrm{m}^{3}$	Payload mass	1.04 kg	PH stag. pressure	0.63 atm	Aftbody material designation	Carbonphenolic	Deployment dynamic Pressure	
Peak deceleration	$\sim 53.36 \mathrm{~g}$	TPS mass fraction, inc. insul.	43\%	Peak stag. heating rate	1314 W/cm ${ }^{2}$	Aftbody thickness \& mass	2 cm	Parachute materials	Canopy: polyester

MISSION: BEAGLE 2
PLANET: MARS
LAUNCH: JUN 2, 2003
ENTRY: DEC 25, 2003

MISSION DESCRIPTION: To develop a low-cost, low-mass system for placing an exobiology science payload on Mars. Beagle 2 was transported by the European Space Agency's 2003 Mars Express mission.
INSTRUMENTATION: No TPS instrumentation: axial accelerometers only.
NOTES: Beagle 2 landed on Mars but did not make radio contact and was never operative.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Inertial: -15.8°	Shape	43.75° truncated conical backshell 60° sphere-cone front shield	Velocity at peak heat	$\begin{array}{\|l} \text { Relative: } \\ 4.70 \\ \mathrm{~km} / \mathrm{s} \end{array}$	Forebody material designation	Norcoat-Liege (EADS)	Type	(1) DGB pilot (2) Ringsail main
Entry velocity: inertial \& relative		Nose radius	0.417 m	Peak convective heating	72.11 W/cm ${ }^{2}$	Forebody thickness \& mass	$\begin{aligned} & 8 \mathrm{~mm} \\ & 3.9 \mathrm{~kg} \end{aligned}$	Deployment method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	Ballistic (2° average)	Base area	$0.67 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{gathered} 0.17 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / Area	(1) 3.2 m dia . (2) 10 m dia.
Control method	Ballistic spinstabilized at 14.2 rpm	Vehicle mass	Entry: 68.84 kg	Integrated total heatload	$\begin{gathered} 2449 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Tiled	Deployment Mach	(1) 1.5
Ballistic co-eff.	$\left\lvert\, \begin{gathered} \text { Peak heat flux: } \\ 69.9 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}\right.$	Payload mass	11.4 kg (science) (33.2 kg landed)	PH stag. pressure	$\begin{aligned} & 0.18 \\ & \text { atm } \end{aligned}$	Aftbody material designation	Norcoat-Liege (EADS)	Deployment dynamic pressure	(2) $730-750$ Pa
Peak deceleration		TPS mass fraction, inc. insul.	Forebody: 9.2\% Back shell: 15.2\%	Peak stag. heating rate	72.28 $\mathrm{W} / \mathrm{cm}^{2}$	Aftbody thickness \& mass	3 to 6 mm 2 kg	Parachute materials	Nylon, Kevlar

MISSION: MARS EXPLORATION ROVERS ‘SPIRIT’ AND ‘OPPORTUNITY’

PLANET: MARS

LAUNCH: JUN 10, 2003 \& JUL 7, 2003
ENTRY: JAN 3, 2004 \& JAN 24, 2004

MISSION DESCRIPTION: To place two rovers (A and B) on Mars to conduct remote geological investigations including search for past water activity.
NOTES: MER A and MER B are two separate missions, each carrying a rover to Mars. Data here are for MER B, the most severe entry environment. This mission uses an entry aeroshell like that of Pathfinder, however the enclosed rovers are larger than Sojourner and are self-contained. There are 3 TIRS (Transverse Impulse Rocket System) covers made of SIRCA spaced around the backshell.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	$\begin{gathered} -10.75^{\circ} @ \\ 126.799 \mathrm{~km} \end{gathered}$	Shape	70° spherecone	Velocity at peak heat	$\begin{gathered} \sim 4.96 \\ \mathrm{~km} / \mathrm{sec} \end{gathered}$	Forebody material designation	SLA-561V (SLA561S for backshell)	Type	Single DGB
Entry velocity: inertial \& relative	Inertial: 5.78 km/sec Relative: $5.39 \mathrm{~km} / \mathrm{sec}$	Nose radius	0.66 m	Peak convective heating	$\left\lvert\, \begin{aligned} & \sim 37.72 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}\right.$	Forebody thickness \& mass	1.57 cm	Deployment method	Mortar
Trim L/D (specify trim α)	0	Base area	$5.499 \mathrm{~m}^{2}$	Peak radiative heating	~ 0	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	14.1 m dia.
Control method	Ballistic, spinstabilized	Vehicle mass	832.2 kg	Integrated total heatload	$\begin{gathered} \sim 3064 . \\ 45 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	1.77
Ballistic co-eff.	$\begin{gathered} \sim 88.96 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	Payload mass	$\sim 525 \mathrm{~kg}$ (landed mass, rover+lander)	PH stag. pressure	$\begin{aligned} & 0.08 \\ & \text { atm } \end{aligned}$	Aftbody material designation	SLA-561S for backshell, backshell interface plate (BIP): SIRCA	Deployment dynamic Pressure	$765 \pm 77 \mathrm{~Pa}$
Peak deceleration	$\sim 4.78 \mathrm{~g}$	TPS mass fraction, inc. insul.	Forebody: (TPS only) 3.6\% Back shell: (TPS only) 2\%	Peak stag. heating rate	$\left\lvert\, \begin{aligned} & \sim 37.72 \\ & \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}\right.$	Aftbody thickness \& mass	$\begin{gathered} 0.5 \mathrm{~cm} \text { (CDR) } \\ 10.4 \mathrm{~kg} \text { (CDR CBE) } \end{gathered}$	Parachute materials	Disk: nylon fabric Band: polyester fabric Kevlar structural

MISSION: PHOENIX
PLANET: MARS
LAUNCH: AUG 4, 2011
ENTRY: MAY 5, 2008

MISSION DESCRIPTION: First NASA Scout Mission. Goals: (1) to study the history of water in the Martian artic and (2) search for evidence of habitable zone and assess the biological potential of the ice-soil boundary. INSTRUMENTATION: 24 thermocouples, MEADS (Mars Entry Atmospheric Data System) for temperature and isotherm tracking.
NOTES: Entry vehicle originally designed for cancelled Mars Surveyor 2001.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	[-13. ${ }^{\text {] }}$	Shape	2.65 m diameter, 70 deg. sphere cone	Velocity at peak heat	$\begin{gathered} {[4.743} \\ \mathrm{km} / \mathrm{s}] \end{gathered}$	Forebody Material designation	SLA-561V	Type	Viking-type DGB
Entry velocity: Inertial \& Relative	Inertial: 5.6 km/s	Nose radius	$\mathrm{Rn}=0.66 \mathrm{~m}$	Peak convective heating	[4.8 W/cm ${ }^{2}$]	Forebody Thickness \& mass		Deployment Method	Mortar
Trim L/D (specify trim α)	0	Base area	$0.0995 \mathrm{~m}^{2}$	Peak radiative heating		Ablating Ejected		Reference Diameter / Area	11.8 m dia.
Control method	Non-spinning passive	Vehicle mass	602 kg	Integrated total heatload	[2301 $\mathrm{J} / \mathrm{cm}^{2}$]	TPS Integration method		Deployment Mach	1.74
Ballistic co-eff.	$65 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	59 kg	PH stag. pressure		Aftbody material designation	SLA-561S on cone, SLA-561V on parachute cover	Deployment dynamic pressure	489.3 Pa
Peak deceleration	[9.3 Earth G's]	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness \& mass		Parachute materials	Nylon canopy, Kevlar structural members

MISSION: MARS SCIENCE LABORATORY (MSL)

PLANET: MARS
LAUNCH: NOV 26, 2011
ENTRY: AUG 6, 2012

MISSION DESCRIPTION: To determine if Mars was ever able to support microbial life.
INSTRUMENTATION: 24 thermocouples, MEADS (Mars Entry Atmospheric Data System) for temperature and isotherm tracking.
NOTES:

Mortar fired
21.35 m
DGB 493.6 Pa Canopy: nylon, Technora T221 Kevlar 29

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-16°	Shape	70° spherecone	Velocity at peak heat	$\begin{aligned} & 5.33 \\ & \mathrm{~km} / \mathrm{s} \end{aligned}$	Forebody Material designation	PICA	Type	DGB
Entry velocity: Inertial \& Relative	Inertial: $6.08 \mathrm{~km} / \mathrm{s}$ Relative: $5.8 \mathrm{~km} / \mathrm{s}$	Nose radius	1.125 m	Peak convective heating	$\begin{gathered} {[197} \\ \left.\mathrm{W} / \mathrm{cm}^{2}\right] \end{gathered}$	Forebody Thickness \& mass	[3.18 cm]	Deployment Method	Mortar fired
Trim L/D (specify trim α)	0.24	Base area	15.90 m	Peak radiative heating		Ablating Ejected	Ablated: yes Ejected: yes	Reference Diameter / Area	21.35 m
Control method	RCS: 8 thrusters ballast ejection	Vehicle mass	3257 kg	Integrated total heatload	[5477 $\mathrm{J} / \mathrm{cm}^{2}$]	TPS Integration method	PICA: tiled, direct bonded to substructure	Deployment Mach	1.7
Ballistic co-eff.	[146 kg/m²]	Payload mass	75 kg	PH stag. pressure		Aftbody material designation	SLA-561V	Deployment dynamic pressure	493.6 Pa
Peak deceleration	$\sim 9.7 \mathrm{~g}$	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness \& mass	[1.27 cm]	Parachute materials	Canopy: nylon, Suspension lines: Technora T221 and Kevlar 29

MISSION: INFLATABLE REENTRY VEHICLE EXPERIMENT-3 (IRVE-3)

PLANET: EARTH (SUBORBITAL)
LAUNCH: JUL 23, 2012
ENTRY: JUL 23, 2012

MISSION DESCRIPTION: To advance the hypersonic inflatable
aerodynamic decelerator (HIAD) technology, reach higher than 12 $\mathrm{W} / \mathrm{cm}^{2}$ cold-wall heat flux on the flexible TPS, and generate aerodynamic lift, with the potential for guided entry applications.
INSTRUMENTATION:
NOTES: IRVE-3 is NASA's second successful flight test of Hypersonic Inflatable Aerodynamic Decelerator (HIAD).

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-74°	Shape	60° half angle sphere-cone	Velocity at peak heat	Mach 7.3	Forebody Material designation	Nextel BF-20	Type	N/A
Entry velocity: inertial \& relative	Relative: 2.7 km/s	Nose radius	0.191 m	Peak convective heating	$14 \mathrm{~W} / \mathrm{cm}^{2}$ (cold wall)	Forebody Thickness \& mass	0.6 cm	Deployment method	N/A
$\underset{\text { (specify trim } \alpha \text {) }}{\text { Trim }}$	0.2 (max.) at 16°	Base area	$7.07 \mathrm{~m}^{2}$	Peak radiative heating	0	Ablating Ejected	Flexible	Reference diameter / area	N/A
Control method	Cold argon gas pre-entry alignment, roll control during entry. Movable radial mass offset entry.	Vehicle mass	281 kg	$\begin{aligned} & \text { Integrated } \\ & \text { total } \\ & \text { heatload } \end{aligned}$	$\begin{aligned} & 193 \mathrm{~J} / \mathrm{cm}^{2} \\ & \text { (cold wall) } \end{aligned}$	TPS Integration method	Sewn fabric	Deployment Mach	N/A
Ballistic co-eff.	$58 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	1 psia	Aftbody material designation	N/A	Deployment dynamic pressure	N/A
Peak deceleration	20.2 g	TPS mass fraction, inc. insul.	0.20	Peak stag. heating rate		Aftbody thickness \& mass	N/A	Parachute materials	N/A

MISSION: HAYABUSA 2
PLANET: EARTH RETURN
LAUNCH: DEC 3, 2014
ENTRY:DEC 5, 2020

MISSION DESCRIPTION: To collect samples from asteroid RYUGU (1999JU3) and return to Earth.
INSTRUMENTATION: A one-axis accelerometer of parachute deployment REMM(Reentry Flight Measurement Module) which measures and records the heatshield temperature, the acceleration and the attitude motion of SRC during the reentry.

NOTES:

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-12.06 ${ }^{\circ}$	Shape	45° spherecone	Velocity at peak heat	$\begin{gathered} \sim 10.5 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	Carbonphenolic	Type	CrossType
Entry velocity: inertial \& relative	Inertial: $11.84 \mathrm{~km} / \mathrm{s}$ Relative: $11.58 \mathrm{~km} / \mathrm{s}$	Base radius Nose radius	0.202 m	Peak convective heating	~1110 $\mathrm{W} / \mathrm{cm}^{2}$	Forebody thickness \& mass		Deployment method	Mortar fired
$\begin{gathered} \text { Trim L/D } \\ \text { (specify trim } \alpha \text {) } \end{gathered}$	0	Base area	$0.128 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{gathered} \sim 180 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	2.8 m ${ }^{2}$
Control method	None	Vehicle mass	16.03 kg	$\begin{gathered} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{gathered}$	$\begin{gathered} \sim 27000 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	Segmented	Deployment Mach	Subsonic
Ballistic co-eff.	$113.5 \mathrm{~kg} / \mathrm{m}^{3}$	Payload mass	1.13 kg	PH stag. pressure	$\begin{gathered} \sim 0.44 \\ \text { atm } \end{gathered}$	Aftbody material designation	Carbonphenolic	Deployment dynamic pressure	$<2 \mathrm{kPa}$
Peak deceleration	46.3 g	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness \& mass	2 cm	Parachute materials	Canopy: polyester

MISSION: EXPLORATION FLIGHT TEST-1

PLANET: EARTH RETURN

LAUNCH: DEC 5, 2014 ENTRY: DEC 5, 2014

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-12.6°	Shape	Spherical	Velocity at peak heat	$\begin{gathered} \sim 7.53 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	Avcoat	Type	(1) Drogue $=$ VPCRibbon $2 x$ (2) Pilot $=$ VPCRibbon $3 x$ (3) Main = Ringsail $3 x$
Entry velocity: inertial \& relative	```Inertial: 8.5 km/s Relative: 8.9 km/s```	Nose radius	6.035 m	Peak convective heating	Flown:170 W/cm² [Design: $\left.400 \mathrm{~W} / \mathrm{cm}^{2}\right]$	Forebody thickness \& mass	Var. thick 2.5$4 \mathrm{~cm} \sim 454 \mathrm{~kg}$	Deployment method	(1) Mortar drogue (2) Mortar pilot (3) Pilot main
Trim L/D (specify trim α)	0.25	Base area	19.8 m ${ }^{2}$	Peak radiative heating	Flown: $15 \mathrm{~W} / \mathrm{cm}^{2}$ [Design: 50 W/ $/ \mathrm{cm}^{2}$]	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 7.0 m dia. (2) 3.0 m dia . (3) 35.4 m dia.
Control method	RCS Thrusters	Vehicle mass	9611 kg	Integrated total heatload	$\begin{gathered} \sim 250 \\ \mathrm{MJ} / \mathrm{m}^{2} \end{gathered}$	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	(1) 0.42 (2) 0.17
Ballistic co-eff.	$\begin{gathered} 360 \\ \mathrm{~kg} / \mathrm{m}^{2}\left(\mathrm{C}_{\mathrm{D}}=\right. \\ 1.4 \mathrm{at} \mathrm{El}+50 \\ \mathrm{sec} .) \\ \hline \end{gathered}$	Payload mass	Minimal	PH stag. pressure	$\begin{gathered} \sim 0.56 \\ \mathrm{~atm} \end{gathered}$	Aftbody material designation	$\begin{aligned} & \text { RCG coated } \\ & \text { AETB-8 } \end{aligned}$	Deployment dynamic pressure	(1) $\sim 5746 \mathrm{~Pa}$ (2) $\sim 1915 \mathrm{~Pa}$
Peak deceleration	$\sim 3.2 \mathrm{~g}$	TPS mass fraction, inc. insul.	Fore: 4.7\% Aft: 1.2\%	Peak stag. heating rate		Aftbody thickness \& mass	Var. thick 2.5- $4.2 \mathrm{~cm} \sim 120 \mathrm{~kg}$	Parachute materials	Nylon and Kevlar

MISSION: EXOMARS 2016
PLANET: MARS
LAUNCH: MAR 14, 2016
ENTRY: OCT 19, 2016

MISSION DESCRIPTION: To demonstrate entry, descent, and landing of a payload on the surface of Mars.
INSTRUMENTATION: Front Shield: 4 pressure sensors; 7 thermal plugs (each with 3 thermocouples and 1 thermistor). Back Shell: 3 thermal plugs (each with 2 thermocouples and 1 thermistor); COMARS+ (3 combined sensor heads + one broadband IR radiometer).

NOTES: ExoMars 2016 comprised a trace gas orbiter and the Schiaparelli EDL
demonstrator module. An anomaly in the measurement and navigation sequence resulted in Schiaparelli crash-landing on the surface of Mars, but essential telemetry was received during entry and descent.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	$\begin{aligned} & -12.48^{\circ} \\ & @ 120 \mathrm{~km} \end{aligned}$	Shape	47° truncated conical backshell 70° sphere-cone front shield	Velocity at peak heat	$\begin{gathered} \sim 5 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	Norcoat-Liège over AI honeycomb with CFRP skins	Type	DGB
Entry velocity: inertial \& relative	Inertial: $6.03 \mathrm{~km} / \mathrm{s}$ Relative: $5.79 \mathrm{~km} / \mathrm{s}$	Nose radius	0.6 m	Peak convective heating	$\begin{gathered} \sim 50-70 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	12.2 mm (nose) to 15.4 mm (trailing edge) 37 kg	Deployment method	Mortar fired
Trim L/D (specify trim α)		Base area	$4.52 \mathrm{~m}^{2}$ (2.4 m dia. heatshield)	Peak radiative heating	$\begin{gathered} \sim 9 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	$\begin{gathered} 12 \mathrm{~m} \\ \text { dia. } \end{gathered}$
Control method	Ballistic, spin- stabilized at 2.617 rpm	Vehicle mass	576.3 kg	Integrated total heatload		TPS integration method	Tiled	Deployment Mach	2.08
Ballistic co-eff.	$75.2 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	15.2 kg	PH stag. pressure	$\begin{gathered} \sim 0.11 \\ \text { Atm } \end{gathered}$	Aftbody material designation	same as forebody	Deployment dynamic pressure	779.5
Peak deceleration	8.15 g	TPS mass fraction, inc. insul.	0.11	Peak stag. heating rate		Aftbody thickness \& mass	$\begin{aligned} & 7.6 \mathrm{~mm} \\ & 26.2 \mathrm{~kg} \end{aligned}$	Parachute materials	Nylon, Kevlar

MISSION: OSIRIS-REX
PLANET: EARTH RETURN
LAUNCH: SEPT 8, 2016
ENTRY: PLANNED FOR
SEPT 24, 2023

MISSION DESCRIPTION: To return and analyze samples from asteroid Bennu (1999RQ36) and return to Earth.

INSTRUMENTATION:

NOTES: The OSIRIS-REx capsule outer geometry and TPS are build-to-print based on the Stardust capsule.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	[-8.2 ${ }^{\circ}$]	Shape	Blunt-nosed 60° half-angle once	Velocity at peak heat	$\begin{gathered} 11.1 \\ \mathrm{~km} / \mathrm{s} \end{gathered}$	Forebody material designation	PICA-15	Type	(1) Pilot: DGB (2) Main: Triconical
Entry velocity: inertial \& relative	Relative: $[12.2 \mathrm{~km} / \mathrm{s}]$	Nose radius	0.23 m	Peak convective heating	$\begin{gathered} {[1070} \\ \left.\mathrm{W} / \mathrm{cm}^{2}\right] \end{gathered}$	Forebody thickness \& mass	5.82 cm	Deployment method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	$0.52 \mathrm{~m}^{2}$	Peak radiative heating	$\begin{gathered} {[130} \\ \left.\mathrm{W} / \mathrm{cm}^{2}\right] \end{gathered}$	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 0.83 m dia. (2) 7.3 m dia .
Control method	Ballistic, spinstabilized at 13 rpm	Vehicle mass	$\sim 46 \mathrm{~kg}$	$\begin{gathered} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{gathered}$	[36000 $\mathrm{J} / \mathrm{cm}^{2}$]	TPS integration method	PICA: singlepiece, direct bonded to substructure with HT-424	Deployment Mach	(1) $[1.3]$ (2) $[0.12]$
Ballistic co-eff.	$\sim 71 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	$\begin{gathered} {[0.22} \\ \mathrm{atm}] \end{gathered}$	Aftbody material designation	SLA-561V	Deployment dynamic pressure	(1) ~1350 Pa (2) $\sim 700 \mathrm{~Pa}$
Peak deceleration	$\sim 32 \mathrm{~g}$	TPS mass fraction, inc. insul.	0.22	Peak stag. heating rate	$\begin{gathered} {[1200} \\ \left.\mathrm{W} / \mathrm{cm}^{2}\right] \end{gathered}$	Aftbody thickness \& mass	[1.397 cm]	Parachute materials	Canopy: nylon, Kevlar suspension lines

MISSION: MARS InSight PLANET: MAR
LAUNCH: MAY 5, 2018 ENTRY: SEPT 26, 2018

InSight

MISSION DESCRIPTION: Robotic lander to study the deep interior of Mars.
INSTRUMENTATION: SEIS seismometer to measure Mars quakes, HP3 Heat Flow and Physical Properties Package to measure heat flowing out of deep interior, RISE radio science instrument to measure wobble of Mars north pole.

NOTES: Discovery program mission; InSight = Interior Exploration using Seismic Investigations, Geodesy and Heat Transport; EDL system reused design of Phoenix mission augmented for landing during dust storm season; dust on solar panels led to mission termination on December 21, 2022.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-12°	Shape	2.65 m diameter, 70 sphere cone	Velocity at peak heat	$\begin{gathered} 4835.8 \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	Forebody material designation	SLA-561V	Type	Viking-type DGB
Entry velocity: inertial \& relative		Nose radius	0.66 m	Peak convective heating	$\begin{gathered} 46 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness \& mass	1.93 cm \& 35.74 kg	Deployment method	Mortar
Trim L/D (specify trim α)	0	Base area	$0.0995 \mathrm{~m}^{2}$	Peak radiative heating	$5 \mathrm{~W} / \mathrm{cm}^{2}$ stag. pt.	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	11.8 m dia.
Control method	Nonspinning passive	Vehicle mass	$\begin{gathered} 605.65 \mathrm{~kg} \\ \text { (wet) } \end{gathered}$	Integrated total heatload	$\begin{aligned} & 2514 \\ & \mathrm{~J} / \mathrm{cm}^{2} \end{aligned}$	TPS integration method	Direct application of flexcore then filler	Deployment Mach	1.53
Ballistic co-eff.	$65 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	$\sim 50 \mathrm{~kg}$	PH stag. pressure	$\begin{aligned} & 6.38 \\ & \mathrm{kPa} \end{aligned}$	Aftbody material designation	SLA-561S lower aftbody, SLA220 parachute cone, SLA-561V on parachute lid	Deployment dynamic pressure	546.0 Pa
Peak deceleration	8.13 g	TPS mass fraction, inc. insul.	0.85	Peak stag. heating rate	~7 $\mathrm{W} / \mathrm{cm}^{2}$	Aftbody thickness 8 mass	0.61 cm lower aftbody 12.46 $\mathrm{kg}, 1.22 \mathrm{~cm}$ parachute cone $3.07 \mathrm{~kg}, 0.89 \mathrm{~cm}$ parachute lid 0.12 kg	Parachute materials	Nylon canopy, Kevlar structura members

MISSION: MARS2020
PLANET: MARS
LAUNCH: JUL 30, 2020
ENTRY: FEB 18, 2021

MISSION DESCRIPTION: Seek signs of ancient life and collect samples of rock and regolith (broken rock from soil) for possible return to Earth.
INSTRUMENTATION: MEADS (Mars Entry Atmospheric Data System): 1 hypersonic heatshield pressure transducer, 6 supersonic heatshield pressure transducers, 1 low pressure transducer on backshell. MISP (MEDLI2 Instrumented Sensor Plugs): 11 PICA heatshield plugs with 1-3 embedded TCs, 6 SLA-561V plugs on backshell with 1-2 embedded TCs, and 3 direct heat flux sensing elements on backshell (2 total heat flux gauges and 1 radiometer).
NOTES:

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	Relative: -16.18°	Shape	70° spherecone	Velocity at peak heat (PH)	$\begin{gathered} 4880 \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	Forebody material designation	PICA	Type	DGB
Entry velocity: inertial \& relative	Relative: $5.33 \mathrm{~km} / \mathrm{s}$ @ 128.2 km	Nose radius	1 m	Peak convective heating	$\begin{gathered} 68.4 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Forebody thickness 8 mass	$\begin{gathered} {[3.18 \mathrm{~cm}]} \\ {[212 \mathrm{~kg}]} \end{gathered}$	Deployment method	Mortar fired
Trim L/D (specify trim α)	$\begin{array}{r} \hline 0.248 \text { at } \\ -16.71^{\circ} \end{array}$	Base area	15.9 m²	Peak radiative heating	~0 $\mathrm{W} / \mathrm{cm}^{2}$	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	21.5 m
Control method	RCS: 8 thrusters ballast ejection	Vehicle mass	3317.3 kg	Integrated total heatload	$\begin{gathered} 1672.5 \\ \mathrm{~J} / \mathrm{cm}^{2} \end{gathered}$	TPS integration method	PICA: tiled, direct bonded to substructure	Deployment Mach	1.81
Ballistic co-eff.	$\begin{aligned} & 143.2 \\ & \mathrm{~kg} / \mathrm{m}^{2} \end{aligned}$	Payload mass	1022.8 kg	PH stag. pressure	24 kPa	Aftbody material designation	SLA-561V	Deployment dynamic pressure	519.6 Pa
Peak deceleration	10.73 g	TPS mass fraction, inc. insul.	Fore: [6.4\%] Aft: [1.9\%]	Peak stag. heating rate	$\begin{gathered} 68.4 \\ \mathrm{~W} / \mathrm{cm}^{2} \end{gathered}$	Aftbody thickness 8 mass	$\begin{gathered} {[1.27 \mathrm{~cm}]} \\ {[64 \mathrm{~kg}]} \end{gathered}$	Parachute materials	Canopy: nylon, suspension lines: Technora T221 and Kevlar 29

MISSION: LOFTID
PLANET: Earth
LAUNCH: Nov 10, 2022
ENTRY: Nov 10, 2022

MISSION DESCRIPTION: Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID). Technology demonstration mission to advance hypersonic inflatable aerodynamic decelerator (HIAD) technology by testing the Gen-2 inflatable structure and flexible thermal protection system (FTPS). INSTRUMENTATION: 58 FTPS thermocouples, 24 inflatable structure thermocouples, 3 fiber optic sensing systems (FOSS), 4 total heat flux sensors, 1 radiometer, 5 nose pressure transducers, 12 loadcell pins, 7 torus pressure transducers, 6 inflation system pressure transducers, 6 inflation system pressure transducers, 3 inflation system RTDs, 1 inflation system flow meter, 2 hot film anemometers, 6 visual cameras, 12 infrared cameras, 1 up-look camera.
NOTES:

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	[-2.3 ${ }^{\circ}$	Shape	70° spherecone stacked torus	Velocity at peak heat (PH)	[7.02 km/s]	Forebody material designation	FTPS: Silicon carbide outer fabric, carbon felt/pyrogel insulation, TZL gas barrier	Type	(1) Pilot: 16.6 ft Cruciform (2) Main: 94 ft Ring Sail
Entry velocity: inertial \& relative	$\begin{gathered} \text { Relative: } \\ {[8.0} \\ \mathrm{km} / \mathrm{s}] \end{gathered}$	Nose radius	1.715 m	Peak convective heating	$30 \mathrm{~W} / \mathrm{cm}^{2}$	Forebody thickness \& mass	0.5" / 114 kg	Deployment method	(1) Mortar (2) Pilot
Trim L/D (specify trim α)	0	Base area	28.27 m ${ }^{2}$	Peak radiative heating	$2 \mathrm{~W} / \mathrm{cm}^{2}$	Ablating Ejected	Ablative: No Ejected: No	Reference diameter / area	(1) 16.6 ft (2) 94 ft
Control method	Ballistic, spinstabilized at 3 rpm	Vehicle mass	1101 kg	$\begin{gathered} \text { Integrated } \\ \text { total } \\ \text { heatload } \end{gathered}$	2.7 kJ/cm ${ }^{2}$	TPS integration method	Sewn Fabric	Deployment Mach	$\begin{aligned} & \text { (1) } 0.1 \\ & \text { (2) } 0.1 \end{aligned}$
Ballistic co-eff.	$22 \mathrm{~kg} / \mathrm{m}^{2}$	Payload mass	N/A	PH stag. pressure	~ 0.4 psia	Aftbody material designation	N/A	Deployment dynamic pressure	[415 Pa]
Peak deceleration	$\sim 9 \mathrm{~g}$	TPS mass fraction, inc. insul.	$\begin{gathered} 0.17 \\ \text { (aeroshell) } \end{gathered}$	Peak stag. heating rate	$\left[0.66 \mathrm{~W} / \mathrm{cm}^{2}\right.$ (cold wall)]	Aftbody thickness \& mass	N/A	Parachute materials	Nylon, Kevlar

MISSION: Artemis I
PLANET: Earth
LAUNCH: Nov 15, 2022
ENTRY: Dec 11, 2022

MISSION DESCRIPTION: Artemis I is the first in a series of increasingly complex missions that will enable human exploration to the Moon and Mars.
INSTRUMENTATION: Thermocouples (multiple locations and in-depth),
Pressure Transducers, and Radiometers.
NOTES: Data is mostly from internal documentation.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-5.66°	Shape	Capsule	Velocity at peak heat (PH)	~34,200 ft/2	Forebody material designation	Avcoat	Type	Ringsail
Entry velocity: inertial \& relative	Inertial: $36062.66 \mathrm{ft} / \mathrm{s}$ Relative: $35974.97 \mathrm{ft} / \mathrm{s}$	Nose radius	6.04 m	Peak convective heating	~175 BTU/ft^2/s	Forebody thickness \& mass	Varied thickness $\sim 223 \mathrm{lbm}$	Deployment method	Mortar
Trim L/D (specify trim α)	[0.27 at 162°]	Base area	$3.33 \mathrm{~m}^{2}$	Peak radiative heating	~180 BTU/ft^2/s	Ablating Ejected	Ablator	Reference diameter / area	$\begin{gathered} \text { FBC chutes }(3)-7 \mathrm{ft} \\ \text { Drogues }(2)-23 \mathrm{ft}, \\ 400 \mathrm{ft}{ }^{\wedge} 2 \\ \text { Pilot }(2)-11 \mathrm{ft}, 95 \mathrm{ft}{ }^{\wedge} 2 \\ \text { Mains }(4)-116 \mathrm{ft}, \\ 10,500 \mathrm{ft}^{\wedge} 2 \\ \hline \end{gathered}$
Control method	12 RCS Jets	Vehicle mass	$\begin{gathered} \sim 20575 \\ \text { lbm } \end{gathered}$		~70000 Btu/ft^2	TPS integration method	Tiled	Deployment Mach	$\begin{gathered} \sim 0.42 \text { (FBC chutes) } \\ \sim 0.39 \text { (drogues) } \\ \sim 0.17 \text { (pilots/mains) } \\ \hline \end{gathered}$
Ballistic co-eff.	$\sim 68.33 \mathrm{lbf} / \mathrm{ft}^{2}$	Payload mass		PH stag. pressure	$\sim 22,000 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$	Aftbody material designation	AETB-8	Deployment dynamic pressure	$\begin{array}{\|l} \sim 3600 \mathrm{lb} \text { (FBC chutes) } \\ \sim 3500 \mathrm{lb} \text { (drogues) } \\ \sim 1000 \mathrm{lb} \text { (pilots/mains) } \\ \hline \end{array}$
Peak deceleration	$\sim 13.4 \mathrm{~g}$	TPS mass fraction, inc. insul.	Heatshield: ~27\%	Peak stag. heating rate	```qtot ~20 BTU/ft^2/s, qconv ~15 BTU/ft^2/s, qrad ~6 BTU/ft^2/s```	Aftbody thickness \& mass	Varied thickness 1.0-1.2"	Parachute materials	Kevlar/Nylon

[^1]
APPENDIX I List of Space Vehicles and Their Missions Unmanned Planetary Probes

For a complete list of deep space exploration go to www.nasa.gov -> Downloads -> History E-books -> Beyond Earth: A Chronicle of Deep Space Exploration.

History e-Books | NASA

APPENDIX II Definitions

Entry angle

The angle between the local horizontal plane (orthogonal to the vector from the planet center to the vehicle) and the velocity vector of the vehicle, V, at a reference altitude, h. The entry angle can be inertial or relative, depending on entry velocity used. Y is negative when V, is below the horizontal plane, as in planetary entry

Entry velocity inertial

The vehicle velocity at reference altitude, h, assuming a non-rotating planet.

Entry velocity relative

The inertial entry velocity amended by the component of the planet's rotation, assuming the atmosphere to be a solid body.

Trim L/D

The L / D where vehicle is statically stable. The vehicle will trim (restore) to trim angle of attack if variations occur.

Control method

(a) Ballistic: no control, subject to drag forces only, with passive stability about zero lift condition; (b) Controlled Ballistic: active control to maintain zero lift; and (c) RCS: a set of small engines called the reaction control system (RCS) engines.

Ballistic coefficient

The ratio of the product of drag coefficient ($C d$) and projected reference area (A) to mass (m), giving $m / C d A$.

Peak deceleration

Maximum deceleration force on the vehicle during entry, stated in Earth gravity, g

Shape

All vehicles are spherically blunted cones, or spherical, or conical.

Nose radius

The radius of the spherical nose, or the capsule radius.

Base area

The total apparent or drag area projected along the centerline.

Vehicle entry mass

The total vehicle mass of the vehicle at entry, including TPS and payload. Generally, the vehicle mass at entry is the same as take-off mass minus any fuel used for maneuvering. However, the mass can change after leaving the orbiter but before entry. An example is the small probe of Pioneer Venus where the spin yo-yo was jettisoned before entry. The mass can also change during entry if the heat shield material ablates. An (extreme) example was the Galileo probe that lost about 26% of its entry mass to ablation.

Payload mass

The proportion of payload mass (scientific instruments and may include transmitters, batteries etc.) to vehicle mass. For missions with landed payloads and eject-able heatshields/backshells, this is total mass of the vehicle carried within the entry system.

TPS mass fraction

The proportion of TPS mass to vehicle mass at entry. Insulator may or may not be included.

Velocity at peak heat (PH)

The velocity when the vehicle reaches the maximum convective heat flux at the stagnation point.

Peak convective heating

The maximum convective heat flux at the leading edge stagnation point. Depends on trajectory. The stagnation point is a point in the flowfield where the local velocity of the fluid is zero. Location depends on angle of attack and deviation behind the shock. The "peak convective heating" (peak convective heat flux) is often at the entry vehicle's leading edge stagnation point, but not always.

Peak radiative heating

The maximum radiative heat flux at the leading edge stagnation point. Depends on trajectory. The stagnation point is a point in the flowfield where the local velocity of the fluid is zero. Location depends on angle of attack and deviation behind the shock. The "peak radiative heating" (peak radiative heat flux) is often at the entry vehicle's leading edge stagnation point, but not always.

Integrated total heat load

The convective heat flux integrated over flight time. The highest heat load is usually, but not always, at the stagnation point. The integrated heat load will vary over the vehicle surface.

Peak heat (PH) stagnation pressure

The pressure at the time of maximum convective heat flux. This is not the peak pressure, which occurs later in the trajectory.

Peak stag. heating rate

The maximum combined convective and radiative heating rate during the trajectory. Peak convective stagnation point heating seldom occurs at the same time as peak radiative stagnation point heating, therefore, not the simple sum of those values unless one is zero. Peak radiative heating rate (if nonzero) always occurs before peak convective heating rate.

Forebody material designation

This can be a material trade name, defined by the manufacturer (e.g., SLA561 V) or a generic designator applied to a class of materials (e.g., carbon phenolic). It provides little useful information about the material other than a broad description of its constituents.

Forebody thickness \& mass

This is "as manufactured" thickness of the material, usually specified at the stagnation point. Useful for a TPS of uniform thickness; less useful for a "tailored" TPS. The "as manufactured" thickness includes the "nominal design thickness" to which additional thickness is added (margin) to accommodate uncertainties in the entry environment and/or material performance.

Ablating / Ejected

Information on whether the forebody TPS material experienced or was designed for ablating. Ejected refers to whether the vehicle was designed to eject the forebody TPS.

TPS integration method

Details on TPS integration method with the supporting substructure. Examples are single piece, direct bonded to substructure; cells filled with ablative compound.

Aftbody material designation

This can be a material trade name, defined by the manufacturer (e.g./ SLA561 V) or a generic designator applied to a class of materials (e.g., carbon phenolic). It provides little useful information about the material other than a broad description of its constituents.

Aftbody thickness \& mass

This is "as manufactured" or "as flown" thickness of the material. Descriptions vary by mission, since a common reference point for a thickness specification, such as the stagnation point, doesn't exist.

Parachute: Type

General parachute design type descriptor for decent or recovery parachutes Examples include Cross Type, Ringsail, or Disk-Gap-Band (DGB).

Deployment method

Method for releasing parachute system during descent/ entry. An example is mortar fired.

Reference diameter / area

Number to generate reference area, or calculated from reference area of the decelerator, used as a common size reference for interpreting decelerator aerodynamic properties.

Deployment mach

Local Mach number at the time of parachute deployment

Deployment dynamic pressure

The measured/ calculated dynamic pressure at the forebody at the time of deployment (similar to Mach number).

Parachute materials

Description of parachute materials used for construction, including canopy and suspension lines when possible. Examples include nylon, polyester, and Kevlar.

APPENDIX III Unit Conversion Factors

1 cm	$=$	0.3937 in	$1 \mathrm{~kg} / \mathrm{m}^{3}=$	$0.06243 \mathrm{lb} / \mathrm{ft}^{3}$
1 m	$=$	3.28084 ft	$1 \mathrm{Joule}=$	$0.9478 \times 10^{-3} \mathrm{BTU}$
$1 \mathrm{~m}^{2}$	$=$	$10.764 \mathrm{ft}^{2}$	$1 \mathrm{Watt}=$	$1 \mathrm{~J} / \mathrm{s}=0.9478 \times 10^{-3} \mathrm{BTU} / \mathrm{s}$
$1 \mathrm{~km} / \mathrm{s}$	$=$	$3280.8 \mathrm{ft} / \mathrm{s}^{\mathrm{C}}$	$1 \mathrm{~J} / \mathrm{cm}^{2}=$	$0.88055 \mathrm{BTU} / \mathrm{ft}^{2}$
1 g	$=$	$9.81 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{~W} / \mathrm{cm}^{2}=$	$0.88055 \mathrm{BTU} / \mathrm{s}^{\star} \mathrm{ft}^{2}$
1 kg	$=$	2.20462 lb	1 atm	$=$
$1 \mathrm{~kg} / \mathrm{m}^{2}$	$=$	$0.2048 \mathrm{lb} / \mathrm{ft}^{2}$		

Mission: FIRE II

1. Cauchon, D.V.: Radiative Heating Results from the Fire II Flight Experiment at a Re-entry Velocity of 11.4 km/s. NASA-TM-X-1402, Jul 1967.
2. Cornette, E.S.: Forebody Temperatures and Calorimeter Heating Rates

Measured during Project Fire II Re-entry at $11.35 \mathrm{~km} / \mathrm{s}$. NASA-TM-X-1305, Nov 1996.
3. Slocumb, T.H.: Project Fire Flight II Afterbody Temperatures and Pressures at $11.35 \mathrm{~km} / \mathrm{s}$. NASA-TM-X-1319, Dec 1966.
4. Wright, M.; Loomis, M.; and Papadopoulos, P.: Aerothermal Analysis of the Project Fire II Afterbody Flow. AIAA-2011-3065, 35th Thermophysics Conference, Anaheim Ca, Jun 2011
Collected by: Trajectory Data Verified by: Traj Ver 17.06, Gary A Allen, Jr., 22 Feb 2019

Mission: Apollo AS-201

1. Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.
2.Erb, R.B.; Greeshields, D.H.; Lee, D.B.; and Weston, K.C.:

Aerothermodynamics-Apollo Experience. Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A Libby; D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967.

TN-6843, Jun 1972
4. North American Aviation Inc. Space and Information Systems Division,

Aerodynamic Data Manuel for Project Apollo, NAS 9-150, Accession No. 0749965, Feb 1966.
5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-202 (Apollo-3)

1. Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure

Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.
2. Hillje, E.R.: Entry Flight Aerodynamics from Apollo Mission AS-202. NASATNO\#04185, Dec 1967.
3. Erb, R.B.; Greenshields, D.H.; Lee, D.B.; and Weston, K.C.:

Aerothermodynamics-Apollo Experience. Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A. Libby; D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967.
4. Crowder, R.S.; and Moote, J.D.: Apollo Entry Aerodynamics. Journal of Spacecraft and Rockets, Vol 6, No 3, Mar 1969.
5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-501 (Apollo-4)

1. Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo Entry Configuration. AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.
2. Hillje, E.R.: Entry Aerodynamics at Lunar Return Conditions Obtained from the Flight of Apollo 4 (AS-501). NASA-TN-D-5399, Oct 1969.
3. Reid, R.C., Jr; Rochelle, W.C.; and Milhoan, J.D.: Radiative Heating to the Apollo Command Module: Engineering Prediction and Flight Measurement.
NASA-TM-X-58091, Apr 1972.
4. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-502 (Apollo-6)

1. Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo entry Configuration. AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.
2. Lee, D.B.; and Goodrich, W.D.: The Aerothermodynamic Environment of the Apollo Command Module During Superorbital Entry. NASA-TN-D-6792, Apr 1972.
3. Strouhal, G.; Curry, M.; and Janney, J.M.: Thermal Protection System Performance of the Apollo Command Module. AIAA/ASME 7th Structures and Materials Conference, Cocoa Beach FL, Apr 1966.
4. Bartlett, E.P.; Nicolet, W.E.; Abbett, M.J.; and Moyer C.B.: Improved HeatShield Design Procedures for Manned Entry Systems: Part 2. Application to Apollo: Final Report. NASA-CR-108689, Jun 1970.
5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Reentry F

1. Write, R, L.; and Zoby, E.V.: Flight Measurements of Boundary-Layer Transition on a 5 Degree Half-Angel Cone at a Free-Stream Mach Number of 20 (Reentry F). NASA-TM-X-2253, May 1971.

Mission: PAET

1. Vojvodich, N.S.: PAET Entry Heat Protection Experiment. Journal of Spacecraft and Rockets, Vol 10, No 3, Mar 1973, pp 181-189.
2. Seiff, A.; Reese, D.E.; Sommer, S.C.; Kirk, D.B.; Whiting, E.E.; and Niemann, H.B.: PAET, An Entry Probe Experiment in Earth's Atmosphere. ICARUS, Vol 18, Apr 1973, pp 525-563

Mission: Viking Lander 1

1. Inogoldby, R.N.; Michael, F.C.; Flaherty, T.M.; Doty, M.G.; Preston, B.;

Villyard, K.W.; and Steele, R.D.: Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218, NASA-CR-159388, Nov 1976.
2. Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamics Behaviour of the Viking

Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 156, No 4, Jul-Aug 1978.
3. Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974.
4. Cooley, C.G: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977. 4. Edquist, K.T.; Wright, M.J.; and Allen Jr., G.A.: Viking Afterbody Heating Computations and Comparisons to Flight Data. AIAA-2006-386, 44th Aerospace Sciences Meeting, Reno, NV, Jan 2008.
5. NASA-CR-112288 Balloon Launched Viking Decelerator Test Program. 6. AIAA PAPER 73-458 The Viking mortar - Design, development, and flight qualification.

Mission: Viking Lander 2

1. Inogoldby, R.N.; Michael, F.C.; Flaherty, T.M.; Doty, M.G.; Preston, B.; Villyard, K.W.; and Steele, R.D.: Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218, NASA-CR-159388, Nov 1976. 2. Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamics Behaviour of the Viking Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 156, No 4, Jul-Aug 1978.
2. Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974.
3. Cooley, C.G: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977.
4. NASA-CR-112288 Balloon Launched Viking Decelerator Test Program.
5. AIAA PAPER 73-458 The Viking mortar - Design, development, and flight qualification.

Pioneer-Venus: Small 'North Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: PioneerVenus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.
2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.
3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.
4.Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Pioneer-Venus: Small 'Night Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: PioneerVenus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.
2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.
3. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Pioneer-Venus: Small 'Day Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: PioneerVenus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.
2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.
3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.
4. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Pioneer-Venus: Large Probe 'Sounder'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: PioneerVenus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.
2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.
3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.
4. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.
5. IPPW-7-529, Aerodynamic Decelerators for Modern Venus Probes/Landers, $7^{\text {th }}$ International Planetary Probe Workshop, Barcelona, Spain.

Galileo

1. Givens, J.; Nolte,L.; and Pochettino, L.: Galileo Atmospheric Entry Probe System: Design, Development and Test. AIAA-1983-0098, 21st Aerosciences Meeting, Jan 1983.
2. Milos, F.; Chen, Y.K.; Squire, T.; and Brewer, R.: Analysis of Galileo Probe Heat Shield Ablation and Temperature Data. AIAA-1997-2480, 32nd
Thermophysics Conference, Atlanta GA, Jun 1997.
3. Milos, F.: Galileo Probe Heat Shield Ablation Experiment. AIAA Journal of

Spacecraft and Rockets, Vol 34, No 6, Nov-Dec 1997.
4. AIAA-97-1510 Galileo Parachute System Performance.

Orex

1. Yamamoto, Y.; and Yoshioka, M.: CFD and FEM Coupling Analysis of OREX Aerothermodynamic Flight Data. AIAA-1995-2087, 30th Thermophysics Conference, San Diego CA, Jun 1995.
2.Gupta, R.N.; Moss, J.M.; and Price, J.M.: Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Reentry Experiment (OREX). AIAA-1996-1859, 31st Thermophysics Conference, New Orleans LA, Jun 1996.

Pathfinder

1. Spencer, D.A.; Blanchard, R.C.; Braun, R.D.; Kallemeyn, P.H.; and Thurman, S.W.: Mars Pathfinder Entry, Descent, and Landing Reconstruction. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999.
2. Milos, F.S.; Chen, Y.K.; Congdon, W.M.; and Thornton, J.M.: Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material
Response. Journal of Spacecraft and Rockets, Vol 36, No 3, May-June 1999
3. Michaeltree, R.A.; and Gnoffo, P.A.: Wake Flow About the Mars Pathfinder Entry Vehicle. Journal of Spacecraft and Rockets, Vol. 32, No. 5, Sep-Oct 1995 Witkowski, A.: Mars Pathfinder Parachute System Performance. AIAA-19991701, 15th Aerodynamic Decelerator Systems Technology Conference, Toulouse, France, Jun 1999.

Mirka

1. Schmitt, G.; Pfeuffer, H.; Kasper, R.; Kleppe, F.; Burkhardt, J.; and Schottle, U.M.: The MIRKA Re-entry Mission. IAF-98-V2.07, 49th Intl Astronautical Congress, Melbourne, Australia, Sep-Oct 1998.
2. Schmitt, G.; and Kasper, R.: MIRKA Micro Re-entry Capsule. IAF-94-V.2.532, 45th Intl Astronautical Congress, Jerusalem, Israel, Oct 1994.
3. Ocidation Behaviour of SiC-based Thermal Protection System Materials using newly developed Prode Techniques Journal of Spacecraft and Reockets, pg. 817824, Vol. 42, No. 5, Sept.-Okt. 2005. G. Herdrich, M. Auweter-Kurtz, M. Fertig, S. Löhle, S. Pidan, T. Laux.
4. Pyrometric Temperature Measurements on Thermal Protection Systems, GAMM 98 (Gesellschaft für angewandte Mathematik und Mechanik) Bremen, April 1998, edit. Zeitschrift f. angewandte Mathematik u. Mechanik (ZAMM) 79, Suppl, 3, pages S945-S946, 1999. G. Herdrich, M. Auweter-Kurtz, H. Habiger.

Huygens

1. Jones, J.C.; and Giovagnoli, F.: Huygens: Science, Payload and Mission. A Wilson, editor, ESA-SP-1177, Aug 1997.
2. Baillion, M.; and Pallegoix, J.F.: Huygens Probe Aerothermodynamics,

Aerospatiale Espace and Defense copyrighted document, AIAA-1997-2476, 32nd
Thermophysics Conference, Atlanta GA, Jun 1997.
https://doi.org/10.2514/6.1997-2476
3. Bouilly, J.M.; and Guerrier, D.: Entry Testing of AQ60 for Huygens. Presented at the First ESA/ESTEC Workshop on Thermal Protection Systems, Noordwidjk, The Netherlands, May 1993.
4. Wright, M.J.; Olejniczak, J.; Walpot, L.; Raynaud, E.; Magin, T.; Callaut, L.; and Hollis, B.: A Code Calibration Study for Huygens Entry Aeroheating. AIAA-2006-0382, 44th Aerospace Sciences Meeting, Reno NV, Jan 2006. https://doi.org/10.2514/6.2006-382
5. Lingard, J. and Underwood, J., "Huygens DCSS post flight reconstruction", AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Williamsburg, VA, 2007. (AIAA 2007-2579) https://doi.org/10.2514/6.2007-2579
6. Bouilly, J-M: Thermal Protection of the Huygens Probe during Titan Entry: Las Questions. Presented at $2^{\text {nd }}$ International Planetary Probe Workshop, Moffett Field, CA, Aug. 2004.
7. Huygens Mission Operation Report. HUY-OPS-RP-1006-OPS-OFH Iss. 1, Feb 2005.
8. Colombatti et al., Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (HASI). Planet. Space Sci. 56(5), 586-600, 2008. https://doi.org/10.1016/j.pss.2007.11.017
9. Kazeminejad et al., Huygens' entry and descent through Titan's atmosphereMethodology and results of the trajectory reconstruction. Planet. Space Sci. 55(13), 1845-1876, 2007. https://doi.org/10.1016/j.pss.2007.04.013

ARD 'Atmospheric Reentry Demonstrator'

1. The Atmospheric Reentry Demonstrator, ESA publication BR-138, Oct 1998. 2. Johnston, I.A.; Weiland, M.; Schramm, J.M.; Hannemann, K.; and Longo, K.: Aerothermodynamics of the ARD: Postflight Numerics and Shock-Tunnel Experiments. AIAA-2002-0407, 40th Aerospace Sciences Meeting, Reno NV, Jan 2002.
2. Tran, P.; and Soler, J.: Atmospheric Reentry Demonstrator Post Flight analysis: Aerothermal Environment. Proceedings of the 2nd Intl Symposium on Atmospheric Reentry Vehicles, Arachon, France Mar 2001.
3. Tran, P.; Paulat J.C.; Boukhobza, P.; Re-entry Flight Experiments Lessons

Learned - The Atmospheric Reentry Demonstrator ARD, RTO-EN-AVT-130.

Deep Space 2

1. Mitcheltree, R.A.; DiFulvio, M.; Horvath, T.J.; and Braun, R.D.: Aerotherma Heating Predictions for Mars Microprobe. AIAA-1998-0170, 36th Aerospace Sciences Meeting, Reno NV, Jan 1998.

Stardust

1. Olynick, D.; Chen, Y.K.; and Tauber, M.E.: Aerothermodynamics of the Stardust Sample Return Capsule. Journal of Spacecraft and Rockets, Vol 36, No
3, May-Jun 1999, pp 442-462.
2. Mitcheltree, R.A.; Wilmoth, R.G.; Cheatwood, F.M.; Brauckmann, G.J.; and Greene, F.A.: Aerodynamics of Stardust Sample Return Capsule. AIAA-19972304, 15th Applied Aerodynamics Conference, Atlanta GA, Jun 1997.
3. Brandis, A.M.; Johnston, C.O; Characterization of Stagnation-Point Heat Flux for Earth Entry. AIAA-2014-2374, 45 th AIAA Plasmadynamics and Laser
Conference, Atlanta GA, Jun 2014.
4. AIAA-2007-2546 Stardust Parachute Trajectory Performance Reconstruction.

Genesis

1. Lo, M.W.; Williams B.G.; Bollman E.; Han, D.; Hahn, Y.; Bell, J.L.; Hirst, E.A.; Corwin, R.A., Hong, P.E.; and Howell, K.C.: Genesis Mission Design. AIAA-19984468, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston MA, Aug 1998.
2. Cheatwood, F.M.; Merski, N.R.; Riley, C.J.; and Mitcheltree, R.A.:

Aerothermodynamic Environment Definition for the Genesis Sample Return
Capsule. AIAA-2001-2889, 35th AIAA Thermophysics Conference, Anaheim CA, Jun 2001
3. Tang, C. and Wright, M., "Analysis of the Forebody Aeroheating Environment during Genesis Sample Return Capsule Reentry", AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007. (AIAA 2007-1207)
4. Jenniskens, P., et al, "Surface Heating from Remote Sensing of the Hypervelocity Entry of the NASA GENESIS Sample Return Capsule", AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006. (AIAA 2006-381) 5. AIAA-2001-20017 Parafoil Recovery Subsystem for the Genesis Space Return Capsule.

Hayabusa

1. Ishii, N.; Hiraki, K.; Yamada, T.; Inatani, Y.; and Honda, M.: System Description and Reentry Operation Scenario of MUSES-C Reentry Capsule. Institute of Space and Astronautical Science Report, SP No 17, edited by Y. Inatani, Mar 2003, pp 389-400.

Mars Exploration Rovers "Spirit" and "Opportunity"

1. Roncoli, R.B.; and Ludwinski, J.M.: Mission Design Overview for the Mars Exploration Rover Mission. AIAA-2002-4823, AIAA/AAAS Astrodynamics Specialist Conference and Exhibit, Monterey CA, Aug 2002.
2. Szalai, C.; Chen Y.; Loomis, M; and Hui, F.: Mars Exploration Rover TIRS Cover Thermal Protection System Design Verification. AIAA-2003-3767, 36th AIAA Thermophysics Conference, Orlando FL, Jun 2003.
3. "Mars Exploration Rover Aeroshell, Critical Design Review" document, 30-31 May 2001 by JPL, NASA and Lockheed Martin
4. AIAA-2005-1605 "Mars Exploration Rover Parachute System Performance" 18th AIAA Aerodynamic Decelerator Systems Technology Conference, May 2005, Munich Germany

Beagle 2

1. Burnell, S.; Liever P.; Smith, A.; and Parnaby G.: Prediction of the Beagle 2 Static Aerodynamic Coefficients. Atmospheric Reentry Vehicles and Systems, Arcachon 2000.
2. Smith A.; Parnaby, G.; Jones, T.V.; and Buttsworth, D.: Aerothermal Environment of the Beagle 2 Probe. Fourth European Symposium on Aerothermodynamics, Capua, Italy, Oct 2001.
3. Liever, P.A.; Habchi, S.D.; Burnell, S.I.; and Lingard, J.S.: Computational Fluid Dynamics Predictions of the Beagle 2 Aerodynamics Database. Journal of Spacecraft and Rockets, Vol 40, No 5, Sep-Oct 2003.
4. C.T. Pillinger with M.R. Sims and J. Clemmet, The Guide to Beagle 2. © C.T. Pillinger in association with Faber and Faber, 2003.
5. Bertrand, J., Labaste, V. and Mignot, Y., The Beagle 2 Thermal Protection System. 3rd International Symposium on ARVS, Arcachon, France, March 2003.
6. Clemmet, J., Sims, M.R., Higgett, N., Kuzmanova, T., Tatham, E., Pullan, D., Muller, J.-P., Putri, A., Bridges, J., Pillinger, J.M., Beagle 2 on Mars - The Discovery Assessed. J. Brit. Interplanet. Soc. 70, pp.261-304, 2017.
7. AIAA-2003-2153 Design and Development of the Main Parachute for the Beagle 2 Mars Lander.

Phoenix

1.Ryan McDaniel, Michael Wright, and Jarvis Songer. "Aeroheating Predictions for Phoenix Entry Vehicle", AIAA 2008-1279, 46 ${ }^{\text {th }}$ AIAA Aerospace Sciences Meeting and Exhibit. January 2008.
2. Allen Witkowski, Mike Kandis, and Douglas Adams. "Mars Scout Phoenix Parachute System Performance", AIAA 2009-2907. 20 ${ }^{\text {th }}$ AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. May 2009.
3. Karl T. Edquist, Prasun N. Desai, and Mark Schoenenberger. "Aerodynamics for Mars Phoenix Entry Capsule. "Journal of Spacecraft and Rockets 2011 48:5, 713-726.
4. Myron Grover, Prasun Desai, and Benjamin Cichy. "Overview of the Phoenix Entry, Descent and Landing System Architecture," AIAA 2008-7218. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. August 2008.

Mars Science Laboratory

1. Dutta, S.; Braun, R.D.: Statistical Entry, Descent, and Landing Performance Reconstruction of the Mars Science Laboratory. AIAA-2014-0385, AIAA Atmospheric Flight Mechanics Conference, National Harbour, MD, January 2014. 2. Karlgaard, C.; Kutty, P.; Schoenenberger, M.; Munk, M.M.; Little, A.; Kuhl, C.A.; and Shidner, J.: Mars Science Entry Atmospheric Data System Trajectory and Atmospheric Reconstruction. Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 1029-1047.
2. Beck, R.A.S.; Driver, D.A.; Wright, M.J.; Hwang, H.H.; Edquist, K.T.; and Sepka, S.A.: Development of the Mars Science Laboratory Heatshield Thermal Protection System. Journal of Spacecrafts and Rockets, Vol. 51, No.4, JulyAugust 2014, pp. 1139-1150. Wright, M.J.; Beck, R.A.S.; Edquist, K.T.; Driver, D.; 4. Sepka, S; Slimko, S.A.; and Willcockson, W.H.: Sizing and Margins Assessment of Mars Science Laboratory Aeroshell Thermal Protection System. 5. Bose, D.; White, T.; Mahzari, M.; and Edquist, K,: Reconstruction of Aerothermal Environment and Heat Shield Response of Mars Science Laboratory. Journal of Spacecrafts and Rockets, Vol. 51, No. 4 , July-August 2014, pp. 1174-1184.
3. Cruz, J.R.; Way, D.W.; Shidner, J.D.; Davis, J.L.; Adams, D.S.; and Kipp, D.M.: Reconstruction of the Mars Science Laboratory Parachute Performance.

Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 11851196.
7. AIAA-2013-1277 "Mars Science Laboratory Parachute System Performance".

InSight

1. Robin A.S. Beck, et al., "InSight Aerotherml Environment Assessment." Journal of Spacecraft and Rockets, Vol. 58, No. 6, November-December, 2021. DOI number 10.2514/1.A35078.
2. Ian G. Clark, et al., "Reconstructed Performance of the Supersonic Parachute of the Mars InSight Lander," Journal of Spacecraft and Rockets, Vol. 58, No. 6,
November-December 2021. DOI number 10.2514/1.A35180.
3. AIAA-2019-3481 "Mars InSight Parachute System Performance".

Inflatable Reentry Vehicle Experiment-3 (IRVE-3)
1.OIds, A.D.; Beck, R.E.; Bose, D.M.; White J.P.; Edquist, K.T.; Hollis, B.R.;

Lindell, M.C.; Cheatwood, F.M.; Gsell, V.T.; and Bowden, E.L.: IRVE-3 PostFlight Reconstruction, Aerodynamic Decelerator Systems Technology AIAA 20131390

Hayabusa 2

1. Yamada, T.; Yoshihara, K.; Yamada, K.; and Shimoda, T.: Development of a Hayabusa-2 Sample Return Capsule, Presented July 10, 2015, 2015-k-62

Exploration Flight Test-1

1. Details on where data can be found in a public location: Woollard, B.A.; Braun, R.D.; and Bose, D.: Aerothermodynamic and Thermal Protection System Instrumentation Reference Guide. IEEE-2016-2104, 2016 IEEE Aerospace Conference, Big Sky, MT, Mar 2016.
2. Sinclair, R.: A Status Report on the Parachute Development for NASA's Next Manned Spacecraft. NTRS 20080015895, Safety and Flight Equipment Symposium, Genena, Jan 2008.
3. Bibb, K., Robinson, P., and Cassady, L., "Reconstruction of the Orion Crew Module Aerodynamics for theft-1 Flight Test", AIAA Aviation Forum 2016, Washington, D.C., June 2016.

ExoMars 2016

1. Tolker-Nielsen, T.: Exomars 2016 - Schiaparelli Anomaly Inquiry. DGI/2017/546/TTN, May 2017.
https://exploration.esa.int/web/mars/-/47852-entry-descent-and-landing-demonstrator-module
https://spaceflight101.com/exomars/Schiaparelli-edm/
2. Gülhan, A.; Thiele, T.; Siebe, F.; Aerothermal Measurements from the

Exomars Schiaparelli Capsule Entry. Journal of Spacecraft and Rockets. Vol. 56, No. 1, January-February 2019, pp. 68-81. https://doi.org/10.2514/1.A34228
3. Pinaud, G.; Bertrand, J.; Soler, J.; Tran, P.; Ritter, H.; and Bayle, O.: Exomars mission 2016: A preliminary post-flight analysis of the heat shield during entry on Mars Atmosphere. AIAA SciTech Forum, San Diego CA, Jan 2019.
https://doi.org/10.2514/6.2019-0244
4. Brandis, A.M.; White, T.R.; Saunders, D.A.; Hill, J.P.; and Johnston, C.O.;

Simulation of the Schiaparelli Entry and Comparison to Aerothermal Flight Data. AIAA 2019-3260, AIAA Aviation Forum, Dallas TX, Jun 2019.
https://doi.org/10.2514/6.2019-3260
5. Bonetti, D.; De Zaiacomo, G.; Blanco, G.; Pontijas Fuentes, I.; Portigliotti, S.; Bayle, O.; Lorenzoni, L.; ExoMars 2016: Schiaparelli coasting, entry and descent post flight mission analysis. Acta Astronautica 149 (2018) 93-105. May 2018. https://doi.org/10.1016/j.actaastro.2018.05.029
6. Ball, A.J., Blancquaert, T., Bayle, O., Lorenzoni, L.V., Haldemann, A.F.C. and the Schiaparelli EDM Team: The ExoMars Schiaparelli Entry, Descent and Landing Demonstrator Module (EDM) System Design. Space Sci. Rev. 218:44, 2022. https://doi.org/10.1007/s11214-022-00898-z

OSIRIS-REx

1. Beshore, Edward, et al., The OSIRIS-REx Asteroid Sample Return Mission,

2015 IEEE Aerospace Conference, 7-14 March 2015.
2. Lauretta, D.S.; Balram-Kutson, S.S.; OSIRIS-Rex: Sample Return from Asteroid (101955) Bennu, Space Sci Rev 212, 925-984 (2017).
3. Olynick, D.; Chen, Y.K.; and Tauber, M.E.: Aerothermodynamics of the Stardust Sample Return Capsule. Journal of Spacecraft and Rockets, Vol. 36, No 3, May-Jun 1999, pp 442-462.
4. AIAA-2007-2546 Stardust Parachute Trajectory Performance Reconstruction (for PRS system sizing only).

MARS 2020

1. Karlgaard, C., et al, "Mars Entry, Descent, and Landings Instrumentation 2

Trajectory, Aerodynamics, and Atmosphere Reconstruction," AIAA SciTech 2022,
AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA
2022-0423)
2. White, T., et al, "Mars Entry Instrumentation Flight Data and Mars 2020 Entry

Environments" AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics
Conference, San Diego, CA, 2022. (AIAA 2022-0011)
3. Way, D., et al, "Assessment of the Mars 2020 Entry, Descent, and Landing Simulation" AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA 2022-0421)
4. Dutta, S., et al, "Post-flight Analysis of Atmospheric Properties from Mars 2020

Entry, Descent, and Landing", AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA 2022-0422)

LOFTID

1. Dillman, R.A., DiNonno, J.M., Bodkin, R.J., Hughes, S.J., Cheatwood, F.M.,

Blakeley, H., Akamine, R.L., and Bowes, A., "Planned Orbital Flight Test of a 6 m HIAD," 15th International Planetary Probe Workshop, Boulder, CO, 2018
2. Swanson, G., Smith, B., Akamine, R., Bodkin, R.J., Cheatwood, N., Hughes, S., Gaddy, D., Chan, P., and Parker, A., "The HIAD Orbital Flight Demonstration Instrumentation Suite," 15th International Planetary Probe Workshop, Boulder, CO, 2018.
3. Hughes, S., Cheatwood, N., Swanson, G., Kazemba, C., Lindell, M., Tobin, S., Bodkin, R.J., Dillman, R., DiNonno, J., and Johnson, K., "Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) - Aeroshell System Overview," 16th International Planetary Probe Workshop, Oxford, UK, 2019.
4. Swanson, G., Kazemba, C., Hughes, S., Williams, J., Johnson, K., Lindell, M., Bodkin, R.J., DiNonno, J., and Cheatwood, N., "Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) - Aeroshell Engineering Development Unit
Structural Testing," 16th International Planetary Probe Workshop, Oxford, UK, 2019.

ARTEMIS I

References will be supplied in a future release.

[^0]: -16 -

[^1]: $-36-$

