National Aeronautics and Space Administration

Planetary Mission Entry Vehicles QUICK REFERENCE GUIDE | VERSION 4.1

NASA AMES RESEARCH CENTER

ENTRY SYSTEMS AND TECHNOLOGY DIVISION

NASA/SP-20230010341

PLANETARY MISSION ENTRY VEHICLES Quick Reference Guide Version 4.1

Content Editors: Kayla Parcero, AMA Inc. Gary Allen, AMA Inc. Parachute Editor: Al Witkowski, Katabasis Aerospace, LLC

Production Editors: Sharon McKee, NASA Ames Leah Torres, AMA Inc.

Original Content Editor

2002: Carol Davies, ELORET Corporation

Cover Photograph: Compliments of Advanced Concepts Lab (ACL), NASA Langley

Version 4.1: This version adds the Phoenix, InSIGHT, LOFTID and Artemis I missions and updates data entries to the missions from previous versions with corrected and/or added data.

To all those who have contributed to either previous versions of the "Blue Book" or have volunteered to send in information to our current release, thank you. Without the support of our community, this book would not be possible.

NASA STI Program

.

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA'S STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
 - TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
 - CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.
 English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- E-mail your question to <u>help@sti.nasa.gov</u>
- Phone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

Planetary Mission Entry Vehicles

QUICK REFERENCE GUIDE VERSION 4.1

NASA AMES RESEARCH CENTER

ENTRY SYSTEMS AND TECHNOLOGY DIVISION

— i —

Back in the era before ubiquitous portable electronics with instantaneous access to all the world's information at a fingertip, one had to rely on dead-reckoning to compare new concepts with historical analogs. This effect permeated all our endeavors and certainly so in the niche world of planetary entry vehicles. So, it was in the days of designing the Stardust return capsule that in meetings, more often than not, someone would ask, "how does this <heat rate, cone angle, g-load...> compare to <Apollo, Viking, Galileo...>?" Thus was born V1 of the Planetary Mission Entry Vehicles Quick Reference Guide, thereafter, dubbed the "Probe Blue Book," containing the high-level characteristics of past entry systems and easily tucked into a daily planner, notebook, or other carry-along work aid.

Now that cell phones with global internet access are here, seemingly the era of the Probe Blue Book has passed. Yet ironically, we now suffer too much information. To obtain that one useful, comparative number becomes an exercise of selecting judicious search terms then reconciling conflicting results. Persisting in its convenient form and function, this 4th version contains an expanded set of missions as well as additional information on each mission. Inevitably, there are ambiguities and uncertainties in the data contained herein. There are often differences between design vs. construction, nominal vs. upper limit, and directly measured vs. inferred. In general, preference is given to best estimates of as-built construction and as-flown conditions. In some cases, references are cited. In other cases, the editors made best estimates. In all cases, an attempt is made to state the provenance of the listed value. References are included as an entry point into the publication record.

The editors would be appreciative of suggested corrections or clarifications to improve future versions of the guide. While it must be acknowledged that an Entry Vehicle is merely a tool (usually disposable!) toward achieving a greater goal of scientific discovery or expanding human presence, still there is excitement in the vehicle itself; our own shooting star containing and preserving the wishes of our collective human enterprise of discovery.

Dean Kontinos Chief Engineer NASA Ames Research Center

— ii —

Explanation of data types:

Best-estimated: Derived from information on the as-built and as-flown spacecraft configuration and mission. These values are based on any available flight telemetry along with Best-Estimated Trajectory (BET) and follow-on simulation data.

Design: Derived from information from spacecraft project design documents. These may deviate from what a best-estimated value would be due to design unknowns and conservatisms.

Editor's Estimate: Derived from editor research and simulations, where design information is unavailable or in conflict. This is a credible engineering estimate.

Explanation of symbols used for each data type:

Geometry	Aerothermal	TPS	Parachutes
Use 123 for Best-estimated	Use 123 for Best-estimated	Use 123 for Best-estimated	Use 123 for Best-estimated
[123] for design	[123] for design	[123] for design	[123] for design
~123 for editor's estimate	~123 for editor's estimate	~123 for editor's estimate	~123 for editor's estimate
		Use (1), (2), (3) to designate multiple materials	Use (1), (2), (3) to indicate multiple parachute stages, as per Table 3 of AIAA 2006- 6792

— iii —

Table of Contents

LAUNCH DATE PAGE

FIREII	MAY 19651
Apollo AS-201	FEB 1966 2
Apollo AS-202	. AUG 19663
Apollo 4	. NOV 19674
Apollo 6	APR 19685
Reentry F	. APR 19686
PAET	. JUN 19717
Viking Lander 1	. AUG 19758
Viking Lander 2	. SEP 19759
Pioneer-Venus: "North Probe"	. AUG 197810
Pioneer-Venus: "Night Probe"	. AUG 197811
Pioneer-Venus: "Day Probe"	. AUG 197812
Pioneer-Venus: "Sounder Probe"	. AUG 197813
Galileo	. OCT 198914
OREX	FEB 1994 15
Pathfinder	DEC 199616
Mirka	. OCT 199717
Huygens	OCT 199718
ARD	OCT 199819
Deep Space 2	. JAN 1999 20
Stardust	. FEB 1999 21

MISSION	LAUNCH DATE	PAGE
Genesis	SEP 2001	22
Hayabusa	MAY 2003	23
Beagle 2	JUN 2003	24
Mars Exploration Rovers	JUN 2003	25
Phoenix	AUG 2009	26
MSL	NOV 2011	27
IRVE	JUL 2012	28
Hayabusa 2	DEC 2014	29
Exploration Flight Test-1	DEC 2014	30
ExoMars 2016	MAR 2016	31
OSIRIS-REx	SEP 2016	32
InSight	MAY 2018	33
Mars2020	JUL 2020	34
LOFTID	NOV 2022	35
Artemis I	NOV 2022	36

Appendix 1: List of Space Vehicles and Missions.	37
Appendix 2: Definitions	37
Appendix 3: Unit Conversion Factors	39
Appendix 4: References	39

— iv —

MISSION: FIRE II PLANET: EARTH LAUNCH: MAY 22, 1965 ENTRY: MAY 22, 1965

MISSION DESCRIPTION: Pile driver flight test of a scaled Apollo CM geometry to measure reentry heating environment. Launched with Atlas D LV then pile driven into atmosphere to high speed with Antares II-A5 rocket motor.

INSTRUMENTATION: 3 forebody calorimeters, 11 forebody thermocouples, 12 offset radiometer thermocouples and one static pressure transducer on the afterbody.

NOTES: This aerothermal flight test was to evaluate radiative heating for Apollo. The reentry package consisted of three nested phenolic-asbestos heatshields sandwiched between three beryllium calorimeters that ablated or melted away, therefore the mass and OML changed with time.

Trajec	ctory	Geo	metry	F	Aero/thermal		TPS	Parachut	es
Entry angle	Inertial: -14.24°	Shape	spherical section	Velocity at peak heat	10.2 km/s	Forebody material designation	See note above	Туре	N/A
Entry velocity: inertial & relative	Inertial: 11.74 km/s Relative: 11.35 km/s	Nose radius	0.935 m 0.805 m 0.702 m	Peak convective heating	~920 W/cm ²	Forebody thickness & mass	0.3 cm	Deployment method	N/A
Trim L/D (specify trim α)	0° (spin stabilized)	Base area	0.354 m² 0.312 m² 0.271 m²	Peak radiative heating	~350 W/cm² (.24µ) implying ~650 total Traj value 487 W/cm²		Fore: ablated and melted Aft: ablated	Reference diameter / area	N/A
Control method	Ballistic, spin stabilized	Vehicle mass	86.57 kg	Integrated total heatload	16136 W/cm ²	TPS Integration method	Nested/ layered TPS	Deployment Mach	N/A
Ballistic co-eff.	164.1 kg/m²	Payload mass	N/A	PH stag. pressure	1.046 atm	Aftbody material designation	Phenolic-asbestos and silicon elastomer	Deployment dynamic pressure	N/A
Peak deceleration	~77.2 g	TPS mass fraction, inc. insul.		Peak stag. heating rate	1339 W/cm ²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: APOLLO AS-201 PLANET: EARTH LAUNCH: FEB 26, 1966 ENTRY: FEB 26, 1966

MISSION DESCRIPTION: First unmanned suborbital flight to test the Saturn 1B launch vehicle, and the command and service modules.

INSTRUMENTATION: 36 pressure sensors all worked; 35 calorimeters worked initially.

NOTES: TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm; Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm Peak heating is not at stagnation point. Manufacturer: AVCO Corp.

Trajec	Trajectory		netry	Aero/th	ermal		TPS		Parachutes
Entry angle	Inertial: -8.58° Relative: -9.03°	Shape	Capsule: 33° cone	Velocity at peak heat	5.73 km/s	Forebody material designation	Avco 5026-39 HC	Туре	(1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial & relative	Relative: 7.67 km/s	Nose radius	4.69 m, 3 m effective	Peak convective heating	186 W/cm² at peak	Forebody thickness & mass	Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO)=5.08 cm	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	-19.7° < α < 21.3°	Base area	12.02 m²	Peak radiative heating	0 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.
Control method	No control: rolled	Vehicle mass	5027.48 kg	Integrated total heatload	7600 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled w/ablative compound	Deployment Mach	~0.7
Ballistic co-eff.		Payload mass	N/A	PH stag. pressure	0.85 atm	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration	14.3 g	TPS mass fraction, inc. insul.	13.7%	Peak stag. heating rate	186 W/cm² at peak	Aftbody thickness & mass		Parachute materials	

MISSION: APOLLO AS-202 (APOLLO-3)

PLANET: EARTH LAUNCH: AUG 25, 1966 ENTRY: AUG 25, 1966

MISSION DESCRIPTION: Second unmanned suborbital flight to test the Saturn 1B launch vehicle, and the command and service modules.

15-7 MO) = 5.08 cm. Insulation: (TG-15000) = 2.03 cm, aluminum honeycomb

(2014-T6 and 5052-H39) = 3.81 cm Manufacture: AVCO Corp.

		0								
Tra	ajectory	Geo	metry	Aero/the	mal		TPS		Parachutes	
Entry angle	Inertial -3.57° Relative -3.74° Entry altitude 121.67 km	Shape	Capsule 33°cone	Velocity at peak heat	7.94 km/s	Forebody material designation	Avco 5026-39 HC	Туре	 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes 	
Entry velocity: inertial & relative	Inertial: 8.75° km/s Relative: 8.35 km/s	Nose radius	4.59 m, 3 m effective	Peak convective heating	59.2 W/cm² at peak	Forebody thickness & mass	Ablator = 4.32 cm braised stainless- steel substructure (PH 15-7 MO) = 5.08 cm	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute	
Trim L/D (specify trim α)	0.372 Avg. Resultant L/D	Base area	12.2 m²	Peak radiative heating	0 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.	
Control method	Roll modulation	Vehicle mass	5424.51 kg	Integrated total heatload	18789 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~0.7	
Ballistic co-eff.	N/A	Payload mass	Apollo CM test flight	PH stag. pressure	0.11 atm	Aftbody material designation		Deployment dynamic pressure		
Peak deceleration		TPS mass fraction, inc. insul.	13.7%	Peak stag. heating rate	59.2 W/cm² at peak	Aftbody thickness & mass		Parachute materials		

MISSION: APOLLO AS-501 (APOLLO-4)

PLANET: EARTH LAUNCH: NOV 9, 1967 ENTRY: NOV 9, 1967

MISSION DESCRIPTION: Test of Saturn V launch vehicle and overall reentry operations.

INSTRUMENTATION: 17 pressure sensors all worked, and 23 calorimeters worked initially. Radiometer functioned well.

NOTES: TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm. Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm Manufacturer: AVCO Corp.

Tra	ajectory	Geom	netry	Aero/the	ermal		TPS		Parachutes
Entry angle	Inertial -6.93 Relative-7.19° Entry altitude 121.92 km	Shape	Capsule: 33° cone	Velocity at peak heat	10.04 km/s	Forebody material designation	Avco 5026-39 HC	Туре	 (1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial & relative	Inertial: 11.14 km/s Relative: 10.73 km/s	Nose radius	4.66 m, 3 m effective	Peak convective heating	219 W/cm²	Forebody thickness & mass	TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	0.37 < L/D < 0.44 24° < α <28°	Base area	12.08 m²	Peak radiative heating	317 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.
Control method	Roll modulation	Vehicle mass	5424.5 kg	Integrated total heatload	24122 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~0.7
Ballistic co- eff.	~340 kg/m²	Payload mass	N/A	PH stag. pressure	0.542 atm	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration	8.79 g	TPS mass fraction, inc insul	13.7%	Peak stag. heating rate	527 W/cm² peak	Aftbody thickness & mass		Parachute materials	

3.62 m -.196R 23B 3.91 • 1.06 m 4.69R

MISSION: APOLLO AS-502 (APOLLO-6)

PLANET: EARTH LAUNCH: APR 4, 1968 ENTRY: APR 4, 1968

MISSION DESCRIPTION: Final qualification test for launch vehicle and command module for manned mission.

INSTRUMENTATION:

NOTES: TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm Insulation: (TG-15,000) = 2.03 cm, aluminum honeycomb (2014-T6 and 5052-H39) = 3.81 cm. Manufacture: AVCO Corp Saturn-V malfunctioned causing the CM to follow a spurious return trajectory.

Tr	ajectory	Geo	ometry	Aero/thermal			TPS		Parachutes
Entry angle	Inertial: -5.9°	Shape	Capsule: 33° cone	Velocity at peak heat	8.32 km/s	Forebody material designation	Avco 5026-39 HC	Туре	 (1) 2 conical ribbon drogue parachutes, (2) 3 ringshot pilot parachutes, (3) 3 ringsail main parachutes
Entry velocity: inertial & relative	Inertial: 10.00 km/s Relative: 9.60 km/s	Nose radius	4.69 m, 3 m effective	Peak convective heating	197 W/cm²	Forebody thickness & mass	TPS thickness: Ablator = 4.32 cm, braised stainless-steel substructure (PH 15-7 MO) = 5.08 cm	Deployment method	(1) mortar (2) drogue parachute (3) pilot parachute
Trim L/D (specify trim α)	0.35 < L/D <0.4 24°< α <28°	Base area	12.02 m²	Peak radiative heating	43 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 4.9 m dia. (2) 2.2 m dia. (3) 25.5 m dia.
Control method	Roll modulation	Vehicle mass	5424.9 kg	Integrated total heatload	32000 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~0.7
Ballistic co-eff.	395.8 kg/m²	Payload mass	N/A	PH stag. pressure	0.354 atm	Aftbody material designation		Deployment dynamic pressure	
Peak de- celeration		TPS mass fraction, inc insul	13.7%	Peak stag. heating rate	240 W/cm² peak	Aftbody thickness & mass		Parachute materials	

MISSION: REENTRY F PLANET: EARTH LAUNCH: APR 27, 1968 ENTRY: APR 27, 1968

MISSION DESCRIPTION: To measure turbulent heating rates and transition onset in a flight environment.

INSTRUMENTATION: Multiple thermocouples and pressure sensors at 21 stations on cone, 4 heat-flux gauges and 2 pressure gauges on base. 3 thermocouples in nose-tip assembly.

NOTES: Nose-tip heating rate is not relevant for this flight, which was designed to measure heating on a sharp cone. The nose tip was meant to ablate during entry 3. The beryllium heat shield melted for ~40 seconds after entry.

Traje	ctory	Geor	netry	Aero/th	nermal	TF	PS	Parachutes	5
Entry angle	-20.78°	Shape	5° half cone, 3.962 m long	Velocity at peak heat	5.47 km/s	Forebody material designation	Nose-tip: ATJ graphite Body: beryllium	Туре	N/A
Entry velocity: inertial & relative	Inertial: 6.28 km/s Relative: 5.96 km/s	Nose radius	0.254 cm	Peak convective heating	32 W/cm²	Forebody thickness & mass	Be: 1.524 cm	Deployment method	N/A
Trim L/D (specify trim α)	0° ballistic	Base area	0.3772 m²	Peak radiative heating	~0 W/cm ²	Ablating Ejected	Nose-tip: yes Ejected: no	Reference diameter / area	N/A
Control method	N/A	Vehicle mass	272 kg	Integrated total heatload		TPS integration method		Deployment Mach	N/A
Ballistic co- eff.	~50000 kg/m²	Payload mass	N/A	PH stag. pressure	250 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration		TPS mass fraction, inc. insul.		Peak stag. heating rate	32 W/cm ²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: PAET PLANET: EARTH LAUNCH: JUL 2, 1971 ENTRY: JUL 2, 1971

Shadowgraph of PAET Model in Ballistic Range Test **MISSION DESCRIPTION:** To test the capability to determine the composition of unknown atmospheres during high-speed entry.

INSTRUMENTATION: Multiple thermocouples and pressure sensors at 21 stations on cone, 4 heat-flux gauges and 2 pressure gauges on base. 3 thermocouples in nose-tip assembly.

NOTES:

Traje	ectory	Geo	ometry	Aero/t	hermal		TPS	Parachu	ites
Entry angle	Relative: -41° Inertial: -38.98° 93 km altitude	Shape	Blunt-nose, 55° half- cone angle	Velocity at peak heat	5.7 km/s	Forebody material designation	Nose: Beryllium heatsink Conical frustum: ESA 3560 ablator	Туре	N/A
Entry velocity: inertial & relative	Inertial: 6.88 km/s Relative: 6.66 km/s	Nose radius	0.457 m	Peak convective heating	~228 W/cm²	Forebody thickness & mass	Nose: 1-2.5 cm Conical frustum: 0.76 cm	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.66 m²	Peak radiative heating	Negligible	Ablating Ejected	Frustum ablated Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	62.1 kg	Integrated total heatload	Stag. pt. 1982 J/cm ²	TPS integration method	None (solid Be)	Deployment Mach	N/A
Ballistic co-eff.	68.4 kg/m²	Payload mass	14 kg	PH stag. pressure	0.60 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	76 g	TPS mass fraction, inc. insul.	Forebody: 13.7% Afterbody: 3.5%	Peak stag. heating rate	Max: 228 W/cm² (no ablation)	Aftbody thickness & mass		Parachute materials	N/A

MISSION: VIKING LANDER 1 PLANET: MARS LAUNCH: AUG 20, 1975 ENTRY: JUL 20, 1976

MISSION DESCRIPTION: To characterize the structure and composition of the atmosphere and surface of Mars.

INSTRUMENTATION: The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples. There was one pressure port off stagnation point and one on the base cover. Temperature gauges were on the back face and on both backshell frustums.

NOTES: Resin Material: silicone elastomer with glass microspheres and cork; Matrix material: fiberglass-phenolic honeycomb. RCS was used to maintain trim angle of attack.

	Trajectory	Geometry		Aero/th	ermal		TPS	Par	achutes
Entry angle	Inertial: -17.00° Relative: -17.76° Entry altitude 242.8 km	Shape	70° sphere -cone	Velocity at peak heat	4.06 km/s	Forebody material designation	SLA561-V	Туре	Single DGB parachute
Entry velocity: inertial & relative	Inertial: 4.610 km/s Relative: 4.418 km/s	Nose radius	0.8763 m	Peak convective heating	21.1 W/cm²	Forebody thickness & mass	Variable: (max) 1.38 cm	Deployment method	Main parachute directly deployed by 15 in. diameter mortar
Trim L/D (specify trim α)	α = -11.1°	Base area	9.84 m²	Peak radiative heating	0	Ablating Ejected	Ablator-pyrolyzed Ejected: yes	Reference diameter / area	16.2 m dia.
Control method	3-axis RCS rate limiting	Vehicle mass	982.9 kg	Integrated total heatload	~1001 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~1.1
Ballistic co-eff.	At peak dyn. p.: 60.41 kg/m²	Payload mass	N/A	Peak heating stag. pressure	0.06 atm	Aftbody material designation	Inner cone: laminated glass fabric/phenolic resin; outer cone: aluminum	Deployment dynamic pressure	~380 Pa
Peak deceleration	~6.86 g	TPS mass fraction, inc. insul.	2.8%	Peak stag. heating rate	Peak: 21.1 W/cm²	Aftbody thickness & mass		Parachute materials	Dacron

- 8 -

MISSION: VIKING LANDER 2 PLANET: MARS LAUNCH: SEP 9, 1975 ENTRY: SEP 3, 1976

MISSION DESCRIPTION: To characterize the structure and composition of the atmosphere and surface of Mars.

INSTRUMENTATION: The forebody aeroshell was not instrumented, but the wake enclosure (backshell) had thermocouples. There was one pressure port off stagnation point and one on the base cover. Temperature gauges were on the back face and on both backshell frustums.

.88R

NOTES: Resin material: silicone elastomer with glass microspheres and cork. Matrix material: fiberglass-phenolic honeycomb. RCS was used to maintain trim angle of attack.

	Trajectory	Geo	ometry	Aero/the	ermal		TPS	Pa	rachutes
Entry angle	Inertial: -17.08° Relative: -17.62° Entry altitude 240.99 km	Shape	Blunt-nosed 70° half cone	Velocity at peak heat	4.1 km/s	Forebody material designation	SLA561-V	Туре	Single GBD parachute
Entry velocity: inertial & relative	Inertial: 4.61 km/s Relative: 4.48 km/s	Nose radius	0.876 m	Peak convective heating	~21.95 W/cm²	Forebody thickness & mass	Variable: (max) 1.38 cm	Deployment method	Main parachute directly deployed by 15 in. diameter mortar
Trim L/D (specify trim α)	0.18 at α = -11.3°	Base area	9.84 m²	Peak radiative heating	0	Ablating Ejected	Ablator-pyrolyzed Ejected: yes	Reference diameter / area	16.2 m dia.
Control method	3-axis RCS rate limiting	Vehicle mass	981.6 kg	Integrated total heatload	~1043 J/cm²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	~1.1
Ballistic co-eff.	61.44 kg/m²	Payload mass	N/A	PH stag. pressure	~0.041 atm	Aftbody material designation	Inner cone: laminated glass fabric/phenolic resin; outer cone: aluminum	Deployment dynamic pressure	~408 pa
Peak deceleration	~7.2 g trajectory ~8.5 g chute snap	TPS mass fraction, inc insul	2.8%	Peak stag. heating rate	Max: 21.95 W/cm²	Aftbody thickness & mass		Parachute materials	Dacron

MISSION: PIONEER-VENUS: SMALL 'NORTH PROBE'

PLANET: VENUS LAUNCH: AUG 8, 1978 ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: A 60° N day entry to map atmosphere, including characterizing wind and turbulence.

INSTRUMENTATION: Thermocouples: one at 17 $^{\circ}$ off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heat-shield surface) at s/Rn = 2.2.

NOTES: Heating rates and loads are based on Tauber correlations in radiative equilibrium (very model sensitive). Pioneer-Venus "North Probe" experienced 466 g which was greatest for a successful probe.

Т	rajectory	Geo	ometry	Aero/th	ermal		TPS	Parachu	tes
Entry angle	Inertial & Relative: -68.74° @ 200 km	Shape	Blunt-nosed, 45° half- cone angle	Velocity at peak heat	10.83 km/s	Forebody material designation	Carbon-phenolic FM 5055	Туре	N/A
Entry velocity: inertial & relative	Inertial & Relative: 11.54 km/s	Nose radius	0.19 m	Peak convective heating	~3085 W/cm²	Forebody thickness & mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.46 m²	Peak radiative heating	~3273 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	Integrated total heatload	At stag. pt ~10502 J/cm ²	TPS integration method	Nose: chopped molded; conical section: tape- wrapped	Deployment Mach	N/A
Ballistic co-eff.	190 kg/m²	Payload mass	3.60 kg	Peak heating stag. pressure	~16.5 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	465.9 g	TPS mass fraction, inc. insul.	12.9%	Peak stag. heating rate	6150 W/cm²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: SMALL 'NIGHT PROBE'

PLANET: VENUS LAUNCH: AUG 8, 1978 ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: To map the atmosphere, including temperature and pressure, from a night side entry.

INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heat-shield surface) at s/Rn = 2.2.

NOTES: Heating rates and loads are probably for non-ablating conditions.

Ti	ajectory	Ge	ometry	Aero/	thermal		TPS	Parachute	es
Entry angle	Inertial & Relative: -41.50° @ 200 km	Shape	Blunt-nosed, 45.2° half- cone angle	Velocity at peak heat	~10.79 km/s	Forebody material designation	Carbon-phenolic FM 5055	Туре	N/A
Entry velocity: Inertial & Relative	Inertial & Relative: 11.54	Nose radius	0.19 m	Peak convective heating	~2743 W/cm²	Forebody thickness & mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.46 m²	Peak radiative heating	~2330 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	Integrated total heatload	At stag.pt ~11413 J/cm²	TPS integration method	Nose: chopped molded; conical section: tape- wrapped	Deployment Mach	N/A
Ballistic co-eff.	190 kg/m²	Payload mass	3.60 kg	Peak heating stag. pressure	~4.9 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	353.7 g	TPS mass fraction, inc. insul.	12.9%	Peak stag. heating rate	~4906 W/cm²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: SMALL 'DAY PROBE'

PLANET: VENUS LAUNCH: AUG 8, 1978 ENTRY: : DEC 9, 1978

MISSION DESCRIPTION: To map the atmosphere, including radiative energy, from a day side entry.

INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heat-shield surface) at s/Rn = 2.2.

NOTES: Heating rates and loads are probably for non-ablating conditions. Day Probe survived surface impact (accidentally) or 1 hour, 7.58 minutes.

Т	rajectory	Geo	ometry	Aero/the	ermal		TPS	Parach	utes
Entry angle	Inertial: -25.41° Relative: -25.42° @ 200 km	Shape	Blunt-nosed, 45° half- cone angle	Velocity at peak heat	10.68 km/s	Forebody material designation	Carbon-phenolic FM 5055	Туре	N/A
Entry velocity: inertial & relative	Inertial & Relative: 11.54 km/s	Nose radius	0.19 m	0.19 m Peak convective heating		Forebody thickness & mass	1.2 cm at stagnation point	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.46 m²	Peak radiative heating	~1363 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	91 kg	Integrated total heatload	At stag.pt ~13264 J/cm ²	TPS integration method	Nose: chopped molded; conical section: tape-wrapped	Deployment Mach	N/A
Ballistic co-eff.	190 kg/m²	Payload mass	3.60 kg	Peak heating stag. pressure	~8.1 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration	227.7 g	TPS mass fraction, inc. insul.	12.9%	Peak stag. heating rate	3476 W/cm²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: PIONEER-VENUS: LARGE PROBE 'SOUNDER'

PLANET: VENUS LAUNCH: AUG 8, 1978 ENTRY: DEC 9, 1978

MISSION DESCRIPTION: This probe contained 7 experiments, including 1 to measure the atmospheric composition.

INSTRUMENTATION: Thermocouples: one at 17° off stagnation point (0.41 cm below heat-shield surface); another on conical frustum ahead of shoulder (0.30 cm below heat-shield surface) at s/Rn = 2.2.

NOTES: Heating rates and loads are probably for non-ablating conditions. Parachute deployed at 66.46 km to extract probe from heat shield. Parachute detached from probe at 1076 sec after entry Probe impacted surface (signal ended) 3261 sec. after entry.

Ti	ajectory	Ge	eometry	Aero/the	rmal		TPS		Parachutes
Entry angle	Inertial & Relative: -32.37° @ 200 km	Shape	Blunt- nosed, 45° half- cone angle	Velocity at peak heat	10.82 km/s	Forebody material designation	Carbon- phenolic FM 5055	Туре	 (1) Ribless guide surface, 8 gore pilot chute, (2) Conical ribbon, 18 gore main chute
Entry velocity: inertial & relative	Inertial & Relative: 11.54km/s @ 200 km	Nose radius	0.36 m	Peak convective heating	~1813 W/cm²	Forebody thickness & mass	1.60 cm at stagnation point	Deployment method	(1) Mortar (2) Pilot chute
Trim L/D (specify trim α)	0	Base area	1.59 m²	Peak radiative heating	~2468 W/cm²	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	(1) 0.76 m dia. (CdA=0.37 m²) (2) 4.94 m dia. (CdA=10.4 m²)
Control method	Ballistic	Vehicle mass	316.483 kg	Integrated total heatload	At stag.pt ~11305 J/cm²	TPS integration method	Nose: chopped molded; conical section: tape- wrapped	Deployment Mach	~0.82
Ballistic co-eff.	189.7 kg/m²	Payload mass	Science instr. 29.15 kg (9.2%)	Peak heating stag. pressure	~10.2 atm	Aftbody material designation		Deployment dynamic pressure	~3287 pa
Peak deceleration	286.4 g	TPS mass fraction inc insu	Forebody: 8.83% Aft cover:1.52%	Peak stag. heating rate	4145 W/cm	Aftbody thickness & mass		Parachute materials	(1) Dacron 1.25 oz/yd² (2) Dacron 2.25 oz/yd²

MISSION: GALILEO PLANET: JUPITER LAUNCH: OCT 18, 1989 ENTRY: DEC 7, 1995

MISSION DESCRIPTION: To descend into the Jovian atmosphere, collect atmospheric data and relay to the orbiter.

INSTRUMENTATION: Forebody TPS: ablation recession gauges. Afterbody TPS: thermocouples in the nylon phenolic. Galileo was the most difficult entry in the history of space exportation. Attempts to model Galileo's entry are little more than educated guesses with many phenomena poorly understood.

NOTES: Reported CG estimates varied widely. "Blockage" refers to reduction in outer wall heating due to ablation effects.

Т	rajectory	G	Geometry	Aer	o/thermal	· · · · · · · · · · · · · · · · · · ·	TPS		Parachutes
Entry angle	Inertial: -6.65° Relative: -8.41° @ 450 km	Shape	Blunt-nosed 44.86° half- cone angle	Velocity at peak heat	39.4 km/s	Forebody material designation	Carbon- phenolic	Туре	(1) Pilot: 20° conic ribbon (2) Main: 20° conic ribbon
Entry velocity: inertial & relative	Inertial: 59.83 km/s Relative: 47.41 km/s	Nose radius	0.222 m	Peak convective heating		Forebody thickness & mass	14.6 cm at stagnation	Deployment method	(1) Mortar launched with aft cover (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	1.26 m²	Peak radiative heating	~38055 W/cm ² [unblocked] ~16272 W/cm ² [blocked]	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	(1) 1.14 m dia. (CdA=0.51 m² (2) 3.8 m dia. (CdA=5.46 m²)
Control method	Ballistic	Vehicle mass	At entry: 338.93 kg	Integrated total heatload	~210826 J/cm² with ablation	TPS integration method	Nose: chopped molded; conical section: tape- wrapped	Deployment Mach	g-switch malfunctioned; chute deployed at 16.6 km above one bar altitude
Ballistic co-eff.	~267.6 kg/m²	Payload mass	Science 8.3%	PH stag. pressure	7.55 atm	Aftbody material designation	Phenolic-nylon	Deployment dynamic pressure	See above
Peak deceleration	~228 g	TPS mass fraction, inc. insul.	Forebody: 45.4% Afterbody: 5%	Peak stag. heating rate	16858 W/cm ² [unblocked] 3286 W/cm ² [blocked]	Aftbody thickness & mass		Parachute materials	Dacron

MISSION: OREX PLANET: EARTH RETURN LAUNCH: FEB 4, 1994 ENTRY: FEB 4, 1994

MISSION DESCRIPTION: To collect information on the design of a reentry vehicle to support Japanese unmanned space shuttle HOPE.

INSTRUMENTATION: Wall catalycity measurement, electrostatic probe, and heat shield temperature sensors.

NOTES: RCS was used to maintain a trim angle of attack of zero.

Trajeo	ctory	Geo	metry	Aero/th	nermal	TP	S	Parachute	es
Entry angle	Relative -3.17°	Shape	50° sphere- cone	Velocity at peak heat	6.4 km/s	Forebody material designation	Si Coated C-C for nose	Туре	N/A
Entry velocity: inertial & relative	Inertial: 7.8 km/s Relative: 7.43 km/s	Nose radius	1.35 m	Peak convective heating	51 W/cm ²	Forebody thickness & mass	4 cm	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	9.08 m²	Peak radiative heating	0	Ablating Ejected	Ablated: no Ejected: no	Reference diameter / area	N/A
Control method	RCS	Vehicle mass	761 kg at entry	Integrated total heatload		TPS integration method	Tiled	Deployment Mach	N/A
Ballistic co-eff.	56 kg/m²	Payload mass	N/A	PH stag. pressure	0.078 atm	Aftbody material designation		Deployment dynamic pressure	N/A
Peak deceleration		TPS mass fraction, inc. insul.	N/A	Peak stag. heating rate	51 W/cm ²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: MARS PATHFINDER PLANET: MARS LAUNCH: DEC 4, 1996 ENTRY: JUNE 4, 1997

MISSION DESCRIPTION: To demonstrate a simple, low-cost system for placing a science payload on the surface of Mars.

INSTRUMENTATION: TPS instrumented with thermocouples only Rover called "Sojourner".

NOTES: Spin stabilized.

Tr	ajectory	G	eometry	Aero	o/thermal		TPS	Parac	hutes
Entry angle	Inertial -14.06° @ 130.86 km	Shape	70° sphere-cone	Velocity at peak heat	Relative: 6.62 km/s	Forebody material designation	SLA-561 V	Туре	DGB
Entry velocity: inertial & relative	Inertial: 7.26 km/s Relative: 7.48 km/s	Nose radius	0.66 m	Peak convective heating	100.69 W/cm²	Forebody thickness & mass	1.9 cm	Deployment method	Mortar fired
Trim L/D (specify trim α)	Ballistic (0° average)	Base area	5.51 m²	Peak radiative heating	~5.27 W/cm ² (with ablation)	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	12.7 m
Control method	Ballistic	Vehicle mass	At entry: 585.3 kg	Integrated total heatload	~3834 J/cm² with ablation	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	1.71
Ballistic co-eff.	At peak dyn. p.: ~61.5 kg/m²	Payload mass	N/A	PH stag. pressure	~0.19 atm	Aftbody material designation	SLA-561S	Deployment dynamic pressure	588 Pa
Peak deceleration	16 g	TPS mass fraction, inc. insul.	Forebody 6.2% Backshell 2%	Peak stag. heating rate	105.96 W/cm²	Aftbody thickness & mass	1.27 cm	Parachute materials	Nylon, polyester, Kevlar

MISSION: MIRKA PLANET: EARTH LAUNCH: NOV 9, 1997 ENTRY: NOV 23, 1997

MISSION DESCRIPTION: To qualify a reentry heatshield concept, to assess and validate relevant gas-surface-interactions models, and to assess tumbling processes with scientific and engineering experiments conducted by German researchers.

INSTRUMENTATION: 3 acceleration sensors, 3 angular rate sensors, 24 thermocouples, RAFLEX (pressure, temperature & heat flux sensors) and PYREX (pyrometric temperature measurements).

NOTES: CFRP: Carbon Fiber Reinforced Plastics. SPA: Surface Protected Ablator. This was the first successful Western European reentry mission.

	Trajectory	Geo	ometry	Aero/th	ermal		TPS	Parach	utes
Entry angle	Relative: -2.51°	Shape	Spherical 1 m diameter	Velocity at peak heat	6.51 km/s	Forebody material designation	CFRP: carbon fiber reinforced plastics SPA: surface protected ablator and fiber ceramic cover	Туре	unknown
Entry velocity: inertial & relative	Inertial: separation Velocity: 7.3 km/s Relative: 7.6 km/s at 120 km	Nose radius	0.5 m	Peak convectiv e heating	120 W/cm²	Forebody thickness & mass	Front: 3 cm Back: 2 cm	Deployment method	
Trim L/D (specify trim α)	0	Base area	0.785 m²	Peak radiative heating	0	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	
Control method	Ballistic	Vehicle mass	154 kg	Integrated total heatload	12000 J/cm²	TPS integration method		Deployment Mach	
Ballistic co-eff.	214 kg/m³	Payload mass	N/A	PH stag. pressure	0.178 atm	Aftbody material designation		Deployment dynamic pressure	
Peak deceleration		TPS mass fraction, inc. insul.	36%	Peak stag. heating rate	Peak: 120 W/cm²	Aftbody thickness & mass		Parachute materials	

MISSION: HUYGENS PLANET: TITAN (A moon of Saturn) LAUNCH: OCT 15, 1997 ENTRY: JAN 14, 2005

MISSION DESCRIPTION: To explore the atmosphere of Titan.

INSTRUMENTATION: No aeroheating data. A mass spectrometer for atmospheric composition was deployed after the heat shield was ejected.

NOTES: Huygens is a European Space Agency probe that was carried by the Cassini Saturn Orbiter. AQ60 silica fibers reinforced by phenolic resin.

Т	rajectory	Geo	metry	Aero/th	ermal		TPS	Pa	arachutes
Entry angle	Inertial: -65.5° Relative: -65.4°	Shape	60° sphere- cone	Velocity at peak heat	~5.1 km/s	Forebody material designation	AQ60/I	Туре	(1) Pilot: DGB (2) Main: DGB (3) Descent: DGB
Entry velocity: inertial & relative	Inertial: 6.0 km/s @ 1270 km Relative: 6.0 km/s	Nose radius	1.25 m	Peak convective heating	~29.3 W/cm²	Forebody thickness & mass	At stag: 17.4 mm On flank:18.2 mm 39 kg TPS, 76 kg w/ struct.	Deployment method	(1) Mortar (2) Pilot (3) Main
Trim L/D (specify trim α)	0	Base area	5.73 m²	Peak radiative heating	~0 W/cm²	Ablating Ejected	blating Ablated: yes ijected Ejected: yes		(1) 2.59 m dia. (2) 8.31 m dia. (3) 3.03 m dia.
Control method	Ballistic	Vehicle mass	320 kg	Integrated total heatload	~1397 J/cm²	TPS integration method	Tiled	Deployment Mach	(1) 1.46 (2) 1.36 (3) 0.14
Ballistic co-eff.	34.5-37.5 kg/m²	Payload mass	44 kg	PH stag. pressure	0.1 atm	Aftbody material designation	Prosial	Deployment dynamic pressure	(1) 309 Pa (2) 275 Pa (3) 10 Pa
Peak deceleration	12.36 g	TPS mass fraction, inc. insul.	Forebody: 12.2% Aft: 1.64%	Peak stag. heating rate	~29.3 W/cm ² (140W/cm ² design)	Aftbody thickness & mass	0.03-0.31 cm, 5.2 kg TPS, 17 kg w/ struct.	Parachute materials	Nylon fabric Kevlar structurals

— 18 —

MISSION: ARD 'Atmospheric Reentry Demonstrator'

PLANET: EARTH LAUNCH: NOV 21, 1998 ENTRY: NOV 21, 1998

MISSION DESCRIPTION: To undertake a complete space flight cycle for ESA, with emphasis on reentry technologies.

INSTRUMENTATION: The capsule afterbody was instrumented with 7 surfaces pressure sensors, 2 thermal plugs with 2 thermocouples each on the back cover, and 4 surface-mounted copper calorimeters on the cylindrical section. The front cone contained 18 pressure sensors, 14 thermal plugs with 3 or 5 TC each.

NOTES: Aleastril: silica fibers with phenolic resin; Norcoat: cork powder and phenolic resin. 4 experimental Ceramic Matrix Composite (CMC) tiles and samples of Flexible External insulation (FEI).

Trajec	ory	Geo	ometry	Aero/t	hermal	TP	S		Parachutes
Entry angle	-2.6°	Shape	Apollo-like capsule, 33° cone	Velocity at peak heat	7.2 km/s	Forebody material designation	Aleastrasil	Туре	(1) Extraction parachute(2) drogue parachute (3)3 ringsail main parachutes
Entry velocity: Inertial & Relative	Inertial: 7.86 km/s Relative: 7.45 km/s	Nose radius	3.36 m	Peak convective heating	120 W/cm²	Forebody thickness & mass	40-65 mm	Deployment Method	(1) Mortar (2) Extraction parachute (3) Drogue parachute
Trim L/D (specify trim α)	-21.2°	Base area	6.15 m²	Peak radiative heating	~0 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 0.9 m dia. (2) 5.8 m dia. (3) 22.9 m dia.
Control method	RCS: 7 thrusters	Vehicle mass	2715 kg (inc.1017 kg front heat shield)	Integrated total heatload	~24000 J/cm²	TPS integration method	Tiled	Deployment Mach	~0.8
Ballistic co-eff.	~347 kg/m²	Payload mass	N/A	PH stag. pressure	0.22 atm	Aftbody material designation	Norcoat 622-50FI (See note)	Deployment dynamic pressure	
Peak deceleration	~11 g	TPS mass fraction, inc. insul.	23% (626 kg TPS)	Peak stag. heating rate	120 W/cm²	Aftbody thickness & mass	19 mm	Parachute materials	

MISSION: DEEP SPACE 2 PLANET: MARS LAUNCH: JAN 3, 1999 ENTRY: DEC 3, 1999

MISSION DESCRIPTION: To penetrate the Martian surface with two small probes.

INSTRUMENTATION:

NOTES: The DS-2 aeroshells were on the failed Mars Polar Lander. They were to be jettisoned 5 minutes before the lander entered the Martian atmosphere. No signals from the probes were received.

Т	rajectory	G	eometry	Aero/the	ermal		TPS	Parachut	es
Entry angle	Inertial -13.25° @128 km	Shape	45° sphere-cone, spherical aft	Velocity at peak heat	5.94 km/s	Forebody material designation	SIRCA-SPLIT	Туре	N/A
Entry velocity: inertial & relative	Relative: 6.9 km/s	Nose radius	0.0875 m	Peak convective heating	194 W/cm²	Forebody thickness & mass	~1 cm	Deployment method	N/A
Trim L/D (specify trim α)	0	Base area	0.096 m²	Peak radiative heating	N/A	Ablating Ejected	Ablated: Ejected: no	Reference diameter / area	N/A
Control method	Ballistic	Vehicle mass	3.67 kg	Integrated total heatload	8712 J/cm²	TPS integration method	Monolithic	Deployment Mach	N/A
Ballistic co-eff.	36.2 kg/m²	Payload mass	N/A	PH stag. pressure		Aftbody material designation	FRCI: Fibrous refractory composite insulation	Deployment dynamic pressure	N/A
Peak deceleration	12.4 g	TPS mass fraction, inc. insul.	N/A	Peak stag. heating rate	194 W/cm²	Aftbody thickness & mass		Parachute materials	N/A

MISSION: STARDUST PLANET: EARTH RETURN LAUNCH: FEB 7, 1999 ENTRY: JAN 15, 2006

MISSION DESCRIPTION: To collect comet material from Wild 2 and return to Earth.

INSTRUMENTATION: Stardust has the highest successful Earth return velocity. Most heating models breakdown for Stardust. Classic Fay-Riddell is not trustworthy for Stardust.

NOTES: The rendezvous with Wild 2 occurred on Jan 2, 2004. The Stardust capsule made a successful return to Earth on Jan 15, 2006. Engineering methods and CFD disagree for heating rates. Traj. gives at stag. point 762 W/cm² peak total heat rate and 122 W/cm² peak radiative heat rate. Total heat load is 20978 J/cm².

Т	rajectory	G	eometry	Aero/t	hermal	Т	PS	Par	achutes
Entry angle	-8.23° @ 134.4 km	Shape	Blunt-nosed 60° half-angle cone	Velocity at peak heat	11.1 km/s	Forebody material designation	PICA-15	Туре	(1) Pilot: DGB (2) Main: Triconical
Entry velocity: inertial & relative	Inertial: 12.8 km/s Relative: 12.45 km/s	Nose radius	0.23 m	Peak Convective heating	~817 W/cm²	Forebody thickness & mass	5.82 cm	Deployment method	(1) Mortar (2) Pilot pulled
Trim L/D (specify trim α)	0	Base area	0.52 m², 0.50 m² (ablated)	Peak Radiative heating	~71 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 0.83 m dia. (2) 7.3 m dia.
Control method	Ballistic, spin- stabilized at 14.5 rpm	Vehicle mass	45.8 kg	Integrated total heatload	~26210 J/cm²	TPS integration method	PICA: single- piece, direct bonded to substructure with HT-424	Deployment Mach	(1) 1.4m +/- 0.3
Ballistic co-eff.	60.0 kg/m² 60.4 kg/m² (ablated)	Payload mass	N/A	PH stag. pressure	0.22 atm	Aftbody material designation	SLA-561V	Deployment dynamic pressure	(1) 713 Pa
Peak deceleration	32.89 g	TPS mass fraction, inc. insul.	22%	Peak stag. heating rate	~880 W/cm²	Aftbody thickness & mass	Design: 1.397 cm	Parachute materials	Canopy: nylon, Kevlar suspension lines

MISSION: GENESIS PLANET: EARTH RETURN LAUNCH: SEP 8, 2001 ENTRY: SEP 8, 2004

MISSION DESCRIPTION: To collect solar wind particles and return to Earth.

INSTRUMENTATION: Thermosensitive paint strips.

NOTES: The capsule crashed violently into the desert after failing to deploy the drag devices. Despite this mishap, many of the collectors remained intact and most of the mission goals should be accomplished.

Traje	ectory	Geo	metry	Aero/th	ermal		TPS		Parachutes
Entry angle	-8°	Shape	59.81°	Velocity at peak heat	9.2 km/s	Forebody material designation	Carbon-carbon sheet over FiberForm®	Туре	(1) Pilot: DGB (2) Main: Parafoil
Entry velocity: inertial & relative	Inertial: 11.0 km/s Relative: 10.8 km/s	Nose radius	0.43 m	Peak convective heating	670 W/cm²	Forebody thickness & mass	3.8 cm C-C sheet; 2.2 cm carbon FiberForm®	Deployment Method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	1.78 m²	Peak radiative heating	30 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference Diameter / Area	(1) 2.07 m dia. (2) 325 m² area
Control method	Spin-stabilized aero-ballistic	Vehicle mass	210 kg	Integrated total heatload	16600 J/cm²	TPS integration method		Deployment Mach	(2) ~1.4
Ballistic co-eff.	80 kg/m³	Payload mass	N/A	PH stag. pressure	N/A	Aftbody material designation	SLA-561V	Deployment dynamic pressure	N/A
Peak deceleration	~25.7 g	TPS mass fraction, inc. insul.	~18%	Peak stag. heating rate	700 W/cm²	Aftbody thickness & mass		Parachute materials	nylon fabric Kevlar structural

MISSION: HAYABUSA PLANET: EARTH RETURN LAUNCH: MAY 9, 2003 ENTRY: JUL 13, 2007

MISSION DESCRIPTION: To collect samples from asteroid Itokawa (1998SF36) and return to Earth.

INSTRUMENTATION: A one-axis accelerometer for parachute deployment.

NOTES: The mission's name was changed from MUSES-C.

Т	rajectory	Geome	try	Aero/th	ermal	TPS		Para	achutes
Entry angle	-12.79° @199.97 km	Shape	45° sphere- cone	Velocity at peak heat	10.61 km/s	Forebody material designation	Carbon- phenolic	Туре	Cross-type
Entry velocity: inertial & relative	Inertial: 12.04 km/s Relative: 11.65 km/s	Nose radius	0.202 m	Peak convective heating	1050 W/cm²	Forebody thickness & mass	3.0 cm	Deployment method	Mortar fired
Trim L/D (specify trim α)	0	Base area	0.128 m²	Peak radiative heating	264 W/cm²	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	2.8 m²
Control method	none	Vehicle mass	18 kg	Integrated total heatload	23051 J/cm²	TPS integration method	Segmented	Deployment Mach	0.8
Ballistic co-eff.	133.72 kg/m³	Payload mass	1.04 kg	PH stag. pressure	0.63 atm	Aftbody material designation	Carbon- phenolic	Deployment dynamic Pressure	
Peak deceleration	~53.36 g	TPS mass fraction, inc. insul.	43%	Peak stag. heating rate	1314 W/cm²	Aftbody thickness & mass	2 cm	Parachute materials	Canopy: polyester

MISSION: BEAGLE 2 PLANET: MARS LAUNCH: JUN 2, 2003 ENTRY: DEC 25, 2003

MISSION DESCRIPTION: To develop a low-cost, low-mass system for placing an exobiology science payload on Mars. Beagle 2 was transported by the European Space Agency's 2003 Mars Express mission.

INSTRUMENTATION: No TPS instrumentation: axial accelerometers only.

NOTES: Beagle 2 landed on Mars but did not make radio contact and was never operative.

Traj	ectory		Geometry	Aero/t	hermal	٦	TPS	Para	chutes
Entry angle	Inertial: -15.8°	Shape	43.75° truncated conical backshell 60° sphere-cone front shield	Velocity at peak heat	Relative: 4.70 km/s	Forebody material designation	Norcoat-Liege (EADS)	Туре	(1) DGB pilot (2) Ringsail main
Entry velocity: inertial & relative	Inertial: 5.63 km/s Relative: 5.40 km/s	Nose radius	0.417 m	Peak convective heating	72.11 W/cm²	Forebody thickness & mass	8 mm 3.9 kg	Deployment method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	Ballistic (2° average)	Base area	0.67 m²	Peak radiative heating	0.17 W/cm²	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / Area	(1) 3.2 m dia. (2) 10 m dia.
Control method	Ballistic spin- stabilized at 14.2 rpm	Vehicle mass	Entry: 68.84 kg	Integrated total heatload	2449 J/cm²	TPS integration method	Tiled	Deployment Mach	(1) 1.5
Ballistic co-eff.	Peak heat flux: 69.9 kg/m²	Payload mass	11.4 kg (science) (33.2 kg landed)	PH stag. pressure	0.18 atm	Aftbody material designation	Norcoat-Liege (EADS)	Deployment dynamic pressure	(2) 730-750 Pa
Peak deceleration		TPS mass fraction, inc. insul.	Forebody: 9.2% Back shell: 15.2%	Peak stag. heating rate	72.28 W/cm²	Aftbody thickness & mass	3 to 6 mm 2kg	Parachute materials	Nylon, Kevlar

MISSION: MARS EXPLORATION ROVERS 'SPIRIT' AND 'OPPORTUNITY'

PLANET: MARS LAUNCH: JUN 10, 2003 & JUL 7, 2003 ENTRY: JAN 3, 2004 & JAN 24, 2004

MISSION DESCRIPTION: To place two rovers (A and B) on Mars to conduct remote geological investigations including search for past water activity.

-0.539-

.71 m

0.585

NOTES: MER A and MER B are two separate missions, each carrying a rover to Mars. Data here are for MER B, the most severe entry environment. This mission uses an entry aeroshell like that of Pathfinder, however the enclosed rovers are larger than Sojourner and are self-contained. There are 3 TIRS (Transverse Impulse Rocket System) covers made of SIRCA spaced around the backshell.

MISSION: PHOENIX PLANET: MARS LAUNCH: AUG 4, 2011 ENTRY: MAY 5, 2008

MISSION DESCRIPTION: First NASA Scout Mission. Goals: (1) to study the history of water in the Martian artic and (2) search for evidence of habitable zone and assess the biological potential of the ice-soil boundary. **INSTRUMENTATION:** 24 thermocouples, MEADS (Mars Entry Atmospheric Data System) for temperature and isotherm tracking.

NOTES: Entry vehicle originally designed for cancelled Mars Surveyor 2001.

Traje	ectory	Geo	ometry	Aero/the	ermal		TPS	Pa	rachutes
Entry angle	[-13.°]	Shape	2.65 m diameter, 70 deg. sphere cone	Velocity at peak heat	[4.743 km/s]	Forebody Material designation	SLA-561V	Туре	Viking-type DGB
Entry velocity: Inertial & Relative	Inertial: 5.6 km/s	Nose radius	Rn=0.66 m	Peak convective heating	[4.8 W/cm²]	Forebody Thickness & mass		Deployment Method	Mortar
Trim L/D (specify trim α)	0	Base area	0.0995 m²	Peak radiative heating		Ablating Ejected		Reference Diameter / Area	11.8 m dia.
Control method	Non-spinning passive	Vehicle mass	602 kg	Integrated total heatload	[2301 J/cm²]	TPS Integration method		Deployment Mach	1.74
Ballistic co-eff.	65 kg/m²	Payload mass	59 kg	PH stag. pressure		Aftbody material designation	SLA-561S on cone, SLA-561V on parachute cover	Deployment dynamic pressure	489.3 Pa
Peak deceleration	[9.3 Earth G's]	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness & mass		Parachute materials	Nylon canopy, Kevlar structural members

MISSION: MARS SCIENCE LABORATORY (MSL)

PLANET: MARS LAUNCH: NOV 26, 2011 ENTRY: AUG 6, 2012

MISSION DESCRIPTION: To determine if Mars was ever able to support microbial life.

INSTRUMENTATION: 24 thermocouples, MEADS (Mars Entry Atmospheric Data System) for temperature and isotherm tracking. **NOTES:**

Т	rajectory	Ge	ometry	Aero/th	ermal	Т	PS	P	arachutes
Entry angle	-16°	Shape	70° sphere- cone	Velocity at peak heat	5.33 km/s	Forebody Material designation	PICA	Туре	DGB
Entry velocity: Inertial & Relative	Inertial: 6.08 km/s Relative: 5.8 km/s	Nose radius	1.125 m	Peak convective heating	[197 W/cm²]	Forebody Thickness & mass	[3.18 cm]	Deployment Method	Mortar fired
Trim L/D (specify trim α)	0.24	Base area	15.90 m	Peak radiative heating		Ablating Ejected	Ablated: yes Ejected: yes	Reference Diameter / Area	21.35 m
Control method	RCS: 8 thrusters ballast ejection	Vehicle mass	3257 kg	Integrated total heatload	[5477 J/cm²]	TPS Integration method	PICA: tiled, direct bonded to substructure	Deployment Mach	1.7
Ballistic co-eff.	[146 kg/m²]	Payload mass	75 kg	PH stag. pressure		Aftbody material designation	SLA-561V	Deployment dynamic pressure	493.6 Pa
Peak deceleration	~9.7 g	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness & mass	[1.27 cm]	Parachute materials	Canopy: nylon, Suspension lines: Technora T221 and Kevlar 29

MISSION: INFLATABLE REENTRY VEHICLE EXPERIMENT-3 (IRVE-3)

PLANET: EARTH (SUBORBITAL) LAUNCH: JUL 23, 2012 ENTRY: JUL 23, 2012

MISSION DESCRIPTION: To advance the hypersonic inflatable aerodynamic decelerator (HIAD) technology, reach higher than 12 W/cm² cold-wall heat flux on the flexible TPS, and generate aerodynamic lift, with the potential for guided entry applications.

INSTRUMENTATION:

NOTES: IRVE-3 is NASA's second successful flight test of Hypersonic Inflatable Aerodynamic Decelerator (HIAD).

	Trajectory	Ge	eometry	Aero/th	nermal	TP	S	Parachu	ites
Entry angle	-74°	Shape	60° half angle sphere-cone	Velocity at peak heat	Mach 7.3	Forebody Material designation	Nextel BF-20	Туре	N/A
Entry velocity: inertial & relative	Relative: 2.7 km/s	Nose radius	0.191 m	Peak convective heating	14 W/cm ² (cold wall)	Forebody Thickness & mass	0.6 cm	Deployment method	N/A
Trim L/D (specify trim α)	0.2 (max.) at 16°	Base area	7.07 m ²	Peak radiative heating	0	Ablating Ejected	Flexible	Reference diameter / area	N/A
Control method	Cold argon gas pre-entry alignment, roll control during entry. Movable radial mass offset entry.	Vehicle mass	281 kg	Integrated total heatload	193 J/cm ² (cold wall)	TPS Integration method	Sewn fabric	Deployment Mach	N/A
Ballistic co-eff.	58 kg/m²	Payload mass	N/A	PH stag. pressure	1 psia	Aftbody material designation	N/A	Deployment dynamic pressure	N/A
Peak deceleration	20.2 g	TPS mass fraction, inc. insul.	0.20	Peak stag. heating rate		Aftbody thickness & mass	N/A	Parachute materials	N/A

MISSION: HAYABUSA 2 PLANET: EARTH RETURN LAUNCH: DEC 3, 2014 ENTRY:DEC 5, 2020

MISSION DESCRIPTION: To collect samples from asteroid RYUGU (1999JU3) and return to Earth.

INSTRUMENTATION: A one-axis accelerometer of parachute deployment REMM(Reentry Flight Measurement Module) which measures and records the heatshield temperature, the acceleration and the attitude motion of SRC during the reentry.

NOTES:

	Trajectory	Geo	metry	Aero/th	nermal	TP	S	Parach	nutes
Entry angle	-12.06°	Shape	45° sphere- cone	Velocity at peak heat	~10.5 km/s	Forebody material designation	Carbon- phenolic	Туре	Cross- Type
Entry velocity: inertial & relative	Inertial: 11.84 km/s Relative: 11.58 km/s	Base radius Nose radius	0.202 m	Peak convective heating	~1110 W/cm²	Forebody thickness & mass		Deployment method	Mortar fired
Trim L/D (specify trim α)	0	Base area	0.128 m²	Peak radiative heating	~180 W/cm²	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	2.8 m²
Control method	None	Vehicle mass	16.03 kg	Integrated total heatload	~27000 J/cm²	TPS integration method	Segmented	Deployment Mach	Subsonic
Ballistic co-eff.	113.5 kg/m³	Payload mass	1.13 kg	PH stag. pressure	~0.44 atm	Aftbody material designation	Carbon- phenolic	Deployment dynamic pressure	< 2kPa
Peak deceleration	46.3 g	TPS mass fraction, inc. insul.		Peak stag. heating rate		Aftbody thickness & mass	2 cm	Parachute materials	Canopy: polyester

MISSION: EXPLORATION FLIGHT TEST-1

PLANET: EARTH RETURN LAUNCH: DEC 5, 2014 ENTRY: DEC 5, 2014

MISSION DESCRIPTION: To flight test Orion through two orbits of Earth with observation of radiation stresses and orbit debris environment.

INSTRUMENTATION: 2 broadband radiometers.

NOTES: Aerothermal values are margined.

Traje	ctory	Geom	netry	Aer	o/thermal	TF	PS		Parachutes
Entry angle	-12.6°	Shape	Spherical	Velocity at peak heat	~7.53 km/s	Forebody material designation	Avcoat	Туре	 Drogue = VPCRibbon 2x Pilot = VPCRibbon 3x Main = Ringsail 3x
Entry velocity: inertial & relative	Inertial: 8.5 km/s Relative: 8.9 km/s	Nose radius	6.035 m	Peak convective heating	Flown:170 W/cm² [Design: 400W/cm²]	m ² Forebody thickness & Var. thick 2.5 4cm ~454 kg		Deployment method	(1) Mortar drogue (2) Mortar pilot (3) Pilot main
Trim L/D (specify trim α)	0.25	Base area	19.8 m²	Peak radiative heating	Flown: 15 W/cm ² [Design: 50 W/cm ²]	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 7.0 m dia. (2) 3.0 m dia. (3) 35.4 m dia.
Control method	RCS Thrusters	Vehicle mass	9611 kg	Integrated total heatload	~250 MJ/m²	TPS integration method	Honeycomb bonded to substructure; cells filled with ablative compound	Deployment Mach	(1) 0.42 (2) 0.17
Ballistic co-eff.	360 kg/m² (C _D = 1.4 at El+50 sec.)	Payload mass	Minimal	PH stag. pressure	~0.56 atm	Aftbody material designation	RCG coated AETB-8	Deployment dynamic pressure	(1) ~5746 Pa (2) ~1915 Pa
Peak deceleration	~3.2 g	TPS mass fraction, inc. insul.	Fore: 4.7% Aft: 1.2%	Peak stag. heating rate		Aftbody thickness & mass	Var. thick 2.5- 4.2 cm ~120 kg	Parachute materials	Nylon and Kevlar

MISSION: EXOMARS 2016 PLANET: MARS LAUNCH: MAR 14, 2016 ENTRY: OCT 19, 2016

MISSION DESCRIPTION: To demonstrate entry, descent, and landing of a payload on the surface of Mars.

INSTRUMENTATION: Front Shield: 4 pressure sensors; 7 thermal plugs (each with 3 thermocouples and 1 thermistor). Back Shell: 3 thermal plugs (each with 2 thermocouples and 1 thermistor); COMARS+ (3 combined sensor heads + one broadband IR radiometer).

NOTES: ExoMars 2016 comprised a trace gas orbiter and the Schiaparelli EDL demonstrator module. An anomaly in the measurement and navigation sequence resulted in Schiaparelli crash-landing on the surface of Mars, but essential telemetry was received during entry and descent.

Traje	ctory		Geometry	Aero/the	ermal	TF	PS	Parach	utes
Entry angle	-12.48° @120km	Shape	47° truncated conical backshell 70° sphere-cone front shield	Velocity at peak heat	~5 km/s	Forebody material designation	Norcoat-Liège over Al honeycomb with CFRP skins	Туре	DGB
Entry velocity: inertial & relative	Inertial: 6.03 km/s Relative: 5.79 km/s	Nose radius	0.6 m	Peak convective heating	~50 - 70 W/cm²	Forebody thickness & mass	12.2 mm (nose) to 15.4 mm (trailing edge) 37 kg	Deployment method	Mortar fired
Trim L/D (specify trim α)		Base area	4.52 m² (2.4 m dia. heatshield)	Peak radiative heating	~9 W/cm²	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	12 m dia.
Control method	Ballistic, spin- stabilized at 2.617 rpm	Vehicle mass	576.3 kg	Integrated total heatload		TPS integration method	Tiled	Deployment Mach	2.08
Ballistic co-eff.	75.2 kg/m²	Payload mass	15.2 kg	PH stag. pressure	~0.11 Atm	Aftbody material designation	same as forebody	Deployment dynamic pressure	779.5
Peak deceleration	8.15 g	TPS mass fraction, inc. insul.	0.11	Peak stag. heating rate		Aftbody thickness & mass	7.6 mm 26.2 kg	Parachute materials	Nylon, Kevlar

MISSION: OSIRIS-REX PLANET: EARTH RETURN LAUNCH: SEPT 8, 2016 ENTRY: PLANNED FOR

SEPT 24, 2023

MISSION DESCRIPTION: To return and analyze samples from asteroid Bennu (1999RQ36) and return to Earth.

INSTRUMENTATION:

NOTES: The OSIRIS-REx capsule outer geometry and TPS are build-to-print based on the Stardust capsule.

Traje	ctory	Geo	ometry	Aero/the	ermal		TPS	Pa	rachutes
Entry angle	[-8.2°]	Shape	Blunt-nosed 60° half-angle once	Velocity at peak heat	11.1 km/s	Forebody material designation	PICA-15	Туре	(1) Pilot: DGB (2) Main: Triconical
Entry velocity: inertial & relative	Relative: [12.2 km/s]	Nose radius	0.23 m	Peak convective heating	[1070 W/cm²]	Forebody thickness & mass	5.82 cm	Deployment method	(1) Mortar (2) Pilot parachute
Trim L/D (specify trim α)	0	Base area	0.52 m²	Peak radiative heating	[130 W/cm²]	Ablating Ejected	Ablated: yes Ejected: no	Reference diameter / area	(1) 0.83 m dia. (2) 7.3 m dia.
Control method	Ballistic, spin- stabilized at 13 rpm	Vehicle mass	~46 kg	Integrated total heatload	[36000 J/cm²]	TPS integration method	PICA: single- piece, direct bonded to substructure with HT-424	Deployment Mach	(1) [1.3] (2) [0.12]
Ballistic co-eff.	~71 kg/m²	Payload mass	N/A	PH stag. pressure	[0.22 atm]	Aftbody material designation	SLA-561V	Deployment dynamic pressure	(1) ~1350 Pa (2) ~700 Pa
Peak deceleration	~32 g	TPS mass fraction, inc. insul.	0.22	Peak stag. heating rate	[1200 W/cm²]	Aftbody thickness & mass	[1.397 cm]	Parachute materials	Canopy: nylon, Kevlar suspension lines

MISSION: MARS InSight PLANET: MAR LAUNCH: MAY 5, 2018 ENTRY: SEPT 26, 2018

MISSION DESCRIPTION: Robotic lander to study the deep interior of Mars.

INSTRUMENTATION: SEIS seismometer to measure Mars quakes, HP3 Heat Flow and Physical Properties Package to measure heat flowing out of deep interior, RISE radio science instrument to measure wobble of Mars north pole.

NOTES: Discovery program mission; InSight = Interior Exploration using Seismic Investigations, Geodesy and Heat Transport; EDL system reused design of Phoenix mission augmented for landing during dust storm season; dust on solar panels led to mission termination on December 21, 2022.

Traje	ctory	Geon	netry	Aero/t	nermal	Т	PS	Parao	chutes
Entry angle	-12°	Shape	2.65 m diameter, 70° sphere cone	Velocity at peak heat	4835.8 m/s	Forebody material designation	SLA-561V	Туре	Viking-type DGB
Entry velocity: inertial & relative	Relative: 5.523 km/s	Nose radius	0.66 m	Peak convective heating	46 W/cm²	Forebody thickness & mass	1.93 cm & 35.74 kg	Deployment method	Mortar
Trim L/D (specify trim α)	0	Base area	0.0995 m²	Peak radiative heating	5 W/cm² stag. pt.	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	11.8 m dia.
Control method	Non- spinning passive	Vehicle mass	605.65 kg (wet)	Integrated total heatload	2514 J/cm²	TPS integration method	Direct application of flexcore then filler	Deployment Mach	1.53
Ballistic co-eff.	65 kg/m²	Payload mass	~50 kg	PH stag. pressure	6.38 kPa	Aftbody material designation	SLA-561S lower aftbody, SLA- 220 parachute cone, SLA-561V on parachute lid	Deployment dynamic pressure	546.0 Pa
Peak deceleration	8.13 g	TPS mass fraction, inc. insul.	0.85	Peak stag. heating rate	~7 W/cm²	Aftbody thickness & mass	0.61 cm lower aftbody 12.46 kg, 1.22 cm parachute cone 3.07 kg, 0.89 cm parachute lid 0.12 kg	Parachute materials	Nylon canopy, Kevlar structural members

MISSION: MARS2020 PLANET: MARS LAUNCH: JUL 30, 2020 ENTRY: FEB 18, 2021

MISSION DESCRIPTION: Seek signs of ancient life and collect samples of rock and regolith (broken rock from soil) for possible return to Earth.

INSTRUMENTATION: MEADS (Mars Entry Atmospheric Data System): 1 hypersonic heatshield pressure transducers, 1 low pressure transducer on backshell. MISP (MEDLI2 Instrumented Sensor Plugs): 11 PICA heatshield plugs with 1-3 embedded TCs, 6 SLA-561V plugs on backshell with 1-2 embedded TCs, and 3 direct heat flux sensing elements on backshell (2 total heat flux gauges and 1 radiometer).

Trajectory		Geometry		Aero/thermal			TPS	Parachutes	
Entry angle	Relative: -16.18°	Shape	70° sphere- cone	Velocity at peak heat (PH)	4880 m/s	Forebody material designation	PICA	Туре	DGB
Entry velocity: inertial & relative	Relative: 5.33 km/s @ 128.2 km	Nose radius	1 m	Peak convective heating	68.4 W/cm²	Forebody thickness & mass	[3.18 cm] [212 kg]	Deployment method	Mortar fired
Trim L/D (specify trim α)	0.248 at -16.71°	Base area	15.9 m²	Peak radiative heating	~0 W/cm²	Ablating Ejected	Ablated: yes Ejected: yes	Reference diameter / area	21.5 m
Control method	RCS: 8 thrusters ballast ejection	Vehicle mass	3317.3 kg	Integrated total heatload	1672.5 J/cm²	TPS integration method	PICA: tiled, direct bonded to substructure	Deployment Mach	1.81
Ballistic co-eff.	143.2 kg/m²	Payload mass	1022.8 kg	PH stag. pressure	24 kPa	Aftbody material designation	SLA-561V	Deployment dynamic pressure	519.6 Pa
Peak deceleration	10.73 g	TPS mass fraction, inc. insul.	Fore: [6.4%] Aft: [1.9%]	Peak stag. heating rate	68.4 W/cm²	Aftbody thickness & mass	[1.27 cm] [64 kg]	Parachute materials	Canopy: nylon, suspension lines: Technora T221 and Kevlar 29

MISSION: LOFTID PLANET: Earth LAUNCH: Nov 10, 2022 ENTRY: Nov 10, 2022

MISSION DESCRIPTION: Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID). Technology demonstration mission to advance hypersonic inflatable aerodynamic decelerator (HIAD) technology by testing the Gen-2 inflatable structure and flexible thermal protection system (FTPS).

INSTRUMENTATION: 58 FTPS thermocouples, 24 inflatable structure thermocouples, 3 fiber optic sensing systems (FOSS), 4 total heat flux sensors, 1 radiometer, 5 nose pressure transducers, 12 loadcell pins, 7 torus pressure transducers, 6 inflation system pressure transducers, 6 inflation system pressure transducers, 3 inflation system RTDs, 1 inflation system flow meter, 2 hot film anemometers, 6 visual cameras, 12 infrared cameras, 1 up-look camera. **NOTES:**

Trajectory		Geometry		Aero/thermal			TPS	Parachutes	
Entry angle	[-2.3°]	Shape	70° sphere- cone stacked torus	Velocity at peak heat (PH)	[7.02 km/s]	Forebody material designation	FTPS: Silicon carbide outer fabric, carbon felt/pyrogel insulation, TZL gas barrier	Туре	(1) Pilot: 16 .6 ft Cruciform (2) Main: 94 ft Ring Sail
Entry velocity: inertial & relative	Relative: [8.0 km/s]	Nose radius	1.715 m	Peak convective heating	30 W/cm ²	Forebody thickness & mass	0.5" / 114 kg	Deployment method	(1) Mortar (2) Pilot
Trim L/D (specify trim α)	0	Base area	28.27 m²	Peak radiative heating	2 W/cm ²	Ablating Ejected	Ablative: No Ejected: No	Reference diameter / area	(1) 16.6 ft (2) 94 ft
Control method	Ballistic, spin- stabilized at 3 rpm	Vehicle mass	1101 kg	Integrated total heatload	2.7 kJ/cm ²	TPS integration method	Sewn Fabric	Deployment Mach	(1) 0.1 (2) 0.1
Ballistic co-eff.	22 kg/m²	Payload mass	N/A	PH stag. pressure	~0.4 psia	Aftbody material designation	N/A	Deployment dynamic pressure	[415 Pa]
Peak deceleration	~9 g	TPS mass fraction, inc. insul.	0.17 (aeroshell)	Peak stag. heating rate	[0.66 W/cm² (cold wall)]	Aftbody thickness & mass	N/A	Parachute materials	Nylon, Kevlar

MISSION: Artemis I PLANET: Earth LAUNCH: Nov 15, 2022 ENTRY: Dec 11, 2022

MISSION DESCRIPTION: Artemis I is the first in a series of increasingly complex missions that will enable human exploration to the Moon and Mars. **INSTRUMENTATION:** Thermocouples (multiple locations and in-depth), Pressure Transducers, and Radiometers. **NOTES:** Data is mostly from internal documentation.

Trajectory		Geometry		Aero/thermal		TPS		Parachutes	
Entry angle	-5.66°	Shape	Capsule	Velocity at peak heat (PH)	~34,200 ft/2	Forebody material designation	Avcoat	Туре	Ringsail
Entry velocity: inertial & relative	Inertial: 36062.66 ft/s Relative: 35974.97 ft/s	Nose radius	6.04 m	Peak convective heating	~175 BTU/ft^2/s	Forebody thickness & mass	Varied thickness ~223 lbm	Deployment method	Mortar
Trim L/D (specify trim α)	[0.27 at 162°]	Base area	3.33 m²	Peak radiative heating	~180 BTU/ft^2/s	Ablating Ejected	Ablator	Reference diameter / area	FBC chutes (3) - 7 ft Drogues (2) - 23 ft, 400 ft^2 Pilot (2) - 11 ft, 95 ft^2 Mains (4) - 116 ft, 10,500 ft^2
Control method	12 RCS Jets	Vehicle mass	~20575 Ibm	Integrated total heatload	~70000 Btu/ft^2	TPS integration method	Tiled	Deployment Mach	~0.42 (FBC chutes) ~0.39 (drogues) ~0.17 (pilots/mains)
Ballistic co-eff.	~68.33 lbf/ft ²	Payload mass		PH stag. pressure	~22,000 lb/ft^2	Aftbody material designation	AETB-8	Deployment dynamic pressure	~3600 lb (FBC chutes) ~3500 lb (drogues) ~1000 lb (pilots/mains)
Peak deceleration	~13.4 g	TPS mass fraction, inc. insul.	Heatshield: ~27%	Peak stag. heating rate	qtot ~20 BTU/ft^2/s, qconv ~15 BTU/ft^2/s, qrad ~6 BTU/ft^2/s	Aftbody thickness & mass	Varied thickness 1.0-1.2"	Parachute materials	Kevlar/Nylon

For a complete list of deep space exploration go to <u>www.nasa.gov</u> -> Downloads -> History E-books -> Beyond Earth: A Chronicle of Deep Space Exploration.

History e-Books | NASA

APPENDIX II Definitions

Entry angle

The angle between the local horizontal plane (orthogonal to the vector from the planet center to the vehicle) and the velocity vector of the vehicle, V, at a reference altitude, h. The entry angle can be inertial or relative, depending on entry velocity used. Y is negative when V, is below the horizontal plane, as in planetary entry.

Entry velocity inertial

The vehicle velocity at reference altitude, *h*, assuming a non-rotating planet.

Entry velocity relative

The inertial entry velocity amended by the component of the planet's rotation, assuming the atmosphere to be a solid body.

Trim L/D

The L/D where vehicle is statically stable. The vehicle will trim (restore) to trim angle of attack if variations occur.

Control method

(a) Ballistic: no control, subject to drag forces only, with passive stability about zero lift condition; (b) Controlled Ballistic: active control to maintain zero lift; and (c) RCS: a set of small engines called the reaction control system (RCS) engines.

Ballistic coefficient

The ratio of the product of drag coefficient (*Cd*) and projected reference area (*A*) to mass (*m*), giving m/CdA.

Peak deceleration

Maximum deceleration force on the vehicle during entry, stated in Earth gravity, g.

Shape

All vehicles are spherically blunted cones, or spherical, or conical.

Nose radius

The radius of the spherical nose, or the capsule radius.

Base area

The total apparent or drag area projected along the centerline.

Vehicle entry mass

The total vehicle mass of the vehicle at entry, including TPS and payload. Generally, the vehicle mass at entry is the same as take-off mass minus any fuel used for maneuvering. However, the mass can change after leaving the orbiter but before entry. An example is the small probe of Pioneer Venus where the spin yo-yo was jettisoned before entry. The mass can also change during entry if the heat shield material ablates. An (extreme) example was the Galileo probe that lost about 26% of its entry mass to ablation.

Payload mass

The proportion of payload mass (scientific instruments and may include transmitters, batteries etc.) to vehicle mass. For missions with landed payloads and eject-able heatshields/backshells, this is total mass of the vehicle carried within the entry system.

TPS mass fraction

The proportion of TPS mass to vehicle mass at entry. Insulator may or may not be included.

Velocity at peak heat (PH)

The velocity when the vehicle reaches the maximum convective heat flux at the stagnation point.

Peak convective heating

The maximum convective heat flux at the leading edge stagnation point. Depends on trajectory. The stagnation point is a point in the flowfield where the local velocity of the fluid is zero. Location depends on angle of attack and deviation behind the shock. The "peak convective heating" (peak convective heat flux) is often at the entry vehicle's leading edge stagnation point, but not always.

Peak radiative heating

The maximum radiative heat flux at the leading edge stagnation point. Depends on trajectory. The stagnation point is a point in the flowfield where the local velocity of the fluid is zero. Location depends on angle of attack and deviation behind the shock. The "peak radiative heating" (peak radiative heat flux) is often at the entry vehicle's leading edge stagnation point, but not always.

Integrated total heat load

The convective heat flux integrated over flight time. The highest heat load is usually, but not always, at the stagnation point. The integrated heat load will vary over the vehicle surface.

Peak heat (PH) stagnation pressure

The pressure at the time of maximum convective heat flux. This is not the peak pressure, which occurs later in the trajectory.

Peak stag. heating rate

The maximum combined convective and radiative heating rate during the trajectory. Peak convective stagnation point heating seldom occurs at the same time as peak radiative stagnation point heating, therefore, not the simple sum of those values unless one is zero. Peak radiative heating rate (if nonzero) always occurs before peak convective heating rate.

Forebody material designation

This can be a material trade name, defined by the manufacturer (e.g., SLA-561V) or a generic designator applied to a class of materials (e.g., carbon phenolic). It provides little useful information about the material other than a broad description of its constituents.

Forebody thickness & mass

This is "as manufactured" thickness of the material, usually specified at the stagnation point. Useful for a TPS of uniform thickness; less useful for a "tailored" TPS. The "as manufactured" thickness includes the "nominal design thickness" to which additional thickness is added (margin) to accommodate uncertainties in the entry environment and/or material performance.

Ablating / Ejected

Information on whether the forebody TPS material experienced or was designed for ablating. Ejected refers to whether the vehicle was designed to eject the forebody TPS.

TPS integration method

Details on TPS integration method with the supporting substructure. Examples are single piece, direct bonded to substructure; cells filled with ablative compound.

Aftbody material designation

This can be a material trade name, defined by the manufacturer (e.g./ SLA-561V) or a generic designator applied to a class of materials (e.g., carbon phenolic). It provides little useful information about the material other than a broad description of its constituents.

Aftbody thickness & mass

This is "as manufactured" or "as flown" thickness of the material. Descriptions vary by mission, since a common reference point for a thickness specification, such as the stagnation point, doesn't exist.

Parachute: Type

General parachute design type descriptor for decent or recovery parachutes. Examples include Cross Type, Ringsail, or Disk-Gap-Band (DGB).

Deployment method

Method for releasing parachute system during descent/ entry. An example is mortar fired.

— 38 —

Reference diameter / area

Number to generate reference area, or calculated from reference area of the decelerator, used as a common size reference for interpreting decelerator aerodynamic properties.

Deployment mach

Local Mach number at the time of parachute deployment.

Deployment dynamic pressure

The measured/ calculated dynamic pressure at the forebody at the time of deployment (similar to Mach number).

Parachute materials

Description of parachute materials used for construction, including canopy and suspension lines when possible. Examples include nylon, polyester, and Kevlar.

1 cm	=	0.3937 in	1 kg/m ³	=	0.06243 lb/ft3
1 m	=	3.28084 ft	1 Joule	=	0.9478x10 ⁻³ BTU
1 m ²	=	10.764 ft ²	1 Watt	=	1 J/s = 0.9478x10 ⁻³ BTU/s
1 km/s	=	3280.8 ft/s	1 J/cm ²	=	0.88055 BTU/ft ²
1 g	=.	9.81 m/s²	1 W/cm ²	=	0.88055 BTU/s*ft ²
1 kg	=	2.20462 lb	1 atm	=	1.01325x105 Pa
1 kg/m ²	=	0.2048 lb/ft ²			

APPENDIX III Unit Conversion Factors

APPENDIX IV References

Mission: FIRE II

1. Cauchon, D.V.: Radiative Heating Results from the Fire II Flight Experiment at a Re-entry Velocity of 11.4 km/s. NASA-TM-X-1402, Jul 1967.

 Cornette, E.S.: Forebody Temperatures and Calorimeter Heating Rates Measured during Project Fire II Re-entry at 11.35 km/s. NASA-TM-X-1305, Nov 1996.

3. Slocumb, T.H.: Project Fire Flight II Afterbody Temperatures and Pressures at 11.35 km/s. NASA-TM-X-1319, Dec 1966.

4. Wright, M.; Loomis, M.; and Papadopoulos, P.: Aerothermal Analysis of the Project Fire II Afterbody Flow. AIAA-2011-3065, 35th Thermophysics Conference, Anaheim Ca, Jun 2011

Collected by: Trajectory Data Verified by: Traj Ver 17.06, Gary A Allen, Jr., 22 Feb 2019

Mission: Apollo AS-201

1. Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.

2.Erb, R.B.; Greeshields, D.H.; Lee, D.B.; and Weston, K.C.:

Aerothermodynamics-Apollo Experience. Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A Libby; D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967. 3. Lee D.B.; Apollo Experience Report: Aerothermodynamics Evaluation. NASA-TN-6843, Jun 1972.

4. North American Aviation Inc. Space and Information Systems Division, Aerodynamic Data Manuel for Project Apollo, NAS 9-150, Accession No. 07499-65, Feb 1966.

5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-202 (Apollo-3)

1. Lee, D.B.; Bertin, J.J.; and Goodrich, W.D.: Heat Transfer and Pressure Measurements Obtained During Apollo Orbital Entries. NASA-TN-D-6028, Oct 1970.

2. Hillje, E.R.: Entry Flight Aerodynamics from Apollo Mission AS-202. NASA-TN0#04185, Dec 1967.

3. Erb, R.B.; Greenshields, D.H.; Lee, D.B.; and Weston, K.C.:

Aerothermodynamics-Apollo Experience. Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, San Diego CA, Jun 1967, edited by P.A. Libby;

D.B. Olfe; and C.W. Van Atta, Stanford University Press, 1967.

4. Crowder, R.S.; and Moote, J.D.: Apollo Entry Aerodynamics. Journal of Spacecraft and Rockets, Vol 6, No 3, Mar 1969.

Spacecraft and Rockets, Vol 6, No 3, Mar 1969.

5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-501 (Apollo-4)

1. Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo Entry Configuration. AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.

2. Hillje, E.R.: Entry Aerodynamics at Lunar Return Conditions Obtained from the Flight of Apollo 4 (AS-501). NASA-TN-D-5399, Oct 1969.

3. Reid, R.C., Jr; Rochelle, W.C.; and Milhoan, J.D.: Radiative Heating to the Apollo Command Module: Engineering Prediction and Flight Measurement. NASA-TM-X-58091, Apr 1972.

4. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Apollo AS-502 (Apollo-6)

1. Hillje, E.R.; and Savage, R.: Status of Aerodynamic Characteristics of the Apollo entry Configuration. AIAA-1968-1143, Entry Vehicle Systems and Technology Meeting, Williamsburg VA, Dec 1968.

2. Lee, D.B.; and Goodrich, W.D.: The Aerothermodynamic Environment of the Apollo Command Module During Superorbital Entry. NASA-TN-D-6792, Apr 1972.

3. Strouhal, G.; Curry, M.; and Janney, J.M.: Thermal Protection System Performance of the Apollo Command Module. AIAA/ASME 7th Structures and Materials Conference, Cocca Beach FL, Apr 1966.

4. Bartlett, E.P.; Nicolet, W.E.; Abbett, M.J.; and Moyer C.B.: Improved Heat-Shield Design Procedures for Manned Entry Systems: Part 2. Application to Apollo: Final Report. NASA-CR-108689, Jun 1970. 5. NASA.TN-D-7437 Apollo Earth Landing System.

Mission: Reentry F

1. Write, R, L.; and Zoby, E.V.: Flight Measurements of Boundary-Layer Transition on a 5 Degree Half-Angel Cone at a Free-Stream Mach Number of 20 (Reentry F). NASA-TM-X-2253, May 1971.

Mission: PAET

 Vojvodich, N.S.: PAET Entry Heat Protection Experiment. Journal of Spacecraft and Rockets, Vol 10, No 3, Mar 1973, pp 181-189.
 Seiff, A.; Reese, D.E.; Sommer, S.C.; Kirk, D.B.; Whiting, E.E.; and Niemann, H.B.: PAET, An Entry Probe Experiment in Earth's Atmosphere. ICARUS, Vol 18, Apr 1973, pp 525-563

Mission: Viking Lander 1

1. Inogoldby, R.N.; Michael, F.C.; Flaherty, T.M.; Doty, M.G.; Preston, B.; Villyard, K.W.; and Steele, R.D.: Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218, NASA-CR-159388, Nov 1976. 2. Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamics Behaviour of the Viking Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 156, No 4, Jul-Aug 1978.

3. Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974.

4. Cooley, C.G: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977. 4. Edquist, K.T.; Wright, M.J.; and Allen Jr., G.A.: Viking Afterbody Heating Computations and Comparisons to Flight Data. AIAA-2006-386, 44th Aerospace Sciences Meeting, Reno, NV, Jan 2008.

NASA-CR-112288 Balloon Launched Viking Decelerator Test Program.
 AIAA PAPER 73-458 The Viking mortar – Design, development, and flight qualification.

Mission: Viking Lander 2

1. Inogoldby, R.N.; Michael, F.C.; Flaherty, T.M.; Doty, M.G.; Preston, B.; Villyard, K.W.; and Steele, R.D.: Entry Data Analysis of Viking Landers 1 and 2: Final Report. Martin-Marietta Co., TN-3770218, NASA-CR-159388, Nov 1976. 2. Kirk, D.B.; Intrieri, P.F.; and Seiff, A.: Aerodynamics Behaviour of the Viking Entry Vehicle: Ground Test and Flight Results. Journal of Spacecraft and Rockets, Vol 156, No 4, Jul-Aug 1978.

3. Viking '75 Project, Aerodynamics Data Book. NAS1-9000, Martin-Marietta, Revision E, 1974.

4. Cooley, C.G: Viking 75 Project: Viking Lander System, Primary Mission Performance Report. NASA-CR-145148, Apr 1977.

NASA-CR-112288 Balloon Launched Viking Decelerator Test Program.
 AIAA PAPER 73-458 The Viking mortar – Design, development, and flight qualification.

Pioneer-Venus: Small 'North Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.

2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.

 $\mbox{4.Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.$

Pioneer-Venus: Small 'Night Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.

2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

3. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Pioneer-Venus: Small 'Day Probe'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets, St. Louis Mo, Sep 1975.

2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.

4. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

Pioneer-Venus: Large Probe 'Sounder'

1. Nolte, L.J.; and Sommer, S.C.: Probing a Planetary Atmosphere: Pioneer-Venus Spacecraft Description. AIAA-1975-1160, Conference on the Exploration of the Outer Planets. St. Louis Mo. Sep 1975.

2. Pioneer-Venus Large and Small Probe Databook, Bendix, NAS2-830Q, Jun 1976.

3. Entry vector based upon a letter by Charles F. Hall, 21 Mar 1979.

4. Allen, G.: Trajectory and Heating calculated using TRAJ Code, private communication, Mar 2003.

5. IPPW-7-529, Aerodynamic Decelerators for Modern Venus Probes/Landers, 7th International Planetary Probe Workshop, Barcelona, Spain.

Galileo

1. Givens, J.; Nolte,L.; and Pochettino, L.: Galileo Atmospheric Entry Probe System: Design, Development and Test. AIAA-1983-0098, 21st Aerosciences Meeting, Jan 1983.

2. Milos, F.; Chen, Y.K.; Squire, T.; and Brewer, R.: Analysis of Galileo Probe Heat Shield Ablation and Temperature Data. AIAA-1997-2480, 32nd Thermophysics Conference, Atlanta GA, Jun 1997.

3. Milos, F.: Galileo Probe Heat Shield Ablation Experiment. AIAA Journal of Spacecraft and Rockets, Vol 34, No 6, Nov-Dec 1997.

4. AIAA-97-1510 Galileo Parachute System Performance.

Orex

1. Yamamoto, Y.; and Yoshioka, M.: CFD and FEM Coupling Analysis of OREX Aerothermodynamic Flight Data. AIAA-1995-2087, 30th Thermophysics Conference, San Diego CA, Jun 1995.

2.Gupta, R.N.; Moss, J.M.; and Price, J.M.: Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Reentry Experiment (OREX). AIAA-1996-1859, 31st Thermophysics Conference, New Orleans LA, Jun 1996.

Pathfinder

 Spencer, D.A.; Blanchard, R.C.; Braun, R.D.; Kallemeyn, P.H.; and Thurman, S.W.: Mars Pathfinder Entry, Descent, and Landing Reconstruction. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999.
 Milos, F.S.; Chen, Y.K.; Congdon, W.M.; and Thornton, J.M.: Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material Response. Journal of Spacecraft and Rockets, Vol 36, No 3, May-June 1999.
 Michaeltree, R.A.; and Gnoffo, P.A.: Wake Flow About the Mars Pathfinder Entry Vehicle. Journal of Spacecraft and Rockets, Vol. 32, No. 5, Sep-Oct 1995. Witkowski, A.: Mars Pathfinder Parachute System Performance. AIAA-1999-1701, 15th Aerodynamic Decelerator Systems Technology Conference, Toulouse, France, Jun 1999.

Mirka

1. Schmitt, G.; Pfeuffer, H.; Kasper, R.; Kleppe, F.; Burkhardt, J.; and Schottle, U.M.: The MIRKA Re-entry Mission. IAF-98-V2.07, 49th Intl Astronautical Congress, Melbourne, Australia, Sep-Oct 1998.

2. Schmitt, G.; and Kasper, R.: MIRKA Micro Re-entry Capsule. IAF-94-V.2.532, 45th Intl Astronautical Congress, Jerusalem, Israel, Oct 1994.

3. Ocidation Behaviour of SiC-based Thermal Protection System Materials using newly developed Prode Techniques Journal of Spacecraft and Reockets, pg. 817-824, Vol. 42, No. 5, Sept.-Okt. 2005. G. Herdrich, M. Auweter-Kurtz, M. Fertig, S. Löhle, S. Pidan, T. Laux.

4. Pyrometric Temperature Measurements on Thermal Protection Systems, GAMM 98 (Gesellschaft für angewandte Mathematik und Mechanik) Bremen, April 1998, edit. Zeitschrift f. angewandte Mathematik u. Mechanik (ZAMM) 79, Suppl, 3, pages S945-S946, 1999. G. Herdrich, M. Auweter-Kurtz, H. Habiger.

Huygens

1. Jones, J.C.; and Giovagnoli, F.: Huygens: Science, Payload and Mission. A Wilson, editor, ESA-SP-1177, Aug 1997.

2. Baillion, M.; and Pallegoix, J.F.: Huygens Probe Aerothermodynamics,

Aerospatiale Espace and Defense copyrighted document, AIAA-1997-2476, 32nd

Thermophysics Conference, Atlanta GA, Jun 1997.

https://doi.org/10.2514/6.1997-2476

3. Bouilly, J.M.; and Guerrier, D.: Entry Testing of AQ60 for Huygens. Presented at the First ESA/ESTEC Workshop on Thermal Protection Systems, Noordwidjk, The Netherlands, May 1993.

4. Wright, M.J.; Olejniczak, J.; Walpot, L.; Raynaud, E.; Magin, T.; Callaut, L.; and Hollis, B.: A Code Calibration Study for Huygens Entry Aeroheating. AIAA-2006-0382, 44th Aerospace Sciences Meeting, Reno NV, Jan 2006. https://doi.org/10.2514/6.2006-382

5. Lingard, J. and Underwood, J., "Huygens DCSS post flight reconstruction", AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,

Williamsburg, VA, 2007. (AIAA 2007-2579) <u>https://doi.org/10.2514/6.2007-2579</u> 6. Bouilly, J-M: Thermal Protection of the Huygens Probe during Titan Entry: Last Questions, Presented at 2nd International Planetary Probe Workshop. Moffett

Field, CA, Aug. 2004.

7. Huygens Mission Operation Report. HUY-OPS-RP-1006-OPS-OFH Iss. 1, Feb 2005.

8. Colombatti et al., Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (HASI). *Planet. Space Sci.* **56**(5), 586-600, 2008. <u>https://doi.org/10.1016/j.pss.2007.11.017</u>

9. Kazeminejad *et al.*, Huygens' entry and descent through Titan's atmosphere— Methodology and results of the trajectory reconstruction. *Planet. Space Sci.* **55**(13), 1845-1876, 2007. <u>https://doi.org/10.1016/j.pss.2007.04.013</u>

ARD 'Atmospheric Reentry Demonstrator'

1. The Atmospheric Reentry Demonstrator, ESA publication BR-138, Oct 1998. 2. Johnston, I.A.; Weiland, M.; Schramm, J.M.; Hannemann, K.; and Longo, K.: Aerothermodynamics of the ARD: Postflight Numerics and Shock-Tunnel Experiments. AIAA-2002-0407, 40th Aerospace Sciences Meeting, Reno NV, Jan 2002.

3. Tran, P.; and Soler, J.: Atmospheric Reentry Demonstrator Post Flight analysis: Aerothermal Environment. Proceedings of the 2nd Intl Symposium on Atmospheric Reentry Vehicles, Arachon, France Mar 2001.

4. Tran, P.; Paulat J.C.; Boukhobza, P.; Re-entry Flight Experiments Lessons Learned – The Atmospheric Reentry Demonstrator ARD, RTO-EN-AVT-130.

Deep Space 2

1. Mitcheltree, R.A.; DiFulvio, M.; Horvath, T.J.; and Braun, R.D.: Aerothermal Heating Predictions for Mars Microprobe. AIAA-1998-0170, 36th Aerospace Sciences Meeting, Reno NV, Jan 1998.

Stardust

1. Olynick, D.; Chen, Y.K.; and Tauber, M.E.: Aerothermodynamics of the Stardust Sample Return Capsule. Journal of Spacecraft and Rockets, Vol 36, No 3, May-Jun 1999, pp 442-462.

 Mitcheltree, R.A.; Wilmoth, R.G.; Cheatwood, F.M.; Brauckmann, G.J.; and Greene, F.A.: Aerodynamics of Stardust Sample Return Capsule. AIAA-1997-2304, 15th Applied Aerodynamics Conference, Atlanta GA, Jun 1997.
 Brandis, A.M.; Johnston, C.O; Characterization of Stagnation-Point Heat Flux for Earth Entry. AIAA-2014-2374, 45th AIAA Plasmadynamics and Laser Conference, Atlanta GA, Jun 2014.

4. AIAA-2007-2546 Stardust Parachute Trajectory Performance Reconstruction.

Genesis

1. Lo, M.W.; Williams B.G.; Bollman E.; Han, D.; Hahn, Y.; Bell, J.L.; Hirst, E.A.; Corwin, R.A., Hong, P.E.; and Howell, K.C.: Genesis Mission Design. AIAA-1998-4468, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston MA, Aug 1998.

2. Cheatwood, F.M.; Merski, N.R.; Riley, C.J.; and Mitcheltree, R.A.:

Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule. AIAA-2001-2889, 35th AIAA Thermophysics Conference, Anaheim CA, Jun 2001

3. Tang, C. and Wright, M., "Analysis of the Forebody Aeroheating Environment during Genesis Sample Return Capsule Reentry", AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007. (AIAA 2007-1207) Jenniskens, P., et al, "Surface Heating from Remote Sensing of the Hypervelocity Entry of the NASA GENESIS Sample Return Capsule", AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006. (AIAA 2006-381)
 AIAA-2001-20017 Parafoil Recovery Subsystem for the Genesis Space Return Capsule.

Hayabusa

1. Ishii, N.; Hiraki, K.; Yamada, T.; Inatani, Y.; and Honda, M.: System Description and Reentry Operation Scenario of MUSES-C Reentry Capsule. Institute of Space and Astronautical Science Report, SP No 17, edited by Y. Inatani, Mar 2003, pp 389-400.

Mars Exploration Rovers "Spirit" and "Opportunity"

1. Roncoli, R.B.; and Ludwinski, J.M.: Mission Design Overview for the Mars Exploration Rover Mission. AIAA-2002-4823, AIAA/AAAS Astrodynamics Specialist Conference and Exhibit, Monterey CA, Aug 2002.

2. Szalai, C.; Chen Y.; Loomis, M; and Hui, F.: Mars Exploration Rover TIRS Cover Thermal Protection System Design Verification. AIAA-2003-3767, 36th AIAA Thermophysics Conference, Orlando FL, Jun 2003.

3. "Mars Exploration Rover Aeroshell, Critical Design Review" document, 30-31 May 2001 by JPL, NASA and Lockheed Martin

 AIAA-2005-1605 "Mars Exploration Rover Parachute System Performance" 18th AIAA Aerodynamic Decelerator Systems Technology Conference, May 2005, Munich Germany

Beagle 2

1. Burnell, S.; Liever P.; Smith, A.; and Parnaby G.: Prediction of the Beagle 2 Static Aerodynamic Coefficients. Atmospheric Reentry Vehicles and Systems, Arcachon 2000.

2. Smith A.; Parnaby, G.; Jones, T.V.; and Buttsworth, D.: Aerothermal Environment of the Beagle 2 Probe. Fourth European Symposium on Aerothermodynamics, Capua, Italy, Oct 2001.

3. Liever, P.A.; Habchi, S.D.; Burnell, S.I.; and Lingard, J.S.: Computational Fluid Dynamics Predictions of the Beagle 2 Aerodynamics Database. Journal of Spacecraft and Rockets, Vol 40, No 5, Sep-Oct 2003.

4. C.T. Pillinger with M.R. Sims and J. Clemmet, The Guide to Beagle 2. © C.T. Pillinger in association with Faber and Faber, 2003.

5. Bertrand, J., Labaste, V. and Mignot, Y., The Beagle 2 Thermal Protection System. 3rd International Symposium on ARVS, Arcachon, France, March 2003. Clemmet, J., Sims, M.R., Higgett, N., Kuzmanova, T., Tatham, E., Pullan, D., Muller, J.-P., Putri, A., Bridges, J., Pillinger, J.M., Beagle 2 on Mars – The Discovery Assessed. J. Brit. Interplanet. Soc. 70, pp.261-304, 2017.
 AIAA-2003-2153 Design and Development of the Main Parachute for the Beagle 2 Mars Lander.

Phoenix

1.Ryan McDaniel, Michael Wright, and Jarvis Songer. "Aeroheating Predictions for Phoenix Entry Vehicle", AIAA 2008-1279, 46th AIAA Aerospace Sciences Meeting and Exhibit. January 2008.

 Allen Witkowski, Mike Kandis, and Douglas Adams. "Mars Scout Phoenix Parachute System Performance", AIAA 2009-2907. 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. May 2009.
 Karl T. Edquist, Prasun N. Desai, and Mark Schoenenberger. "Aerodynamics for Mars Phoenix Entry Capsule. "Journal of Spacecraft and Rockets 2011 48:5, 713-726.

4. Myron Grover, Prasun Desai, and Benjamin Cichy. "Overview of the Phoenix Entry, Descent and Landing System Architecture," AIAA 2008-7218. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. August 2008.

Mars Science Laboratory

 Dutta, S.; Braun, R.D.: Statistical Entry, Descent, and Landing Performance Reconstruction of the Mars Science Laboratory. AIAA-2014-0385, AIAA Atmospheric Flight Mechanics Conference, National Harbour, MD, January 2014.
 Karlgaard, C.; Kutty, P.; Schoenenberger, M.; Munk, M.M.; Little, A.; Kuhl, C.A.; and Shidner, J.: Mars Science Entry Atmospheric Data System Trajectory and Atmospheric Reconstruction. Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 1029-1047.

 Beck, Ř.A.Š.; Driver, D.A.; Wright, M.J.; Hwang, H.H.; Edquist, K.T.; and Sepka, S.A.: Development of the Mars Science Laboratory Heatshield Thermal Protection System. Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 1139-1150. Wright, M.J.; Beck, R.A.S.; Edquist, K.T.; Driver, D.;
 Sepka, S; Slimko, S.A.; and Willcockson, W.H.: Sizing and Margins Assessment of Mars Science Laboratory Aeroshell Thermal Protection System.
 Bose, D.; White, T.; Mahzari, M.; and Edquist, K,: Reconstruction of Aerothermal Environment and Heat Shield Response of Mars Science Laboratory. Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 1174-1184. 6. Cruz, J.R.; Way, D.W.; Shidner, J.D.; Davis, J.L.; Adams, D.S.; and Kipp, D.M.: Reconstruction of the Mars Science Laboratory Parachute Performance. Journal of Spacecrafts and Rockets, Vol. 51, No.4, July-August 2014, pp. 1185-1196.

7. AIAA-2013-1277 "Mars Science Laboratory Parachute System Performance".

InSight

1. Robin A.S. Beck, et al., "InSight AerothermI Environment Assessment." Journal of Spacecraft and Rockets, Vol. 58, No. 6, November-December, 2021. DOI number 10.2514/1.A35078.

2. Ian G. Clark, et al., "Reconstructed Performance of the Supersonic Parachute of the Mars InSight Lander," Journal of Spacecraft and Rockets, Vol. 58, No. 6, November-December 2021. DOI number 10.2514/1.A35180.

3. AIAA-2019-3481 "Mars InSight Parachute System Performance".

Inflatable Reentry Vehicle Experiment-3 (IRVE-3)

1.Olds, A.D.; Beck, R.E.; Bose, D.M.; White J.P.; Edquist, K.T.; Hollis, B.R.; Lindell, M.C.; Cheatwood, F.M.; Gsell, V.T.; and Bowden, E.L.: IRVE-3 Post-Flight Reconstruction, Aerodynamic Decelerator Systems Technology AIAA 2013-1390

Hayabusa 2

1. Yamada, T.; Yoshihara, K.; Yamada, K.; and Shimoda, T.: Development of a Hayabusa-2 Sample Return Capsule, Presented July 10, 2015, 2015-k-62

Exploration Flight Test-1

1. Details on where data can be found in a public location: Woollard, B.A.; Braun, R.D.; and Bose, D.: Aerothermodynamic and Thermal Protection System Instrumentation Reference Guide. IEEE-2016-2104, 2016 IEEE Aerospace Conference, Big Sky, MT, Mar 2016.

2. Sinclair, R.: A Status Report on the Parachute Development for NASA's Next Manned Spacecraft. NTRS 20080015895, Safety and Flight Equipment Symposium, Genena, Jan 2008.

3. Bibb, K., Robinson, P., and Cassady, L., "Reconstruction of the Orion Crew Module Aerodynamics for theft-1 Flight Test", AIAA Aviation Forum 2016, Washington, D.C., June 2016.

ExoMars 2016

1. Tolker-Nielsen, T.: Exomars 2016 - Schiaparelli Anomaly Inquiry. DG-I/2017/546/TTN, May 2017.

https://exploration.esa.int/web/mars/-/47852-entry-descent-and-landingdemonstrator-module

https://spaceflight101.com/exomars/Schiaparelli-edm/

 Gülhan, A.; Thiele, T.; Siebe, F.; Aerothermal Measurements from the Exomars Schiaparelli Capsule Entry. Journal of Spacecraft and Rockets. Vol. 56, No. 1, January-February 2019, pp. 68-81. <u>https://doi.org/10.2514/1.A34228</u>
 Pinaud, G.; Bertrand, J.; Soler, J.; Tran, P.; Ritter, H.; and Bayle, O.: Exomars mission 2016: A preliminary post-flight analysis of the heat shield during entry on Mars Atmosphere. AIAA SciTech Forum, San Diego CA, Jan 2019.

https://doi.org/10.2514/6.2019-0244

4. Brandis, A.M.; White, T.R.; Saunders, D.A.; Hill, J.P.; and Johnston, C.O.; Simulation of the Schiaparelli Entry and Comparison to Aerothermal Flight Data. AIAA 2019-3260, AIAA Aviation Forum, Dallas TX, Jun 2019. https://doi.org/10.2514/6.2019-3260

5. Bonetti, D.; De Zaiacomo, G.; Blanco, G.; Pontijas Fuentes, I.; Portigliotti, S.; Bayle, O.; Lorenzoni, L.; ExoMars 2016: Schiaparelli coasting, entry and descent post flight mission analysis. Acta Astronautica 149 (2018) 93-105. May 2018. https://doi.org/10.1016/j.actaastro.2018.05.029

6. Ball, A.J., Blancquaert, T., Bayle, O., Lorenzoni, L.V., Haldemann, A.F.C. and the Schiaparelli EDM Team: The ExoMars Schiaparelli Entry, Descent and Landing Demonstrator Module (EDM) System Design. Space Sci. Rev. 218:44, 2022. <u>https://doi.org/10.1007/s11214-022-00898-z</u>

OSIRIS-REx

1. Beshore, Edward, et al., The OSIRIS-REx Asteroid Sample Return Mission, 2015 IEEE Aerospace Conference, 7-14 March 2015.

2. Lauretta, D.S.; Balram-Kutson, S.S.; OSIRIS-Rex: Sample Return from Asteroid (101955) Bennu, Space Sci Rev 212, 925-984 (2017).

3. Olynick, D.; Chen, Y.K.; and Tauber, M.E.: Aerothermodynamics of the Stardust Sample Return Capsule. Journal of Spacecraft and Rockets, Vol. 36, No 3, May-Jun 1999, pp 442-462.

4. AIAA-2007-2546 Stardust Parachute Trajectory Performance Reconstruction (for PRS system sizing only).

MARS 2020

1. Karlgaard, C., et al, "Mars Entry, Descent, and Landings Instrumentation 2 Trajectory, Aerodynamics, and Atmosphere Reconstruction," AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA 2022-0423)

2. White, T., et al, "Mars Entry Instrumentation Flight Data and Mars 2020 Entry Environments" AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics

Conference, San Diego, CA, 2022. (AIAA 2022-0011)

3. Way, D., et al, "Assessment of the Mars 2020 Entry, Descent, and Landing Simulation" AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA 2022-0421)

4. Dutta, S., et al, "Post-flight Analysis of Atmospheric Properties from Mars 2020 Entry, Descent, and Landing", AIAA SciTech 2022, AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, 2022. (AIAA 2022-0422)

LOFTID

 Dillman, R.A., DiNonno, J.M., Bodkin, R.J., Hughes, S.J., Cheatwood, F.M., Blakeley, H., Akamine, R.L., and Bowes, A., "Planned Orbital Flight Test of a 6m HIAD," 15th International Planetary Probe Workshop, Boulder, CO, 2018.
 Swanson, G., Smith, B., Akamine, R., Bodkin, R.J., Cheatwood, N., Hughes, S., Gaddy, D., Chan, P., and Parker, A., "The HIAD Orbital Flight Demonstration Instrumentation Suite," 15th International Planetary Probe Workshop, Boulder, CO, 2018.

3. Hughes, S., Cheatwood, N., Swanson, G., Kazemba, C., Lindell, M., Tobin, S., Bodkin, R.J., Dillman, R., DiNonno, J., and Johnson, K., "Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) - Aeroshell System Overview," 16th International Planetary Probe Workshop, Oxford, UK, 2019.

4. Swanson, G., Kazemba, C., Hughes, S., Williams, J., Johnson, K., Lindell, M., Bodkin, R.J., DiNonno, J., and Cheatwood, N., "Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) - Aeroshell Engineering Development Unit Structural Testing," 16th International Planetary Probe Workshop, Oxford, UK, 2019.

ARTEMIS I

References will be supplied in a future release.