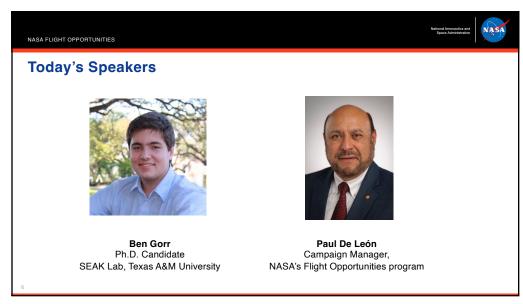
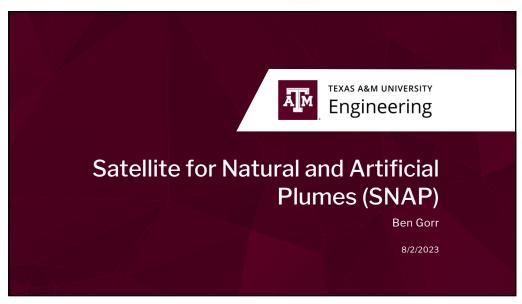

Ben Gorr Paul De León

Welcome to the Community of Practice Webinar Series!


Flight Opportunities hopes these webinars will enable researchers, program staff, and flight providers to connect informally and share information

- Designed to distill and share the most important lessons learned to:
 - · Increase the impact of suborbital flight tests
 - · Transfer best practices
 - Optimize the experience of current and prospective program participants
- Part of a broad effort to capture, organize, and communicate lessons learned by suborbital researchers
- An opportunity to hear from subject matter experts on best practices for preparing for suborbital flight tests


Ben Gorr Paul De León

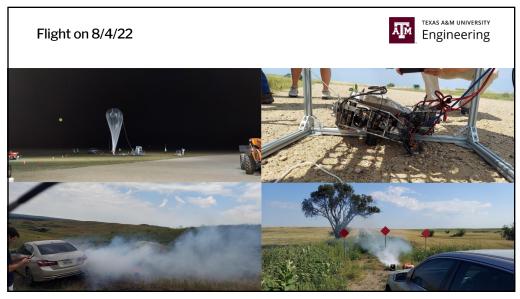
TEXAS A&M UNIVERSITY

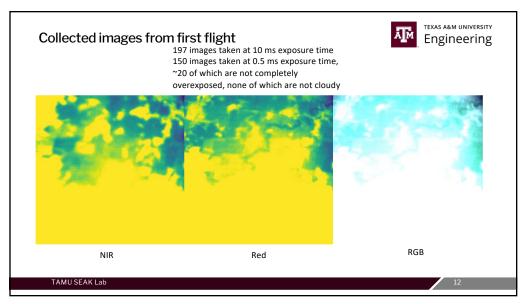
Paul De León

Overview

- The SNAP payload is intended to collect images of plumes on Earth's surface and identify the plumes in order to track them.
- The payload consisted of a computer, IMU and camera within a 2-axis gimbal that allowed the payload to track identified
- Objectives for the flight:

 The payload autonomously identifies and segments (determines the plume shape by classifying pixel by pixel) one plume and records accompanying
 - video.
 The payload slews to track the plume
 - to keep it within the field of view. The plume is geolocated within 100 meters.




TAMU SEAK Lab

Timeline

- Engineering
- · October '21 TechLeap challenge kickoff
- · January '22 NASA FO site visit
- June '22 NASA FO site visit
- · Aug '22 first flight
- May '23 second flight

TAMU SEAK Lab

Major issues identified by first flight

https://www.nasa.gov/directorates/spacetech/flightopportunities/community-of-practice

- · Computer shutdown due to overheating
- Computer shutdown due to heaters drawing 15V line low (not confirmed, but likely)
- Camera settings caused overexposure of images
- · Insufficient structural strength to withstand landing

TAMU SEAK Lal

13

13

Changes between flights

- Thermal strap for computer
- Separate 15V lines for heaters and computer
- Watchdog to hard reset computer
- Adaptive camera settings to adjust to lighting conditions
- · Relocating pan gimbal motor to below waffle plate
- Sturdier turntable
- · Added thermal camera
- · Housing for payload
- Much improved flight software

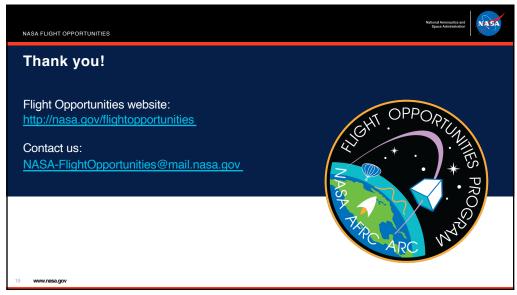
TAMU SEAK Lab

Lessons learned (some of them)

- · Have a secondary mission!
 - Especially if your primary mission is operationally challenging
- · Robust flight software
 - Well-tested
 - Easily modifiable
- · Think about wiring/harnessing early on
- · Test, test, test
 - Should start testing things at the halfway mark or sooner, NOT right before flight
- · Collaborate!

TAMILSEAK Lah

What's next?



- · Data processing
 - Automated cloud masking
 - Water and vegetation detection (compare with existing sats)
- · Fly again
 - On a UAS
 - On a balloon
 - In space?

TAMU SEAK Lab

17

