Three planes on merging routes are:
-- different distances from the intersection,
-- traveling at the same speed.
Alternate routes are not available.

3 Nmi 3 Nmi

Estimated class time: 1.5 to 2 hours

Objectives

Each plane is traveling at 600 knots, the maximum speed allowed. So to resolve a spacing conflict, students must reduce plane speeds.

Prerequisites

Line Up With Math ${ }^{\text {tim }}$
 Math-Based Decisions in Air Traffic Control for Grades 5-9
 Problem Set F
 Resolving 3-Plane Traffic Conflicts by Changing Speed

 Teacher Guide with Answer Sheets

 Teacher Guide with Answer Sheets}

In this Problem Set, students will determine whether three planes traveling on different merging routes will line up with proper spacing at MOD (the last intersection before the planes leave the airspace sector). If the spacing is not adequate, students will change the speed of one or more planes to achieve the proper spacing at MOD. In the final problem, students will make both speed and route changes to achieve proper spacing at MOD.

The planes are traveling at the same altitude and the same constant (fixed) speeds.
This is the most challenging of the Line U_{p} With Math ${ }^{\text {TM }}$ Problem Sets.
This Problem Set also includes an optimal solution time for each Simulator problem. A "target time" is posted on the Simulator screen. This target time is the minimum required for the last plane to reach the intersection at MOD. An on-screen clock keeps track of the flight time for a student's solution.

Each problem can be explored with the interactive Air Traffic Control (ATC) Simulator. Four of the problems can be more closely examined with Student Workbook F (print-based). The Workbook provides a structured learning environment for exploring the problems with paper-and-pencil worksheets that introduce students to pertinent air traffic control concepts as well as problem analysis and solution methods.

Students will:

- Analyze a sector diagram to identify spacing conflicts among three planes, each traveling at the same speed.
- Resolve spacing conflicts by changing the speed of one or more planes.
- Resolve spacing conflicts by changing the speed or the speed and route of one or more planes.

Before attempting the current 3-plane Problem Set, it is strongly recommended that students complete Problem Set A that introduces essential air traffic control vocabulary, units, and representations. Students should also complete Problem Sets D and E that introduce speed changes for two planes.

Materials

ATC Simulator

A complete description of the ATC Simulator is contained in the Educator Guide for LineUp With Math ${ }^{\mathrm{TM}}$.

For a simulator quick start guide and an animated tutorial, visit the LineUp With Math ${ }^{\mathrm{TM}}$ website.

- ATC Simulator (web-based)
- Student Workbook E (print-based)

The materials are available on the LineUp With Math ${ }^{\text {TM }}$ website:

> http://www.smartskies.nasa.gov/lineup

A separate student website gives students easy access to the Simulator only (and not to the answers and solutions provided on the teacher website):

https://atcsim.nasa.gov/simulator/sim2/sector33.html

Interactive Air Traffic Control Simulator

Students can explore Problem Set F with the interactive ATC Simulator. Each problem features 3-plane conflicts that can be resolved by speed changes or by route and speed changes.

The Simulator problems for Problem Set F are:

$$
3-3^{*} ; \quad 3-4^{*} ; \quad 3-5^{*} ; \quad 3-6^{*} ; \quad 3-8, \quad 3-9 ; \quad 3-10 ; \quad 3-11 ; \quad 3-12
$$

Problems with an asterisk $\left(^{*}\right)$ are supported by worksheets in Student Workbook E.

An optimal solution time ("target time") is displayed on the screen for each Simulator problem. This target is the minimum time required for the last plane to reach the intersection at MOD. An on-screen clock keeps track of the flight time for a student's solution.

For a complete set of answers and solutions to all Problem Set F Simulator problems, see Appendix I of this document.

For a discussion of the key points associated with the first four Simulator problems, see the worksheet notes in the following Student Workbook section.

Student Workbook

It is recommended that you have a copy of Student
Workbook F open while you read these notes.

The worksheet title is the same as the associated Simulator problem.

In the sector diagram, each route flows only towards MOD. E.g., a plane may fly from MINAH to OAL, but cannot fly from OAL to MINAH.

The Student Workbook consists of four worksheets, one for each of the four featured Simulator problems listed below.

Simulator Problem	Worksheet Title
$3-3^{*}$	Problem 3-3
$3-4^{*}$	Problem 3-4
$3-5^{*}$	Problem 3-5
$3-5^{*}$	Problem 3-6

Each problem features a spacing conflict with different starting conditions. After the first worksheet, the students will require less guidance and structure, and the subsequent worksheets reflect this.

For a complete set of answers to each worksheet, see Appendix II of this document.
For each worksheet, they key points are briefly described as follows.

Worksheet: Problem 3-3

- On a number line, students plot the relative spacing of each plane at MOD to help picture the arrival order of the planes at MOD, their relative spacing, and any spacing violations.
- To identify spacing conflicts, students begin by considering the first and second planes to arrive at MOD. Students determine that the second plane needs 2 additional nautical miles of spacing to achieve Ideal Spacing.
- Next, students identify conflicts between the second plane (with its new spacing) and the third plane to arrive at MOD. Students determine that the third plane needs 2 additional nautical miles of spacing to achieve Ideal Spacing.
- To achieve Ideal Spacing at MOD between the first and second planes, students slow the second plane. A 60-knot speed decrease achieves the 2-nautical mile additional spacing in 2 minutes. It takes the first plane 3 minutes (30 nautical miles at 600 knots) to arrive at MOD. In a similar manner, students achieve Ideal Spacing between the second and third planes.

Worksheet: Problem 3-4

- Students use the same problem-solving approach as in Problem 3-3. Minimal structure is provided to lead students to the solution.
- Students first identify spacing conflicts between the first and second planes to arrive at MOD. Then students use the new spacing of the second plane to identify the spacing conflict between the second and third planes.

Worksheet: Problem 3-5

- As in Problem 3-3 and Problem 3-4, students first identify spacing conflicts at MOD and resolve these conflicts to achieve Ideal Spacing (3 nautical miles) at MOD.
- In this problem, unlike Problem 3-3 and Problem 3-4, two planes (UAL74 and DAL88) pass through OAL on their way to MOD. Students must determine whether their resolution of the MOD spacing conflict violates the Minimum Separation requirement (2 nautical miles) at OAL.
- At the given starting distances (UAL74 is 17 nautical miles from OAL and DAL88 is 18 nautical miles from OAL) and starting speeds, there will be only 1 nautical mile of spacing between the planes at OAL. This does not meet the Minimum Separation requirement (2 nautical miles). However, after the $60-\mathrm{knot}$ speed reduction for DAL88 (introduced to achieve Ideal Spacing at MOD), DAL88 will achieve an additional 1 nautical mile of spacing in 10 nautical miles. So Minimum Separation is achieved before OAL.

Worksheet: Problem 3-6

- This is the first problem to require students to make a route change and a speed change to achieve Ideal Spacing at MOD.
- In this problem, the original positions of two planes, DAL88 (30 nautical miles from MOD) and UAL74 (34 nautical miles from MOD), will give 4 nautical miles spacing at MOD. This is more than the Ideal Spacing (3 nautical miles). To achieve Ideal Spacing exactly (for efficiency purposes), students can reroute UAL74 and make a speed reduction.
- With the new route, UAL74 is 31 nautical miles from MOD, so an additional 2 nautical miles of spacing are required at MOD. Students can slow UAL74 by 60 knots to achieve the 2 nautical mile additional spacing in 2 minutes. Then, to maintain Ideal Spacing and not fall further behind, students can return UAL74 to 600 knots after 2 minutes.
- With the route change and the speed change, UAL74 now has 3 nautical miles of spacing with respect to each of the other two planes.

Answer sheets for each of the Problem Set F Simulator problems can be found in Appendix I of this document.

Answer sheets for each worksheet in Student Workbook F can be found in Appendix II of this document.

APPENDIX 1

Air Traffic Control Simulator

Simulator Solutions for Problem Set F
 $$
3-3^{*}, 3-4^{*}, 3-5^{*}, 3-6^{*}
$$
 $$
3-8,3-9,3-10,3-11,3-12
$$

Problems with an asterisk (*) are supported by worksheets in Student Workbook F

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	34	600
DAL88	TPH	OAL	MOD	31	600
UAL74	LIDAT		MOD	30	600

- Route from MINAH to OAL is closed.
- Route from LIDAT to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 will arrive at MOD 1 nautical mile behind UAL74.
- Weather prevents UAL74 and AAL12 from rerouting.
- DAL88 can slow down to fall back 2 nautical miles. AAL12 will then need to slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	30	>1
2nd	DAL88	31	
3rd	AAL12	34	

Initial:
UAL74 DAL88

Solution

Sector 33

- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- DAL88 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart

Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	34	600
DAL88	TPH	OAL	MOD	32	600
UAL74	LIDAT		MOD	30	600

- Route from LIDAT to OAL is closed.
- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- UAL74 AND DAL88 will arrive at MOD 2 nautical miles apart. AAL12 AND DAL88 will arrive at MOD 2 nautical miles apart.
- Weather prevents UAL74 AND AAL12 from rerouting.
- DAL88 AND AAL12 both need to slow down to fall back 1 and 2 nautical miles, respectively.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	30	>2
2nd	DAL88	32	
3rd	AAL12	34	

Target:

Solution

Sector 33

- DAL88 - Slow down to 540 knots for 1 minute to fall back 1 nautical mile. Then speed up to 600 knots.
- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart

Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	35	600
DAL88	TPH	OAL	MOD	31	600
UAL74	LIDAT	OAL	MOD	30	600

- Route from MINAH to OAL is closed.
- Route from LIDAT to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 will arrive at OAL 1 nautical mile behind UAL74.
- Weather prevents AAL12 AND UAL74 from rerouting.
- DAL88 needs to slow down to fall back 2 nautical miles (at least 1 nautical mile before OAL).
- AAL12 needs to slow to fall back 1 nautical mile before OAL.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	30	$\gg 1$
2nd	DAL88	31	
3rd	AAL12	35	

Initial:

Solution

- DAL88 - Slow down to 540 knots for 2 minutes to fall back 2 nautical mils. Then speed up to 600 knots.
- AAL12 - Slow down to 540 knots for 1 minute to fall back 1 nautical mile before 0AL. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:
Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	36	600
DAL88	TPH	OAL	MOD	30	600
UAL74	LIDAT	OAL	MOD	34	600

- Route from MINAH to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- AAL12 will arrive at OAL 2 nautical miles behind UAL74.
- Weather prevents AAL12 from rerouting.
- UAL74 can take the shortcut to shorten its travel distance by 3 nautical miles and then can slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1 st	DAL88	30	>4
2nd	UAL74	34	>2
3rd	AAL12	36	

Solution

00:00

- UAL74 - Slow down to MOD to move forward 3 nautical miles and then slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	35	600
DAL88	TPH	OAL	M0D	35	600
UAL74	LIDAT		MOD	35	600

- Route from LIDAT to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12, UAL74, AND DAL88 will arrive at MOD at the same time.
- Weather prevents UAL74 from rerouting.
- AAL12 can take the shortcut to shorten its travel distance by 3 nautical miles. UAL74 can slow down to fall back 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	35	>0
1st	DAL88	35	
1st	UAL74	35	

DAL88

Solution

- AAL12 - Reroute direct to MOD to move forward 3 nautical miles.
- UAL74 - Slow down to 540 knots for 3 minutes to lose 3 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 48 seconds.

Smart

Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	29	600
DAL88	TPH	OAL	MOD	31	600
UAL74	LIDAT	OAL	MOD	36	600

- Route from MINAH to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- DAL88 will arrive at OAL 2 nautial mile behind AAL12. UAL74 will be 5 nautical miles behind DAL88.
- Weather prevents UAL74 AND AAL12 from rerouting.
- DAL88 can slow down to fall back 1 nautical mile.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	29	>2
2nd	DAL88	31	
3rd	UAL74	36	

Solution

- DAL88 - Slow down to 540 knots for 1 minute to fall back 1 nautical miles. Then speed up to 600 knots.
- UAL74 - Spacing is 4 nautical miles. This is greater than 3 nautical miles Ideal Spacing.
- Target Time - 3 minutes and 36 seconds.

Smart

Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	33	600
DAL88	TPH	OAL	MOD	35	600
UAL74	LIDAT	OAL	MOD	40	600

- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- DAL88 will arrive at OAL 2 nautical miles behind AAL12 UAL74 will be 5 nautical miles behind.
- Weather prevents AAL12 from rerouting.
- DAL88 can slow down to fall back 1 nautical mile. UAL74 can take the shortcut to shorten its travel distance by 3 nautial miles and slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	33	$\gg 2$
2nd	DAL88	35	
3rd	UAL74	40	

Initial: AAL12 DAL88 UAL74

Solution

- DAL88 - Slow down to 540 knots for 1 minute to fall back 1 nautical mile. Then speed up to 600 knots.
- UAL74 - Reroute direct to MOD to move up 3 nautical miles. Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	28	600
DAL88	TPH	OAL	MOD	26	600
SWA23	TPH	OAL	MOD	31	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- DAL88 will arrive at OAL 2 nautical miles behind AAL12. UAL74 will be 5 nautical miles behind.
- Weather prevents AAL12 from rerouting.
- DAL88 can slow down to fall back 1 nautical mile. UAL74 can take the shortcut to shorten its travel distance by 3 nautical miles and slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1 st	DAL88	26	$\gg 2$
2nd	AAL12	28	
3rd	SWA23	31	

Initial:

Solution

- AAL12 - Reroute AAL12 direct to MOD to move forward by 3 nautical miles.
- DAL88 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 6 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	35	600
DAL88	TPH	OAL	M0D	35	600
UAL74	LIDAT		MOD	35	600

- Route from LIDAT to OAL is closed.
- Route from MINAL to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12, UAL74, AND DAL88 will arrive at MOD at the same time.
- Weather prevents UAL74 AND AAL12 from rerouting.
- One plane must slow down to lose 3 nautical miles and one plane must slow down to lose 6 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1 st	AAL12	35	>0
1 st	DAL88	35	
1 st	UAL74	35	

Solution

- UAL74 - Slow down to 480 knots for 3 minutes to fall back 6 nautical miles (at 5 nautical miles from MOD). Then speed up to 600 knots.
- DAL88 - Slow down to 480 knots for 1.5 minutes to fall back 3 nautical miles (at 2 nautical miles from OAL) before a possible conflict at OAL. Then speed up to 600 knots.
- Target Time - 4 minutes and 6 seconds.

Smart
Skies ${ }^{\text {TM }}$

Math-Based Decisions in Air Traffic Control

Student Workbook F

Appendix II

- Resolving Air Traffic conflic AnSwers
- Workbo0K
- Wor,

Investigator: \qquad
An Airspace Systems
Program Product

Investigator:

\qquad

- If we need to change spacing, we must change speed. The alternate routes are closed.

To find the arrival order of the 3 planes at MOD, fill in the table.

Plane	AAL12	DAL88	UAL74
Distance to MOD, Nmi	34	31	30
Arrival Order	3rd	2nd	1st

2 Use a \searrow to show the order and spacing for the 3rd plane. Label your \rangle with "AAL12".

1st	2nd	3rd
UAL74	DAL88	AAL12

\qquad

- Next we determine the additional spacing needed to get Ideal Spacing at MOD.

3 To get Ideal Spacing between the first and second plane, how much additional spacing do you need?

2 nautical miles

- We use an arrow to show the additional spacing needed for the 2nd plane.

We picture the new spacing with a at the end of the arrow. We label the ${ }^{\bullet}$ with the plane's call sign.

Now, how much additional spacing do you need between the second and third plane to get Ideal Spacing? (Be sure to use the NEW position of the second plane.)

5
Use an arrow to show the additional spacing for the third plane (AAL12).
Put a ${ }^{\bullet}$ at the end of the arrow to show the new spacing. Label the ${ }^{\bullet}$ with "AAL12".

- Now that you know the additional spacing you need, what speed changes will you make? Begin with the second plane (DAL88).

How much will you slow the DAL88 speed? \square knots What will the new speed be? 540 knots

How many minutes will it take to get the additional spacing?

2 Nmi needed $\div 1 \mathrm{Nmi} / \mathrm{min}=2 \mathrm{mins}$

A 60-knot difference in speed will cause a 1 Nmile difference in spacing each minute.

$$
T_{\text {MOD for DAL88 }}=31 \mathrm{Nmi} \div 9 \mathrm{Nmi} / \mathrm{min} \approx 3.4 \mathrm{mins}>2 \mathrm{mins}
$$

Now what speed changes will you make for the third plane, AAL12? Fill in the table.

	Additional Spacing		New Speed		Time Until Ideal Spacing		At or Before MOD?	
AAL12	34	Nmi	540	Kts	31	Mins	X Yes	No

2 Nmi needed $\div 1 \mathrm{Nmi} / \mathrm{min}$ difference $=2 \mathrm{mins}$

$T_{\text {MOD for AAL12 }}=34 \mathrm{Nmi} \div 9 \mathrm{Nmi} / \mathrm{min} \approx 3.8 \mathrm{mins}>2 \mathrm{mins}$
If Yes, congratulations!

Investigator:

\qquad

(1)
First, plot each plane's given spacing at MOD with a \diamond. Then plot the Ideal Spacing with a \bullet. Label each symbol with the plane's call sign. Use an arrow to show the additional spacing needed.

2 What speed changes will you make to get Ideal Spacing at MOD? Fill in the table.

Order	Call Sign	Additional Spacing		New Speed		Time Until Ideal Spacing		At or Before MOD?	
2nd	DAL88	1	Nmi	540	Kts	1	Mins	X Yes	No
3rd	AAL12	2	Nmi	540	Kts	2	Mins	X Yes	No

DAL88: $T_{\text {mоо }}=34 \mathrm{Nmi} \div 9 \mathrm{Nmi} / \mathrm{min} \approx 3.6$ mins $>1 \mathrm{~min}$ If Yes, congratulations!
AAL12: $T_{\text {MOD }}=34 \mathrm{Nmi} \div 9 \mathrm{Nmi} / \mathrm{min} \approx 3.8 \mathrm{mins}>2 \mathrm{mins}$

Investigator:

\qquad

1
First, plot each plane's given spacing at MOD with a \langle. Then plot the Ideal Spacing with a \bullet. Label each symbol with the plane's call sign. Use an arrow to show the additional spacing needed.

1st	2nd	3rd
UAL74	DAL88	AAL12

2 What speed changes will you make to get Ideal Spacing at MOD? Fill in the table.

Order	Call Sign	Additional Spacing		New Speed		Time Until Ideal Spacing		At or Before MOD?	
2nd	DAL88	2	Nmi	540	Kts	2	Mins	X Yes	No
3rd	AAL12	1	Nmi	540	Kts	1	Mins	X Yes	No

?
At the new speeds, will UAL74 and DAL88 have at least minimum spacing (2 Nmi) at OAL? $\quad \mathbf{X}$ Yes \square No $T_{\text {oal for val74 }}=17 \mathrm{Nmi} \div 10 \mathrm{Nmi} / \mathrm{min}=1.7 \mathrm{mins}$

1 Nmi headstart + 1 Nmi/min • 1.7 mins = 1 + 1.7 = $2.7 \mathrm{Nmi}>2 \mathrm{Nmi}$

If No, how will you redo your speed changes?

Not needed.

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Remember, you need Ideal Spacing at MOD.
First, plot each plane's given spacing at MOD with a \langle. Then plot the Ideal Spacing with a \bullet. Label each symbol with the plane's call sign. Use an arrow to show the additional spacing needed.

1st	2nd	3rd
DAL88	UAL74	AAL12

For the second plane, what route change and speed change will give Ideal Spacing at MOD?
Changes:
Route: Direct to MOD
Speed:
540 knots

At the new speeds, will UAL74 and DAL88 have at least minimum spacing (2 Nmi) at OAL?

For the speed change, after how many minutes will you speed up the plane to 600 knots to maintain ideal separation at MOD?

Continue to Next Page
\qquad

CAUTION Be sure to mark the route and speed changes you have made on the above sector plot.

For the third plane, describe your changes (if any) to get Ideal Spacing at MOD.
Changes:
Route: AAL12: None
Speed: None knots

If you changed speed, after how many minutes will you speed up the plane to 600 knots to maintain ideal separation at MOD?

N/A

 minutes

With your new speeds, will AA12 and DAL88 have at least the 2 nautical mile Minimum \square No X Yes Separation at OAL?
At OAL: (23-17) Nmi = 6 Nmi
If No, how will you redo your route or speed changes?
Not needed.

