$\underset{f}{\text { ZineUn With Math }}$

Math-Based Decisions in Air Traffic Control

Student Workbook E

- Resolving Air Traffic Conflicts by Changing Speed
- 2 planes, each at the same starting speed.
- Simulator Problems 2-4, 2-5, 2-6, 2-7, 2-8.

Simulator at: https://atcsim.nasa.gov/simulator/sim2/sector33.html

Investigator: \qquad
An Airspace Systems
Program Product

Investigator:

\qquad

How Much Time Before You Need Ideal Spacing?

\square minutes

What Speed Change Will Solve the Problem?

You can't speed up a plane because they are at the maximum speed of 600 knots.
5 Instead reduce the speed of one plane by 60 knots. Choose one plane to slow to 540 knots:
Remember: *A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.

In 3 minutes, how much additional spacing will you gain due to the speed reduction? \square nautical miles
 Does the 60-knot speed drop give Ideal Spacing at MOD? \square Yes \square

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Speeds: \square Same \square Different

Spacing at MOD= \square Nmi
 Nmi

* You must change speed to meet the Ideal Spacing.

At 600 knots, how many minutes will it take the planes to reach MOD? \square minutes

Remember * Controllers change speed in 60 knot steps.

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
* First, slow AAL12 (or DAL88) by 60 knots, to 540 knots.

At MOD, how much spacing will you gain? \square nautical miles

Did the 60-knot speed drop give you Ideal Spacing at or before MOD? \square Yes \square No Try a greater speed drop. Slow AAL12 by $60+60=120$ knots, to 480 knots.

Now how much spacing will you gain at MOD? \square nautical miles

Did the 120-knot speed drop give you Ideal Spacing at MOD? \square Yes \square

What could the controller do to achieve at least ideal spacing?

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Speeds: \square Different

Spacing at MOD= \square Nmi
 Nmi

At 600 knots, how many minutes will it take the lead plane to reach MOD? \square minutes

* Controllers usually slow down the trailing plane (not the leading plane).

Which plane would a controller slow down to 540 knots? \square

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
 At this speed, how many nautical miles less will this plane travel each minute? \square nautical miles per minute

At MOD, how much additional spacing will be gained due to the speed reduction? \square nautical miles

Is the spacing ideal? \square Yes \square No

If no, after how many minutes will you speed the plane up to 600 knots to make the spacing ideal at MOD? \square minutes

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Remember * Controllers change speed in 60 knot steps.

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
* Analyze the problem at OAL (routes first meet). MUST meet or exceed minimum separation of 2 nautial miles.

\square Nmi

Additional Spacing
Spacing at $\mathbf{O A L}=$ Needed for minimum separation of 2 Nmiles $=$ \square Nmi

* Let's solve the problem by slowing one plane. Let's slow that plane to 540 knots.

Which plane will you slow? \square

nautical miles

At 540 knots, will the planes have at least minimum separation of 2 nautial miles? \square No \square Yes
If no, what new speed will you use? \square knots

At the new speed, what will the separation be at OAL? \square nautical miles

At your final speed change, do you get at least Minimum Separation at OAL? \square Yes \square No

If Yes, when will you speed the plane up to 600 knots to get Ideal Spacing at MOD?
\square
\qquad Understand the \% Method

EXTENSION

- Now we will use a new method, the Percent Rule, to solve speed change problems. Here's an example.

- At a speed of 600 knots, ALL12 travels 20 nautical miles to MOD in 2 minutes.

If we decrease the speed by 50% (that's $1 / 2$ speed), then the new speed is \square knots

- At 300 knots (a 50% decrease in speed), AAL12 travels only 10 nautical miles (a 50% decrease) in 2 minutes.
- Here's a picture.

- So, in two minutes, we have:

Percent	Speed	Distance Traveled
100%	600 knots	20 nautical miles
50%	300 knots	10 nautical miles

- The 50\% decrease in speed gives a 50% decrease in distance traveled in the same time.

This is an example of the Percent Rule:

For a given amount of time, when you decrease a plane's speed by a given percent, the plane's distance traveled is decreased by the same percent.

\qquad

\% decrease in speed = \% decrease in distance traveled

- Now we will use the Percent Rule to get additional spacing at MOD.
- In the picture below, the plane's maximum speed, 600 knots, is shown in 10% intervals (60 knots each) on the Speed Bar.
- The plane is 20 nautical miles from MOD.

The distance to MOD is shown in 10\% intervals (2 nautical miles each) on the Distance Bar.

Above the Speed Bar, in the empty box, fill in the plane speed that is 50% of 600 knots.

- Use this picture and the Percent Rule to answer Questions 3 through 5.

3
If we decrease speed by 60 knots, what is the \% decrease in speed? \square

Using the Percent Rule, what is the \% decrease in distance traveled in two minutes? \square How many fewer nautical miles will the plane travel in two minutes? \square nautical miles

- Now suppose the plane is $\mathbf{3 0}$ nautical miles from MOD, traveling at 600 knots.

6 In the box below the Distance Bar, fill in the distance that is 50% of the $\mathbf{3 0}$ nautical miles to MOD.

The distance to MOD is 30 nautical miles. For each 10\% interval, fill each Distance Bar box with the number that is 10% of 30 nautical miles.

- Use this picture and the Percent Rule to answer Questions 8 through 12.

If we decrease speed by 120 knots, what is the percent decrease in speed? \square
Using the Percent Rule, what is the percent decrease in distance traveled in the same travel time? \square 10 Using this percent, how many fewer nautical miles will the plane travel? \square nautical miles

- Now the plane speed is again 600 knots.

The plane travels 30 nautical miles to MOD in a certain amount of time.
But we don't need to know this time to answer this question.

To travel 9 fewer nautical miles (in this same time) by what percent would you reduce the plane speed?

By how many knots would you reduce the plane speed? \square knots

Investigator:

\qquad

- Use the Percent Method to solve this problem.

* To achieve Ideal Spacing at MOD, decrease the speed of the trailing plane.

How many nautical miles does the lead plane travel to MOD? \square nautical miles

3 When the lead plane reaches MOD, the trailing plane has traveled \square
4\}
What is the percent decrease in travel distance for the trailing plane?

$$
\% \text { Decrease }=\frac{\text { Additional Spacing Needed }}{\text { Distance Traveld }}=\frac{2 \text { Nmiles }}{20 \text { miles }}=\frac{1}{10}=\square \%
$$

For the trailing plane to decrease its travel distance by 10%, decrease its speed by \square If you decrease the trailing plane's speed by 10%, what is it's new speed? \square knots
 What is the new spacing at MOD? \square nautical miles

