

Math-Based Decisions in Air Traffic Control Student Workbook E

- Resolving Air Traffic Conflicts by Changing Speed
 - 2 planes, each at the same starting speed.
 - Simulator Problems 2-4, 2-5, 2-6, 2-7, 2-8.

Simulator at: https://atcsim.nasa.gov/simulator/sim2/sector33.html

Investigator:

An Airspace Systems Program Product

Investigator: _____

Investigator:

Investigator: _____

Investigator:

Remember * Controllers change speed in 60 knot steps.

- * A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
- * Analyze the problem at **OAL** (routes first meet). MUST meet or exceed **minimum** separation of 2 nautial miles.

1	Spacing at OAL = Nmi Additional Spacing Needed for minimum separation of 2 Nmiles = Nmi				
	* Let's solve the problem by slowing one plane. Let's slow that plane to 540 knots.				
2	Which plane will you slow?				
3	At OAL , how much additional spacing will be added due to the speed reduction? nautical miles				
4	At 540 knots, will the planes have at least minimum separation of 2 nautial miles? No Yes If no, what new speed will you use? knots				
5	At the new speed, what will the separation be at OAL? nautical miles				
6	At your final speed change, do you get at least Minimum Separation at OAL? Yes No				
7	If Yes, when will you speed the plane up to 600 knots to get Ideal Spacing at MOD ?				

LineUp With Math™

End of Worksheet

EXTENSION

Now we will use a new method, the Percent Rule, to solve speed change problems.
 Here's an example.

• At a speed of 600 knots, AAL12 travels 20 nautical miles to MOD in 2 minutes.

If we decrease the speed by 50% (that's 1/2 speed), then the new speed is

- At 300 knots (a 50% decrease in speed), AAL12 travels only 10 nautical miles (a 50% decrease) in 2 minutes.
- · Here's a picture.

• So, in two minutes, we have:

1	Percent	Speed	Distance Traveled
	100%	600 knots	20 nautical miles
	50%	300 knots	10 nautical miles

• The 50% decrease in speed gives a 50% decrease in distance traveled in the same time. This is an example of the Percent Rule:

For a given amount of time, when you decrease a plane's speed by a given percent, the plane's distance traveled is decreased by the same percent.

Continue to Next Page

LineUp With Math™ Workbook E - Page 5 of 8 EG-2006-08-111-ARC

Here's the Percent Rule

% decrease in speed = % decrease in distance traveled

- Now we will use the Percent Rule to get additional spacing at MOD.
- In the picture below, the plane's maximum speed, 600 knots, is shown in 10% intervals (60 knots each) on the Speed Bar.
- The plane is 20 nautical miles from MOD.

 The distance to MOD is shown in 10% intervals (2 nautical miles each) on the Distance Bar.

- Above the Speed Bar, in the empty box, fill in the plane speed that is 50% of 600 knots.
 - Use this picture and the Percent Rule to answer Questions 3 through 5.
- If we decrease speed by 60 knots, what is the % decrease in speed?
- Using the Percent Rule, what is the % decrease in distance traveled in two minutes?
- How many **fewer** nautical miles will the plane travel in two minutes? nautical miles

End of Worksheet

• Now suppose the plane is **30 nautical miles** from MOD, traveling at 600 knots.

- 6 In the box below the Distance Bar, fill in the distance that is 50% of the **30 nautical miles** to MOD.
- The distance to MOD is 30 nautical miles. For each 10% interval, fill each Distance Bar box with the number that is 10% of 30 nautical miles.
 - Use this picture and the Percent Rule to answer Questions 8 through 12.
- If we decrease speed by 120 knots, what is the percent decrease in speed?
- Using the Percent Rule, what is the percent decrease in distance traveled in the same travel time?
- Using this percent, how many **fewer** nautical miles will the plane travel? nautical miles
 - Now the plane speed is again 600 knots.
 The plane travels 30 nautical miles to MOD in a certain amount of time.
 But we don't need to know this time to answer this question.
- To travel 9 **fewer** nautical miles (in this same time) by what percent would you reduce the plane speed?
- By how many knots would you reduce the plane speed? knots

Smart Skies™ End of Worksheet

Investigator:

• Use the Percent Method to solve this problem.

	Lead plane =	Spacing at MOD =	Nmi	Additional Spacing Needed for 3 Nmiles =	Nm
--	--------------	------------------	-----	--	----

- * To achieve Ideal Spacing at MOD, decrease the speed of the trailing plane.
- 2 How many nautical miles does the *lead* plane travel to MOD? nautical miles
- When the lead plane reaches MOD, the *trailing* plane has traveled the same a different distance.
- What is the percent decrease in travel distance for the trailing plane?

 Modern Distance Traveld

 What is the percent decrease in travel distance for the trailing plane?

 Bernard Distance Traveld

 What is the percent decrease in travel distance for the trailing plane?

 Distance Traveld

 **Distan
- For the trailing plane to decrease its travel distance by 10%, decrease its speed by %
- 6 If you decrease the trailing plane's speed by 10%, what is it's new speed? knots
- 7 What is the new spacing at MOD? nautical miles

