Two planes on merging

 routes are:-- traveling at the same speed.
An alternate route is not available.

Line Up With Math $^{\text {tim }}$
Math-Based Decisions in Air Traffic Control for Grades 5-9

Problem Set E

Resolving 2-Plane Traffic Conflicts by Changing Route

Teacher Guide with Answer Sheets

In this Problem Set, students will determine whether two planes traveling on different merging routes will line up with proper spacing at MOD (the last intersection before the planes leave the airspace sector). If the spacing is not adequate, students will change the speed of one plane to achieve the proper spacing at MOD.

The planes are traveling at the same altitude and the same constant (fixed) speeds.
In LineUp With Math ${ }^{\text {TM }}$, this is the first set of problems where students use speed change to achieve safe and proper spacing.

This Problem Set also introduces an optimal solution time for each Simulator problem. A "target time" is posted on the Simulator screen. This target is the minimum time required for the last plane to reach the intersection at MOD. An on-screen clock keeps track of the flight time for a student's solution.

Each program can be explored with the interactive Air Traffic Control (ATC) Simulator. Five of the problems can be more closely examined with Student Workbook E (print-based). The Workbook provides a structured learning environment for exploring the problems with paper-and-pencil worksheets that introduce students to pertinent air traffic control concepts as well as problem analysis and solution methods.

Students will:

- Analyze a sector diagram to identify a spacing conflict between two planes, each traveling at the same speed.
- Resolve the spacing conflict by changing the speed of one plane.
- (Optional) Learn that a given percent reduction in plane speed yields the same percent reduction in distance traveled in the original amount of time. (For a mathematical derivation of this relationship, see Appendix III.)

Before attempting the current Problem Set, it is strongly recommended that students complete Problem Set A that introduces essential air traffic control vocabulary, units and representations.

It is also recommended that students complete Problem Set D that introduces students to the effects of changes in speed.

Materials

ATC Simulator

A complete description of the ATC Simulator is contained in the Educator Guide for Line Up With Math ${ }^{\mathrm{TM}}$.

For a simulator user guide and an animated tutorial, visit the LineUp With Math ${ }^{\mathrm{TM}}$ website.

Student Workbook

It is recommended that you have a copy of Student Workbook E open while you read these notes.

The worksheet title is the same as the associated Simulator problem.

- ATC Simulator (web-based)
- Student Workbook E (print-based)

The materials are available on the $\operatorname{Line} U_{p}$ With Math ${ }^{\text {TM }}$ website:

http://www.smartskies.nasa.gov/lineup

A separate student website gives students easy access to the Simulator only (and not to the answers and solutions provided on the teacher website):

https://atcsim.nasa.gov/simulator/sim2/sector33.html

Interactive Air Traffic Control Simulator

Students first explore Problem Set E with the interactive ATC Simulator. Each problem features a 2-plane conflict that can be resolved by a route change.

The Simulator problems for Problem Set E are:
$2-4^{*} ; \quad 2-5^{*} ; \quad 2-6^{*} ; \quad 2-7^{*} ; \quad 2-8^{*}, \quad 2-11 ; 2-12 ; \quad 2-13 ; \quad 2-14 ; 2-15 ; 2-16$
Problems with an asterisk $\left({ }^{*}\right)$ are supported by worksheets in Student Workbook E.
The optimal solution time ("target time") is displayed on the screen for each Simulator problem. This time is the minimum required for the last plane to reach the intersection at MOD. An on-screen clock keeps track of the flight time for a student's solution.

For a complete set of answers and solutions to all Problem Set E Simulator problems, see Appendix I of this document.

For a discussion of the key points associated with the first five Simulator problems, see the worksheet notes in the following Student Workbook section.

The Student Workbook consists of five worksheets, one for each of the five featured Simulator problems listed below.

Simulator Problem

$2-4^{*}$	Problem 2-4
$2-5^{*}$	Problem 2-5
$2-6^{*}$	Problem 2-6
$2-7^{*}$	Problem 2-7
$2-8^{*}$	Problem 2-8

Each problem features a spacing conflict with different starting conditions. As students progress through the worksheets, they likely will require less guidance and structure, and the subsequent worksheets reflect this.

In the sector diagram, each route flows only towards MOD. E.g., a plane may fly from MINAH to OAL, but cannot fly from OAL to MINAH.

For a complete set of answers to each worksheet, see Appendix II of this document.
For each worksheet, the key points are briefly described as follows.

Worksheet: Problem 2-4

- After students identify the spacing conflict at MOD, they determine it will take each plane 3 minutes to arrive at MOD. After students decrease the speed of one plane, the faster plane will still take 3 minutes to arrive at MOD. So, the planes will fly 3 minutes before Ideal Spacing must be achieved.
- To resolve the spacing conflict, students begin by reducing the speed of the one plane by 60 knots. (Either plane can be selected since neither has a headstart.) At the reduced speed, this plane will travel 1 nautical miles less each minute.
- Finally, students apply the 1 nautical per minute distance reduction for 3 minutes to achieve Idal Spacing (3 nautical miles) exactly at MOD.

Worksheet: Problem 2-5

- Using the same problem-solving approach as in Problem 2-4, students determine it will take 2 minutes for each plane to arrive at MOD. After students decrease the speed of one plane, the faster plane will still take 2 minutes to arrive at MOD. A single 60 -knot speed decrease will achieve only a 2 nautical mile spacing in 2 minutes at MOD. This is less than Ideal Spacing at MOD.
- To resolve the spacing conflict, students must make a $120-\mathrm{knot}$ speed decrease (the equivalent of two $60-\mathrm{knot}$ decreases).
- This results in 4 nautical mile spacing at MOD, which is greater than Ideal Spacing. The students are asked to suggest a way to achieve Ideal Spacing at MOD. This requires increasing the slower plane's speed to the same speed (600 knots) as the leading plane as soon as Ideal Spacing is achieved.
- In the next problem, Problem 2-6, students will be given the opportunity to make such a speed increase.

Worksheet: Problem 2-6

- Students use the same problem-solving approach as in Problem 2-4. However, unlike Problems 2-4 and 2-5, one plane has a headstart (1 nautical mile). For the trailing plane, a single $60-\mathrm{knot}$ speed decrease will result in more than Ideal Spacing at MOD.
- The 3 nautical mile Ideal Spacing is achieved before MOD. As soon as this Ideal Spacing is achieved, the trailing plane's speed should be increased to the same speed as the leading plane. This will maintain Ideal Spacing all the way to MOD and beyond.
- Students are asked to specify the number of minutes (2 minutes) after which they will speed up the trailing plane. This is the number of minutes at which Ideal Spacing will be achieved.

In this problem, students work with decimals.

Worksheet: Problem 2-7

- Students use the same problem-solving approach as in Problem 2-6. However, in the current problem, both planes pass through OAL before they arrive at MOD. So students must check for Minimum Separation (2 nautical miles) at OAL as well as for Ideal Spacing of 3 nautical miles at MOD.
- First, students check for Ideal Spacing at MOD. This is because the goal is to have Ideal Spacing at MOD. After the students have determined the strategy to achieve this goal, they next check to see if their strategy violates Minimum Separation at OAL. (If it does, they must change their initial strategy to resolve the violation at OAL.)
- Since each plane is 25 nautical miles from MOD, they will arrive at MOD at the same time. Since there is no spacing between the planes at MOD, this does not meet the Ideal Spacing goal (3 nautical miles).
- To resolve the spacing conflict, students begin by reducing the speed of one plane by 60 knots. (Either plane can be selected since neither has a headstart.) At the reduced speed, this plane will travel 1 nautical miles less each minute.
- The faster plane takes 2.5 minutes to travel 25 nautical miles to MOD at 600 knots. In 2.5 minutes, with a 60 -knot speed reduction, the slower plane will fall behind 2.5 nautical miles (2.5 minutes x 1 nautical mile/minute $=2.5$ nautical miles). This is less than Ideal Spacing at MOD.
- To achieve at least Ideal Spacing at MOD, a 120 -knot speed decrease is required. This speed decrease will yield a 5 nautical mile spacing at MOD (2.5 minutes x 2 nautical miles/minute $=5$ nautical miles).
- Before the planes reach MOD, they will each pass through OAL. So students must check for Minimum Separation at OAL. Each plane starts 15 nautical miles from OAL. The faster plane takes 1.5 minutes to travel 15 nautical miles to OAL. A 120-knot speed decrease (2 nautical miles per minute) will result in a 3 nautical mile separation at OAL (1.5 minutes $\times 2$ nautical miles/minute $=3$ nautical miles). This meets the Minimum Separation requirement of at least 2 nautical miles. This also provides Ideal Spacing at OAL.
- To maintain the 3 nautical mile Ideal Spacing all the way to MOD and beyond, students must speed up the slower plane exactly at OAL. (Note: Students made similar calculations in Problem 2-6.)

Worksheet (Optional): Understand the \% Method

- A plane, traveling at its original speed, can cover a certain distance in a given amount of time. If the plane's speed is reduced by a certain percent, then in the given amount of time, the distance covered is reduced by the same percent. (For a mathematical derivation of this relationship, see Appendix III.)
- This percent relationship is especially easy to apply in the LineUp with Math ${ }^{\mathrm{TM}}$ problems since all speed reductions are done in increments of 10% of the original speed. In particular, the original plane speed is always 600 knots and the original speed is always reduced in 60 -knot increments. (Note: 60 is 10% of 600 .) With a 10% speed reduction, the distance traveled is also reduced by 10% (of the original distance). To find 10% of the original distance, students need only divide the distance by 10 , that is, they need only move the decimal point one place to the left.
- Note that with this percent method, students do not need to calculate the amount of time it will take the lead plane to reach MOD (as they have done in previous worksheets).

Worksheet (Optional): Problem 2-8

- In this problem, students are guided through the percent method introduced in the previous worksheet.
- The leading plane starts 20 nautical miles from MOD. The trailing plane starts 21 nautical miles from MOD. In the time it takes the leading plane to travel 20 nautical miles to MOD, the trailing plane will also travel 20 nautical miles. So to calculate the \% decrease in travel distance for the trailing plane, students must use 20 nautical miles (not 21) for the distance traveled.

Answer sheets for each of the Problem Set E Simulator problems can be found in Appendix I of this document.

Answer sheets for each worksheet in Student Workbook E can be found in Appendix II of this document.

A mathematical derivation of the Percent Method can be found in Appendix III of this document.

APPENDIX 1

Air Traffic Control Simulator

Simulator Solutions
 for Problem Set E

$$
\begin{gathered}
2-4^{\star}, 2-5^{\star}, 2-6^{\star}, 2-7^{\star}, 2-8^{\star} \\
2-11,2-12,2-13,2-14,2-15,2-16
\end{gathered}
$$

Problems with an asterisk (*) are supported by worksheets in Student Workbook E

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	30	600
UAL74	LIDAT		MOD	30	600

- Route from LIDAT to OAL is closed.
- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 AND UAL74 will arrive at MOD at the same time.
- Weather prevents AAL12 or UAL74 from rerouting.
- UAL74 or AAL12 need to slow down to fall back

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	30	0
2nd	UAL74	30	

Solution

Sector 33

- UAL74 or AAL12 - Slow down to 540 knots for 3 minutes to fall back 3 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 18 seconds.

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	20	600
DAL88	OAL		MOD	20	600

- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 AND AAL12 will arrive at MOD at the same time.
- Weather prevents AAL from rerouting.
- AAL74 or DAL88 need to slow down to fall back

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1 st	DAL88	20	>0
1 st	AAL12	20	0

Solution
Sector 33
$00: 00$

- AAL12 or DAL88 - Slow down to 480 knots for 1.5 minutes to fall back 3 nautical miles. THen speed up to 600 knots. Note: Slowing to 540 knots would only result in falling back 2 nautical miles in the 20 nautical miles to MOD.
- Target Time - 2 minutes and 18 seconds.

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	31	600
DAL88	TPH	OAL	MOD	30	600

- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 will arrive at MOD 1 nautical mile behind DAL88.
- Weather prevents AAL12 from rerouting.
- AAL12 needs to slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	30	>1
2nd	AAL12	31	

Initial: DAL88 AAL12

Solution

- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical mils. Then speed up to 600 knots.
- Target Time - 3 minutes and 18 seconds.

Starting Conditions:
Sector 33

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	28	600
UAL74	TPH	OAL	MOD	28	600

- Route from MINAH to MOD is closed.
- Route from LIDAT to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 AND UAL74 will arrive at OAL at the same time.
- Weather prevents AAL12 AND UAL74 from rerouting.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1 st	AAL12	28	>0
1 st	UAL74	28	

- UAL74 or AAL12 need to slow down to fall back 2 nautial miles by OAL and 3 nautical miles by MOD.

Solution

Sector 33

- UAL74 or AAL12 - Slow down to 480 knots for 1.5 minutes to fall back 3 nautical miles at OAL. Then speed up to 600 knots.
- Target Time - 3 minutes and 6 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	21	600
UAL74	LIDAT		MOD	20	600

- Route from LIDAT to OAL is closed.
- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 will arrive at MOD 1 nautial mile behind UAL74.
- Weather prevents UAL74 or AAL12 from rerouting.
- AAL12 needs to slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	20	>1
2nd	AAL12	21	

Initial: UAL74 AAL12

Solution

- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed AAL12 up to 600 knots.
- Target Time - 2 minutes and 18 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	33	600
DAL88	TPH	OAL	MOD	34	600

- Route from MINAH to MOD is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 will arrive at OAL 1 nautial mile behind AAL12.
- Weather prevents AAL12 from rerouting.
- DAL88 needs to slow down to fall back 2 nautical

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	33	>1
2nd	DAL88	34	

Solution

- DAL88 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
DAL88	TPH	OAL	MOD	35	600
UAL74	LIDAT		MOD	35	600

- Route from LIDAT to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: DAL88 AND UAL74 will arrive at MOD at the same time.
- Weather prevents UAL74 from rerouting.
- UAL or DAL88 needs to slow down to fall back 3

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	>0
1st	UAL74	35	0

Solution

- DAL88 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 36 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	36	600
DAL88	TPH	OAL	MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 will arrive at MOD 1 nautical mile behind DAL88.
- AAL12 needs to slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	>1
2nd	AAL12	36	

Target:

Solution

- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 48 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	36	600
DAL88	TPH	OAL	MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12 will arrive at MOD 1 nautical mile behind DAL88.
- AAL12 needs to slow down to fall back 2 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	>1
2nd	AAL12	36	

Solution

- AAL12 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 48 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	30	600
UAL74	LIDAT		MOD	31	600

- Route from LIDAT to OAL is closed.
- Route from MINAH to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: UAL74 will arrive at MOD 1 nautical mile behind AAL12.
- Weather prevents UAL74 or AAL12 from rerouting.
- UAL74 needs to slow down to fall back 2 nautical

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	30	>1
2nd	UAL74	31	

Solution

- UAL74 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 18 seconds.

Smart
Skies ${ }^{\text {TM }}$

Starting Conditions:

Sector 33

$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	33	600
UAL74	LIDAT		MOD	31	600

- Route from LIDAT to OAL is closed.
- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- AAL12 will arrive at MOD 2 nautical mile behind UAL74.
- Weather prevents UAL74 from rerouting.
- AAL12 can take the shortcut to shorten its travel distance by 3 nautical miles and move ahead of UAL74 by 1 nautical mile. UAL74 can slow down to fall back 2

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	31	>2
2nd	AAL12	33	

Solution

- AAL12 - Send directly to MOD to move forward 3 nautical miles.
- UAL74 - Slow down to 540 knots for 2 minutes to fall back 2 nautical miles. Then speed up to 600 knots.
- Target Time - 3 minutes and 18 seconds.

Smart
Skies ${ }^{\text {TM }}$

Math-Based Decisions in Air Traffic Control

Student Workbook E

Appendix II

- Resolving Air Traffic Conflicts by ChwWUS

Simulator at: https://atcsim.nasa.gov/simulator/sim2/sector33.html

Investigator: \qquad
An Airspace Systems
Program Product

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Both planes are going to SFO

Speeds: \mathbf{X} Same \square Different
Headstart $=0 \mathrm{Nmi}=$ Separation at MOD

3 \begin{tabular}{l}
Additional Spacing

Needed for Ideal
Spacing (3 Nmiles)

\end{tabular}

How Much Time Before You Need Ideal Spacing?

4At 600 knots, how many minutes will it take the planes to reach MOD? $30 \mathrm{Nmi} \div 10 \mathrm{Nmi} / \mathrm{min}=3 \mathrm{mins}$

What Speed Change Will Solve the Problem?

You can't speed up a plane because they are at the maximum speed of 600 knots.
Instead reduce the speed of one plane by 60 knots. Choose one plane to slow to 540 knots:

Either plane

Remember: *A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.

6At 540 knots, how many nautical miles less will this plane travel each minute? \square 1 nautical miles per minute

In 3 minutes, how much additional spacing will you gain due to the speed reduction? \square 3 nautical miles 1 Nmi/min•3mins=3 Nmi

8 Does the 60-knot speed drop give Ideal Spacing at MOD?

\square No

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Speeds:

X Same

\square Different
Spacing at MOD= \square Nmi

* You must change speed to meet the Ideal Spacing.

At 600 knots, how many minutes will it take the planes to reach MOD?

$20 \mathrm{Nmi} \div 10 \mathrm{Nmi} / \mathrm{min}=2 \mathrm{mins}$

Remember * Controllers change speed in 60 knot steps.

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
* First, slow AAL12 (or DAL88) by 60 knots, to 540 knots.

At MOD, how much spacing will you gain? \square nautical miles

1 Nmi/min • 2 min

Did the 60-knot speed drop give you Ideal Spacing at or before MOD? \square Yes

Try a greater speed drop. Slow AAL12 by $60+60=120$ knots, to 480 knots.
 Now how much spacing will you gain at MOD?

Did the 120-knot speed drop give you Ideal Spacing at MOD?

What could the controller do to achieve at least ideal spacing?

Speed the plane back up when it has

achieved 3 nautical mile separation.

Investigator:

\qquad

Ideal Spacing at MOD = 3 Nmiles

Speeds:

\square Different
$\begin{aligned} & \text { Spacing } \\ & \text { at MOD }\end{aligned} \quad 1 \mathrm{Nmi}$

31-30=1 Ami

At 600 knots, how many minutes will it take the lead plane to reach MOD?

Ami

$30 \mathrm{Nmi} \div 10 \mathrm{Nmi} / \mathrm{min}=3 \mathrm{mins}$

* Controllers usually slow down the trailing plane (not the leading plane).

5
Which plane would a controller slow down to 540 knots?

AAL12 (the furthest from MOD)

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.

What is the new spacing at MOD? \square nautical miles

3 Ami + 1 Nmi headstart = 4 Nmi

Is the spacing ideal? \square Yes \mathbf{X}

If no, after how many minutes will you speed the plane up to 600 knots to make the spacing ideal at MOD?
With the 1 Nmi headstart, only need 2 Nmi extra
So speed up plane after 2 minutes.

Investigator:

\qquad

Ideal Spacing at MOD $=3$ Nmiles

Remember * Controllers change speed in 60 knot steps.

* A 60 knot difference in speed causes a 1 nautical mile difference in distance each minute.
* Analyze the problem at OAL (routes first meet). MUST meet or exceed minimum separation of 2 nautial miles.

* Let's solve the problem by slowing one plane. Let's slow that plane to 540 knots.

Which plane will you slow?

Either plane

\qquad Understand the \% Method

EXTENSION

- Now we will use a new method, the Percent Rule, to solve speed change problems. Here's an example.

- At a speed of 600 knots, ALL12 travels 20 nautical miles to MOD in 2 minutes.

If we decrease the speed by 50% (that's $1 / 2$ speed), then the new speed is

- At 300 knots (a 50% decrease in speed), AAL12 travels only 10 nautical miles (a 50% decrease) in 2 minutes.
- Here's a picture.

- So, in two minutes, we have:

Percent	Speed	Distance Traveled
100%	600 knots	20 nautical miles
50%	300 knots	10 nautical miles

- The 50\% decrease in speed gives a 50% decrease in distance traveled in the same time.

This is an example of the Percent Rule:

For a given amount of time, when you decrease a plane's speed by a given percent, the plane's distance traveled is decreased by the same percent.

\qquad

\% decrease in speed = \% decrease in distance traveled

- Now we will use the Percent Rule to get additional spacing at MOD.
- In the picture below, the plane's maximum speed, 600 knots, is shown in 10% intervals (60 knots each) on the Speed Bar.
- The plane is 20 nautical miles from MOD.

The distance to MOD is shown in 10\% intervals (2 nautical miles each) on the Distance Bar.

		0 Kts				300 Kts					600 Knots	
	Speed Bar	60	60	60	60	60	60	60	60	60	60	
	\% Bar		10\%	10\%	10\%	10\%	10%	10\%	10\%	10\%	10	100%
	Distance Bar	2	2	2	2	2	2	2	2	2	2	
		0 Nmi 10 Nmi										

Above the Speed Bar, in the empty box, fill in the plane speed that is 50% of 600 knots.

- Use this picture and the Percent Rule to answer Questions 3 through 5.

If we decrease speed by 60 knots, what is the $\%$ decrease in speed? \square

Using the Percent Rule, what is the \% decrease in distance traveled in two minutes?

How many fewer nautical miles will the plane travel in two minutes? \square 2 nautical miles

- Now suppose the plane is $\mathbf{3 0}$ nautical miles from MOD, traveling at 600 knots.

In the box below the Distance Bar, fill in the distance that is 50% of the 30 nautical miles to MOD.

The distance to MOD is 30 nautical miles. For each 10\% interval, fill each Distance Bar box with the number that is 10% of 30 nautical miles.

- Use this picture and the Percent Rule to answer Questions 8 through 12.

If we decrease speed by 120 knots, what is the percent decrease in speed?

Using the Percent Rule, what is the percent decrease in distance traveled in the same travel time?

D=20\% of $30 \mathrm{Nmi}=0.2 \bullet 30 \mathrm{Nmi}=6 \mathrm{Nmi}$

- Now the plane speed is again 600 knots.

The plane travels 30 nautical miles to MOD in a certain amount of time. But we don't need to know this time to answer this question.

To travel 9 fewer nautical miles (in this same time) by what percent would you reduce the plane speed?

$$
60 \mathrm{kts}+60 \mathrm{kts}=60 \mathrm{kts}=180 \mathrm{kts}
$$

$3 \mathrm{Nmi}+3 \mathrm{Nmi}+3 \mathrm{Nmi} \Rightarrow$

Investigator:

\qquad

- Use the Percent Method to solve this problem.

21-20=1 Nmi

* To achieve Ideal Spacing at MOD, decrease the speed of the trailing plane.

How many nautical miles does the lead plane travel to MOD? \square 20 nautical miles

3 When the lead plane reaches MOD, the trailing plane has traveled X the same \square a different distance.

What is the percent decrease in travel distance for the trailing plane?

$$
\% \text { Decrease }=\frac{\text { Additional Spacing Needed }}{\text { Distance Traveld }}=\frac{2 \text { Nmiles }}{20 \text { Nmiles }}=\frac{1}{10}=10 \%
$$

For the trailing plane to decrease its travel distance by 10%, decrease its speed by

If you decrease the trailing plane's speed by 10%, what is it's new speed?
540 knots

What is the new spacing at MOD?

Appendix III

Derivation of Percent Method:

A given percent reduction in plane speed yields the same percent reduction in distance traveled in the original amount of time.

To derive this percent relationship between reduced speed and reduced distance, we use the formula

$$
\text { distance }=\text { rate } \bullet \text { time } .
$$

Let d_{1} and r_{1} and t be the original distance, speed, and time: Then

$$
\mathrm{d}_{1}=\mathrm{r}_{1} \bullet \mathrm{t}
$$

We solve this equation for r_{1} to obtain an expression for the original speed.

$$
\mathrm{r}_{1}=\mathrm{d}_{1} / \mathrm{t}
$$

Let d_{2} and r_{2} be the reduced distance and speed, respectively. Since we are concerned with the distance covered in the original amount of time, t, we again use t to represent time. We have

$$
\mathrm{d}_{2}=\mathrm{r}_{2} \cdot \mathrm{t}
$$

That is,

$$
\mathrm{r}_{2}=\mathrm{d}_{2} / \mathrm{t}
$$

Recall, \% decrease in speed $=100 \bullet($ original speed - reduced speed $) \div$ original speed

So, $\%$ decrease in speed $\quad=100 \cdot\left(r_{1}-r_{2}\right) \div r_{1}$

$$
=100 \cdot\left(\mathrm{~d}_{1} / \mathrm{t}-\mathrm{d}_{2} / \mathrm{t}\right) \quad \div\left(\mathrm{d}_{1} / \mathrm{t}\right)
$$

$$
=100 \cdot\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right) / \mathrm{t} \quad \div\left(\mathrm{d}_{1} / \mathrm{t}\right)
$$

$$
=100 \cdot\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right) / \mathrm{t} \quad \bullet\left(\mathrm{t} / \mathrm{d}_{1}\right)
$$

$$
=100 \cdot\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right) \div \mathrm{d}_{1}
$$

Thus,

$$
\% \text { decrease in speed } \quad=100 \bullet\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right) \div \mathrm{d}_{1}
$$

Similarly, $\%$ decrease in distance $=100 \bullet($ original distance - reduce distance $) \div$ original speed

So,

$$
\% \text { decrease in distance }=100 \bullet\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right) \div \mathrm{d}_{1}
$$

Thus we see the \% decrease in speed is equal to the \% decrease in distance.

