Three planes on merging routes are: -- different distances from the intersection, -- traveling at the same speed.
An alternate route is available.

Overview of Problem Set C

3 Nmi 3 Nmi
Goal
If you do not have readily available Internet access, you can use the Workbooks only.

Objectives

Prerequisites

LineUp With Math ${ }^{\text {tM }}$
 Math-Based Decisions in Air Traffic Control for Grades 5-9

Problem Set C
Resolving 3-Plane Traffic Conflicts by Changing Route

Teacher Guide with Answer Sheets

In this Problem Set, students will determine whether three planes traveling on different merging routes will line up with proper spacing at MOD (the last intersection before the planes leave the airspace sector). If the spacing is not adequate, students will use alternate routes for one or more planes to achieve at least the proper spacing.

The planes are traveling at the same altitude and the same constant (fixed) speeds.
In LineUp With Math ${ }^{\text {TM }}$, this is the first Problem Set to address three planes. Speed changes are not required to resolve spacing conflicts.

Each problem can be explored with the interactive Air Traffic Control (ATC) Simulator. Two of the problems can be more closely examined with Student Workbook C (print-based). The Workbook provides a structured learning environment for exploring the problems with paper-and-pencil worksheets that introduce students to pertinent air traffic control concepts as well as problem analysis and solution methods.

Students will:

- Analyze a sector diagram to identify spacing conflicts among three planes, each traveling at the same speed.
- Resolve spacing conflicts by changing the route for one or more planes.

Before attempting the current Problem Set, it is strongly recommended that students complete Problem Set A that provides essential air traffic control vocabularly, units, and representations.

It is also recommended that students complete Problem Set B that introduces the ATC Simulator and enables students to explore the effects of a route change in a two-plane problem.

Materials

ATC Simulator

A complete description of the ATC Simulator is contained in the Educator
Guide for LineUp With Math ${ }^{\mathrm{TM}}$.

For a Simulator user guide and an animated tutorial, visit the LineUp With Math ${ }^{\mathrm{TM}}$ website.

Student Workbook

- ATC Simulator (web-based)
- Student Workbook C (print-based)

Teachers access the materials by visiting the LineUp With Math ${ }^{\text {™ }}$ website:
https://www.nasa.gov/lineup-with-math
A separate student website gives students easy access to the Simulator only (and not to the answers and solutions provided on the teacher website):
https://atcsim.nasa.gov/simulator/sim2/sector33.html

Interactive Air Traffic Control Simulator

Students can explore Problem Set C with the interactive ATC Simulator. Each problem features a 3-plane conflict that can be resolved by route changes.

The Simulator problems for Problem Set C are:

$$
3-1^{*} ; \quad 3-2^{*} ; \quad 3-7^{*}
$$

Problems with an asterisk $\left(^{*}\right)$ are supported by worksheets in Student Workbook C.
For a complete set of answers and solutions to all Problems Set C Simulator problems, see Appendix I of this document.

For a discussion of the key points associated with the first two Simulator problems, see the worksheet notes in the following Student Workbook section.

The Student Workbook consists of two worksheets, one for each of the two featured Simulator problems listed below.

Simulator Problem

$$
3-1^{*}
$$

$$
3-2^{*}
$$

Worksheet Title

Problem 3-1
Problem 3-2
Each problem features a spacing conflict with different starting conditions. As students progress through the worksheets, they likely will require less guidance and structure, and the subsequent worksheets reflect this.

For a complete set of answers to each worksheet, see Appendix II of this document.
For each worksheet, the key points are briefly described as follows.

In the sector diagram, each route flows only towards MOD. E.g., a plane may fly from MINAH to OAL, but cannot fly from OAL to MINAH.

Student Workbook

For a set of answers and solutions to all Simulator problems, visit the LineUp With Math ${ }^{\text {TM }}$ website.

Worksheet: Problem 3-1

- On a number line, students plot each plane's travel distance from MOD to help picture the arrival order of planes at MOD, their relative spacing, and any spacing violations,
- After students resolve a spacing violation with a route change, they again use a number line to picture the planes' new arrival order and spacing.

Worksheet: Problem 3-2

- This problem is similar to Problem 3-1. However, in this problem, students are expected to analyze and identify the conflict on their own. Minimal structure is provided to guide the students to a solution.

Answer sheets for each of the Problem Set C Simulator problems can be found in Appendix I of this document.

Answer sheets for each worksheet in Student Workbook C can be found in Appendix II of this document.

Appendix I

Air Traffic Control Simulator

Simulator Solutions for Problem Set C

$$
3-1^{*}, 3-2^{*}, 3-7
$$

Problems with an asterisk (*) are supported by worksheets in Student Workbook C

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	34	600
DAL88	TPH	OAL	MOD	33	600
UAL74	LIDAT	OAL	MOD	32	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: UAL74, DAL88 and AAL12 will arrive at MOD each with 1 nautical mile separation.
- UAL74 can take the shortcut to shorten its travel distance. AAL12 can go through OAL to lengthen its travel distance by 3 nautical miles. (or slow down to fall back 2 nautical miles - best solution)

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	32	>1
2nd	DAL88	33	
3rd	AAL12	34	

Solution
Sector 33
00:00

- UAL74 - Reroute direct MOD to move forward 3 nautical miles.
- AAL12 - Reroute through OAL to fall back 3 nautical miles. (Or, slow to 540 knots for 2 minutes to fall back 2 nautical miles.)
- Target Time - 3 minutes and 42 seconds. (route changes only) - 3 minutes and 36 seconds. (route and speed change)

Smart

Starting Conditions:

Sector 33

00:00

Plane	From	Through	To	Distance	Speed
AAL12	MINAH		MOD	34	600
DAL88	TPH	OAL	MOD	33	600
UAL74	LIDAT	OAL	MOD	32	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: UAL74 and DAL88 will arrive at MOD at the same time.
- AAL12 will be 6 nautical miles behind.
- UAL74 can go through OAL to lengthen its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	30	$\gg 0$
1st	DAL88	30	
2nd	AAL12	36	

Solution

$00: 00$

- UAL74 - Reroute through OAL to fall back by 3 nautical miles.
- Target Time - 3 minutes and 36 seconds.

Smart

Starting Conditions:

Sector 33
$00: 00$

Plane	From	Through	To	Distance	Speed
AAL12	MINAH	OAL	MOD	35	600
DAL88	TPH	OAL	MOD	35	600
UAL74	LIDAT		MOD	35	600

- Ideal spacing at MOD is 3 nautical miles.

Analysis:

- Conflict: AAL12, UAL74, and DAL88 will arrive at MOD at the same time.
- AAL12 can take the shortcut to shorten its travel distance by 3 nautical miles. UAL74 can take the long route through OAL to increase its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	UAL74	35	>0
1st	DAL88	35	
1st	AAL12	35	

Solution

Sector 33

- AAL12 - Reroute to MOD to move forward 3 nautical miles.
- UAL74 - Reroute through OAL to fall back 3 nautical miles.
- Target Time - 3 minutes and 48 seconds.

Smart

Math-Based Decisions in Air Traffic Control

Student Workbook C

Appendix II

Resolving Air Traffic Conflicts by Changing Route answers Workbook Ans

Simulator at:" https://atcsim.nasa.gov/simulator/sim2/sector33.html

Investigator: \qquad
An Airspace Systems
Program Product

Investigator:

\qquad

- Use the flight plans to find each plane's travel distance to MOD.
- On the line below, use a \rangle to plot the travel distance to MOD for each plane.
- Label each plane.

- Use your plot to figure out the arrival order and spacing at MOD.
- See if any spacing is less than minimum.
- See if extra spacing is needed to get the Ideal Spacing.

Smart

Continue to Next Page
\qquad

What route changes would you make to solve any spacing problems?

Arrival Order	Plane	New Route (if needed)	New Distance to MOD		New Spacing at MOD	
1st	UAL74	LIDAT to MOD	29	Nmi	4	Nmi
2nd	DAL88		33	Nmi		
3rd	AAL12	MINAH to OAL to MOD	37	Nmi	4	Nmi

To picture the NEW arrival order and spacing, use a \diamond to plot the new distances to MOD for each plane on the line below. Label each plane.

5
With your new routes, are the spacings at least the Minimum Spacing (2 nautical miles)?

If No, try again.

With your new routes, are the spacings equal to the Ideal Spacing (3 nautical miles)?
\mathbf{X} No $\quad \square$ Yes

If No, what could the controller do to make the spacing ideal?

Change the speed of one or more planes.

Investigator:

\qquad

Ideal Spacing at MOD = 3 Nmiles

Use the flight plans to find each plane's travel distance to MOD.

- On the line below, use a \rangle to plot the travel distance to MOD for each plane.
- Label each plane.

Are all the spacings at least the Minimum Separation?
X № \square Yes
to plot any NEW distances to MOD and cross out the old diamond

3 Which plane needs extra spacing to have ideal spacing?

How much extra spacing is needed? \square nautical miles

5 On the route diagram, show how you would reroute traffic to try to achieve the Ideal Spacing.

CAUTION Be sure to mark out the old route and darken the new route.

On the line in Question 1, use a \square for the old distance. Be sure to label each box with the plane's call sign.

Are all spacings now ideal?
\square

(There are no reroutes possible for DAL88.)

If yes, Congratulations!

