

Two planes on merging routes are: -- traveling at the same speed. An alternate route is available.

Overview of

Problem Set B

3 Nmi

Goal

to 2 hours.

Objectives

Estimated class time: 1.5

MOD

LINEUP WITH MATH

Math-Based Decisions in Air Traffic Control for Grades 5-9

Problem Set B

Resolving 2-Plane Traffic Conflicts by Changing Route

Teacher Guide with Answer Sheets

In this Problem Set, students will determine whether two planes traveling on different merging routes will line up with proper spacing at MOD (the last intersection before the planes leave the airspace sector). If the spacing is not adequate, students will analyze an alternate route for one plane.

The planes are traveling at the same altitude and the same constant (fixed) speeds.

Of all the *LineUp With Math*TM Problem Sets, this is the simplest. There are only two planes and a simple route change will solve each problem. A speed change is not required to resolve a spacing conflict.

Each problem can be explored with the interactive Air Traffic Control (ATC) Simulator. Three of the problems can be more closely examined with Student Workbook B (print-based). The Workbook provides a structured learning environment for exploring the problems with paper-and-pencil worksheets that introduce students to pertinent air traffic control concepts as well as problem analysis and solution methods.

Students will:

- Analyze a sector diagram to identify a spacing conflict between two planes, each traveling at the same speed.
- Resolve the conflict by changing the route for one plane.

Before attempting the current Problem Set, it is *strongly* recommended that students complete Problem Set A that introduces essential air traffic control vocabulary, units and representations.

Materials

Prerequisites

- ATC Simulator (web-based)
- Student Workbook B (print-based)

Teachers access the materials by visiting the *LineUp With Math*[™] website:

https://www.nasa.gov/lineup-with-math

A separate student website gives students easy access to the Simulator and supporting materials (not to the answers and solutions on the teacher website):

https://atcsim.nasa.gov/simulator/sim2/sector33.html

Interactive Air Traffic Control Simulator

Students first explore Problem Set B with the interactive ATC Simulator. Each problem features a 2-plane conflict that can be resolved by a route change.

The Simulator problems for Problem Set B are:

2-1*; 2-2*; 2-3*; 2-9; 2-10

Problems with an asterisk (*) are supported by worksheets in Student Workbook B.

For a complete set of solutions to all Problems Set B Simulator problems, see Appendix I of this document.

For a discussion of the key points associated with the first three Simulator problems, see the worksheet notes in the following Student Workbook section of this document.

Student Workbook

The Student Workbook consists of three worksheets, one for each of the three featured Simulator problems listed below.

Simulator Problem	Worksheet Title
2-1*	Problem 2-1
2-2*	Problem 2-2
2-3*	Problem 2-3

Each problem features a spacing conflict with different starting conditions. As students progress through the worksheets, they likely will require less guidance and structure, and the subsequent worksheets reflect this.

For a complete set of answers to each worksheet, see Appendix II of this document.

For each worksheet, the key points are briefly described as follows.

Worksheet: Problem 2-1

- Each plane starts at a different distance from MOD. The difference between the planes' starting distance from MOD represents a "headstart" for the closer plane.
- Since the planes are traveling at the same speed, the closer plane maintains its "headstart".
- With the new route, the planes' spacing at MOD will be greater than the Ideal Spacing. A route change may provide additional spacing, but does not guarantee Ideal Spacing. In a later Workbook, students will have the opportunity to change plane speeds as well as the route, and thus achieve Ideal Spacing exactly.

ATC Simulator

A complete description of the ATC Simulator is contained in the Educator Guide for LineUp With MathTM.

For a simulator user guide and an animated tutorial, visit the LineUp With MathTM website.

It is recommended that you have a copy of Student Workbook B open while you read these notes.

The worksheet title is the same as the associated Simulator problem.

In the sector diagram each route flows only towards MOD. E.g., a plane may fly from MINAH to OAL, but cannot fly from OAL to MINAH.

Worksheet: Problem 2-2

• This problem is similar to Problem 2-1, but students work more independently, with less guidance and structure.

Worksheet: Problem 2-3

• This problem is similar to Problem 2-1 and 2-2. However, in this problem, students are expected to analyze and identify the spacing conflict on their own. Minimal structure is provided to guide students to a solution.

Answer Sheets

For a set of solutions to all Simulator problems, visit the LineUp With MathTM website.

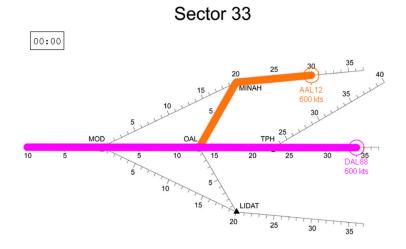
Solutions for each of the Problem Set B Simulator problems can be found in Appendix I of this document.

Answer sheets for each worksheet in Student Workbook B can be found in Appendix II of this document.

APPENDIX 1

Air Traffic Control Simulator

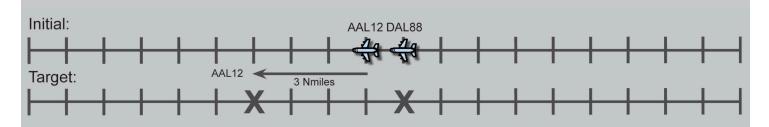
Simulator Solutions for Problem Set B


2-1*, 2-2*, 2-3*, 2-9, 2-10

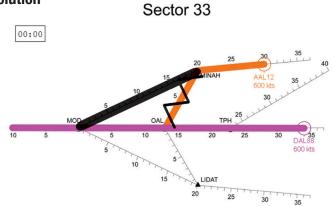
Problems with an asterisk (*) are supported by worksheets in Student Workbook B

Solution

Starting Conditions:


Plane	From	Through	То	Distance	Speed
aal12	MINAH	0AL	MOD	33	600
DAL88	TPH	0AL	MOD	34	600

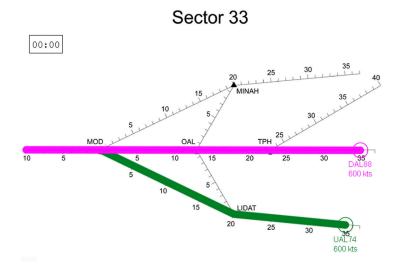
• Ideal spacing at **MOD** is 3 nautical miles.


Analysis:

- <u>Conflict</u>: DAL88 will arrive at OAL 1 nautical mile behind AAL12.
- **AAL12** can take the shortcut to shorten its distance of travel by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	33	X . 1
2nd	DAL88	34	

Solution



- **AAL12** Reroute direct to MOD to move forward 3 nautical miles. Spacing at MOD is 4 nautical miles. This is greater than 3 nautical miles Ideal Spacing.
- **Target Time** 3 minutes and 24 seconds.

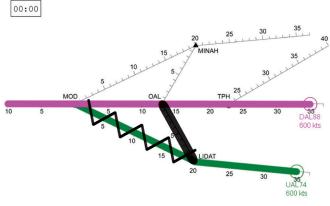
Solution

Starting Conditions:

Plane	From	Through	То	Distance	Speed
DAL88	TPH	0AL	MOD	35	600
UAL74	LIDAT		MOD	35	600

• Ideal spacing at **MOD** is 3 nautical miles.

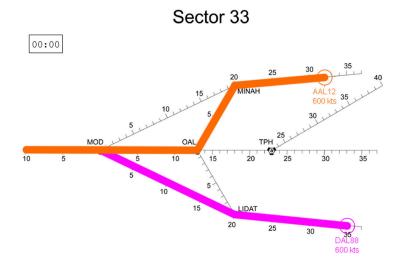
Analysis:


- <u>Conflict</u>: DAL88 <u>AND</u> UAL74 will arrive at MOD at the same time.
- UAL74 can take the long route through OAL to lengthen its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	
UAL74	LIDAT	35	

Solution

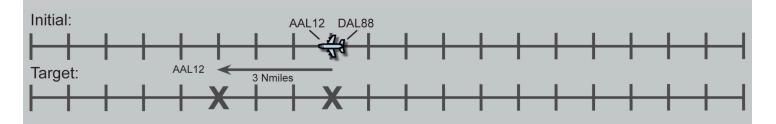
Sector 33



- **UAL74** Reroute through OAL to fall back by 3 nautical miles.
- Target Time 3 minutes and 48 seconds.

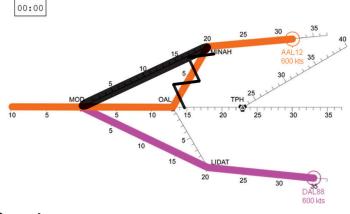
Solution

Starting Conditions:


Plane	From	Through	То	Distance	Speed
AAL12	MINAH	0AL	MOD	35	600
DAL88	LIDAT		MOD	35	600

• Ideal spacing at **MOD** is 3 nautical miles.

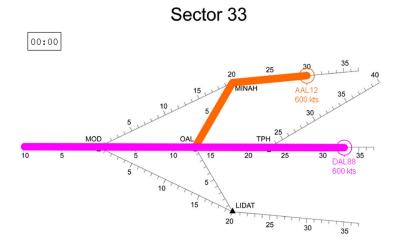
Analysis:


- <u>Conflict</u>: DAL88 <u>AND</u> AAL12 will arrive at MOD at the same time.
- AAL12 can take the shortcut to shorten its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	35	
1st	DAL88	35	

Solution

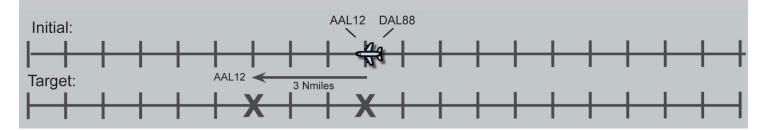
Sector 33



- AAL12 Reroute direct to MOD to move forward 3 nautical miles
- Target Time 3 minutes and 30 seconds.

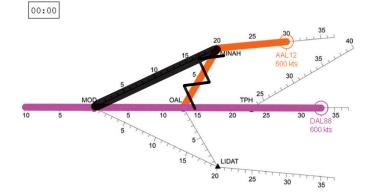
Solution

Starting Conditions:


Plane	From	Through	То	Distance	Speed
AAL12	MINAH	0AL	MOD	33	600
DAL88	TPH	0AL	MOD	33	600

• Ideal spacing at **MOD** is 3 nautical miles.

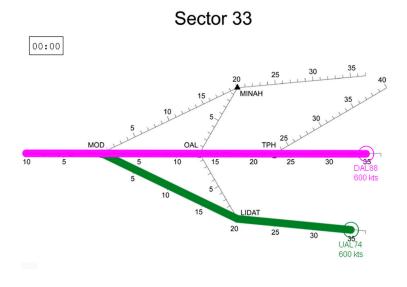
Analysis:


- **<u>Conflict</u>: AAL12 <u>AND</u> DAL88** will arrive at OAL at the same time.
- Send **AAL12** on the shortcut to shorten its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	AAL12	35	
1st	DAL88	35	

Solution

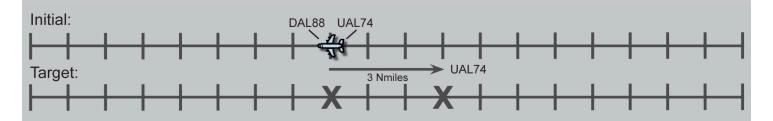
Sector 33



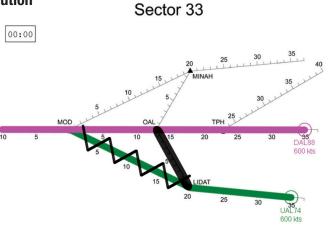
- AAL12 Reroute direct to MOD to move forward 3 nautical miles
- Target Time 3 minutes and 18 seconds.

Solution

Starting Conditions:


Plane	From	Through	То	Distance	Speed
DAL88	TPH	0AL	MOD	35	600
UAL74	LIDAT		MOD	35	600

• Ideal spacing at **MOD** is 3 nautical miles.


Analysis:

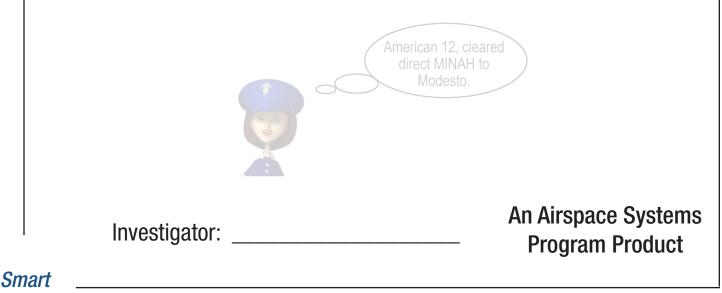
- <u>Conflict</u>: DAL88 <u>AND</u> UAL74 will arrive at MOD at the same time.
- **UAL74** can take the long route through OAL to lengthen its travel distance by 3 nautical miles.

Project Arrival	Plane	Distance Along Flight Plan	Initial Spacing
1st	DAL88	35	
1st	UAL74	35	

Solution

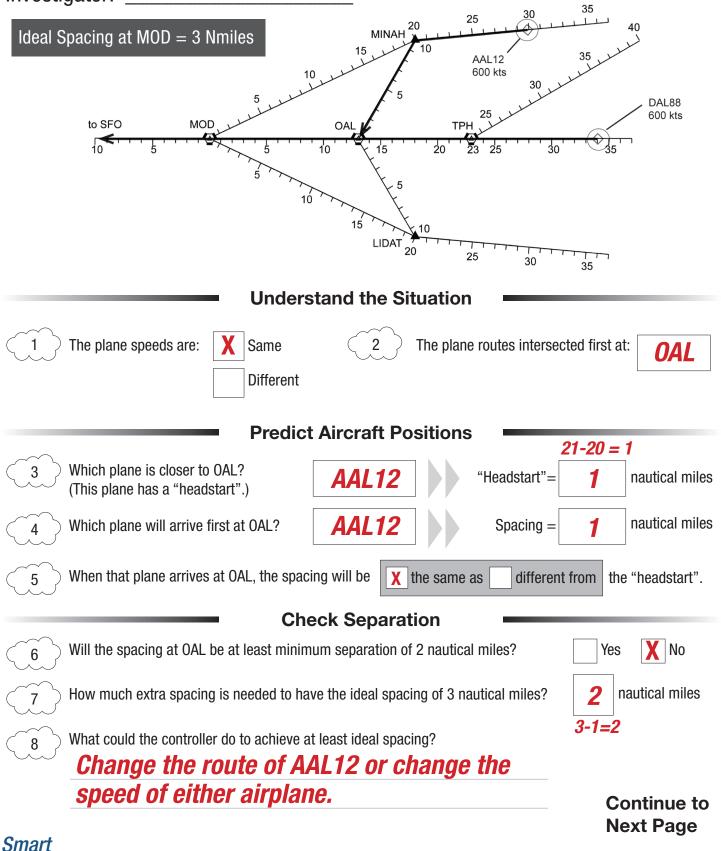
- **UAL74** Reroute through OAL to fall back 3 nautical miles
- Target Time 3 minutes and 48 seconds.

Math-Based Decisions in Air Traffic Control

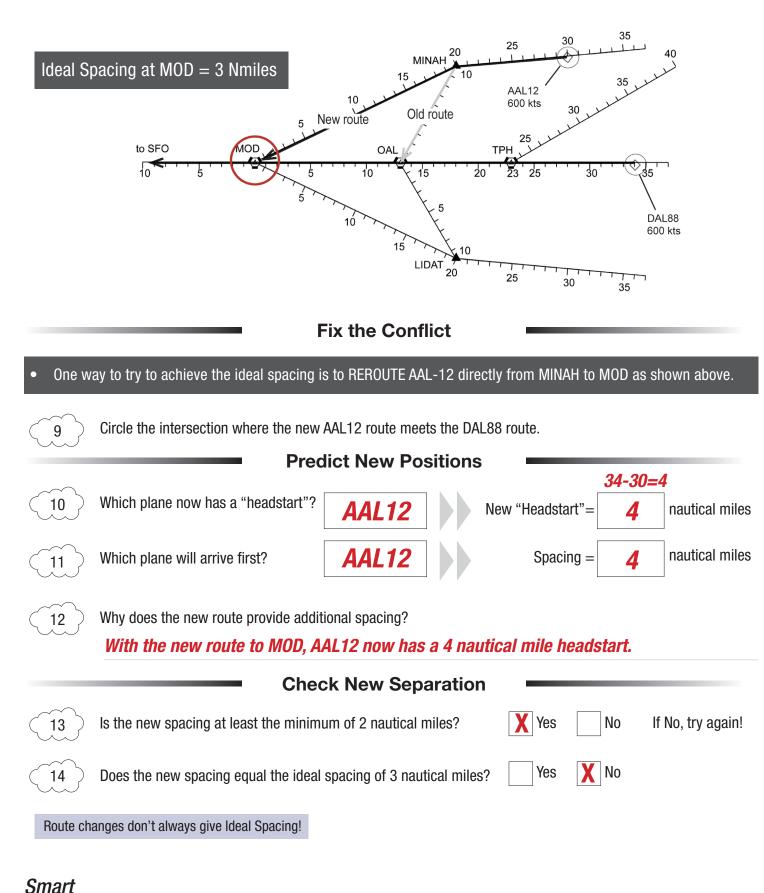

Student Workbook B

Appendix II

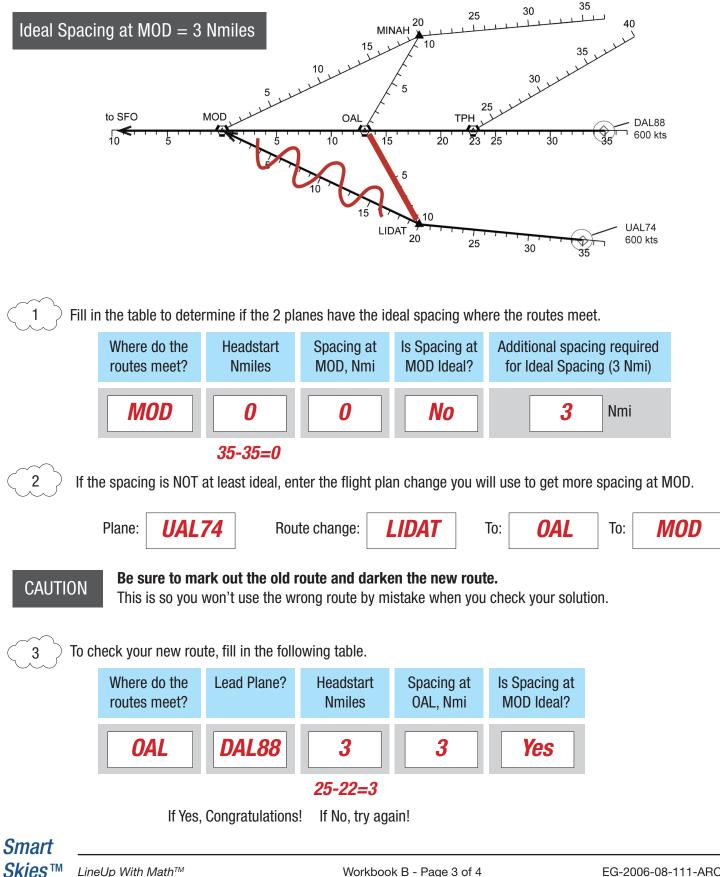
- Resolving Air Traffic Conflicts by Changing Route

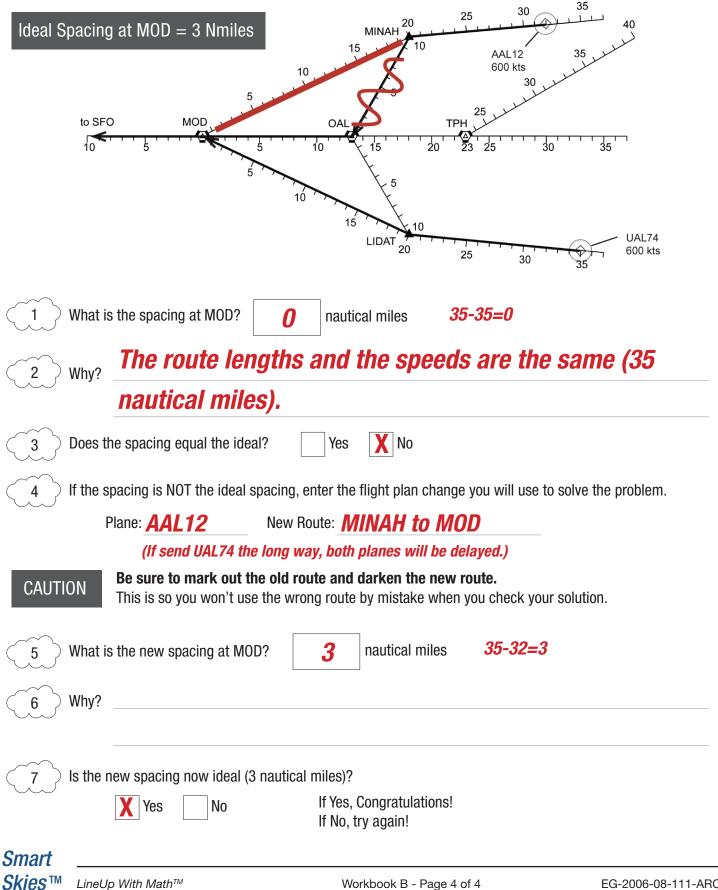

 - 2 planes, each at the same speed.
 Worksheets for Simulator of Ann Siy 2, 2-3. Work

Simulator at: https://atcsim.nasa.gov/simulator/sim2/sector33.html



Investigator:





Investigator:

Investigator:

