Chapter 6.12 Safety and Health Requirements for Ground-Based Breathing Gases and Breathing Gas Systems

6.12.1. Applicability of this chapter

You are required to follow this chapter if you design, build, operate, oversee, maintain, or modify a ground-based breathing gas system.

6.12.2. Definition of a breathing gas systems

A breathing gas includes breathing air (CGA-G7.1), breathing oxygen (MIL-PRF-27210), oxygen-enriched breathing air, such as nitrox, and any other breathing gas approved as required by this chapter for human breathing. A breathing gas system is a hardware assembly providing a breathing gas to a human. The breathing gas system may contain gas and liquid pumps, gas compressors, piping, filters, analysis equipment, tanks and pressure vessels, regulators, valves and safety devices, connectors, soft-goods, lubricants, heating, cooling and mixing equipment, gauges, and other hardware.

6.12.3. Surface cleanliness requirements for breathing gas systems

6.12.3.1 To ensure surface cleanliness in breathing gas systems, organizations with breathing gas systems shall:

a. Clean breathing gas systems to national consensus standards and JPR 5322.1, “Contamination Control Program Requirements Manual.” Paragraph 6.13.11 references several of these national consensus standards. More stringent cleanliness levels may be required for breathing gas systems depending upon the system hazard assessment and cleanliness requirements for flight hardware attached to these systems. The cleanliness level shall be determined by the user organization and an appropriate oxygen hazards review organization, committee, or similarly recognized oxygen system design expert.

b. Have an operational readiness inspection (ORI), use readiness review (URR), or TRR approve the determined breathing gas cleanliness level(s) before use.

c. During normal and routine operations, install and monitor inlet filters and other in-line filters as required by design and operation to maintain system cleanliness. Maintain system cleanliness during non-routine operations such as unscheduled maintenance, system modifications, and repairs. To maintain system surface cleanliness, establish the following protocols:

 (1) Wear approved gloves when internal surfaces are exposed.

 (2) Take care to minimize exposure time to maintain both the particulate and NVR cleanliness levels.

 (3) Use only approved materials, protective films, and caps or plugs.

 (4) Use only approved lubricants, soft goods, sealants, valve seats, and alloys. Apply lubricants sparingly.

 (5) Use only approved wipes and solvents.

 d. Establish a process to periodically verify cleanliness to ensure surface cleanliness is maintained for the life of the system. The user organization shall:
(1) Maintain the surface cleanliness level and document procedures for periodically evaluating system cleanliness. The procedures must determine and establish the frequency of these evaluations as necessary.

(2) Do this evaluation, including particulate matter determination and NVR, or other suitable film or non-particulate matter determination, such as total organic carbon, as is deemed necessary.

6.12.4. Breathing gas chemical purity requirements

6.12.4.1 To establish and maintain the breathing gas chemical purity, also referred to as the breathing gas chemical composition or breathing gas specification, organizations with breathing gas systems shall follow these requirements:

a. Approval from Occupational Health is required for breathing gas purity requirements in breathing gas systems.

b. Breathing gases prepared by mixing or blending shall have established written procedures and sampling methods to assure breathing gas purity and homogeneity.

c. Analyze and approve all JSC-supplied breathing gases to meet the breathing gas chemical purity requirements before the breathing gas is inhaled or used. The table below lists minimum sampling requirements to establish gas purity. The following source testing requirements are intended to ensure all gases used for breathing on site at JSC are analyzed by JSC-approved personnel and meet the gas purity requirements before breathing the gas.

<table>
<thead>
<tr>
<th>For . . .</th>
<th>You shall . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large compressed gas bottles (compressed gas cylinders containing (\geq 4247.53 \text{ liters (150 ft}^3)) of gas at maximum allowable operating pressure (MAWP), also commonly referred to as K-Bottles)</td>
<td>Ensure that all gas bottles used for breathing have been tested in batch at the manufacturer, or individually at JSC, and include a signed certificate of analysis meeting purity requirements as approved by Occupational Health before use.</td>
</tr>
<tr>
<td>Small compressed gas bottles (compressed gas cylinders containing (< 4247.53 \text{ liters (150 ft}^3)) of gas at MAWP, commonly referred to as SCUBA cylinders, SCBA cylinders, small emergency cylinders, etc.)</td>
<td>Due to their small size, as a minimum, all SCBAs and small emergency breathing gas bottles shall have either the gas fill source analyzed as approved by Occupational Health (SD3) and the Safety and Test Operations Division (NS) before use, or each individual bottle may be tested similarly to the large compressed gas bottle requirement listed above.</td>
</tr>
<tr>
<td>Cryogenic-supplied aviator's breathing oxygen (ABO)</td>
<td>A member of the Safety and Test Operations Division (NS) or a delegate of the U.S. government, as approved by NS, shall inspect all cryogenic-supplied ABO.</td>
</tr>
<tr>
<td>Compressed air systems</td>
<td>All on-site compressed air systems gas purity requirements shall be approved by Occupational Health (SD3) and the Safety and Test Operations Division (NS) before operations. All on-site compressed air systems used for breathing air shall be analyzed at least quarterly. Normally, as a minimum, a fail-safe,</td>
</tr>
</tbody>
</table>

JSC Safety and Health Requirements

<table>
<thead>
<tr>
<th>JPR No.</th>
<th>1700.1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Date:</td>
<td>12/20/2018</td>
</tr>
<tr>
<td>Expiration Date:</td>
<td>12/20/2023</td>
</tr>
<tr>
<td>Page Number</td>
<td>Page 6.12-2 of 5</td>
</tr>
</tbody>
</table>

Verify correct version before use at [Center Directives Management System](#). JSC Form JF2420B (Revised April 3, 2012) (MS Word August 28, 2006)
6.12.5. Labeling and certification

6.12.5.1 For proper labeling and certification of pressure systems, organizations with breathing gas systems shall:

a. Identify use-point outlets by displaying a sign, tag, or label that reads “Compressed Gas for Breathing Purposes” or a similar statement clearly indicating the contents of the breathing gas.

b. Have new breathing gas systems certified, to include breathing gas systems that have been modified in design, have undergone a major maintenance overhaul, or have been contaminated and subsequently decontaminated and re-cleaned. Certification or recertification is required before the breathing gas systems may be used.

c. Certify or recertify breathing gas systems by operating the systems without breathing the gas, and take a gas purity sample once after 24 hours and once following 48 hours. A system may be certified or recertified if:

 (1) The samples meet the applicable specification.
 (2) The user organization documents that the requirements of this chapter are established.

NOTE: Check new breathing gas systems initially for mercury contamination as specified in applicable medical and safety requirements. Mercury vapor concentrations shall not exceed 0.005 mg/m³. This requirement is waived if system documentation certifies the risk does not exist as no mercury is used in the system.

NOTE: Because of the difference in boil-off temperatures between LO₂ and LN₂, L₂ systems require strict analysis sampling schedules to preclude a breathing system from becoming nitrogen rich.

6.12.6. General requirements

6.12.6.1 All breathing gas systems shall:

a. Meet applicable requirements found in other chapters of this JPR. This includes Chapter 10.2, “Safety and Health Requirements for Test, Vacuum, or Oxygen-enriched Facilities,” for breathing gas systems in test facilities or those using oxygen-enriched breathing gases.

b. Provide an environment in which a credible single-point failure, loss of or change in utilities, or loss of software command will not injure personnel or damage property.

c. Employ a “buddy system” to monitor the system for safe operations when breathing gases are used.

d. Provide emergency power and other necessary utilities for systems that, if lost, would endanger test personnel or property.

e. Meet the applicable requirements in the following documents:

 (1) NPD 7100.8, “Protection of Human Research Subjects.”
 (2) JPD 8080.4, “Exposure to Reduced Atmospheric Pressures.”

(8) CGA G-7.1, “Commodity Specification for Air.”

6.12.7. Safety and quality assurance provisions for breathing gas systems

6.12.7.1 Organizations with breathing gas systems shall:

a. Have a safety plan addressing how to make sure system operations are safe. The plan may be part of an overall facility plan. Approval is required from the Safety and Test Operations Division (NS) for the plan.

b. Prepare and maintain system failure and hazard analyses as described in Chapter 2.3, “Hazard Analysis.” This may be part of an overall facility hazard analysis. The hazard analysis shall address all hazards of the system hardware, support equipment, system software, and operations and how the hazards are controlled.

c. Document quality assurance tasks for the system in either the facility operating procedures or a quality assurance plan. Quality assurance tasks may include:

 (1) Calibrating instruments.

 (2) Making sure consumables in life support systems, such as breathing air or water, meet any applicable standards.

 (3) Inspecting hardware and making sure operations meet requirements.

 (4) Certifying pressure systems if pressurized breathing gases or blends are employed.

6.12.8. Operating procedures

6.12.8.1 The user organization shall develop, document, and approve procedures for breathing gas system operation, maintenance, preventive maintenance, servicing, and sampling, if such procedures do not exist. The operating procedures shall:

a. Carry out the safety requirements of this chapter and of Chapter 6.8.

b. Outline the processes, ground rules, and personnel for system operation.

c. Outline the process to work with the Safety and Test Operations Division (NS).

NOTE: Occupational Health (SD3) and the Safety and Test Operations Division (NS) approve procedures prepared for JSC on-site breathing gas systems.

6.12.9. Training for working with oxygen-enriched breathing gas systems

6.12.9.1 Oxygen-enriched breathing gas systems systems shall have written training and certification requirements for each position. Training shall include:
6.12.10. Emergency planning for breathing gas systems

6.12.10.1 Organizations with breathing gas systems shall:

a. Have an emergency action plan as described in Chapter 3.8 “Emergency Preparedness.”
b. Conduct emergency drills at least twice a year under the emergency procedures to make sure the team can react to emergencies effectively. A representative of the Safety and Test Operations Division (NS) shall monitor and evaluate emergency drills. Regular emergency drills are not required for inactive systems.
c. Ensure all test team members have participated in an emergency drill within 3 months before test operations if the system has been inactive.

6.12.11. References

a. CGA-G7.1, “Commodity Specification for Air.”
g. NPD 7100.8, “Protection of Human Research Subjects.”
h. JPD 8080.4, “Exposure to Reduced Atmospheric Pressures.”
i. ASTM Committee G4.05, “Fire Hazards in Oxygen Systems.”
m. ASTM-G93-03, “Cleaning Methods and Cleanliness Levels for Material and Equipment Used in Oxygen Enriched Environments.”
n. IEST-STD-CC1246E, “Product Cleanliness Levels – Applications, Requirements and Determination.”