Spa Systems planning AND ANALYSIS, INC.

Distribution Free Uncertainty for CERs

William King Shaun Irvin

May 4th 2023

Conformal Prediction

- Conformal prediction is a technique that generates prediction intervals with rigorous statistical coverage guarantees and without distributional assumptions
 - Applies to any machine learning algorithm or "black-box" model
 - Applies to both regression and classification problems
 - Only assumes the exchangeability of data (a weaker assumption than independence)
- For regression, the basic idea with Conformal Prediction is to
 - 1. Use a previously trained model to predict unseen calibration data
 - 2. Find the quantile of the calibration residuals corresponding to your level of significance (\hat{q}_{α})
 - 3. Apply that residual quantile to generate intervals around new predictions: $(\hat{y} \pm \hat{q}_{\alpha})$
- Remarkably, this simple procedure yields statistical coverage guarantees given the exchangeability of the underlying data

Conformal Intuition

- Suppose we have a model, $\hat{f}(X_i)$, and define residuals $\varepsilon_i = |Y_i \hat{f}(X_i)|$
 - Further, suppose we know residuals $\varepsilon_1, \dots, \varepsilon_4$ where $\varepsilon_1 \le \varepsilon_2 \le \varepsilon_3 \le \varepsilon_4$
 - Now consider a new residual ε_5 : if the ε_i are independent and identically distributed (i.i.d), what's the probability of ε_5 falling between ε_2 and ε_3 ?
 - With the assumption of i.i.d, it's equally likely for ε_5 to fall within any interval:

 $20\% \quad 20\% \quad 20\% \quad 20\% \quad 20\%$

 $\varepsilon_1 \quad \varepsilon_2 \quad \varepsilon_3 \quad \varepsilon_4$

- For example, $P(\varepsilon_5 \le \varepsilon_3) = 60\%$ which implies that $P(|Y_5 \hat{f}(X_5)| \le \varepsilon_3) = 60\%$ which implies that $P(Y_5 \in \hat{f}(X_5) \pm \varepsilon_3) = 60\%$
 - Thus, a 60% prediction interval for Y_5 is the interval $[\hat{f}(X_5) \varepsilon_3, \hat{f}(X_5) + \varepsilon_3]$
 - Similarly, an 80% prediction interval for Y_5 is the interval $[\hat{f}(X_5) \varepsilon_4, \hat{f}(X_5) + \varepsilon_4]$
- In general terms, we can utilize the appropriate quantile of the residuals to formulate a prediction interval
- A <u>natural question</u> arises in how we obtain residuals ε_i that realistically represents how $\hat{f}(X_i)$ will perform on new, unseen data (especially since the training residuals will tend to be artificially small due to overfitting)

How do we Quantify Uncertainty of ML Models?

- A "naïve" approach involves calculating Prediction Intervals using the residuals on the training data, $|Y_i \hat{f}(X_i)|$
 - $-\hat{f}(X_i) \pm \text{the } (1-\alpha) \text{ quantile of } |Y_1 \hat{f}(X_1)|, \dots, |Y_n \hat{f}(X_n)|$
 - Leads to artificially narrow prediction intervals with overfitting (performs well on trained data, but not new data)
 - Does Not account for variability of residuals across the input space
 - Does Not guarantee predefined coverage (later methods address this)
- "Leave-One-Out" cross-validation for Prediction Intervals (Jackknife) using residuals of the held-out test point, $|Y_i - \hat{f}_{-i}(X_i)|$
 - $-\hat{f}(X_{i}) \pm \text{the } (1-\alpha) \text{ quantile of } |Y_{1} \hat{f}_{-1}(X_{1})|, \dots, |Y_{n} \hat{f}_{-n}(X_{n})|$
 - Leads to slightly wider prediction intervals that are more robust than the naïve approach to overfitting
 - Does Not account for variability of residuals across the input space
 - Does Not guarantee predefined coverage (later methods address this)

Conformal Variants

Full Conformal Prediction

- $PI: \left\{ y: \left| y \hat{f}_{y}(x_{n+1}) \right| \leq Q_{1-\alpha}(R_{1}, \dots, R_{n}, R_{n+1}) \right\}$
 - Where \hat{f}_y is the model trained as if (x_{n+1}, y) were a new data point, $R_i = |y_i - \hat{f}_y(x_i)|$ and $Q_{1-\alpha}$ is the $1 - \alpha$ quantile of the residuals
 - Does not require a calibration dataset, but requires re-fitting the model for every possible value of y whenever a new prediction is made
 - Since this is infeasible in practice, usually a finite grid of y-values are selected and evaluated, but this can be very computationally expensive even with small datasets

Split Conformal Prediction

- Partition data into training (size m) and calibration (size n m) sets:
- $PI: \hat{f}_{train}(x_{n+1}) \pm Q_{1-\alpha}(R_1^C, \dots, R_{n-m}^C)$
 - Where \hat{f}_{train} is the model trained on the *m* training data points, $R_i^c = |y_i - \hat{f}_{train}(x_i)| \forall i$ in the calibration set, and $Q_{1-\alpha}$ is defined as above
 - Requires sacrificing data to the calibration set, but only needs to be fit once
 - Calibration data can be hard to come by (≈1000 calibration data points are needed to achieve coverage between 88-92% at a 90% confidence level)

Conformal Variants

CV+ for K-fold cross-validation

– Partition data into K non-overlapping subsets: S_1, \dots, S_k

$$- PI: \left[Q_{\alpha} \left(\hat{f}_{-S_{k(i)}}(x_{n+1}) - R_{i}^{CV} \right), Q_{1-\alpha} \left(\hat{f}_{-S_{k(i)}}(x_{n+1}) + R_{i}^{CV} \right) \right]$$

- Where $\hat{f}_{-S_{k(i)}}$ is the model trained with the *k*-th subset removed, k(i) indicates the subset that includes the *i*-th data point, $R_i^{CV} = |y_i \hat{f}_{-S_{k(i)}}(x_i)|$ is the absolute value of the out-of-fold residual, and Q_{α} is defined as before
- Does not require a separate calibration data set and only requires fitting subsets of the data K times
 - The out-of-fold residuals stand in proxy for the calibration dataset, since they are unseen at the time each model is trained during cross-validation
 - If you are already performing cross-validation, then you are already training these models and calculating their out-of-fold residuals
 - » The only extra things you need to do is to save each $\hat{f}_{-S_{k(i)}}$ model and the association of out-of-fold residuals to subsets k(i)
- Note: CV+ where *K* = *n* is called the Jackknife+ (a form of Leave-One-Out cross-validation)

Conformal Variants

CV+ for K-fold cross-validation (Example)

- Example of 2-fold cross-validation with 4 data points

- Note: there is a R_i^{CV} residual for each data point (even though there are fewer models than data points)
- To implement prediction intervals for new predictions, we just need to save each of the sub-models $\hat{f}_{-S_{k(i)}}$ and the CV+ residuals R_i^{CV}

Conformal Variant Comparison:

Variant	Training Cost	Calibration Data	Coverage Guarantee	Empirical Coverage	Notes
Full	∞	No	$\geq 1 - \alpha$	$\approx 1 - \alpha$	Infeasible even with small datasets
Split	1	Yes	$\geq 1 - \alpha$	$\approx 1 - \alpha$	Good when you have lots of calibration data or a computationally expensive model; stronger statistical guarantees than CV+
K-fold CV+	K	No	$\geq 1 - 2\alpha$	$\gtrsim 1 - \alpha$	Good when you have less data, or a very complex model; substantially computationally cheaper than Full conformal, but more costly than split conformal

- K-Fold CV+ offers a balance between the computational cost of Full Conformal and the calibration data size requirements for Split Conformal
- If you're already performing cross-validation, CV+ is computationally free (you just need to save the sub-models and residuals you are already calculating)

Locally Weighted CV+

- The conformal variants previously discussed tend to generate prediction intervals with constant width
- This makes sense with additive errors, but not with the multiplicative errors we tend to see with cost data
- Luckily, conformal prediction works with any non-conformity measure
 - Previously we used the absolute value of the calibration residuals as the non-conformity measure
 - Scaling the absolute value of the residuals by an estimate of the residual spread is still a valid non-conformity measure
 - Before, we defined $R_i^{CV} = |y_i \hat{f}_{-S_{k(i)}}(x_i)|$, now we consider $R_i^{LW} = \frac{|y_i \hat{f}_{-S_{k(i)}}(x_i)|}{\hat{\rho}_{-S_{k(i)}}(x_i)}$
 - Where $\hat{\rho}_{-S_{k(i)}}(x_i)$ is the estimate of the conditional mean absolute deviation of the residuals from $\hat{f}_{-S_{k(i)}}$ (note this involves fitting two models at each step of cross-validation)

$$- PI: \left[Q_{\alpha} \left(\hat{f}_{-S_{k(i)}}(x_{n+1}) - R_{i}^{CV} * \hat{\rho}_{-S_{k(i)}}(x_{i}) \right), Q_{1-\alpha} \left(\hat{f}_{-S_{k(i)}}(x_{n+1}) + R_{i}^{CV} * \hat{\rho}_{-S_{k(i)}}(x_{i}) \right) \right]$$

Applications to Regression

- Create datasets to train/calibrate a ML model using CV+ method
- Fit a RF model on training data and plot predictions of test data
- Use CV+ method to determine 90% Prediction Interval bounds
- Explore other CV+ variants
 - Locally Weighted
 - Generalized Additive Model (GAM) using splines

Applications to Regression

• Predicting SV Dry Mass from SV Launch Mass

- Data split approximately in half (1/2 for Training, 1/2 to evaluate coverage)
- Log-log linear fit to the training data

Source: UCS Satellite Database (5/1/2022) ¹¹

Applications to Regression

Source: UCS Satellite Database (5/1/2022) ¹²

SYSTEMS PLANNING AND ANALYSIS, INC.

Conclusions

- Conformal prediction enables distribution free uncertainty with for any machine learning algorithm
 - Only requirement is the exchangeability of the data (a weaker form of the i.i.d. assumption we make with classical approaches)
 - We get a rigorous statistical coverage guarantee regardless of how well the underlying model fits the data
 - As we embrace more accurate regression techniques that are less interpretable than classical techniques, we don't have to sacrifice predictive uncertainty
- CV+ is a conformal technique that balances computational cost with the need for lots of calibration data
 - If you're already performing cross-validation, CV+ is computationally free
 - CV+ offers guaranteed coverage of at least $1 2 * \alpha$ with empirical coverage often close to 1α (examples we've shown have had coverage between 89 93% with $\alpha = 10\%$)

Future Research

Hierarchical classification for WBS normalization

- In a classification setting, conformal prediction produces prediction sets, that are guaranteed to contain the true label with some measure of statistical certainty (where larger prediction sets indicate more uncertainty)
- Applying conformal prediction to hierarchical classification for WBS normalization can direct human intervention to elements with large prediction sets (i.e., where there the algorithm is highly uncertain)

Many packages in R and Python to facilitate conformal prediction

- MAPIE (Model Agnostic Prediction Interval Estimator) for Python
- conformalInference for R (not available on CRAN)
 - Note: We had to write our own wrappers for CaReT to perform CV+ and its locally weighted variant

Contact Information

• William King

- Email: wking@spa.com
- Shaun Irvin
 - Email: sirvin@spa.com

References

- Predictive Inference with the Jackknife+
 - Barber, Candes, Ramdas and Tibshirani, 2021, The Annuals of Statistics
- Distribution-Free Predictive Inference for Regression
 - Lei, G'Sell, Rinaldo, Tibshirani and Wasserman, 2018, Journal of the American Statistical Association
- A Tutorial on Conformal Prediction
 - Shafer and Vovk, 2008, Journal of Machine Learning Research
- A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification
 - Angelopoulos and Bates, 2022, arXiv:2107.07511v6

