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Current Applications of Correlation Within Cost Estimating Models

➢ NASA relies upon a variety of probabilistic analysis methods to estimate the life cycle costs of various programs and
projects. These are produced for a variety of reason, ranging from establishing a basis for monitoring or verifying a
project’s programmatic progress to informing NASA’s budget requests from Congress.

➢ Correlation Assumptions are key assumptions within probabilistic cost analysis and often a driver for the total output or
point estimate of a cost model.

➢ Due to the uncertain nature of correlation between random variables, NASA has had difficulty quantifying the
relationships between spacecraft subsystems with specific, data-driven correlation matrices. Previously, the NASA cost
analysis community has addressed this challenge by:

1. Selecting a blanket correlation matrix to address uncertainty within the model
➢ The blanket value selected is usually 0.2 or 0.3
➢ This is a heuristic that arbitrarily affects the model’s probability distributions without a firm basis in statistical fact

or historical project data
2. Opting out of using any correlation matrix altogether

➢ This means that there is either no correlation matrix used on the data or a blanket correlation matrix of 0 values
➢ In this situation, all the uncertainty within the model comes from the variability inherent to the model’s underlying

probability distributions

Understanding how correlation can add uncertainty into a cost model is especially important at NASA, where most missions
are state-of-the-art and have limited historical data. Many statistical researchers have studied methodologies that can bridge
this gap in knowledge; however, the practical application of this research is limited.
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New Methods for Creating Data-Driven Correlation 
Matrices

➢ One hypothesized method of creating data-driven correlation
matrices that can be used within parametric cost analysis models to
improve the accuracy of cost estimates is the “correlation of
residuals” methodology
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Correlation of Residuals Methodology

➢ The correlation of residuals methodology involves deriving the
correlation coefficients of a model from the residuals of the
regression equations for the Cost Estimating Relationships
(CERs) of that model.

➢ This hypothesized method is based upon decades of previous
research on correlation in cost models and was implemented
through Latin Hypercube simulation in NASA’s Project Cost
Estimating Capability (PCEC) model.
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What is  Correlation?

➢ Correlation - a statistical measure of association between two 
variables
➢ Measures how strongly the variables change with each other

➢ There are two main statistics for measuring correlation
1. Pearson’s Correlation - measures linearity of a relationship 

between 2 random variables
2. Spearman’s Correlation - measures monotonicity (rank) 

between two random variables
➢ For our purposes, we will be focusing on the Pearson correlation 

coefficient
➢ Examples of positive, negative, and no correlation graphs for the 

Pearson Correlation coefficient can be seen below



Previous Research: Causal Statistical Correlation

Correlation is inherent in the process of developing CERs
➢ When regression analysis is performed for parametric cost estimating models, most of the uncertainty can be explained 

by the functional correlation of the regression equation.
➢ Functional Correlation results from the mathematical relationships between cost drivers and CERs and the 

relationship between the random variables can be modeled by an equation. In cases where functional correlation is 
present, correlation is usually handled without defining a correlation matrix or coefficients between CERs, since this 
correlation is already inherent in the model. 

➢ Additional unexplained uncertainty remains in the model because each independent variable is correlated with cost 
and/or standard error to some degree. The correlation that exists between the unused independent variables is not 
included in the functional correlation of the regression equation
➢ The remaining causal correlation is the “causal statistical correlation” between the unused independent variables 

and the standard error of the regression analysis 
➢ This causal statistical correlation is not inherent in the predictions of a cost model but can be implemented in the 

model as a correlation matrix of all the independent variables 
➢ This is what we are trying to model with the blanket 0.3 correlation. For the purposes of this research, this can 

be modeled as a correlation matrix of the subsystems of the typical NASA WBS
➢ Based on the findings of Coleman and Gupta [1994] and Raymond Covert [2006]
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Hypothesis: CER residuals can be used to determine the subsystem correlation matrix that should be implemented 
into the model to mimic the behavior of causal statistical correlation and improve the accuracy of cost estimates



Understanding the Correlation of Residuals Methodology

Correlation
All correlation is statistical

Purely Statistical
No causal relationship exists

Causal
Something causes A and B 

to covary (relationship 
exists)

Causal Statistical
Relationship between A and B 
is statistically modeled using 

correlation coefficients

Functional
Relationship between A and B 

is modeled by an equation
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Why Do We Care?

➢ Statistical Answer: Adding correlation coefficients to a model has the potential to drastically influence a continuous
distribution’s measures of variability (standard deviation, variance, skewness, maximum, and minimum) without having
a drastic effect on the distribution’s measures of central tendency (mean, median, mode).The effects on the
distribution’s measures of variability can increase the range of the probability density function. This means that
correlation can be a huge contributor to the amount of risk in probabilistic cost estimates.

➢ Simple Answer: Adding correlation can drastically influence the range of possible cost estimates. This can decrease the
probability of estimating an “average” cost and increase the probability or “risk” of estimating a “high” cost. This may
not be good news for project managers trying to remain under budget, but it does provide a more realistic
understanding of project cost and may be necessary information to plan for the successful completion of project
activities.
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Applying the Correlation of Residuals Methodology

For the purposes of this research, the correlation of residual methodology
was applied within NASA’s Project Cost Estimating Capability (PCEC). This
methodology was performed within PCEC according to the following steps:
1. The correlation coefficients for each spacecraft subsystem and support

function were determined by correlating the residuals of PCEC’s
subsystem CERs.
➢ PCEC contains 20 unique spacecraft subsystems and support

function CERs. The correlation coefficients between each pair of
subsystem CERs were compiled into a 20x20 correlation matrix

2. The resulting correlation matrix was implemented into PCEC as an
uncertainty factor influencing the model’s pre-existing cost
distributions using the Excel add-in Argo

3. The Latin Hypercube Sampling function of Argo was used to simulate
PCEC results for 40 missions within the PCEC database.

A sensitivity analysis was also performed in order to understand how the
correlation of residuals matrix compares to current standards. The steps
above were repeated three additional times using the following correlation
matrices:
1. A correlation matrix with a blanket value of 0
2. A correlation matrix with a blanket value of 0.3
3. A correlation matrix with a blanket value of 1 9



Benefits of Using PCEC

1. PCEC uses parametric estimating techniques that are very familiar to the
average NASA cost estimator
➢ CERs within PCEC are easily understood by PP&C community at NASA
➢ Regression analysis used to create CERs is frequently tested and

trustworthy
➢ Follows typical NASA Work Breakdown Structure

2. CER Uncertainty calculation mode uses Argo to produce cost estimates using
probability distributions
➢ Student’s t-distributions for each subsystem and support function
➢ Easily traces to correlation matrix of subsystems and support functions
➢ Compatible with Argo’s Monte Carlo and Latin Hypercube simulation

functions
3. PCEC Library architecture houses a database with generally complete

subsystem data for 58 of NASA’s near-Earth robotics spacecraft missions
➢ Frequently updated
➢ Standard, consistent, and current collection of spaceflight hardware data
➢ Removes the need for data collection and normalization

4. Results of correlation of residuals methodology can be easily validated against
actual spacecraft development data to determine if the methodology
provides benefit
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Subsystems & Support Functions

Attitude Control Nonrecurring Cost (NRC)

Attitude Control Recurring Cost (RC)

Command & Data Handling (CDH) NRC

CDH RC

Communications NRC

Communications RC

Electrical Power & Distribution NRC

Electrical Power & Distribution RC

Propulsion NRC

Propulsion RC

Structures & Mechanisms NRC

Structures & Mechanisms RC

Thermal Control NRC

Thermal Control RC

Project Management (PM)

Systems Engineering (SE)

Safety & Mission Assurance (SMA)

Integration & Test (I&T)

Mission Operations & Ground Data Systems Development 
(MOS-GDS Dev)

Phase E Mission Operations & Data Analysis (MODA PhE)
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Disclaimer!

The simulation performed within PCEC uses the “CER Uncertainty 
Only” calculation mode instead of the “Baseline” calculation mode 



Attitude 

Control 

Attitude 

Control RC CDH NRC CDH RC Comm NRC Comm RC Power NRC Power RC

Propulsion 

NRC

Populsion 

RC

Structures 

NRC

Structures 

RC

Thermal 

NRC

Thermal 

RC PM SE MA I&T

MOS-GDS 

Dev MODA PhE

Attitude Control NRC 1.00 0.32 0.23 0.01 -0.01 -0.13 0.38 0.28 0.19 0.14 0.06 -0.15 0.11 0.04 -0.03 0.15 -0.07 0.00 0.13 -0.10

Attitude Control RC 0.32 1.00 0.09 0.06 -0.15 0.39 0.05 0.54 -0.26 0.16 -0.28 0.19 0.02 0.24 -0.09 -0.09 -0.16 -0.06 0.22 -0.37

CDH NRC 0.23 0.09 1.00 0.26 -0.09 0.04 0.14 -0.03 0.03 -0.06 0.11 0.10 0.35 0.05 0.12 0.01 -0.05 0.22 0.18 -0.47

CDH RC 0.01 0.06 0.26 1.00 0.37 0.26 -0.24 -0.12 -0.18 -0.09 0.12 0.18 0.01 0.26 0.05 0.13 0.26 0.12 -0.13 -0.14

Comm NRC -0.01 -0.15 -0.09 0.37 1.00 0.54 0.21 -0.12 0.18 -0.27 0.39 -0.07 -0.17 0.08 0.09 0.11 -0.02 0.10 -0.02 -0.03

Comm RC -0.13 0.39 0.04 0.26 0.54 1.00 0.19 0.45 -0.08 0.10 0.06 0.42 -0.08 0.15 0.21 0.15 0.11 0.06 -0.47 0.00

Power NRC 0.38 0.05 0.14 -0.24 0.21 0.19 1.00 0.49 0.53 0.09 0.14 0.26 -0.01 0.20 0.22 0.06 -0.02 -0.13 -0.19 -0.06

Power RC 0.28 0.54 -0.03 -0.12 -0.12 0.45 0.49 1.00 -0.02 0.52 -0.11 0.62 -0.01 0.15 0.18 0.12 0.14 -0.10 -0.09 0.10

Propulsion NRC 0.19 -0.26 0.03 -0.18 0.18 -0.08 0.53 -0.02 1.00 0.01 0.07 -0.06 -0.24 -0.03 0.13 -0.09 0.03 -0.03 0.28 0.31

Populsion RC 0.14 0.16 -0.06 -0.09 -0.27 0.10 0.09 0.52 0.01 1.00 -0.11 0.51 0.35 0.31 -0.03 0.04 0.06 -0.32 -0.20 0.34

Structures NRC 0.06 -0.28 0.11 0.12 0.39 0.06 0.14 -0.11 0.07 -0.11 1.00 0.23 0.27 -0.15 0.02 0.43 0.33 0.18 0.01 0.25

Structures RC -0.15 0.19 0.10 0.18 -0.07 0.42 0.26 0.62 -0.06 0.51 0.23 1.00 0.15 0.26 0.20 0.28 0.24 0.04 -0.39 0.20

Thermal NRC 0.11 0.02 0.35 0.01 -0.17 -0.08 -0.01 -0.01 -0.24 0.35 0.27 0.15 1.00 0.57 0.11 0.36 -0.15 -0.29 -0.08 0.01

Thermal RC 0.04 0.24 0.05 0.26 0.08 0.15 0.20 0.15 -0.03 0.31 -0.15 0.26 0.57 1.00 0.01 0.09 -0.20 -0.43 -0.15 -0.02

PM -0.03 -0.09 0.12 0.05 0.09 0.21 0.22 0.18 0.13 -0.03 0.02 0.20 0.11 0.01 1.00 0.52 0.31 0.25 -0.15 0.00

SE 0.15 -0.09 0.01 0.13 0.11 0.15 0.06 0.12 -0.09 0.04 0.43 0.28 0.36 0.09 0.52 1.00 0.54 0.33 -0.20 0.02

MA -0.07 -0.16 -0.05 0.26 -0.02 0.11 -0.02 0.14 0.03 0.06 0.33 0.24 -0.15 -0.20 0.31 0.54 1.00 0.43 -0.13 0.51

I&T 0.00 -0.06 0.22 0.12 0.10 0.06 -0.13 -0.10 -0.03 -0.32 0.18 0.04 -0.29 -0.43 0.25 0.33 0.43 1.00 0.13 -0.15

MOS-GDS Dev 0.13 0.22 0.18 -0.13 -0.02 -0.47 -0.19 -0.09 0.28 -0.20 0.01 -0.39 -0.08 -0.15 -0.15 -0.20 -0.13 0.13 1.00 -0.13

MODA PhE -0.10 -0.37 -0.47 -0.14 -0.03 0.00 -0.06 0.10 0.31 0.34 0.25 0.20 0.01 -0.02 0.00 0.02 0.51 -0.15 -0.13 1.00

Subsytem Correlation Matrix (Unit)

Data-Driven Correlation Matrix Produced Using PCEC Subsystem CER Residuals 

➢ 190 unique subsystem correlation coefficients combinations
➢ 120 positive, 70 negative

➢ Most Positive Correlation: 0.62
➢ Structures & Mechanisms Recurring Cost/Electrical Power & Distribution Recurring Cost

➢ Most Negative Correlation: -0.47 
➢ Communications Recurring Cost/Mission Operations and Ground Data Systems Development 
➢ Command & Data Handling Nonrecurring Cost/Phase E Mission Operations & Data Analysis
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Cumulative Distribution Function
➢ The cumulative distribution functions (CDFs) of each simulation represent 

the range of possible costs that exist for each simulation
➢ The blanket correlation matrix of 1s produced the CDF with the widest range
➢ The blanket correlation matrix of 0 produced the CDF with the smallest 

range
➢ Correlation of residuals matrix CDF falls between 0 correlation simulation 

and 0.3 correlation
➢ The correlation of residuals matrix has a more nuanced fit on the data 

than applying blanket correlation



14Key Takeaway: The correlation of residuals matrix produced the simulation with the lowest bias

Bias Using Correlation of Residuals Methodology

➢ Bias – tendency of a statistic to over or underestimate the population parameter that is being measured
➢ Calibration Charts are a technique of visually representing bias present within a model’s predictive capability

➢ Graphs the average observed frequency of the simulation producing an estimate result that falls below the expected percentile value against the 
expected frequency of each percentile

➢ Compares a statistically ideal distribution of project costs against the distribution of project costs that was produced by the PCEC simulation 
➢ The correlation of residuals matrix produces the line that most closely resembles the ideal distribution of project costs
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Simulation Mean Percent Error
Missions Forecasted 

Within ±10% MPE
Missions Forecasted 

Within ±5% MPE

0 Correlation 22.08% 6 4

0.3 Correlation 87.44% 4 2

Residual 
Correlation

-0.13% 11 6

1 Correlation -6.24% 11 8

Key Difference: Bias chart shows how frequently costs are being underestimated; MPE shows average strength of model error

Key Takeaway: The correlation of residuals matrix produced the simulation with the lowest error on average

Mean Percent Error Using Correlation of Residuals Methodology

➢ Mean Percent Error (MPE) measures the average strength of model error
➢ The closer MPE is to 0%, the lower the average error in the predictive quality of the model

➢ Positive MPE values indicate that on average, the observed values tend to overestimate the actual value
➢ Negative MPE values indicate that on average, the observed values tend to underestimate the actual values

➢ The correlation of residuals matrix produces the lowest MPE
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Scope and Limitations
1. This research does not attempt to determine causal factors of subsystem 

variation. There are many possible causal factors that could affect 
subsystem variation and it is outside the scope of this research to attempt 
to identify these factors or understand their influence

2. This research does not attempt to produce a correlation matrix that is 
applicable within any cost model
➢ The correlation matrix in this paper was created using data from the 

PCEC Library and from the residuals of specific CERs within PCEC; 
therefore, it is not applicable in cost estimating models apart from 
PCEC

➢ The methodology used to create this correlation matrix can be applied 
to other parametric models in a similar manner, however

3. This research shows how the model is correlated between subsystems 
according to the correlation of residuals methodology. It does not show 
how subsystems should be ideally correlated

4. The point estimates associated with the correlation matrix that is explored 
in this research are only derived from spacecraft subsystems and support 
functions that are referenced in the NASA Work Breakdown Structure. 
Therefore, the following costs are not included within the predictions that 
are being observed from PCEC:
➢ Launch Service Vehicles
➢ Instruments
➢ Science
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Conclusion
➢ The correlation of residuals methodology has demonstrated improvement in the 

predictive capability of PCEC compared to the current standards of no correlation or a 
blanket 0.3 correlation matrix
➢ Bias chart indicates that the correlation of residuals methodology produces the 

line that most closely resembles the ideal statistical distribution of project costs
➢ Less bias in PCEC than current correlation standards
➢ Less likely to overestimate or underestimate project costs than the 

current correlation standards
➢ MPE calculations indicate that the correlation of residuals methodology also 

improves the average accuracy of cost estimates
➢ These results indicate that the correlation of residuals methodology is likely to capture 

a more realistic distribution of project cost performance than current standards 
➢ This does not mean that the estimates produced are going to be lower, but they 

will likely be more accurate and reflective of real-world spacecraft development 
costs

Key Takeaway: The correlation of residuals methodology 

can be used on other parametric cost estimating models in the 
future to improve the accuracy and precision of cost estimates 

and paint a more realistic picture of the possible range of 
project costs.
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Derivative Correlation: Coleman & Gupta [1994]

Previous Research on Creating Data-Driven Correlation Matrices

Findings of this research:
1. In parametric cost estimating, there are many types of

functional correlations that exist and can result from the
mathematical relationships between various combinations
of cost drivers and CERs
➢ When functional correlation is present, correlation is

usually handled without defining a correlation matrix
since this correlation is already inherent in the model

2. Functional correlation that is observed in the data due to
the production of functional dependencies within CERs
also produces a “derivative” correlation among variables
that are not jointly observed
➢ Derivative correlation arises as a natural outcome and

is inevitable

Causal Statistical Correlation: Covert [2006]

Findings of this research:
1. CER residuals can be used to determine the correlation values that

should be implemented into the model to mimic the behavior of
derivative correlation and improve the accuracy of cost estimates
➢ When CERs are created, most of the uncertainty in the model

can be explained through the functional correlation of the
regression equation

➢ Additional unexplained uncertainty remains in the model
because each independent variable is correlated with cost
and/or standard error to some degree

➢ The correlation that exists between the unused independent
variables is not included in the functional correlation of the
regression equation

➢ The remaining causal correlation is the “causal statistical
correlation” between the unused independent variables and
the standard error of the regression analysis
➢ This causal statistical correlation is not inherent in the

predictions of a cost model but can be implemented in
the model as a correlation matrix of all the
independent variables

➢ For the purposes of this research, this can be modeled as a
correlation matrix of the subsystems of the typical NASA WBS
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Causal Statistical Correlation

➢ Causal Statistical Correlation – correlation that is causal in nature without a functional relationship defined in the model
➢ We know that two random variables covary, but we have not modeled the relationship with an equation
➢ We use correlation coefficients to mimic their behavior

➢ Correlation starts when we develop CERs
➢ When Regression Analysis is performed, most of the uncertainty in the model can be explained by the functional 

correlation of the regression equation.
➢ Additional unexplained uncertainty remains in the model because each independent variable is correlated with 

cost and/or standard error to some degree. How do we find the remaining causal correlation?
➢ The remaining causal correlation is the causal statistical correlation that can be modeled using the correlation 

coefficients for the subsystems of the WBS 
➢ This is what we are trying to model with the blanket 0.3 correlation
➢ Based on the findings of Coleman and Gupta [1994] and Raymond Covert [2006]
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Hypothesis: Correlation Coefficients for the subsystems can be derived through analysis of the residuals from the 
regression equation
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