

# Quantified Benefits of Earned Value Management ...and their Benefits

#### **NASA Cost and Schedule Symposium 2023**

Matthew Jones JHU/APL Space Exploration Sector matthew.jones@jhuapl.edu

## Summary of NASA's Slow Adoption of EVM



- **1967 EVM Concept introduced by DOD** [Cost/Schedule Control System Criteria (C/SCSC)]
- **1972** First EVM Joint Implementation Guide issued to ensure consistency among military departments.
- **1991** Defense Acquisition P&Ps issued reaffirming use of EVM (DOD Instruction 5000.2)
- 1996 Mandatory Procedures for Major Defense Acquisition Programs and Major Automated Information System Acquisition Programs issued (DODR 5000.2-R Under Secretary of Defense)
- 1997 NASA Policy Directive "Each Project Manager is responsible for implementing EVM effectively on all applicable contracts." (NPD 9501.3)
- **2004** GAO notes NASA Slow Adoption (GAO report number GAO-04-642)

"NASA has yet to implement a well-defined process for estimating the cost of its programs--a weakness we and NASA's Inspector General have repeatedly reported...Despite this effort, the programs we reviewed failed to follow key cost-estimating processes, including...earned value management (EVM) to assess progress."

#### **2012** GAO notes NASA Slow Adoption (GAO report number GAO-13-22)

"NASA' 10 major spaceflight projects discussed in this report have not yet fully implemented earned value management (EVM). As a result, NASA is not taking full advantage of opportunities to use an important tool that could help reduce acquisition risk."

# Innovators, Disruptors, Mohawks...EVM Skeptics?



# **The EVM Perception Problem**



4

APL

# **EVM Business Case**



## Benefits > Cost



# **EVM Business Case**











# Why isn't the existing Quantified Benefits of EVM data compelling enough?



- One study (1996) is widely cited as evidence of quantified benefits of EVM.
  - Christensen, David. (1996). Project Advocacy and the Estimate at Completion Problem. Journal of Cost Analysis and Management.
- More recent studies have offered mixed findings, and several have claimed that "research shows that data integrity has suffered since Christensen's research in 1996."
  - Kim, Deborah B. (2018). An Analysis of the Estimate at Complete for Department of Defense Contracts.

# Quantifiable Benefits identified by Previous DoD Study 🖤



DoD Sample of 64 Contracts

Christensen, David. (1996). Project Advocacy and the Estimate at Completion Problem. Journal of Cost Analysis and Management.

# Quantifiable Benefits identified by Previous DoD Study



DoD Sample of 64 Contracts (2 subsets of 25 & 39 Contracts)

Christensen, David. (1996). Project Advocacy and the Estimate at Completion Problem. Journal of Cost Analysis and Management.

# Quantifiable Benefits identified by Previous DoD Study



DoD Sample of 64 Contracts (2 subsets of 25 & 39 Contracts)

Christensen, David. (1996). Project Advocacy and the Estimate at Completion Problem. Journal of Cost Analysis and Management.

# Quantifiable Benefits identified by Previous DoD Study 🖤

| Data Set                      | Point in POP where iEAC predicts final EAC at ~5% accuracy | Advanced Warning 20% into Lifecycle |
|-------------------------------|------------------------------------------------------------|-------------------------------------|
| 64 DoD Contracts (Christensen | ~10% into POP                                              | ~55% of POP Advanced Warning        |
| 1996)                         |                                                            |                                     |
| Subset of 25 DoD Production   | ~10% into POP                                              | ~60% of POP Advanced Warning        |
| Contracts                     |                                                            |                                     |
| Subset of 39 DoD Development  | ~40% into POP                                              | ~45% of POP Advance Warning         |
| Contracts                     |                                                            |                                     |

# Quantifiable Benefits identified by Previous DoD Study Compared to NASA Data

| Data Set                                  | Point in POP where iEAC predicts final EAC at ~5% accuracy | Advanced Warning 20% into Lifecycle |
|-------------------------------------------|------------------------------------------------------------|-------------------------------------|
| 64 DoD Contracts (Christensen<br>1996)    | ~10% into POP                                              | ~55% of POP Advanced Warning        |
| Subset of 25 DoD Production<br>Contracts  | ~10% into POP                                              | ~60% of POP Advanced Warning        |
| Subset of 39 DoD Development<br>Contracts | ~40% into POP                                              | ~45% of POP Advance Warning         |
| 8 APL SES NASA Contracts                  | ~60% into POP                                              | ~25% of POP Advanced Warning        |

## **Quantifiable Benefits vs. Cost Growth**

APL,

#### - Using NASA Project Sample Avg. and DoD Sample Avg. from Previous Study



# Quantifiable Benefits vs. Cost Growth – Using Individual NASA Project Data (8 projects)



4PL

# Alternative Quantifiable Benefits Measurements vs. Cost Growth – Using Individual NASA Project Data



# Increase in Quantifiable Benefits (compared to EAC) vs. Cost Growth – Using Individual NASA Project Data



# Summary: EVM Quantified Benefits are Compelling ...but not perfect (or straight forward)

- iEAC provides advanced warning of cost growth across industries (DoD & NASA).
- Advanced warning of future cost growth is less accurate and more delayed on projects with higher scope risk.
  - But the incremental improvement to PM EAC accuracy that the iEAC provides actually grows as a project's scope risk increases.

(Access to EVM's advanced warning benefit is likely just as important, if not more important, for projects with high scope risk.)



# **Key Take-Aways for EVM Practitioners**

# In addition to focusing on optimizing quality and efficiency of system and support... focus on improving CAM buy-in...

- 1) Don't get trapped arguing about the benefits that a CAM experiences
  - Instead point to data supporting quantified benefits of the iEAC that may benefit the CAM's superiors (more so than the CAM directly).
- Admit that the iEAC data is not perfect...just vastly better than the alternative (bottom-up EACs).
  - Although EV on projects with high scope risk have less accurate and more delayed predictive powers than on lower scope risk projects... The increase in predictivity when compared to bottom-up EAC is higher on high scope risk projects.

# **Future Applications / Research**

# 1) Collect more data to develop industry standard for iEAC accuracy.

- Banded ranges (High, Medium, Low) for quality of EVM in notional example.
- Notional example grades project EVM on average iEAC accuracy normalized for cost growth/scope risk.



#### 2) Explore use of iEAC accuracy industry standard as surveillance metric.

- Quality of a given EVMS could be measured based on the calculation of quantifiable benefits metric instead of labor-intensive surveillance of specific processes.
  - Decreases the cost of surveillance on a project and therefor strengthens the business case for EV.
  - Metric would be more equitable as it takes into account the impact of differing levels of scope risk.
  - Quantifiable metrics could even be incorporated into a Cost Plus Incentive Fee (or Award Fee) structure to directly incentivize a high quality EVMS.



Take Away – Larger study of iEAC data (normalized for cost growth) could increase CAM buy-in thereby increasing quality of EVM; decrease surveillance costs....all optimizing EVM Business Case.



# **Questions?**



# Is Cost Growth a Good Proxy for Scope Risk?

#### Indications are the answer is yes, based on:

- Previous 1996 DoD study data which is implicitly segregated by scope risk
- A formal survey of JHU/APL CAMs which showed wide agreement that scope risk is the leading driver of cost growth (~75%)
- JHU/APL data shows no statistical correlation between PM experience and cost growth
- Multi-variable regression analysis of JHU/APL data that indicates scope risk is the primary driver of cost growth
- The fact that NASA dataset comes from a single organization (JHU/APL) thus decreasing the likelihood that cost growth is driven by project management quality since:
  - Projects all use same standardized processes
  - Projects use the same compliant EVMS
  - Staff receive the same standardized training
  - Projects often use the same EVM/scheduling support staff