MICHAEL TRUMPER LEV VIRINE SAMUEL VIRINE

Joint Confidence Level Analysis for Projects with Multiple Objectives

Monte Carlo Risk Analysis: Risk Events vs. Uncertainties

Risk Register

Project Schedule

Uncertainties as Duration and Cost Distributions

Joint Confidence Level Analysis

one Monte Carlo

schedule)

schedule

The result of a Joint Confidence Analysis shows the probability that a project's cost will be less than the targeted cost and the finish time or duration will be less than the targeted finish time or duration.

Frontier lines show the combination of cost and duration that meets certain predefined targets: 70% chance that project will be on time and on budget at the same time (30% of dots are above this line)

Limitation of Traditional Joint Confidence Analysis

- Traditional methodology is performed only for project cost and schedule.
- In reality, most projects have multiple objectives

Aerospace mission may not be successful if most objectives are not met due to some risks.

Objectives

- Cost
- Schedule
- Technical Performance
- Quality/Reliability
- Environment

- Safety
- Security
- Litigation
- Public Relations

Project Duration

Step 1. Define and Quantify Objectives

Example of the objective: Quality

Risk Matrix settings for Quality Risk

25

20

15

10

5

Critical

100.0 %

Step 2. Prioritize Objectives

All objectives

	Risk Category and Outcome Tyr	Importar	Schedule	Cost and	Safety	Environm	Quality	Legal	Performai	Technol	
1	🛨 🔛 Schedule and Scope	11.2%	1.00	1.00	1.00	1.00	0.33	1.00	1.00	1.00	
8	🗉 🔛 Cost and Income	12.3%	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	
14	🕀 🔛 Safety	12.3%	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	Quality is 3
16	🕀 🛅 Environment	12.3%	1.00	103	1.00	1.00	1.00	1.00	1.00	1.00	times more
18	🕀 🔛 Quality	14.8%	3.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	important than
20	🕀 🛅 Legal	12.3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	schedule
22	🕀 🛅 Performance	12.3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
24	🕀 🛅 Technology	12.3%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

All objectives Calculated priorities for each objective

Step 3. Assign Risks to Tasks and Monte Carlo Analysis of Project Schedule

A. Define Probabilities and Impacts:

B. Assign Risks to Project Schedule:

Monte Carlo Simulation

- The analysis was performed using RiskyProject Project Risk Analysis and Risk Management software by Intaver Institute Inc.
- Additional data analysis and visualization was performed using Microsoft Excel and OriginPro software.

Step 4. Rank Risks for All Objectives

			Pr	e-Mitigatio	Post-Mitigation						
	Risk Name	Oper 💌	Risk 💌	Threat/C 💌	Pro 🔻	Imp: 💌	Sco 🔻	Score 🛛 🏹	Pro 🔻	Imp: 💌	Sco 🔻
1	Delay in Financing	Open	Risk	+ Threat	65.0 %	65.2 %	42.4 %		30.0 %	30.0 %	9.00 %
2	Delay of critical component delivery	Open	Risk	+ Threat	96.9 %	23.7 %	22.9 %		96.9 %	23.7 %	22.9 %
3	Failure of critical assembly	Open	Risk	+ Threat	20.0 %	72.9 %	14.6 %		20.0 %	72.9 %	14.6 %
4	Potential issues with supplier	Open	Risk	🕁 Threat	15.0 %	80.0 %	12.0 %		15.0 %	80.0 %	12.0 %
5	Software failure	Open	Risk	🕁 Threat	4.00 %	36.2 %	1.45 %		4.00 %	36.2 %	1.45 %
6	Cost information is not available	Open	Risk	🕁 Threat	55.3 %	0.00 %	0.00 %		55.3 %	0.00 %	0.00 %
7	Delay in transportation	Open	Risk	+ Threat	85.0 %	0.00 %	0.00 %		85.0 %	0.00 %	0.00 %
8	Oritical test failed	Open	Risk	+ Threat	37.9 %	0.00 %	0.00 %		37.9 %	0.00 %	0.00 %

Critical risks for all objectives must be mitigated first Risk Register is sorted based on score for all objectives together. Risk Register can be sorted for individual objective: quality, safety, etc.

Step 5. Analysis using Joint Confidence Level Scatter Plot

Example of 3D Plot Security Issues Duration Technical Performance

Frontier lines show the combination of cost and safety that meets certain predefined targets: e.g. 70%,80% and 90% chance that project will be on time and meet safety targets.

Step 6. Risk Mitigation Based on JCL Analysis

The risk must be mitigated so Probability 100.0 % 2: Delay of critical component delivery probability of the objectives could Verv meeting predefined target will be High reduced 80.0 % High 🕥 1: Delay in Financing 🛛 🖾 New Joint Confidence Level analysis 60.0 % will be performed Medium 40.0 % Risk can be: Low Mitigated 20.0 % Accepted 4: Potential issues with supplier Transferred Very Low Avoided • 0% 20.0 % 40.0 % 60.0 % JCL analysis can be used to make a Minor Negligible Moderate Serious

decision

100.0 %

Critical

80.0 %

Impact

CONCLUSIONS

- Projects in aerospace and defense industry have multiple conflicting objectives, which cannot be achieved at the same time on 100% due to multiple risks.
- Joint Confidence Level is a proven methodology of integrated cost and schedule risk analysis.
- The joint confidence level methodology was expanded to allow analysis with multiple objectives
- Project risk analysis with multiple objectives allows to rank project risk based on integrated score for all objectives
- Joint confidence level analysis can be used to assess efficiency of risk mitigation measures

