

A Significant Other: Hypothesis Testing on Qualitative Predictor Variables in CER Development

Cassandra Chang, Program Planning & Control Office Glenn Research Center May 4, 2023

Program Planning and Control Office

Office of the Chief Financial Officer

Outline

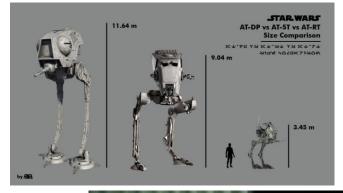
5/18/2023

- Background on CERs
- Types of variables and variable selection
 - Qualitative vs quantitative variables
- Hypothesis testing on regression coefficients
 - Simple linear regression vs nonlinear regression
 - Hypothesis formation and decision rules
- Working the hypothesis tests in practice
 - Example with CO\$TAT output
- Conclusion and Questions

Why CERs?

- CER = Cost Estimating Relationship
- Cost estimates based on historical data
- Understand the equations
 - Data used to train the model
 - Assumptions applied

- Other cost estimating tools use their own CERs but we have no insight on how those were developed
 - Which are the driving variables?
 - Were outliers excluded and why?



Program Planning and Control Office

Variable Selection

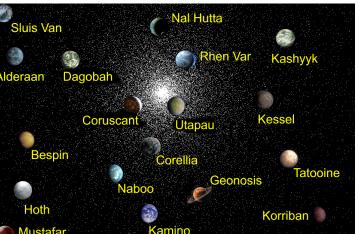
- Available data: technical data from CADRe, cost normalization data from RedStar
 - Both quantitative and qualitative data available
 - We will be focusing on *qualitative* data
- Quantitative data: continuous
 - Mass, weight, height

- Qualitative data: discrete categories
 - Material, weight class, color

Program Planning and Control Office

Variable Selection

- Use variables that make sense
 - Variables can be statistically significant but not practically significant
 - What is causing this variable to be statistically significant?
 - What variables logically should affect total cost?
 - What parameters will be we able to input when applying to new predictions?
- Treat variables in a way that makes sense
 - Should still be able to interpret the regression results
 - What do transformations mean?



Program Planning and Control Office

Qualitative Variables

- Many of the desired parameters for previous space
 - missions are not quantitative
 - Earth orbiting vs planetary
 - Mission class
 - Type of power system
- Best coded in a binary system
 - 0 for absence of trait, 1 for presence of trait
 - For multiple levels, use a different variable for each level to avoid assumptions about level effects
 - Using numerical labels will force the assumption that each category is spaced apart equally when that may not be the case
 - The change from Class A to Class B is not necessarily the same as the change from Class B to Class C

Equation Forms

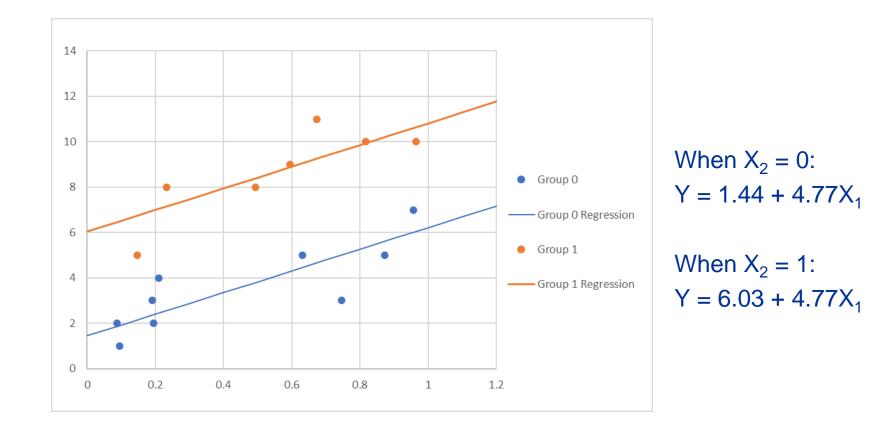
Let X_1 be a quantitative variable and X_2 be a qualitative binary variable.

Simple Linear Regression:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Nonlinear Regression:

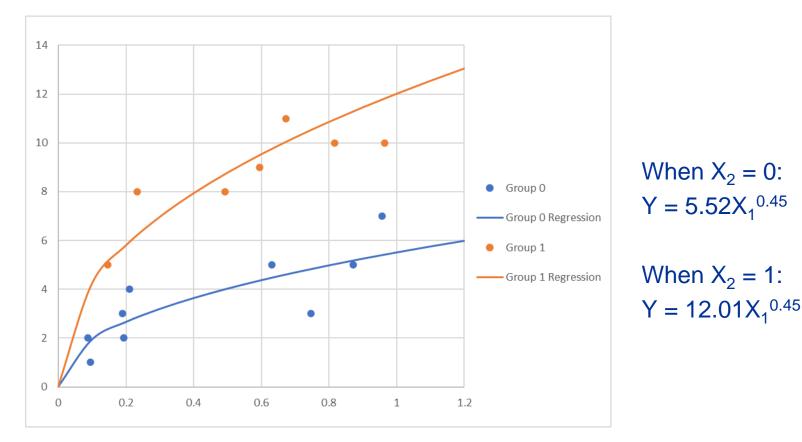
$$Y = \beta_0 x_1^{\beta_1} \beta_2^{x_2}$$


Program Planning and Control Office

Office of the Chief Financial Officer

Linear Regression Equation Form

Presence of X₂ is an additive term


Program Planning and Control Office

Office of the Chief Financial Officer

Nonlinear Regression Equation Form

Nonlinear Regression Example: $Y = 5.52X_1^{0.45} 2.17^{X_2}$

Presence of X₂ is an multiplicative factor

Program Planning and Control Office

Office of the Chief Financial Officer

Variable Significance for Linear Regression

In general, what we have traditionally been testing our variables at are:

- Null hypothesis: $\beta = 0$
 - This works for simple linear regression
- Alternate hypothesis: $\beta \neq 0$
- Two tailed test: could be either greater than or less than zero, even if one of those options does not make practical sense.
- In simple linear regression, this works for both continuous and binary variables. This is not the case for nonlinear regression!

NASA

Variable Significance for Nonlinear Regression

Instead, we need to take a look at the coefficients as factors that affect the cost.

- Null hypothesis: $\beta = 1$
 - A factor of 1 shows no correlation
- Alternate hypotheses:
 - If the factor is expected to have negative correlation with the total cost, $\beta < 1$
 - If the factor is expected to have positive correlation with the total cost, $\beta > 1$
- One tailed tests use subject matter expertise to determine expected impacts
 - For example, planetary missions should cost more than earth orbiting missions

A Practical Application

Model Form:	Weighted Non-Linear Model
Non-Linear Equation:	Y = 0.621 * X1 ^ 0.8962 * 1.786 ^ X3 * 2.206 ^ X4
Error Term:	MUPE (Minimum-Unbiased-Percentage Error)
Minimization Method:	Gauss-Newton

Consider a data set with 43 observations.

- Variables considered:
 - Y = total cost in FY14\$M
 - X1 = mass in kg
 - X3 = 1 if planetary, 0 if earth orbiting
 - X4 = 1 if flagship mission, 0 if not
- Regression performed using MUPE nonlinear regression in CO\$TAT (part of the ACEIT suite - thanks Tecolote!)
- Is the mission type (planetary or earth orbiting) a statistically significant predictor of cost?

A Practical Application

Model Form:	Weighted Non-Linear Model		
Non-Linear Equation:	Y = 0.621 * X1 ^ 0.8962 * 1.786 ^ X3 * 2.206 ^ X4		
Error Term:	MUPE (Minimum-Unbiased-Percentage Error)		
Minimization Method:	Gauss-Newton		

Let β_3 be the coefficient associated with X3.

- Hypotheses:
 - Null hypothesis: $\beta_3 \leq 1$
 - Alternate hypothesis: $\beta_3 > 1$
- Decision rule:
 - If $t^* \le t(1 \alpha; n 5)$, do not reject the null hypothesis
 - If $t^* > t(1 \alpha; n 5)$, reject the null hypothesis
 - (p-value < 0.05)

Program Planning and Control Office

Office of the Chief Financial Officer

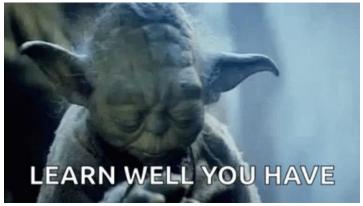
A Practical Application

Variable/Term	Coefficient Estimate	Approximate Std Error	Approximate Lower 95% Confidence	Approximate Upper 95% Confidence	P-Value	Test Type
a	0.6210	0.1932	0.2303	1.0117	0.001310717	one tail > 0
b	0.8962	0.0835	0.7274	1.0650	1.6368E-13	one tail > 0
с	1.7860	0.2651	1.2499	2.3221	0.002567809	one tail >1
d	2.2057	0.4466	1.3023	3.1091	0.005106907	one tail >1

- Test statistic calculated by $t^* = \frac{c-1}{s\{c\}}$ where c is the binary variable
- P-value in Excel calculated using the formula:
 - TDIST(CoefficientEstimate/StdError, DegreesofFreedom, NumberofTails)
 - In this case, p-value for c uses the formula

=TDIST((1.786-1)/0.2652, 39, 1)

Some Food for Thought


A few other notes:

- Specify significance level
 - Although a 95% confidence level, or $\alpha = 0.05$, is a typical standard, it is not the only standard that can be applied
- Note any outliers
 - Outliers or missions can be left out if they appear to be less relevant
 - Keep track of why missions were excluded or what subgroups the data set was split into
- Clearly state input parameter ranges
 - What are the minimum and maximum parameter inputs used
 - Additional uncertainty may be needed if the input parameter is outside the range of the data set

Conclusion

- CERs are powerful tools when we understand them and apply them appropriately
- It is important to note the assumptions made when performing regression and other prediction techniques
- Qualitative variables need to be treated differently than quantitative variables when hypothesis testing
- Use logic and subject matter expertise!
- Learn from my mistakes [©]

Thanks for listening!

Questions?

Program Planning and Control Office

Office of the Chief Financial Officer