UPDATES TO THE ANALOGY SOFTWARE COSTING TOOL (ASCOT) AND THE ONLINE NASA SPACE ESTIMATION TOOLS (ONSET)

Samuel R. Fleischer^{1*} Jairus M. Hihn¹ James K. Johnson²

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ²National Aeronautics and Space Administration, Washington, DC

National Aeronautics and Space Auministration, Washington, I

NASA Cost and Schedule Symposium April 26-28, 2022, Cocoa Beach, Florida

*Corresponding author (Samuel.R.Fleischer@jpl.nasa.gov)

Agenda

- ASCoT/ONSET Motivation
- ONSET Architecture
- ASCoT Toolset (See COMPACT Toolset at Melissa Hooke's talk in about an hour)
- Parametric Models
 - COCOMO (not covering today), Bayesian Regression
- Analogic Models
 - NLPCA, kNN, Clustering
- The Future of ONSET

ASCoT/ONSET Motivation

- More proposals = more concept design and trade studies
- More designs need to be evaluated quickly and early in the lifecycle with cost models that
 - Don't require experts
 - Are transparent
 - Are easily accessible
- ONSET was originally just ASCoT (software cost estimation) and has expanded to include COMPACT (CubeSat cost estimation)
- ONSET is an evolving suite of web-based tools expanding our costing tool set
- ONSET is a platform for <u>your</u> web-based costing tool!
 - It's surprisingly simple to join ask us how!

Jet Propulsion Laboratory California Institute of Technology

ONSET Architecture

- Secure, Django framework
 - ASCoT and COMPACT are Django
 "applications" built entirely using Dash
- Surprisingly simple to make your own independent tool and plug it in to ONSET
- Hosted by NASA HQ on ONCE (One NASA Cost Engineering)
 - Available to any NASA civil servant or contractor who has access to ONCE

ASCoT Toolset

The data:

- N = 54
- Sources
 - NASA CADRe
 - JPL SMART repo
 - project documentation
 - direct interviews
 - Independent, industry-wide dataset
- Variables
 - Destination
 - Redundancy
 - Software inheritance
 - Mission type
 - Mission size
 - Number of instruments
 - Number of deployables
 - Cost
 - Effort

Bayesian CER

Bayesian CER

 $log(Software Cost) = \beta_0 + \beta_1 log(Spacecraft Cost) + \epsilon$ $\epsilon \sim SkewNormal(\sigma, \alpha)$

Priors $\alpha \sim N(0,4)$ $\sigma \sim t(3,0,2.5)$ $\beta_0 \sim t(3,2.5,2.5)$ $\beta_1 \sim U(-\infty,\infty)$

Bayesian CER

- Skew normal error term performs better than normal error (log-skew-normal vs log-normal)
 - Captures low outliers without pulling median prediction down
 - Reasonable uncertainty bounds on the native scale due to negative skew
- Simple regression performs better than models including other software cost drivers such as number of instruments, destination, or redundancy (short version: avoids overfitting)

Analogic Models

- kNN model
 - Finds the three missions most similar to your input
 - Estimate is a weighted average of these nearest neighbors
- Cluster model
 - Finds the mission cluster most suited to your input
 - Estimate is a weighted average of missions in your cluster
- Both models utilize nonlinear principal components analysis (NLPCA)

NLPCA motivation

- How do we determine proximity of data when the data is numeric?
 - Use a distance formula (Pythagorean or other)
 - Example
 - Mission 1: (4 instruments, 5 deployables)
 - Mission 2: (2 instruments, 1 deployable)
 - Distance: $d = \sqrt{(4-2)^2 + (5-1)^2} = \sqrt{20}$
- How do we determine proximity of data when the data is NOT numeric?
 - Example
 - Mission 1: (Mars-bound, dual-string cold backup)
 - Mission 2: (Saturn-bound, dual-string warm backup)
 - Distance: d = ???

NLPCA motivation

- We have to find a way to numericize the data.
 - *Previous ASCoT versions chose "intuitive" transformations.*
 - i.e. Single-string = 1, Dual-string (cold) = 2, Dual-string (warm) = 4.
 - This encapsulates the industry knowledge that the difference between a dualstring (warm) system and a dual-string (cold) system is greater than the difference between a dual-string (cold) system and a single-string system.
- NLPCA lets the data speak for itself optimal transformations are learned using machine learning... in particular auto-associative neural networks

NLPCA - ANNs

Auto-associative neural network

ANN parameters are optimized such that the difference between the output layer and the input layer is minimized. The goal is for the lowdimensional bottleneck layer to adequately retain the information contained in the input layer.

The result is that a nonnumeric input layer can be projected onto a numeric, low-dimensional space.

kNN Algorithm Overview

- Once we have our missions in a low-dimensional numeric space, we can calculate the distance from each mission to any model input easily (in a well-defined manner)
- If we choose k=2, we only use the closest two missions to generate an estimate.

kNN Model Example Output

NLPCA-based Clusters

				Effort Model Clusters						
1. Very Large, Old Outer Planetary	d, 2. Rovers	3. Landers	4. Large, Complex, Inner-Outer Planetar	5. Large y Planeta	, Complex, Earth-Inner Ƴ	6. Smaller, Higher Inheritance	7. Large, Earth Observatories and Constellations			
Cassini	MER	Insight	Dawn	Deep Im	ipact	DS1	GRO			
Galileo	MPF	Phoenix	GRAIL	Genesis		GLORY	HST			
	MSL		JUNO	GPM Co	re	NuStar	MMS			
			Kepler	LRO		0CO-1	SDO			
			LADEE	Mars Ob	server	WISE	Spitzer			
			MAVEN	Mars Oc	lyssey					
			Messenger	OSIRIS-I	REX					
			MRO	SMAP						
			New Horizons	Stardus	t					
			Parker Solar Probe	STEREO						
				TIMED						
				Van Alle	n Probe					
SLOC Model Clusters										
1. Very Large, Old, Outer Planetary	2. Rovers	3. Landers	4. Large, Complex, Inner-Outer Planetary	5. Large, Moderate Complex, Dual Stri (Cold)	ely 6. Smaller or ng Simple, Earth – Asteroid/ Comet	7. Small-Medium, Single- String Inner-Planetary or Dual String (Cold) Asteroid/Comet	8. Large, Earth Observatories and Constellations			
Cassini	MER	Insight	JUNO	Deep Impact	DS1	Contour	GLAST			
Galileo	MPF	Phoenix	Mars Observer	Genesis	EO1	Dawn	GRO			
	MSL		MAVEN	GOES-R	GLORY	GRAIL	HST			
			Messenger	LDCM	GPM Core	LADEE	MMS			
			MRO	Mars Odyssey	IRIS	LCROSS	SDO			
			New Horizons	NPP	NuStar	LRO	Spitzer			
			Parker Solar Probe	OSIRIS-REx	0C0-1		STEREO			
				Stardust	SMAP					
				Van Allen Probe	TIMED					
					WISE					

Jet Propulsion Laboratory California Institute of Technology

Clustering Algorithm Overview

Probabilistic Linkage Matrices Calculated using the *k*-Means algorithm in NLPCA space Cassini, Galileo, and Rovers and Landers are removed.

Clustering Algorithm Overview

Cluster

- Once we have our missions in a low-dimensional numeric space, we can calculate the distance from each mission to the "center" of any cluster
- Once in a cluster with k missions, use the kNN weighted average formula for the estimate.

Jet Propulsion Laboratory California Institute of Technology

Clustering Model Example Output

Cluster Number

Stuff I Didn't Really Talk About Today

- COCOMO (unchanged from previous ASCoT version)
- Model performance
 - kNN and Clustering models perform at least as good as older version while also reporting uncertainty
 - CER performs significantly better than old version
- ASCoT contains kNN and Clustering models for both Effort (in work-months) and SLOC (source lines of code)
- Website UI/UX is better than ever thanks to a major overhaul of the backend, allowing us to modularly and quickly build and deploy models using Dash
- The future of ASCoT includes models of Instrument Flight Software
- The future of ONSET includes your models too let's chat!

Closing Out

- COCOMO, CER, kNN, and Clustering models all produce probabilistic output
- CER tool reports uncertainty in model parameters
 - Full posterior distribution available for download as a CSV
- kNN and Clustering models utilize NLPCA and accounts for uncertainty in neural network fit
- All ASCoT and COMPACT models are available to use by navigating to ONSET within ONCE.
 - oncedata.hq.nasa.gov
- If you have a model you would like to publish online, shoot me an email!
 - Samuel.R.Fleischer@jpl.nasa.gov.

⊖ → ୯ ଜ	🛛 🗎 https://once	edata.hq. nasa .	.gov/Main.aspx
ONCE	ONSET		
ONE NASA COST ENGINEERING DATABASE	Online NASA Space Estimati	on Tools	
• Search	J ASCoT	~ I	introduction
 User Reports 	•		Online NASA Spa
User Charts	🖋 СОМРАСТ	~ (estimation tools, /
Libraries	•	/	Analogies Cost To
Dashboards		(COMPACT was d
 Family Box Plots 		(COMPACT are de
CADRe Listing		•	estimates based
Human Data			online allows for e
Model Portal		· · · · · · · · · · · · · · · · · · ·	uata transparency
0 ONSET			ASCo
File Zipper			
	>		The NA
Resources			support
CADRe Info			estimate
• Find POCs			1. Ci
 Other Links 			01
 Part A Instructions 			2. K I
 Part B Instructions 			Co
Part C Instructions			th
NASA STD CADRe WBS			ca
ONCE STD WBS			3. C I
Documentation			es
• Technical Support			4. C

©2022. All rights reserved. Government sponsorship acknowledged. The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.