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Agenda

■ ASCoT/ONSET Motivation

■ ONSET Architecture

■ ASCoT Toolset (See COMPACT Toolset at Melissa Hooke’s talk in about an hour)

■ Parametric Models
– COCOMO (not covering today), Bayesian Regression

■ Analogic Models
– NLPCA, kNN, Clustering

■ The Future of ONSET



ASCoT/ONSET Motivation

■ More proposals = more concept design and trade studies
■ More designs need to be evaluated quickly and early in the lifecycle with cost 

models that
– Don’t require experts
– Are transparent
– Are easily accessible

■ ONSET was originally just ASCoT (software cost estimation) and has expanded to 
include COMPACT (CubeSat cost estimation)

■ ONSET is an evolving suite of web-based tools expanding our costing tool set
■ ONSET is a platform for your web-based costing tool!

– It’s surprisingly simple to join – ask us how!



NASA HQ

ONCE

ONSET Architecture

■ Secure, Django framework
– ASCoT and COMPACT are Django 

“applications” built entirely using Dash

■ Surprisingly simple to make your own 
independent tool and plug it in to ONSET

■ Hosted by NASA HQ on ONCE (One NASA Cost 
Engineering)

– Available to any NASA civil servant or 
contractor who has access to ONCE

ONSET

COMPACTASCoT



ASCoT Toolset

Analogic 
Models

Parametric 
Models

The data:
• N = 54
• Sources

• NASA CADRe
• JPL SMART repo
• project documentation
• direct interviews
• Independent, industry-wide dataset

• Variables
• Destination
• Redundancy
• Software inheritance
• Mission type
• Mission size
• Number of instruments
• Number of deployables
• Cost
• Effort



Bayesian CER

log Software Cost = 𝛽! + 𝛽" log Spacecraft Cost + 𝜖
𝜖 ~ SkewNormal(𝜎, 𝛼)

Priors
𝛼~𝑁 0,4
𝜎~𝑡(3,0,2.5)
𝛽!~𝑡(3,2.5,2.5)
𝛽"~𝑈(−∞,∞)



Bayesian CER

Priors
𝛼~𝑁 0,4
𝜎~𝑡(3,0,2.5)
𝛽!~𝑡(3,2.5,2.5)
𝛽"~𝑈(−∞,∞)

log Software Cost = 𝛽! + 𝛽" log Spacecraft Cost + 𝜖
𝜖 ~ SkewNormal(𝜎, 𝛼)

credibility 
intervals



Bayesian CER

• Skew normal error term performs better than normal error (log-skew-normal vs log-normal)
• Captures low outliers without pulling median prediction down
• Reasonable uncertainty bounds on the native scale due to negative skew

• Simple regression performs better than models including other software cost drivers such 
as number of instruments, destination, or redundancy (short version: avoids overfitting)

credibility 
intervals



Analogic Models

■ kNN model
– Finds the three missions most similar to your input
– Estimate is a weighted average of these nearest neighbors

■ Cluster model
– Finds the mission cluster most suited to your input
– Estimate is a weighted average of missions in your cluster

■ Both models utilize nonlinear principal components analysis (NLPCA)



NLPCA motivation

■ How do we determine proximity of data when the data is numeric?
– Use a distance formula (Pythagorean or other)
– Example
■ Mission 1: (4 instruments, 5 deployables)
■ Mission 2: (2 instruments, 1 deployable)

■ Distance: 𝑑 = 4 − 2 # + 5 − 1 # = 20

■ How do we determine proximity of data when the data is NOT numeric?
– Example
■ Mission 1: (Mars-bound, dual-string cold backup)
■ Mission 2: (Saturn-bound, dual-string warm backup)
■ Distance: 𝑑 = ? ? ?



NLPCA motivation

■ We have to find a way to numericize the data.
– Previous ASCoT versions chose “intuitive” transformations.
– i.e. Single-string = 1, Dual-string (cold) = 2, Dual-string (warm) = 4.
– This encapsulates the industry knowledge that the difference between a dual-

string (warm) system and a dual-string (cold) system is greater than the 
difference between a dual-string (cold) system and a single-string system.

■ NLPCA lets the data speak for itself – optimal transformations are learned using 
machine learning… in particular auto-associative neural networks



NLPCA - ANNs
Auto-associative neural network

ANN parameters are 
optimized such that the 
difference between the 

output layer and the input 
layer is minimized.

The goal is for the low-
dimensional bottleneck layer 

to adequately retain the 
information contained in the 

input layer.

The result is that a non-
numeric input layer can be 
projected onto a numeric, 
low-dimensional space.



kNN Algorithm
Overview
■ Once we have our missions in a 

low-dimensional numeric space, 
we can calculate the distance from 
each mission to any model input 
easily (in a well-defined manner)

■ If we choose k=2, we only use the 
closest two missions to generate 
an estimate.

P1

P2

P3

P5

Your 
Project

P4

Example
𝑘 = 2

𝑑1
𝑑2

Cost Your Project =

Cost(PL)
𝑑L

+ Cost(PM)𝑑M
1
𝑑L
+ 1
𝑑M



kNN Model Example Output

Effort (work-months)
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Model Input:
• Medium Inheritance
• Small Mission Size
• Earth orbiter
• Single-string
• Two instruments
• Zero deployables

Uncertainty in 
the NLPCA 

leads to 
uncertainty in 

the kNN result.



NLPCA-based Clusters
Effort Model Clusters

1. Very Large, Old, 
Outer Planetary

2. Rovers 3. Landers 4. Large, Complex,
Inner-Outer Planetary

5. Large, Complex, Earth-Inner 
Planetary

6. Smaller, Higher
Inheritance

7. Large, Earth
Observatories and
Constellations

Cassini MER Insight Dawn Deep Impact DS1 GRO
Galileo MPF Phoenix GRAIL Genesis GLORY HST

MSL JUNO GPM Core NuStar MMS
Kepler LRO OCO-1 SDO
LADEE Mars Observer WISE Spitzer
MAVEN Mars Odyssey
Messenger OSIRIS-REx
MRO SMAP
New Horizons Stardust
Parker Solar Probe STEREO

TIMED
Van Allen Probe

SLOC Model Clusters
1. Very Large, 
Old, Outer
Planetary

2. Rovers 3. Landers 4. Large, Complex, 
Inner-Outer Planetary

5. Large, Moderately
Complex, Dual String 
(Cold)

6. Smaller or 
Simple, Earth –
Asteroid/ 
Comet

7. Small-Medium, Single-
String Inner-Planetary or 
Dual String (Cold)
Asteroid/Comet

8. Large, Earth
Observatories and
Constellations

Cassini MER Insight JUNO Deep Impact DS1 Contour GLAST
Galileo MPF Phoenix Mars Observer Genesis EO1 Dawn GRO

MSL MAVEN GOES-R GLORY GRAIL HST
Messenger LDCM GPM Core LADEE MMS
MRO Mars Odyssey IRIS LCROSS SDO
New Horizons NPP NuStar LRO Spitzer
Parker Solar Probe OSIRIS-REx OCO-1 STEREO

Stardust SMAP
Van Allen Probe TIMED

WISE



Clustering Algorithm Overview

Probabilistic Linkage Matrices
Calculated using the k-Means algorithm in NLPCA space
Cassini, Galileo, and Rovers and Landers are removed.



Clustering Algorithm
Overview
■ Once we have our missions 

in a low-dimensional 
numeric space, we can 
calculate the distance from 
each mission to the 
“center” of any cluster

■ Once in a cluster with k
missions, use the kNN 
weighted average formula 
for the estimate.

Cluster 
2 

centroid
Your 

Project

Cost Your Project =
∑N∈P!

𝐶𝑜𝑠𝑡(𝑃)
𝑑(𝑃, Your Project)

∑N∈P!
1

𝑑(𝑃, Your Project)

Cluster 
4 

centroid

Cluster 
3 

centroid

Cluster 
1 

centroid

Cluster 
5 

centroid

𝑘 = |𝐶#|



Clustering Model Example Output

Model Input:
• Medium Inheritance
• Small Mission Size
• Earth orbiter
• Single-string
• Two instruments
• Zero deployables

Uncertainty in the 
NLPCA leads to 

uncertainty in the 
cluster result.
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Cluster 6 (Smaller, Higher
Inheritance)
DS1
GLORY
NuStar
OCO-1
WISE

Uncertainty in the 
Effort distribution is 

caused by uncertainty 
in the NLPCA as well 
as uncertainty in the 

cluster.



Stuff I Didn’t Really Talk About Today

■ COCOMO (unchanged from previous ASCoT version)
■ Model performance

– kNN and Clustering models perform at least as good as older version while also 
reporting uncertainty

– CER performs significantly better than old version
■ ASCoT contains kNN and Clustering models for both Effort (in work-months) and SLOC 

(source lines of code)
■ Website UI/UX is better than ever thanks to a major overhaul of the backend, allowing us 

to modularly and quickly build and deploy models using Dash
■ The future of ASCoT includes models of Instrument Flight Software
■ The future of ONSET includes your models too – let’s chat!



Closing Out
■ COCOMO, CER, kNN, and Clustering models all 

produce probabilistic output
■ CER tool reports uncertainty in model parameters

– Full posterior distribution available for 
download as a CSV

■ kNN and Clustering models utilize NLPCA and 
accounts for uncertainty in neural network fit

■ All ASCoT and COMPACT models are available to 
use by navigating to ONSET within ONCE.

– oncedata.hq.nasa.gov
■ If you have a model you would like to publish online, 

shoot me an email!
– Samuel.R.Fleischer@jpl.nasa.gov.
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