Aerospace Viewer of NASA Project Staffing Data (aView) A Practical Tool for Analyzing Staffing Levels and Cost Across Missions

> S. Lang, A. Zarate Garcia, J. McNeill, J. A. Rice, T. Tran, C. J. Zhang The Aerospace Corporation

2023 NASA Cost & Schedule Symposium May 2-4, 2023

Outline

- Introduction
 - Purpose
 - Timeline
 - Data Sources
- Its Utility and Capabilities
 - Why aView?
 - Plot Types
 - Capabilities
 - Mission Fact Sheets
- Architecture and Deployment Plans
- Summary

aView – the Aerospace Viewer of historical staffing profiles of NASA science missions

Purpose

aView, the Aerospace Viewer of archive of missions' staffing profiles, provides

- A curated, validated archive of FTE/WYE data for 28 science missions
- Comparative analysis of mission programmatic data (FTE/WYE) from PDR through operations (Phases C, D, E)
- Illustrations of how well projects keep to staffing plans at PDR and highlights excursions
- Quick reference pages for missions' technical parameters and related information

Cassini	Dawn	Deep Impact	Europa Clipper	Genesis
GRAIL	InSight	Juno	Kepler	LADEE
LCROSS	LRO	LUCY	MAVEN	MESSENGER
MER	MRO	MSL	New Horizons	NuSTAR
000	OSIRIS-REx	Phoenix	Psyche	Spitzer
Stardust	STEREO	WISE	Mission List	

aView is underwritten by the NASA Planetary Missions Program Office

Timeline

- **FTE Tool**, released with staffing data from thirteen missions Built on MS Excel with embedded macros
- Grew to contain historical staffing data for 24 science missions, mostly planetary Various features added to aid cost analysts within the NASA PMPO Presented at the NASA Cost and Schedule Symposium 2014

Timeline

2009

thru 2018

FTE Tool, released with staffing data from thirteen missions Built on MS Excel with embedded macros

Grew to contain historical staffing data for 24 science missions, mostly planetary Various features added to aid cost analysts within the NASA PMPO Presented at the NASA Cost and Schedule Symposium 2014

2018

aView Beta prototype created

- Based on open-source JavaScript for its front-end and SQLite database backend (DB)
- Aerospace made a modest internal investment for the initial DB schema

Timeline

2009

thru

2018

`	FTE Tool, released with staffing data from thirteen missions
	Built on MS Excel with embedded macros

 Grew to contain historical staffing data for 24 science missions, mostly planetary Various features added to aid cost analysts within the NASA PMPO Presented at the NASA Cost and Schedule Symposium 2014

2018

- aView Beta prototype created
- Based on open-source JavaScript for its front-end and SQLite database backend (DB)
- Aerospace made a modest internal investment for the initial DB schema

2020

aView 2020 delivered as a client application and replaces FTE Tool operationally Detailed reference information for each data point is recorded in the tool's DB

Timeline

2009 thru 2018	FTE Tool , released with staffing data from thirteen missions Built on MS Excel with embedded macros Grew to contain historical staffing data for 24 science missions, mostly planetary Various features added to aid cost analysts within the NASA PMPO Presented at the NASA Cost and Schedule Symposium 2014
2018 -{	aView Beta prototype created Based on open-source JavaScript for its front-end and SQLite database backend (DB) Aerospace made a modest internal investment for the initial DB schema
2020 -{	aView 2020 delivered as a client application and replaces FTE Tool operationally Detailed reference information for each data point is recorded in the tool's DB
2022 -{	 aView 2022 delivered as a client application Full set of data validation features are built into the database and curation process Previous year's aView 2021 made available via NASA ONCE's development server Addition of LUCY and Psyche mission data
	Schedule, Technical, Cost Data

Staffing Data (FTE/WYE)

> "Mashup" software & computing services

flua.

÷

aView

Timeline

2009 thru 2018	FTE Tool, released with staffing data from thirteen missions Built on MS Excel with embedded macros Grew to contain historical staffing data for 24 science missions, mostly planetary Various features added to aid cost analysts within the NASA PMPO Presented at the NASA Cost and Schedule Symposium 2014
2018	aView Beta prototype created Based on open-source JavaScript for its front-end and SQLite database backend (DB) Aerospace made a modest internal investment for the initial DB schema
2020	aView 2020 delivered as a client application and replaces FTE Tool operationally Detailed reference information for each data point is recorded in the tool's DB
2022	aView 2022 delivered as a client application Full set of data validation features are built into the database and curation process Previous year's aView 2021 made available via NASA ONCE's development server Addition of LUCY and Psyche mission data
2023	Adding missions DAVINCI*, DragonFly and NEO Surveyor
	* As applicable given project schedule

* As applicable given project schedule

Data Sources

- aView is a repository of validated staffing and mission data
 - Aerospace collects and validates the data in the aView DB
 - The sources of data and information for a View are
 - Formally approved reports at major mission milestones from the NASA Cost Analysis Data Requirement (CADRe)
 - Monthly Status Reports (MSRs)
 - Project and mission websites
 - Our customer at the NASA Planetary Missions Program Office

Outline

Introduction

• Its Utility and Capabilities

- Why a View?
- Plot Types
- Capabilities
- Mission Fact Sheets
- Architecture and Deployment Plans
- Summary

aView – the Aerospace Viewer of historical staffing profiles of NASA science missions

Why a View?

The **aView** tool has a number of utilities that are not currently readily available through any other source. It allows the user to

- Visualize staffing profiles for Phases C, D and E (FTE and WYE) at the granularity of monthly data
- Display annual project cost data along side the annual staffing totals for Phases C, D and E
- Understand how the labor basis of estimate compares with past NASA science missions with similar characteristics
- Examine how well a project performs to its staffing plans from PDR through operations
- Reference technical and programmatic data of a mission, like spacecraft mass, mission schedule, launch vehicle, launch date, etc.

Charting Capabilities and Fact Sheets

Figure A, "Front page" of a View via Google Chrome web browser

Chart Types

- A variety of chart types are available in aView and enable the user to examine programmatic data in different dimensions and ways. Currently, there are four chart types:
 - FTE Comparison Plots for defined Periods
 - Planned and Actual FTE by Mission
 - Annual Cost and FTE by Mission
 - FTE vs. Cost
- Each plot can be generated from mission data for Phases C and D or operations Phase E. The user can select the year for inflation to apply to the data

FTE/WYE Comparison Plot for Defined Periods

Figure B, Project A staffing actuals and plans crafted at MCR, PDR and CDR

FTE/WYE Comparison Plot for Defined Periods

Figure B, Project A staffing actuals and plans crafted at MCR, PDR and CDR

FTE/WYE Comparison Plot across Projects

Figure C, Projects B and C staffing plans crafted at CDR and final actuals

FTE/WYE Comparison Plot across Projects

Figure C, Projects B and C staffing plans crafted at CDR and final actuals

Planned and Actual FTE/WYE by Project

Figure D, Planned at PDR (green) and actuals (blue) at end of Phase D

Planned and Actual FTE/WYE by Project

Figure D, Planned at PDR and actuals at end of Phase D

Its Utility and Capabilities Annual Cost and FTE/WYE by Project

Figure E, Annual FTE/WYE and cost actuals by Fiscal Year

Mission Fact Sheets

- Provide a capsule summary of the mission and project, providing some or all of these items
 - Overview of the science objectives
 - Hosted payloads instruments, sensors
 - Mission plan and characteristics
 - Project development milestone dates
 - Technical performance metrics
 - Basic concept-of-operation
 - Diagrams depicting the physical layout of components
- NASA CADRe is the primary source for information given in these fact sheets
- As missions progress, fact sheets are updated with new, pertinent information

Its Utility and Capabilities Mission Fact Sheets

\leftrightarrow \rightarrow C \triangle $(http:$	s://aview20	022.ctl-ser	vices-a.aero.org
Phase C/D Plot Phase E Plot	Fact Sheets		
Dawn			Dragonfly
Deep Impact			Technical Data
			Program
Dragonfly			Lead Center
			Bus Manufacturer
Europa Clipper			l aunch Vehicle
			Development Time (mor
			Design Life (months)
			Destination
GRAIL			Max Distance from Sun
			Satellite Wet Mass (kg)
InSight			Satellite Dry Mass (kg)
			Spacecraft Bus Dry Mas
			Payload Mass (kg)
Konler			Number of Instruments
Kepier			BOL Power (W)
LADEE			Solar Array Mounting Ty
CADEL			Solar Array Area (m^2)
LRO			Pointing Knowledge (de
			Stabilization Type
Lucy			Star Tracker?
			Mono or Biprop or Ion
MAVEN			Transmit Power (W)
			Downlink Datarate (kbp
		Ľ	communications Band
MESSENGER			Schedule Data
			ATP Start
MRO			SKK
			COR
			CDK Londor SIP
			Lander PSR
NEOSM			Elight SIR
			PSR
New Horizon			ORR
			FRR
NUSTAR			LRR
000			Titan Arrival
000			End of Primary Mission
OSIRIS-REx			
Phoenix			Instruments
- HOCHIA			DraMS mass spectrome
Psyche			DraGNS damma-ray an
			DracMet geenhusise
Spitzer			DraGiviet geophysics an
			DragonCam camera sui
Ctorduct			DRACO sampling syste

Dragonfly

Technical Data	
Program	New Frontiers
Lead Center	MSFC
Bus Manufacturer	APL
Mission Class	В
Launch Vehicle	Atlas-V521
Development Time (months)	
Design Life (months)	
Destination	
Max Distance from Sun (AU)	
Satellite Wet Mass (kg)	
Propellant Mass (kg)	
Satellite Dry Mass (kg)	
Spacecraft Bus Dry Mass (kg)	
Payload Mass (kg)	
Number of Instruments	
BOL Power (W)	
Solar Array Mounting Type	
Solar Array Area (m^2)	
Pointing Control (deg)	
Pointing Knowledge (deg)	
Stabilization Type	
Star Tracker?	
Mono or Biprop or Ion	Mono
Transmit Power (W)	
Downlink Datarate (kbps)	
Communications Band	X-Band

Schedule Data ATP Start Nov-17 SRR Aug-20 PDR Oct-22 CDR Nov-23 Lander SIR Jan-25 Lander PSR Jan-26 Flight SIR Jan-26 PSR Dec-26 ORR Feb-27 FRR Apr-27 LRR Jun-27 **Titan Arrival** Nov-33 **End of Primary Mission** Mar-37

Instruments

raMS mass spectrometer	
raGNS gamma-ray and neutron spectrometer	
raGMet geophysics and meteorology package	
PragonCam camera suite	
RACO sampling system	

QÛ -* (P) *

Figure F, Fact sheet for Dragonfly

Mission Fact Sheets – selective pop-up, zoom feature

Figure F, Fact sheet for Dragonfly

Tool Construction

- aView uses opensource *chart.js*, a JavaScript tool suite on the frontend, and a SQLite database (DB) on the backend
 - DB is designed to allow for complete traceability for every data point (datum) that is plotted
 - aView leverages aspects of Aerospace's infrastructure developed for detailed mission assurance of the nation's launch program for national space assets

Summary

- aView developed to assist users in conducting comparative analysis
- Built on a detailed repository of mission programmatic data, it provides highlevel views of the historical data for 28 NASA missions for development Phases C and D as well as the operations Phase E
- Given the wealth of mission and project information available in aView, both programmatic and technical, cost analysts can leverage the its capabilities to answer a variety of questions
 - Understand what development costs and staffing during Phases C and D for a proposed interplanetary mission based on similar historical missions
 - Understand how a proposed operations budget for Phase E compares to previous missions managed by the same Center
 - Understand how staffing levels track to development costs between PDR and ARR for a particular project
- Aerospace seeks to broaden the aView DB to include more Earth Science, Astrophysics, and Heliophysics missions

Welcome support from other customers to expand the mission set

Acknowledgments

- Customer
 - Bradley Zavodsky, NASA Planetary Missions Program Office
- Aerospace
 - Sarah Lang, Lead
 - Justin McNeill, Advisor and Co-Lead
 - Tommy Tran, Software Development Lead
 - Alexander Zarate Garcia, Developer
 - C. Jason Zhang, Developer
 - J. Drew Rice, Curator
- NASA OCFO & HQ IT
 - James Johnson
 - Julie McAfee
 - Michael Blanford
 - Amanda Dawson
 - Ashley Mooney

