

GOES-R Series/ G18 Post Launch Testing Sequence of Events (PLT SOE) A Day-to-day Project Schedule

Denis Pinha Ph.D. (TPM/ NASA GSFC) GOES-18 PLT Deputy Director & Planner Rodolfo Lavaque (TPM/ NASA) TPM President

Agenda

- **1.** Post Launch Testing Objectives
- **2.** System Engineering Process Model to deliver the PLT SOE
- **3.** Background: Subsystems and Instruments to be tested
- 4. Sequence of Events planning phases
- **5.** Day-to-Day Project Schedule

Post-launch Testing Objectives

- Geostationary Operational Environmental Satellites (GOES) The nation's most advanced fleet of geostationary weather satellites
- Objective of the GOES-T PLT campaign validate capability of the GOES system to perform the mission
- An integrated series of tests and demonstrations performed by the key elements of the system:

 To accommodate G-17 ABI during the fall 'hot season', PLT will be conducted for the first 2 months at 89.5°, then drift to 136.8° and complete the PLT

Source: https://www.goes-r.gov/mission/mission.html

Subsystems and Instruments to be Tested

- 1. ABI (Advanced Baseline Imager)
- 2. EXIS (Extreme Ultra-Violet X-Ray Irradiance Sensor)
- 3. GLM (Geostationary Lightning Mapper)
- 4. GMAG (Goddard Magnetometer)
- 5. SEISS (Space Environment in-Situ Suite)
- 6. SUVI (Solar Ultraviolet Imager)
- 7. GNC (Guidance, Navigation, and Control)
- 8. COMM (Communications)
- 9. Ground (Ground Systems)

Background

Subsystems:

- 1. ABI 20 tests : 500 events (tasks)
- 2. EXIS 13 tests: 200 events (tasks)
- 3. GLM 12 tests : 200 events (tasks)
- 4. GMAG 5 tests : 60 events (tasks)
- 5. SEISS 10 tests: 110 events (tasks)
- 6. SUVI 12 tests: 110 events (tasks)
- 7. GNC 10 tests: 110 events (tasks)
- 8. COMM 3 tests: 30 events (tasks)
- 9. Ground 4 tests: 30 events (tasks)
- 10. Satellite Events: Maneuvers, RFI, Eclipses: 300 events

Resources:

- Subsystem/Instrument Team: 4 8 Engineers + Team Lead
- Workforce of about 60 highly skilled personnel
- LCR workstations/Ground Antennas
- Spacecraft

A Substantial Scheduling Effort : ~ About 2000 tasks in 6 months.

Background: Inputs for PLT SOE

Stakeholders

Missions Operations Manager, Systems Operations Manager, Instrument Systems Manager, MOST Subsystem Manager/Instrument Leader/Instrument Team, Flight Project Subject Matter Experts, Product Readiness and Operations Team (PRO), Ground System Leader, Contingency Manager, Configuration Manager, NWS, NASA, NOAA

Baseline Planning

System Engineering Process Model **WTPM**

PLT SOE Baseline

9

General Methods

$$\sum_{m \in M_{i,j}} \left(\prod_{c \in C_{i,j,m}} \frac{n!}{(n-p)! \, p!} \right) = \frac{8!}{(8-2)! \, 2!} * \frac{6!}{(6-3)! \, 3!} * 1 * 1 + \frac{8!}{(8-3)! \, 3!} * \frac{6!}{(6-1)! \, 1!} * 1 * 1 = 896$$

The number of combinations p of n elements where p is the required quantity of resources with a given skill and n is the available quantity of resources in the resource pool capable of meeting the required skill.

Ν	lumber o Tasks	f Number of resources	Multiple skills	Multi- mode	Multiple calendars with interr.	Multiple priority rules	Multiple Projects	Number of Projects	Time (s)
1	33	31	Х	Х	х	Х		1	1
2	100	65				Х		1	1
3	111	475	Х	Х	х	х		1	1
4	222	475	Х	Х	х	х	Х	2	1
5	333	475	Х	Х	х	х	Х	3	2
6	3330	475	Х	Х	х	х	Х	30	78
7	11100	475	Х	Х	Х	х	Х	100	810

10

Monitor and Re-planning

Day-to-Day Project Schedule

Replanning Analysis (Weekly)

Day-to-Day Creation of Deliverables

Automated routine to create multiple .mpp files to produce the daily charts more efficiently

> Today's Schedule, Next Day Schedule and 10-day Look Ahead Schedule Presented During the Daily Briefing

Contacts

Rodolfo Lavaque, PMP <u>rlavaque@techpromanagers.com</u> <u>rodolfo.j.Lavaque@nasa.gov</u> (202) 374 2700

Denis Pinha, Ph.D. <u>dpinha@techpromanagers.com</u> <u>denis.d.pinha@nasa.gov</u> (614) 649 9255

