

1

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Assessing Program Level Objectives of Human Mars Missions Using Portfolio Optimization

Methods Bill O'Neill

Motivation (1): Space Architecture Development is Difficult

Motivation(2) - Specifics

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

- 1. Many ways to return to the Moon and Mars with countless potential system choices with different characteristics
 - System Performance
 - Technological Maturity
 - Cost/Schedule
- 2. Several techniques exist to measure Cost, Performance, Robustness & Schedule individually, or in pairs, but ...
 - No technique exists to accommodate all 4 measures in seeking optimal portfolios of systems
 - Several techniques address architecture scheduling, but not the *portfolio* selection problem

<u>Goal:</u> Develop, demonstrate a methodology that could generate and explain 'good' architecture choices – make decision-makers smarter in their choices

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

<u>Programmatic</u>– Addresses architecture cost, performance, schedule and robustness

Portfolio – Selection of systems from a candidate library

Optimization – Best selection of systems to meet some criteria and given constraints

Selection of "best" systems and how they interact with each other to satisfy stakeholder objectives in terms of cost, schedule, robustness and performance

Methodology Overview

istration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Modeled after Three-Phase System of Systems method:

- Definition
- Abstraction
- Implementation

RPO - Mixed Integer Linear/Quadratic Programming Problem

Variables

A_i^B: Vector of system selection (Binary Decision Vector)
x_{cij}: Transfer of capability between systems (Real Value Decision matrix)
x_{cij_bin}: Connectivity between systems (Binary Decision matrix)
S_{ci}: Vector of system capabilities (Matrix of Constants)
S_{ri}: Vector of system requirements (Matrix of Constants)

Connectivity Constraints

$$\sum_{j} x_{cij} \le A_i^B S_{ci}$$
Finite Node Capability
$$\sum_{i} x_{cij} \ge A_i^B S_{rj}$$
Node Requirements
$$\sum_{i} x_{cij_bin} \le Limit_i$$
Finite number of
connections

Example Objective Function

Supporting Constraints

$$\begin{aligned} X_{cij} - M * X_{cij_bin} &\leq 0\\ X_{cij} - X_{cij_{bin}} &\geq 0 \end{aligned}$$

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Details of specific objective/constraint modeling in Backups

 $C_{Capability}$, C_{Cost} : Normalizing constants C_i : Unit cost vector

Scheduling Constraints(Dev, Production, Operation)

<u>Variables</u>

 t_{DB} : System development beginning time (Decision Variable)

- t_{DE} : System development ending time (Decision Variable)
- T_D: System development duration (Constant)
- t_{PB} : System production beginning time (Decision Variable)
- t_{PE} : System production ending time (Decision Variable)
- T_P: System production duration (Constant)
- t_0 : System operation time (Decision Variable)

Constraints

$$\begin{split} t_{DE,i} &\geq t_{DB,i} + T_{D,i} \\ t_{PE(i)} &\geq t_{DE(j)} \\ t_{PE(i)} &\geq t_{PB(i)} + T_{P} \\ t_{O(i)} &\geq t_{PE(i)} \\ t_{PB(i+1)} &\geq t_{PE(i)} \\ \left(t_{O}(j) - t_{O}(i)\right) &\geq -(1 - (x_{cij,bin} (i,j))) * M \\ t_{DE,D} &\leq t_{DB,i} + T_{D} * (0.2) \end{split}$$

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Life Cycle Scheduling of System A and B

Cost and Schedule Estimation Relationships (Modified AMCM)

- Cost Estimating Relationship(CER) and Schedule Estimating Relationship(SER) is modified form of NASA Advanced Mission Cost Model (SER)
 - AMCM updated by Rolley et al for exploration missions
 - Human Exploration SERs currently being reevaluated by JSC
- "Best" publicly available calculation for exploration schedule estimation of human moon/mars missions
- Current optimization is modular and AMCM can be replaced

Table 1. AMCM Variables.					
Variable	Description				
Q	Number of systems to produce				
W	Dry mass				
S	System type				
IOC	Initial Operating Year				
В	System Generation				
D	Difficulty				

Table 2. AMCM Constants.	
--------------------------	--

Constant	Value
а	9.51×10 ⁻⁴
b	0.59
с	0.66
d	80.6
e	3.81×10 ⁻⁵⁵
f	-0.36
g	1.57
inflation	1.43

 $\frac{\text{Overview of Formulation}}{D = -2.5 + TC + \left(\frac{OD}{15}\right) + \frac{RT - 80}{98 - 80} + HR + PC}$ $DDTE_{duration} = 1.20 \times D + 5.94$

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Divisior

 $Prod_{duration} = (0.11 \times D + 0.33) \times DDTE_{duration}$

 $DDTE_{cost}^{16} = a \times Q^b \times W^c \times d^S \times e^{\frac{1}{IOC-1900}} \times B^f \times g^D \times inflation_{99}^{16}$ $Prod_{cost}^{16} = 0.20 \ (\pm 0.10) \times DDTE_{cost}^{16}$

Table 4	Variables used	to calculate	difficulty	narameter
I ADIC T.	variables useu	to calculate	unneure	par ameter.

Variable	Description	Possible Values		
		Low = 0		
TC	Technical complexity	Medium = 0.5		
		High = 1		
OD	Planned years of operation without repair	0 to 15 years		
		Low (98% chance of mission success) = 1		
RT	Acceptable risk tolerance	Medium (90% chance of mission success) = 0.5		
		High (80% chance of mission success) = 0		
υъ	Whether system is human rated	Yes = 1		
IIK	whether system is numan rated	No = 0		
		Low = 0		
PC	Programmatic complexity	Medium = 0.5		
		High = 1		

Rolley, Robert, et al. "Life Cycle Cost Estimation of Conceptual Human Spaceflight Architectures." AIAA SPACE and Astronautics Forum and Exposition. 2017.

Example: Human Mars Mission Trade Study

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

- **Scenario**: Human exploration mission to surface of Mars
 - Compare NASA Design Reference Architecture 5 design trades
- Application(3 Phase Method)
- Functional Decomposition
- Candidate System Library
 - Includes transit propulsion, transit habitat, lander elements, aerocapture, launch vehicles, crew vehicles, ascent elements, and Mars surface systems
 - Custom propulsion sizer for in space propulsion characterization
 - DRA 5 documentation for system sizing
 - Modified version of NASA's Advanced Missions Cost Model
 - Estimation of technology TRL and cost/schedule impacts through literature review
 - PPO Method (RPO + Scheduling + Var Cap)

Investigate each DRA case individually amongst larger design space

ID	Propulsion	Deployment	Capture	ISRU	
Α	A NTR Pre		Aero	Yes	
В	Chem	Chem Pre		Yes	
С	NTR	Pre	Aero	No ISRU	
D	Chem	Pre	Aero	No ISRU	
E	NTR	Pre	Propulsive	No ISRU	
G	NTR	All Up	Propulsive	No ISRU	

DRA 5 Case A – NASA's Final Recommendation

For demonstrative purposes

- Constrain to Case A: NTR, Pre-deploy cargo, ISRU, Aerocapture
- Optimization Objective: Minimize Cost and Schedule

DRA 5 Case A Scheduling

Annual Funding Visualization

TechDev 10000 Development **Production Cost** Operation 8000 Funding per Year[MUSD] 6000 4000 2000 0 2022 2024 2026 2028 2030 2032 2034

Time [year]

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division Architecture Funding Per Year

Notes:

- Large initial development
 budget followed by
 production and operation
- Production costs tightly associated with launch windows
- "Large" annual budget for single program
- Doesn't account for Moon2Mars efforts

Comparison of NASA DRA recommended Cases (Single Mission)

Pareto frontier of Cost vs Schedule

- Assumes total architecture cost of single mission
- Case E NTR Propulsive capture Pre deploy without ISRU was min cost option
- Case G NTR Propulsive capture All up was min schedule
- Benefits of investment in ISRU and aerocapture not realized in single mission architecture

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

ISRU – In Situ Resource Utilization(local propellant production)

NTR – Nuclear Thermal Rocket

AC- Aero capture at Mars orbit

PC – Propulsive capture at Mars Orbit

Other Trades Not Covered Here

- Annual Budget limit vs Schedule
 - Impact of restricted budget on schedule deadlines
- Annual Budget limit vs Performance
 - Impact of restricted budget on performance capabilities within time period
- Performance vs Cost
- Robustness/Uncertainty and Stakeholder Risk Aversion Factor
 - Uncertainty in Cost components
 - Uncertainty in schedule components
 - Operational uncertainty and robustness
- Multi Domain Analysis(Moon2Mars)
 - Stakeholder utility study for various time periods and decisionmaking impacts between them

Demonstrated Example is intentionally brief to demonstrate capabilities

 Real example would have expanded Candidate System Library with additional system and technology options

Closing Thoughts

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Advancements on Status Quo(RPO)

- Scheduling enhancement and variable capability enhancement beneficial to application of portfolio methods to space system architectures
- Multi Domain enhancement problematic in application to large multidecade, multi-destination space exploration planning

Future Work

- Improve constraint efficiency to enable multi domain application (Moon 2 Mars)
- Apply methods to space scenarios with support of technical experts (Planned 2023)
 - Improved cost and schedule estimation
 - Improved system sizing
- Investigate alternate mission operation concepts
 - Low Lunar Orbit staging ground/Moon2Mars
- Solver license and compute server

Questions

Reflections on Adoption in Practice

Tested Applications

- Purdue-MSFC SoS project
- Early pathfinding analysis for lunar lander elements(JSC)

Future real-world applications

- JSC Forge (JSC Concurrent engineering team analogous to Team-X)
 - Range of human space exploration design studies
- DIECAST

Challenges

- System sizing
 - Current: Beyond LEO Architecture Sizing Tool

- Literature and custom propulsion sizer
- Better: NASA system sizing tools/library
- Cost/Schedule estimation
 - Current: modified NASA Advanced Mission Cost Model
 - Better:
 - Systems: Project Cost Estimating Capability(PCEC), NASA Air Force Cost Model(NAFCOM), Once NASA Cost Engineering(ONCE) database
 - Technologies: Technology Cost and Schedule Estimation (TCASE) tool/database
- Application to other fields may only require slight tweaking to constraints

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Difficulties

- Several Big-M constraints
- Problem size is quadratic with number of systems
- Can reasonably produce results for architectures of 2-3 missions(40+systems)
- Solver "bogs" down with large problems and requires weeks of computation

Attempted Improvements

- Reformulation of the problem
- Additional processors
- Solver tuning/parameters
- General Constraints (Implies in Yalmip)

Recommendation

Status quo of commercial solvers not sufficient for such a large problem
 May require custom solver or improvements to commercial solvers

Publications

NASA

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Conference Papers

- IAC 2016 "Design and Integration of Modular Deep Space Habitat Using a Robust Optimization Framework"
- IAC 2018"Enhanced Robust Portfolio Optimization for cost, performance risk and schedule analysis of a Lunar mission"
- IAC 2019"Assessment of Lunar Lander Architectures in terms of Programmatic Stakeholder Objectives"
- AIAA SPACE 2018"Assessing Cost, Performance and Risk of Human Lunar
- Exploration Missions Using Robust Portfolio Optimization"
- Journals
- Accepted-Assessing Program Level Objectives of Space Exploration Architectures Using Portfolio Optimization Methods – AIAA Journal of Spacecraft and Rockets
- Planned-
 - Lunar surface operations -Acta Astronautica
 - Moon to Mars Study AIAA Journal of Spacecraft and Rockets or similar journal

Backup/Conclusion

- Previous versions of RPO required fixed capabilities and requirements
- New Concept: Optimization determines select system Capabilities and Requirements given known parametric relationship

New Variables and Constants

Var_C: Variable Cap. Var_R: Variable Req m_{Req}: Cap-Req relation slope b_{Req}: Cap-Req relation intercept

New Constraints

$$Var_{C}(i) \geq \sum_{j} X_{cij}$$
$$Var_{R} \geq Var_{C} * m_{Req} + A_{i}^{B} * b_{Req}$$
$$\sum_{i} X_{cij} \geq Var_{R}(i, n)$$

Robustness - Operational

Application

 Operational uncertainty of inspace propulsion system and launch vehicle performance and resulting impact on dependent system

Formulation

 $CX \leq b$

$$\begin{split} &\sum_{j} C_{ij} X_j + z_i \Gamma_i + \sum_{i \in J_i} p_{ij} \leq b_i \\ &z_i + p_{ij} \geq \hat{C}_{ij} y_i \\ &-y_i \leq x_j \leq y_i \\ &z_i \,, \, p_{ij} \,, y_i \geq 0 \end{split}$$

- The bottom up approach that is prevalent in most architecture studies limits effective comparison of multiple systems and technologies when combined into an architecture
- Many technology assessment methods exist but either A) correlate a benefit with a stakeholder value or B) assess how immediately related systems are impacted and do not assess combinations of technologies at the architecture level or how these technologies affect future decisions
- The current version of Robust Portfolio Optimization lacks the ability to assess system lifecycle phases and requires systems with fixed values prior to optimization. Both of these deficiencies preclude the ability to solve the first two literature gaps.
 An enhanced version of RPO (formulation and solution techniques) is proposed to:
 - **1.** Account for lifecycle phase scheduling within optimization to assess how complexity and technical maturity of system options impact overall architecture schedule
 - 2. Include system sizing within the optimization to improve optimality of system selection and practicality of usage
 - **3.** Account for system selection over multiple time periods to assess impact of technologies on system selection

1. Functional Decomposition

- Two goals:
 - Identify architecture functions
 - Identify candidate systems to further examine
- Efficiency in this phase is supported by MBSE practices

2. Candidate System Library (CSL)

- Many methods to determine system attributes
- CSL assembly improved via team effort
- Can specify sets of systems for specific investigation(example: NASA DRA5)

3. Formulate Portfolio Optimization Problem

- Practitioner assembles optimization problem through selection of constraints and specification of objective function to form Mixed Integer Linear Programming Problem(MILP)
- Gurobi or CPLEX used to solve MILP
- May require iteration of CSL inputs, objective function, c requirements

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Goal: Enforce certain stakeholder valued systems to specific time domains

Accomplished through scheduling constraints

Constants

 $T_{MDB,d}$: Start of valued time domain $T_{MDE,d}$: End of valued time domain **Constraints**

 $T_{MDB,d} \le t_{OB,i} \le T_{MDE,d}$

Notes on Solving Mixed Integer Programming Problems

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Divisio

Primary Method: Branch and Cut method via MIP Solvers

- Many free solvers available
- Best performance with commercial solvers (Gurobi, CPLEX)
 - Better strategies for pre-solve, branching, and cut generation
- Efficient tuning for RPO/PPO problems
- Pseudo cost branching
- Moderate cut generation

Typical Solve times:

- Single lunar or Mars mission with fixed capability : ~10 sec
- Single lunar or Mars Mission with variable capability ~60 sec
- Three Mars missions with variable capability 1-2 hours
- Five Lunar missions with variable capability ~12 hours
 Multi Domain (~10 missions) : days to unsolvable

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Methods to examine scheduling uncertainty

- 1. Within optimization, account for uncertainty with a stakeholder risk factor: $Dev Time' = \lambda * \mu + Dev Time$
- 2. Post Process assessment of architecture scheduling with System Developmental Dependency Analysis

RPO - Mixed Integer Linear/Quadratic Programming Problem

 A_j^B : Vector of system selection (Binary Decision Vector) x_{cij} : Transfer of capability between systems (Real Value Decision matrix) x_{cij_bin} : Connectivity between systems (Binary Decision matrix) S_{ci} : Vector of system capabilities (Matrix of Constants) S_{ri} : Vector of system requirements (Matrix of Constants)

Example Objective function:

$$\max \left(\sum_{i} \frac{(S_{ci} \cdot x_{i}^{B})}{C_{capability}} - \sum_{i} \frac{(C_{i} \cdot x_{i}^{B})}{C_{cost}} \right)$$

Capability Cost
Subject to:
$$\sum_{j} x_{cij} \le A_{i}^{B}S_{ci}$$
$$\sum_{i} x_{cij} \ge A_{j}^{B}S_{rj}$$
$$A_{j}^{B}S_{cj} + \sum_{i} x_{cij} - \sum_{j} x_{cij} - A_{j}^{B}S_{cj} = 0$$
$$\sum_{j} x_{cij_bin} \le Limit_{i}$$

 $C_{Capability}, C_{Cost}$: Normalizing constants

 C_i : Unit cost vector

Finite Node Capability

Node Requirements

Conservation of relay capability

Finite number of connections

30

NASA

Variables

- *t*_{DB}: System development beginning time (Symbolic Variable)
- *t*_{DE}: System development ending time (Symbolic Variable)
- T_D: System development duration (Constant)
- *t*_{PB}: System production beginning time (Symbolic Variable)
- t_{PE} : System production ending time (Symbolic Variable)
- *T_P*: System production duration (Constant)
- *t_o*: System operation time (Symbolic Variable)

Constraints

$$\begin{split} t_{DE,i} &\geq t_{DB,i} + T_{D,i} \\ t_{PE(i)} &\geq t_{DE(j)} \\ t_{PE(i)} &\geq t_{PB(i)} + T_{P} \\ t_{O(i)} &\geq t_{PE(i)} \\ t_{PB(i+1)} &\geq t_{PE(i)} \\ (t_{O}(j) - t_{O}(i)) &\geq -(1 - (x_{cij,bin} (i,j))) * M \end{split}$$

Operational Dependency of System B on System A

PPO – Mathematical Basis Review

	Decision Variables	Constants ational Aeronautics and Space	Administration Johnson Space Center Engine Carolina and Systems Engineering Division
Fixed Capability Operational Constraints	A ^B _j : System selection x _{cij} : Transfer of capability between systems x _{cij_bin} : Connectivity between systems	S _{ci} : Sys capabilities S _{rj} : Sys requirements	$\sum_{j} x_{cij} \le A_i^B S_{ci}$ $\sum_{i} x_{cij} \ge A_j^B S_{rj}$ $\sum_{j} x_{cij_bin} \le Limit_i$
Variable Capability Constraints	Var _c : Variable Cap. Var _R : Variable Req	S _{ci} : Sys capabilities S _{rj} : Sys requirements m _{Req} : Cap-Req relation slope b _{Req} : Cap—Req relation intercept	$Var_{C}(i) \ge \sum_{j} X_{cij}$ $\sum_{i} X_{cij} \ge Var_{R}(i,n)$ $Var_{R} \ge Var_{C} * m_{Req} + A_{i}^{B} * b_{Req}$
Schedule Constraints	$t_{DB,j}$: Development Begin $t_{DE,j}$: Development End $t_{PB(i)}$: Production Begin $t_{PE(i)}$: Production End $t_{OB(i)}$: Operation Begin $t_{OE(i)}$: Operation End	T _{D,j} : Dev. Time T _{P,i} : Prod. time T _{O Max,j} : Max Operational time	$\begin{split} t_{DE,j} &\geq t_{DB,j} + T_{D,j} \\ t_{PE(i)} &\geq t_{DE(j)} \\ t_{PE(i)} &\geq t_{PB(i)} + T_{P} \\ t_{PB(i+1)} &\geq t_{PE(i)} \\ t_{OB(i)} &\geq t_{PE(i)} \\ t_{OE(i)} &- t_{OB(i)} \geq T_{O,\max,j} \\ t_{OB(i)} &- t_{OB(i)} \geq (x_{cij,bin} - 1) \cdot M \end{split}$

Schedule Constraints

	Decision Variables	National Aeronautics and Space	e Administration Johnson Space Center Engineering Directorate Project Management and Systems Engineering Division Equations
Schedule Constraints	$t_{DB,j}$: Development Begin $t_{DE,j}$: Development End $t_{PB(i)}$: Production Begin $t_{PE(i)}$: Production End $t_{OB(i)}$: Operation Begin $t_{OE(i)}$: Operation End	T _{D,j} : Dev. Time T _{P,i} : Prod. time T _{O Max,j} : Max Operational time	$\begin{aligned} t_{DE,j} &\geq t_{DB,j} + T_{D,j} \\ t_{PE(i)} &\geq t_{DE(j)} \\ t_{PE(i)} &\geq t_{PB(i)} + T_{P} \\ t_{PB(i+1)} &\geq t_{PE(i)} \\ t_{OB(i)} &\geq t_{PE(i)} \\ t_{OE(i)} &- t_{OB(i)} &\geq T_{O,max,j} \\ t_{OB(j)} &- t_{OB(i)} &\geq (X_{cij,bin} - 1) \cdot M \end{aligned}$
	Operational Dependency of		

System B on System A А В Life Cycle Scheduling of System A and B System A Development System A-1 $\rightarrow t_{DE,A}$ $t_{DB,A}$ Operation System A-1 Production • $t_{PE,A1}$ $t_{PB,A1}$ – System B Development System B-1 $\rightarrow t_{DE,B}$ $t_{DB,B}$ – Operation System B-1 Production

 $t_{PB,B1} \longrightarrow t_{PE,B1}$

Additional Equations

 $t_{DB}, t_{DE}, t_{PB}, t_{PE}, t_{OB}, t_{OE} \ge 0$ $t_{DB}, t_{DE}, t_{PN}, t_{PE}, t_{OB}, t_{OE} \le T_{End}$ $t_{DE(j)} \ge t_{DB(j)} + T_{D,j} * A_{j,dev}^{B}$ $t_{PE(i)} \ge t_{PB(i)} + T_{P,j} * A_{i}^{B}$

Variable Capability Constraints

	Decision Variables	National Aeronautics and Space /	Idministration Johnson Space Center Engineering Directorate Project Management and Systems Engineering Division Equations
Variable Capability Constraints	Var _C : Variable Cap. Var _R : Variable Req	S _{ci} : Sys capabilities S _{rj} : Sys requirements m _{Req} : Cap-Req relation slope b _{Req} : Cap—Req relation intercept	$Var_{C}(i) \ge \sum_{j} X_{cij}$ $\sum_{i} X_{cij} \ge Var_{R}(i,n)$ $Var_{R} \ge Var_{C} * m_{Req} + A_{i}^{B} * b_{Req}$

Additional Equations

$$UB_{R} * A_{i}^{B} \ge Var_{R}$$
$$UB_{C} * A_{i}^{B} \ge Var_{C}$$
$$Var_{C} \ge LB_{C} * A_{i}^{B}$$
$$Var_{R} \ge LB_{R} * A_{i}^{B}$$

NASA

PPO – Mathematical Basis Review

	Decision Variables	<u>Constants</u> ational Aeronautics and Space	
Fixed Capability Operational Constraints	A ^B _j : System selection x _{cij} : Transfer of capability between systems x _{cij_bin} : Connectivity between systems	S _{ci} : Sys capabilities S _{rj} : Sys requirements	$\sum_{j} x_{cij} \le A_i^B S_{ci}$ $\sum_{i} x_{cij} \ge A_j^B S_{rj}$ $\sum_{j} x_{cij_bin} \le Limit_i$
Variable Capability Constraints	Var _c : <i>Variable Cap.</i> Var _R : <i>Variable Req</i>	S _{ci} : Sys capabilities S _{rj} : Sys requirements m _{Req} : Cap-Req relation slope b _{Req} : Cap—Req relation intercept	$Var_{C}(i) \ge \sum_{j} X_{cij}$ $\sum_{i} X_{cij} \ge Var_{R}(i,n)$ $Var_{R} \ge Var_{C} * m_{Req} + A_{i}^{B} * b_{Req}$
Schedule Constraints	$t_{DB,j}$: Development Begin $t_{DE,j}$: Development End $t_{PB(i)}$: Production Begin $t_{PE(i)}$: Production End $t_{OB(i)}$: Operation Begin $t_{OE(i)}$: Operation End	T _{D,j} : Dev. Time T _{P,i} : Prod. time T _{O Max,j} : Max Operational time	$\begin{split} t_{DE,j} &\geq t_{DB,j} + T_{D,j} \\ t_{PE(i)} &\geq t_{DE(j)} \\ t_{PE(i)} &\geq t_{PB(i)} + T_{P} \\ t_{PB(i+1)} &\geq t_{PE(i)} \\ t_{OB(i)} &\geq t_{PE(i)} \\ t_{OE(i)} &- t_{OB(i)} \geq T_{O,\max,j} \\ t_{OB(j)} &- t_{OB(i)} \geq (x_{cij,bin} - 1) \cdot M \end{split}$

Potential Objectives

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

Cost based objective

$$Obj_{Cost} = A_i^B * C_{Prod} + A_{Dev,j}^B * C_{Dev} + (t_{OE} - t_{OB}) * C_{Oper}$$

Capability based objective

$$Obj_{Cap} = A_i^B * S_{ci}$$

Schedule based objective

 $Obj_{Time} = t_{OB(set)}$

 C_{Oper} :Operations Cost C_{Dev} : Development Cost C_{Prod} : Production Cost S_{ci} : Sys capabilities

Potential ISsues 2 – Reaches near optimal but stalls

National Aeronautics and Space Administration | Johnson Space Center | Engineering Directorate | Project Management and Systems Engineering Division

					Incumbent	Best	MIP		Time	
					Bnd	Bnd	Gap			
🖉 lift.ecn.pt	urdue.edu -	PuTTY						_		×
1167485	699340	33898.6084	85	34	34511.7560	33577.5902	2.71%	29.0	465s	^
1182966	709901	33786.3936	59	50	34511.7560	33577.8745	2.71%	29.2	470s	
1196964	719541	34144.8083	71	32	34511.7560	33578.7560	2.70%	29.4	475s	
1210604	728642	33883.5300	88	43	34511.7560	33579.6658	2.70%	29.5	480s	
1228742	740777	cutoff	115		34511.7560	33580.3837	2.70%	29.7	485s	
1246441	752250	34177.8583	64	41	34511.7560	33581.5422	2.70%	29.9	490s	
1259888	760007	33932.0633	87	35	34511.7560	33581.6293	2.70%	30.0	495s	
1270267	766272	33874.3140	75	46	34511.7560	33582.0285	2.69%	30.2	500s	
1287899	778235	33973.9732	102	35	34511.7560	33582.8711	2.69%	30.5	506s	
1301340	787735	34021.7901	110	30	34511.7560	33583.5965	2.69%	30.6	510s	
1318912	799404	34156.8204	82	31	34511.7560	33584.6658	2.69%	30.9	516s	
1332585	808469	33788.9370	76	43	34511.7560	33585.3385	2.68%	31.1	521s	
1346220	816564	34218.8275	122	23	34511.7560	33585.8883	2.68%	31.2	525s	
1355291	822584	33728.5369	59	40	34511.7560	33586.2880	2.68%	31.4	531s	
н1357717	824358			3	4511.755856	33586.2880	2.68%	31.4	531s	
1363364	827906	34138.0678	99	35	34511.7559	33586.5801	2.68%	31.5	535s	
1381351	838928	34181.5757	140	28	34511.7559	33587.0448	2.68%	31.7	541s	
1390531	844988	33994.2238	107	28	34511.7559	33587.8659	2.68%	31.8	545s	
1403633	853931	34344.6962	94	42	34511.7559	33588.3899	2.68%	32.1	551s	
1413827	860342	33931.4830	79	47	34511.7559	33589.0801	2.67%	32.2	556s	
1427493	868679	34226.1129	82	31	34511.7559	33589.5801	2.67%	32.4	560s	
1439187	876800	34371.6621	156	31	34511.7559	33590.1208	2.67%	32.6	565s	

[RPO Lift] 0:MATLAB*

RPO Lift] 0:MATLAB*

"lift.ecn.purdue.edu" 00:31 18-Sep-20