Discrete Event Simulation as a Tool for Cost Estimating

April 27, 2022

Zachary Matheson Thomas Cook Gabriel Sandler Julie Anderson

National Nuclear Security Administration

INNOVATE. COLLABORATE. DELIVER.

Protect the Nation by maintaining a safe, secure, and effective nuclear weapons stockpile

Reduce global nuclear threats

Provides the U.S. Navy with militarily effective nuclear propulsion

The NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science.

NNSA's Office of Programming, Analysis, and Evaluation (PA&E)

- 2011: Established to focus on cost estimating on early-stage weapons acquisitions
 - Subsequently broadened to other analytical disciplines (e.g. schedule estimating, risk analysis, etc)
- 2019: NNSA centralized cost estimating into two offices and established PA&E to lead:
 - Programmatic cost estimation
 - Execution of all Analysis of Alternatives (AoAs)
 - Programming process of annual Planning, Programming, Budgeting, and Evaluation (PPBE)
- PA&E provides analytical decision support throughout acquisition and budgeting
 - Promotes data-driven decisions and managing portfolio risk in budget-constrained environments
 - Promotes credibility in cost estimating and long-term planning through objective, unbiased, and technically sound analyses and tools.
- PA&E leads:
 - Agency's programmatic cost community which includes 8 national labs and production sites
 - Continuous improvement and innovation in analytical models, tools, and processes
 - Hosting annual Cost Estimating Community of Practice (CECOP) symposium
 - Active collaboration with external cost communities (NASA, DoD's CCRG, ICEAA, AACE, etc.)

6th Annual Cost Estimating Community of Practice (CECOP) Symposium August 2 – 3, 2022 in the Washington, DC Metro Area To register: CECOP@nnsa.doe.gov

Discrete Event Simulation (DES)

- Model real-world systems as logic-based events
 - For a series of events the simulation moves sequentially through each event
 - Discrete not continuous
 - Events occur at discrete times; no system changes between events
- Address "What if..."
 - Manufacturing Processes
 - Logistics
 - Combat
- Multiple Vendors
 - AnyLogic, Arena, ExtendSim, FlexSim, Innoslate, SimEvents, and Jaam Sim (open source)

Cost Estimating & Facility Sizing

INNOVATE. COLLABORATE. DELIVER.

 The Office of Programming Analysis and Evaluation (NA-MB-90) uses Cost Estimating Relationships for NNSA capital acquisition projects

- Hazard Category and Equipment Complexity are defined by program requirements
- A method for determining facility size (GSF) is necessary

TEC=Total Estimated Cost OPC=Other Project Cost BY = Base Year

Discrete Event Simulation in a Cost Estimate

INNOVATE. COLLABORATE. DELIVER.

Good data is necessary at all steps!

Application of DES to Facility Sizing

- The Office of Programming Analysis and Evaluation (NA-MB-90) has applied DES to facility sizing in support of cost estimates:
 - Plutonium Pit Production Model (2017)
 - 2016 National Defense Authorization Act required that NNSA have the capability to produce 80 pits per year
 - Depleted Uranium Production Model (2021)
 - 2021 Stockpile Stewardship and Management Plan described the need for a depleted uranium processing capability
 - Pit Disassembly and Processing Model (2022)
 - 2022 Plan to Reduce Global Nuclear Threats describes the need for a pit disassembly and processing capability
- This presentation will demonstrate using DES to develop a facility sizing estimate for a sample capital acquisition using MATLAB SimEvents software

Building a Bakery

- Lofty Bread & Cookie Treats
 - Goal: Produce 100 bread batches and 120 cookie batches per week

Bakery Process Data

INNOVATE. COLLABORATE. DELIVER.

Bread	Minimum	Mode	Maximum	Equipment	
Mix	0.45	0.5	0.75	Mixer	
Rise	14	16	24	Refrigerator	
Proof	1.75	2	2.25	Proofing Oven	
Bake	0.45	0.5	2	Oven	
Cookie	Minimum	Mode	Maximum	Equipment	
Mix	0.8	1	2	Mixer	
Bake	0.2	0.25	0.5	Oven	

All times shown are in hours Work Hours: M-F, 8AM-5PM

Build Model to Appropriate Level of Detail

- Resource Pool: Equipment, Feedstock Material, Employees
- Entry Gates: representing when a facility is operating vs closed
- Process Server: Stochastic process time, equipment maintenance & failure during operation

MATLAB SimEvents Bakery

MATLAB SimEvents Bakery

National Nuclear Security Administra

Variable Values in Excel

INNOVATE. COLLABORATE. DELIVER.

	Α	В
1	Week	1
2	HoursPerDay	8
З	DaysPerWeek	5
4	Period_Bread	1
5	Period_Cookie	1
6	Mixer_quantity	1
7	Refrigerator_quantity	1
8	ProofOven_quantity	1
9	Oven_quantity	1
10	Bread_Mix_capacity	1
11	Bread_Mix_max	0.75
12	Bread_Mix_avg	0.5
13	Bread_Mix_min	0.45
14	Bread_Refrigerate_capacity	1
15	Bread_Refrigerate_max	24
16	Bread_Refrigerate_avg	16
17	Bread_Refrigerate_min	14
18	Bread_Proot_capacity	1
19	Bread_Proof_max	2.25
20	Bread_Proof_avg	2
21	Bread_Proof_min	1.75
22	Bread_Bake_capacity	1
23	Bread_Bake_max	2
24	Bread_Bake_avg	0.5
25	Bread_Bake_min	0.45
26	Cookie_Mix_capacity	1
27	Cookie_Mix_max	2
28	Cookie_Mix_avg	1
29	Cookie_Mix_min	0.8
30	Cookie_Bake_capacity	1
31	Cookie_Bake_max	0.5
32	Cookie_Bake_avg	0.25
33	Cookie Bake min	0.2

ъл

	А	В
1	Week	1
2	HoursPerDay	8
3	DaysPerWeek	5
4	Period_Bread	1
5	Period_Cookie	1
6	Mixer_quantity	1
7	Refrigerator_quantity	1
8	ProofOven_quantity	1
9	Oven_quantity	1
10	Bread_Mix_capacity	1
11	Bread_Mix_max	0.75
12	Bread_Mix_avg	0.5
13	Bread_Mix_min	0.45
14	Bread_Refrigerate_capacity	1
15	Bread_Refrigerate_max	24
16	Bread_Refrigerate_avg	16
17	Bread_Refrigerate_min	14

MATLAB Script: Parameters, Read Inputs, Run, Write Outputs

INNOVATE. COLLABORATE. DELIVER.

% Clean up before beginning clear; % clear Workspace clc; % clear Command Window

% Gather model parameter values from Excel input file Table1=readtable('Input.xlsx','ReadRowNames',true);

% Load model
mdl = 'Bakery_01';

%isModelOpen = bdIsLoaded(mdl); % Optional %open_system(mdl); % Optional; opens model window load_system(mdl); % Optional; use this instead of open system to load without opening Simulink Editor

%Random number generator-Seed selection seed=1234; rng(seed);

```
% Prepare to write results to output file
filename = 'Bakery_01_output.xlsx';
if exist(filename, 'file')==2
        delete(filename);
```

end

record_array = [];

% Iterate over years start_week = 1; end_week = 1; nWeeks = (end_week - start_week) + 1; %Iterating Simulation for i = 1:nWeeks thisweek = start_week + i - 1; thisweekStr = strcat('Year',num2str(thisweek));

% Select data for this year thisweekdata = Table1(:,i); % Index i selects the ith column of data. Datatype is "table" % Define servertime triangular distributions %Operating Hours and Days HoursPerDay = table2array(thisweekdata('HoursPerDay', 1)); DaysPerWeek = table2array(thisweekdata('DaysPerWeek', 1));

Continue in next column

%Period for Entities

Period_Bread = table2array(thisweekdata('Period_Bread', 1)); Period_Cookie = table2array(thisweekdata('Period_Cookie', 1)); %Equipment

Mixer_quantity = table2array(thisweekdata('Mixer_quantity', 1));
Refrigerator_quantity = table2array(thisweekdata('Refrigerator_quantity', 1));
ProofOven_quantity = table2array(thisweekdata('ProofOven_quantity', 1));
Oven_quantity = table2array(thisweekdata('Oven_quantity', 1));
%Bread Process Times

Bread Mix capacity = table2array(thisweekdata('Bread Mix capacity', 1)); Bread Mix max = table2array(thisweekdata('Bread Mix max', 1)); Bread Mix avg = table2array(thisweekdata('Bread Mix avg',1)); Bread Mix min = table2array(thisweekdata('Bread Mix min', 1)); Bread Refrigerate capacity = table2array(thisweekdata('Bread Refrigerate capacity', 1)); Bread Refrigerate max= table2array(thisweekdata('Bread Refrigerate max',1)); Bread Refrigerate avg = table2array(thisweekdata('Bread Refrigerate avg', 1)); Bread Refrigerate min = table2array(thisweekdata('Bread Refrigerate min', 1)); Bread Proof capacity = table2array(thisweekdata('Bread Proof capacity', 1)); Bread Proof max = table2array(thisweekdata('Bread Proof max', 1)); Bread Proof avg = table2array(thisweekdata('Bread Proof avg', 1)); Bread Proof min= table2array(thisweekdata('Bread Proof min',1)); Bread Bake capacity = table2array(thisweekdata('Bread Bake capacity', 1)); Bread Bake max = table2array(thisweekdata('Bread Bake max', 1)); Bread Bake avg = table2array(thisweekdata('Bread Bake avg', 1)); Bread Bake min= table2array(thisweekdata('Bread Bake min',1)); %Cookie Process Times

Cookie_Mix_capacity = table2array(thisweekdata('Cookie_Mix_capacity', 1)); Cookie_Mix_max = table2array(thisweekdata('Cookie_Mix_max', 1)); Cookie_Mix_arg = table2array(thisweekdata('Cookie_Mix_arg', 1)); Cookie_Mix_min= table2array(thisweekdata('Cookie_Mix_min',1)); Cooke_Bake_capacity = table2array(thisweekdata('Cookie_Bake_capacity', 1)); Cookie_Bake_max = table2array(thisweekdata('Cookie_Bake_max', 1)); Cookie_Bake_arg = table2array(thisweekdata('Cookie_Bake_max', 1)); Cookie_Bake_min= table2array(thisweekdata('Cookie_Bake_arg', 1)); Cookie_Bake_min= table2array(thisweekdata('Cookie_Bake_arg', 1)); Cookie_Bake_min= table2array(thisweekdata('Cookie_Bake_min', 1));

out = sim(mdl);

%Write simulation data to file record_row = [thisweek];

varNames = {'Time', 'Bread'};

dummytable = table(out.Bread.Time, out.Bread.Data, 'VariableNames',varNames); writetable(dummytable, filename, 'Sheet', thisweekStr, 'Range', 'Al');

varNames = {'Time', 'Cookie'};

dummytable = table(out.Cookie.Time, out.Cookie.Data, 'VariableNames',varNames); writetable(dummytable, filename, 'Sheet', thisweekStr, 'Range', 'C1');

Extremely Important: provides justification to accept results

- Verification: Does the logic behave as desired?
 - Fixing Programming Bugs
 - Logic Errors
- Validation: Is the model representative of the actual process of interest?
 - Is current production data available?
 - Is historical data available?
 - Are there existing models to check against?
- Bakery Validation
 - Current facility with 1 Mixer, 1 Refrigerator, 1 Proofing Oven, and 1 Baking Oven

V&V	Bread	Cookie
Current Production	21	21
Simulated Production	20	19

Identify Equipment List at Confidence Level

- Desired Bakery Weekly Throughput:
 - 75 batches of bread
 - 120 batches of cookies
 - How much equipment is required to meet this production?
- 70% Confidence Level
 - For 10 simulation weeks, meet the demand of bread and cookies in 7 out of 10 weeks

- Iterative Process
 - Identifying equipment quantities that meet demand

MATLAB SimEvents Bakery Run #1 Output

MATLAB SimEvents Bakery Run #1 Queues

INNOVATE. COLLABORATE. DELIVER.

Quantity

Time

MATLAB SimEvents Bakery Run #2 Output

INNOVATE. COLLABORATE. DELIVER.

X

Bread Entity Terminator

Sample based T=273.227

MATLAB SimEvents Bakery Run #2 Queues

INNOVATE. COLLABORATE. DELIVER.

Time

Finding Appropriate Equipment List

	Equipmen	t Quantity			Queue	Length		Pro	oduct	
Mixe	Refrigerator	Proof Oven	Oven	Mixer	Refrigerator	Proof Oven	Oven	Bread	Cookies	Notes
-	-	-	-	-	-	-	-	100	120	Production Goal
1	1	1	1	600	0	0	0	20	19	Add 1 Mixer
2	1	1	1	500	0	0	50	29	32	Add 1 Oven
2	1	1	2	500	0	0	0	38	41	Add 1 Mixer
3	1	1	2	450	0	0	0	51	60	Add 1 Mixer
										Add 1
4	1	1	2	350	40	0	10	51	82	Refrigerator
4	2	1	2	350	0	0	90	57	61	Add 1 Oven
4	2	1	3	350	0	0	0	75	82	Add 1 Mixer
5	2	1	3	275	0	15	10	86	97	Add 1 Oven
										Add 1 Proof
5	2	1	4	275	0	10	0	85	106	Oven
5	2	2	4	275	0	0	0	99	101	Add 1 Mixer
										Meets
6	2	2	4	220	5	0	0	100	124	Production

Confidence Level

INNOVATE. COLLABORATE. DELIVER.

Equipment	Quantity
Mixer	6
Refrigerato	r 2
Proof Oven	2
Oven	4
Bread	Cookies
100	120

Meets production demand at 70% Confidence Level

Deterministic vs Stochastic

- If you do not account for random events (stochastic), the model will underestimate the quantity of equipment required.
- What if only the average process time were known?

Bread	Minimum	Mode	Maximum	Equipment
Mix	0.45	0.5	0.75	Mixer
Rise	14	16	24	Refrigerator
Proof	1.75	2	2.25	Proofing Oven
Bake	0.45	0.5	2	Oven
Cookie	Minimum	Mode	Maximum	Equipment
Mix	0.8	1	2	Mixer
Bake	0.2	0.25	0.5	Oven

Deterministic vs Stochastic

Equipment	Deterministic	Stochastic
Mixer	5	6
Refrigerator	2	2
Proof Oven	2	2
Oven	3	4
709	% Confidence Level	

- DES can provide defensible equipment lists to support facility sizing development for cost estimates
- Principles for effective use of DES
 - Build model to appropriate level of detail
 - Sufficient time & resources allocated to model development
 - Including stochastic events is preferable
 - Verify & Validate model
 - Use confidence levels as appropriate
- Significant detail is necessary

- Zachary Matheson, <u>Zachary.Matheson@nnsa.doe.gov</u>
- Thomas Cook, <u>Thomas.Cook@nnsa.doe.gov</u>
- Gabriel Sandler, <u>Gabriel.Sandler@nnsa.doe.gov</u>

Modeling Equipment Downtime

