

NASA HISTORICAL DATA BOOK, 1958–1968 Vol. I: NASA Resources

Jane Van Nimmen and Leonard C. Bruno with Robert L. Rosholt

The NASA Historical Series

FOREWORD

A decade in the life of an organization as dynamic and multifaceted as the National Aeronautics and Space Administration offers a large enough canvas to discern clearly the patterns and trends of the organization's life. For NASA, the decade which closed on October 1, 1968, was its first. That decade has been—and will continue to be—studied by many people and from many perspectives.

It is with the hope of stimulating such studies that NASA is offering the NASA Historical Data Book, 1958-1968, of which this volume, NASA Resources, is the first. The intent of the series is to provide a comprehensive, factual data base on the tangible aspects of NASA and its programs. The first volume covers organization and management; the second will cover the individual space and aeronautics programs.

This volume deals primarily with the resources which the Nation made available to NASA in that decade and traces the allocation of those resources. The perceptive eye will find much of NASA history and management philosophy, as well as many decisions, reflected in these columns of numbers. In the 1958-1961 period, there is evidence of the piecing together of a new agency to continue research in aeronautics while undertaking the leadership of the Nation's civilian space program. This involved the assimilating of organization, facilities, program, and people from a number of Government agencies and creating out of them a new organization and program. From

1961 to 1966, one can trace the national commitment to an expanded space program, expressed in the doubling and redoubling of resources and the growing momentum. In the 1967-1968 period, the lower costs mark the shift in the Apollo program from development and procurement into its operational phase.

This was the decade in which the United States made its commitment to space exploration and demonstrated its capacity to achieve large and difficult goals in a sustained, orderly, and open program. From a historical point of view, in the short period of a decade, the exploration of the space frontier was generating a new Copernican Revolution in our perception of ourselves and our earth. The achievements in space sciences were sparking a rethinking of the educational curriculum. Communications and meteorological satellites progressed from experiment to global systems bringing important daily benefits to people on earth. Growing perception of this national capacity to mobilize, coupled with that other legacy from Apollo—the picture of our beautiful, fragile planet as "spaceship earth"—may in the long view of history rank as even more significant than its tremendous achievements in technology and science.

April 20, 1974

George M. Low Deputy Administrator

CONTENTS

																1	Page
Foreword			•														
Preface								•									vii
Chapter One: Introduction																	1
Chapter Two: NASA Facilities																	13
Chapter Three: NASA Personnel																	51
Chapter Four: NASA Finances																	109
Chapter Five: NASA Procurement			•														157
Chapter Six: NASA Installations															•		209
Appendix A: Selected Aerospace Awards.																	473
Appendix B: Major NASA Organization Ch	arts																535

PREFACE

The series of which this is the first volume is meant to provide a comprehensive statistical summary of the first decade of the National Aeronautics and Space Administration, from its post-Sputnik creation until the Apollo 8 astronauts became the first men to circle the moon. Volume I, NASA Resources, measures dollars, people, and things. It is designed as a reference source for a variety of purposes. In many ways it offers time-oriented data comparable to a chronology, but from a quantitative perspective. The statistical summary of NASA's first 10 years documents, in a nuts-and-bolts fashion, the immense growth and eventual leveling off of the agency's program. It covers NASA's budget and financial history, its scattered installations, its manpower resources, and a statistical summary of its contractual history. A companion volume, NASA Programs, is under way. It will provide similar statistical data for each NASA program.

Chapter I of the present volume briefly sketches the first 10 years, touching upon organization and management and fiscal, personnel, and procurement matters. Each subsequent chapter examines a significant segment of NASA's total physical resources. Chapter II, "NASA Facilities," describes the physical history. It documents NASA's inheritance in physical plant from the National Advisory Committee for Aeronautics (NACA) and locates in time and place the \$2.5 billion obligated for construction of new facilities. Particulars such as capitalized equipment value, total acreage, and value and number of buildings owned are included. The geographical and physical dimensions of NASA are thus given statistical meaning.

Chapter III is focused on manpower, mainly in-house civil servants and their locations. Most of the chapter consists of basic tables showing changes in personnel over time.

Chapter IV documents dollars. Its objective is to supply information on budget, appropriations, obligations, expenditures, and all other money-related matters. In other words, it helps portray how NASA managed its dollar resources.

Chapter V depicts statistically the scope and key role that academic and industrial contractors have played in the history of NASA. As with previous chapters, the data are presented in tabular form, with total agency variables broken down by fiscal years. Some of the more important variables also include an installation breakdown. Information such as the number of procurement actions, value of contract awards, and geographical distribution of contracts is presented. The chapter concludes with a chronological recapitulation of the major NASA contractors over the past 10 years.

The final and longest chapter describes NASA's existing field installations. Information on origin, growth, facilities, activities, and leadership is presented. Data are then tabulated by installation.

This work makes no interpretive attempts whatsoever, but rather concentrates on its specific, concrete, and necessarily limited goal. It also is by no means a creative effort—creative in the sense of generating new data. All the information presented predates this volume and was initially in a fragmented, decentralized form. It was gathered from the individual Centers, the Headquarters program offices, and various NASA publications and selected, reduced, and repackaged in a format hoped to be intelligible, informative, and easily accessible. This is basically a reference data book and therefore predominantly tabular in form. Narrative is included whenever necessary to explain the data and offer additional information.

Such a work necessarily has limitations. For example, the reader will note many blanks in the data for the early years 1958-1961. The dynamism of these early years, reflected in its nearly geometric growth pattern, cannot be overemphasized. Physical growth was only one dimension. The mission of the new agency expanded by an order of magnitude over that of its predecessor NACA; furthermore there was a radical change in direction both in the emphasis on space over aeronautics and in the way in which the agency did its business. The switch from in-house research to massive contracting with industry and universities caused a serious overload in administration. The

NASA HISTORICAL DATA BOOK

day-to-day exigencies of this very fluid situation tended to restrict record-keeping to the essentials. When the initially composite nature of the agency—an amalgam of many then-disparate groups, organizations, and on-going space projects—is added, the new agency's situation becomes even more understandable. All of these factors made for a relative lack of data during NASA's turbulent formative period. In some cases data were available but differing methods used in handling information resulted in dissimilarities in data collection and packaging. What may appear as gaps, approximations, or even discrepancies in the early data, is usually the result of the dynamism of this formative period.

With the necessary haste of its hectic years behind it, NASA settled down and matured, and its information system became regularized and systematized. But here another problem developed. Because of its own thoroughness, the agency soon felt the weight of burgeoning amounts of data. At times, too much information was available, and the researcher faced the opposite difficulty. If NASA's early years were "information-scarce," its later years were "information-abundant."

The volume was sponsored by the NASA Historical Office under exchange-of-funds agreement No. W-12322 with the Science and Technology Division of the Library of Congress. While all three authors shared responsibility for nearly every section of the book, Mrs. Jane Van Nimmen, formerly of the Library of Congress, prepared Chapters Two, Five, and Six;

and Chapters Three and Four were prepared by Dr. Robert L. Rosholt of Bloomsburg State College, also author of An Administrative History of NASA, 1958-1963 (SP-4101). Leonard C. Bruno of the Library of Congress prepared Chapter One and also revised the entire volume. Mrs. Gay Arnelle, formerly of the Library of Congress, served as editorial assistant and was succeeded by Mrs. May Faye Johnson of the Library. Mrs. Arnelle also prepared Appendix A, Selected Aerospace Awards.

The authors are particularly grateful to Dr. Frank W. Anderson, Jr., Deputy Director, NASA Historical Office, for his sympathetic supervision of the entire project, and to Carrie E. Karegeannes, for her diligence in preparing the manuscript for press. Origins of NASA Names, an unpublished manuscript by Helen T. Anderson with Susan Whiteley, both formerly of the NASA Historical Office, was used in preparing the final chapter. Among the many NASA people who have contributed to the book, some have given particularly generous support: Hazel W. Bogert, Howard N. Braithwaite, Frederick L. Dunlap, C. Guy Ferguson, James M. Grimwood, Harry W. Hammann, Charles M. Hochberg, Robert E. Hunt, Charles W. Kelly, William R. Leaman, Edward T. Mecutchen, Dominick C. Polizzi, Lee D. Saegesser, and George R. West. They of course bear no responsibility for the completeness or accuracy of this work.

Leonard C. Bruno March 1974

Chapter One INTRODUCTION

Chapter One INTRODUCTION

The National Aeronautics and Space Administration (NASA), created as a national decision by the Congress and the President, began operations on October 1, 1958. In effect, its coming-in-to-being was a direct response to the U.S.S.R.'s first achievements in space.

On August 27, 1957, the Soviet news agency Tass announced in Moscow that Russia had successfully tested an intercontinental-range ballistic missile. The United States had earlier done the same, and the decision by these two large powers to add intercontinental ballistic missiles to their military arsenals had quickly advanced the art of rocket propulsion and related technology. The large thrust of these liquid-fueled rockets had made space flight a practical possibility for the first time.

Six weeks after its missile test, the U.S.S.R. was the first to orbit an artificial earth satellite, Sputnik I on October 4, 1957.² Reaction in the U.S. immediately following Russia's success was a concern blending both chagrin and alarm.³ The chagrin came from the knowledge that the U.S. might have been first to orbit a satellite if it had used military missiles, but instead had allowed the Soviets to capture this world scientific triumph. The alarm was for the challenge to national security; many feared that we had fallen far behind, especially in nuclear-tipped intercontinental ballistic missiles. The much heavier Sputnik II, in November, carrying the dog Laika, compounded the technological surprise and worldwide propaganda harvest for the Kremlin.⁴

Significant amidst the initial flurry of U.S. activity immediately following the Soviet Sputniks were sweeping congressional hearings, "Inquiry into Satellite and Missile Programs," conducted by the Preparedness Subcommittee

of the Senate Armed Services Committee, chaired by Senator Lyndon B. Johnson. This subcommittee held 20 meetings between November 25, 1957, and January 23, 1958, and unanimously adopted 17 recommendations.⁵ Their report urged increased space and missile spending and emphasized the importance of space exploration as a national objective. Before the hearings were over the U.S. had successfully orbited Explorer I,⁶ but still had no centralized, national space program or an agency to run it. It was not generally realized that the scientific experiment of James A. Van Allen carried by Explorer I was to make the greatest scientific discovery of the International Geophysical Year.

Thus, by the beginning of the 1958 congressional session, numerous bills were introduced, each reflecting a different perspective on U.S. space policy. President Eisenhower submitted a bill recommending creation of a National Aeronautics and Space Agency on April 14, 1958, and both houses of Congress formed ad hoc blue-ribbon committees to deal with the issue of legislating the basis for a space program and determining its general policy guidelines. These hearings got underway on April 15. On July 29, the National Aeronautics and Space Act of 1958 was signed by President Eisenhower.

The new agency was to be headed by an Administrator and a Deputy Administrator, both appointed by the President with the advice and consent of the Senate. President Eisenhower nominated Thomas Keith Glennan to be the first Administrator of NASA. Hugh L. Dryden, Director of the

¹ Eugene M. Emme, Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915-1960 (Washington, D.C.: NASA, 1961), p. 87.

² *Ibid.*, p. 91.

³ Jay Holmes, America on the Moon: The Enterprise of the Sixties (Philadelphia: Lippincott, 1962).

⁴ Emme, Aeronautics and Astronautics, 1915-1960, p. 91.

⁵ U.S. Congress, Senate, Preparedness Investigating Subcommittee on Armed Services, *Inquiry into Satellite and Missile Programs, Hearings*, Pts. 1 and 2, 85th Cong., 1st and 2d sess., Nov. 25-27, Dec. 13, 14, 16, 17, 1957; Jan. 6, 8-10, 13-17, 20-23, 1958 (Washington, D.C.: GPO, 1958).

⁶ Emme, Aeronautics and Astronautics, 1915-1960, p. 95.

⁷ *Ibid.*, p. 97.

⁸ *Ibid.*, p. 100.

⁹ Robert L. Rosholt, An Administrative History of NASA, 1958-1963 (Washington, D.C.: NASA SP4101, 1966), p. 309.

National Advisory Committee for Aeronautics (NACA), was selected as Deputy Administrator. Glennan was president of Case Institute of Technology. The nominations were promptly confirmed by the Senate and the two assumed office on August 19, 1958. On September 25, Glennan announced that NASA would begin functioning on October 1, 1958. 10

The First Decade of NASA

The early history of NASA was largely one of consolidating a national program out of projects, facilities, and personnel of Government agencies, the scientific community, and the aerospace industries. From its first day, NASA had to organize itself, recast the former NACA and its 8000 employees as the organizational core of the new civilian effort, follow through with the scientific earth satellite and lunar probes inherited from the Department of Defense's Advanced Research Projects Agency (ARPA), and integrate the International Geophysical Year (IGY) satellite program (Vanguard).¹¹ The Army-owned Jet Propulsion Laboratory (JPL), staffed and operated by the California Institute of Technology (Cal Tech), was transferred to NASA in December 1958. And although NASA requested transfer of about half of the Army Ballistic Missile Agency's (ABMA) Development Operations Division in late 1958, it was not until a year later that the space agency received both the ABMA's Development Operations Division (the von Braun team) and its Saturn launch vehicle project as well.

Thus in 1958 NASA was indeed a modest-sized pieced-together conglomerate, created as a national response to the Soviet space challenge, with an excellent base in facilities and experienced people, but with many resource problems if it was to carry out its ambitious mission laid out in the Space Act. As it gradually assumed direction, programs, and momentum, it was soon to be transformed into a powerful and efficient goal-oriented organization. Never had an agency been created from so many disparate programs or exhibited such geometric growth in its early years. Most significant in the pace of NASA's transformation was President John F. Kennedy's call of May 25, 1961, for a national decision to land an American on the moon in the

1960s. ¹² Before this pivotal point in NASA's history, the young agency had formulated its plan for the decade ahead, was operating its transferred programs, had laid down initial programs, and was conducting the manned Mercury program. But it was quite unsure of its long-range support, particularly beyond Mercury. President Kennedy's response to the dramatic Soviet space challenge (Cosmonaut Yuri Gagarin was the first man in space on April 12, 1961) gave NASA a goal-defined mission—to land an American on the moon in the 1960s. While this task would never be more than 60 percent of NASA's overall effort, the Apollo program had to receive sustained executive, congressional, and public support necessary to achieve success.

Logsdon, The Decision To Go to the Moon: Project Apollo and the National Interest (Cambridge, Mass.: Massachusetts Institute of Technology, 1970); Vernon Van Dyke, Pride and Power: The Rationale of the Space Program (Urbana, Ill.: University of Illinois, 1964); Eugene M. Emme, "Historical Perspectives on Apollo," Journal of Spacecraft and Rockets, April 1968, pp. 369-382; Memorandum, Hugh Dryden to NASA Historical Office on Eisenhower-Kennedy Transition, Sept. 27, 1965 (copy in NASA Historical Archives); Jay Holmes, America on the Moon: The Enterprise of the Sixties (Philadelphia: J. B. Lippincott Co., 1962); Historical Sketch of NASA (Washington, D.C.: NASA EP-29, 1965).

For a top-level view of NASA organization and management, see T. Keith Glennan, "The Challenge of the Space Age," speech before Fort Worth, Texas, Chamber of Commerce Annual Banquet, Dec. 8, 1958; T. Keith Glennan, "A National Space Program for Space Research," speech before Institute of the Aeronautical Sciences, New York, Jan. 27, 1959; Transition Memorandum Prepared by T. Keith Glennan, January 1961 (copy in NASA Historical Archives); James E. Webb, Space Age Management (New York: McGraw-Hill, 1969), McKinsey Foundation Lecture Series sponsored by the Graduate School of Business, Columbia Univ.; James E. Webb, "NASA as an Adaptive Organization," John Diebold Lecture on Technological Change and Management, Harvard Univ. Graduate School of Business Administration, Boston, Sept. 30, 1968; James E. Webb commentary in Harmonizing Technological Developments and Social Policy in America, James C. Charlesworth, ed. (Philadelphia: American Academy of Political and Social Science, 1970), pp. 113-118; James E. Webb, "Foreword," in Rosholt, Administrative History of NASA; Hugh L. Dryden, "NASA Mission and Long-Range Plan," Proceedings, NASA-Industry Program Plans Conference (Washington: July 28-29, 1960), pp. 6-9; Hugh L. Dryden. "The Overall NASA Space Program." Proceedings, Fourth International Symposium on Space Technology and Science, Aug. 27-31, 1962, Tamiya Nomura, ed. (Tokyo, Japan, and Rutland, Vt.: Japan Publications Trading Co., 1963), pp. 1-5; Hugh L. Dryden, "The U.S. Space Program-What Is It? Where Is It Going? Why Is It Important?" Presentation of the Gold Medal of the International Benjamin Franklin Society to Dr. Hugh Latimer Dryden. . . January 19, 1963 (New York: Franklin Society, 1963); Interview with Hugh Dryden conducted by

¹⁰ Emme, Aeronautics and Astronautics, 1915-1960, p. 102.

For an excellent history of this project, see Constance McL. Green and Milton Lomask, *Project Vanguard—A History* (Washington, D.C., NASA SP-4202, 1970).

INTRODUCTION 5

Aside from being a new agency with a new mission and having to assume projects and facilities, new and old, NASA had to develop the ability to manage large-scale contracting of research and development. Unlike its predecessor agency NACA, which had done most of its R&D in-house, 90 percent of NASA's annual expenditures by fiscal year 1962 went for goods and services procured from outside contractors. The Space Act gave NASA authority to develop, construct, test, and operate space vehicles and to contract for the conduct of this work with individuals, corporations, Government agencies, and others. He method of conducting business led to the concept formulated in 1960 that NASA Centers should have sufficient in-house capability to allow them to conceive space flight development projects, develop technical specifications for private contractors, and supervise contractors to ensure high reliability of systems, subsystems, and components in their early development stages.

NASA was different in both method and goals from most other Government agencies. As a heavily mission-oriented R&D agency which sprang from a unique set of circumstances and was organized to achieve specific objectives, the management job that evolved for NASA was that of directing a substantial development program performed largely under contract with industry. A comparison with NACA illustrates just how much of a contracting agency NASA was. In 1958, NACA's budget was about \$100 million and it employed about 8000 persons. In 1967, NASA's employment figure peaked at about 36 000, an increase of 450 percent. NASA annual expenditures exceeded \$5 billion, an increase of 5000 percent. This almost

10-to-1 disparity in the increase in money compared to that in civil servants is a good indicator of the differing nature of the two agencies and their different ways of doing business. In its biggest total employment year (411 000 in 1965), NASA employed 34 300 (8.3 percent) in-house employees and 376 700 (91.7 percent) out-of-house contractor employees.¹⁵

The skills needed to manage such a program were different from those required by most Government agencies. And while NASA had some things in common with other large-scale Federal endeavors, the conditions and circumstances of its creation and early years were perhaps most formative in giving the agency its rather distinctive stamp. These conditions can be listed.¹⁶

First: The straightforwardness of the national charter granted by Congress and the nature of technology made for a clear-cut mission, with the knowledge that there would be little room for dispute concerning the mission's success or failure.

Second: When the United States decided to explore space, it was at least four years behind in propulsion capability, rather than only the four months which appeared to be the gap between *Sputnik I* and *Explorer I*.

Third: The new agency had no time to start from scratch. It immediately took over various on-going space projects initiated under the sponsorship of the Army, Navy, and Air Force. At the same time, it had to plan a coherent program and conceive new projects to ensure it could fully engage in a space endeavor that would serve the national interest.

Fourth: NASA acquired its initial staffing by wholesale transplants of established R&D teams throughout the Government; NACA intact (8000 employees), 200 from Project Vanguard and the Naval Research Laboratory, the Army's JPL, and the entire von Braun team (some 5000) from the U.S. Army. Also, key people were recruited from many governmental agencies.

Fifth: Very rapid budget increases created a special management challenge to ensure the programming of effective expenditures. The program doubled in size each of the first five years, and maintaining overall program balance while meeting the needs of Apollo proved a difficult challenge.

Sixth: NASA had to operate continuously under conditions of greater sustained stress and open publicity than any public or private R&D organization. By law, its program was largely open and unclassified.

NASA Historical Office, March 26, 1964 (copy in NASA Historical Archives); Robert C. Seamans, Jr., "Action and Reaction," 1969 Minta Martin Lecture, Massachusetts Institute of Technology, Cambridge, Mass.; Robert C. Seamans, Jr., "The Management of a National Space Program," speech delivered at the United Nations Conference on the Exploration and Peaceful Uses of Outer Space, Vienna, Austria: August 1968; Harold B. Finger and Albert F. Siepert, "NASA's Management of the Civilian Space Program," speech presented at the Sixteenth International Conference of the Institute for Management Sciences, March 26-28, 1969, New York; Harold B. Finger prepared testimony, Subcommittee on Science, Research and Development, Committee on Science and Astronautics, U.S. Congress, House, March 28, 1968.

¹³ NACA's reputation was built almost entirely on in-house research capability. It had little experience in conceiving, planning, and executing large-scale projects requiring the teamwork of many persons and organizations and expenditure of large amounts of money, much of it through contracts.

^{1 A}National Aeronautics and Space Act of 1958, As Amended, and Related Legislation (Washington, D.C.: NASA, Office of General Counsel, July 1, 1969), p. 7.

¹⁵ All of the above financial and personnel figures are contained in Chapters Three and Four of this volume and their sources are cited there.

¹⁶ Siepert and Finger, "NASA's Management," pp. 2-4.

As stated, the many unusual scientific, technological, and management challenges encountered by NASA during its early years made it an agency different from most.¹⁷ To begin with, NASA displayed an uncommon unity of general management. Under the second Administrator-James E. Webb, who ran NASA for nearly eight years-the agency's top three managers became an exceptional example of complementary and interlocking roles, rather than multilevel management.¹⁸ Upon his appointment, Webb retained Dr. Hugh L. Dryden and Dr. Robert C. Seamans, Jr., as Deputy Administrator and Associate Administrator, and merged their talents by working arrangements which intimately involved all three men, often called a "troika," as an entity in determining the key decisions of the agency.¹⁹ Also the Office of Manned Space Flight evolved an elaborate system to manage the Apollo portion of the overall NASA system. Thus the wide range of specialized skills in public management, science, and technology was interlocked. Dr. Dryden was to leave the scene in 1965, and the Apollo 204 fire in January 1967 was to test the NASA structure severely.

NASA's survival as an effective agency depended upon a predictable repetitive excellence in its mission performance.²⁰ In a word, nothing short of success could be tolerated. Thus under Webb the agency employed an extensive documentation system to establish traceability that engineering specifications and technical management decisions had been implemented properly. The agency also employed an open loop communications system which ensured that no change in any critical system was undertaken without full communication to every other element that might be affected. Identification of key problems led to the gearing up of the best-informed people in NASA and, in the contractor echelon, to proposals of the best solutions. And, finally, NASA sought to identify every possible contingency and often devised a workable solution in advance. This literally became the

way of life for most of NASA's personnel, admittedly not perfect, but necessarily geared to the achievement of the difficult and complex tasks required.

NASA Resources

Aside from recounting the space accomplishments of NASA, a dramatic example of the agency's life-style during its first 10 years is provided by a simple comparison of NASA as an institution at its inception and NASA at its peak.

NASA's first budget under President Eisenhower for fiscal year 1959 was \$330.9 million, reflecting a few add-ons to NACA's budget.²¹ For fiscal year 1961 it remained under \$1 billion, as NASA's post-Mercury proposals were not approved by the Bureau of the Budget. Congress, after accepting President Kennedy's manned lunar landing goal for the decade, was requested to increase NASA money amounts substantially, and the fiscal year 1965 NASA appropriations total reached its pinnacle with \$5.250 billion. A steady trail-off subsequently began and by fiscal year 1968 the appropriations total was \$4.589 billion. This figure fell well under \$4 billion in more recent years.

During the first 10 years, nearly \$32.5 billion was appropriated to the agency and just over \$32 billion was actually spent. In effect, the agency generally received most of what it asked for. It received annually about 95 percent of its budget requests during its first 10 years. The bulk of these appropriations was allocated for research and development, with that category accounting for a low of nearly 60 percent of the total appropriations in fiscal year 1959 and a high of 87 percent in fiscal year 1966. The average R&D 10-year percent total was 79.7 percent. The categories of Administrative Operations and Construction of Facilities accounted for the remaining percentages.²²

An R&D expenditures comparison among NASA's four major offices reveals the Office of Manned Space Flight obligated the greatest percentage of the 10-year budget with its 67.2 percent—contrasting with 18.8 percent for the Office of Space Science and Applications, 7.5 percent for the Office of

¹⁷ See Webb, Space Age Management, a series of lectures given by the former NASA Administrator that offers his view from the top.

¹⁸ Siepert and Finger, "NASA's Management," pp. 4-6.

¹⁹ Webb subsequently stated: "The three of us decided together that the basis of our relationship should be an understanding that we would hammer out the hard decisions together and that each would undertake those segments of responsibility for which he was best qualified. In effect, we formed an informal partnership within which all major policies and programs became our joint responsibility, but with the execution of each policy and program undertaken by just one of us." See Webb Foreword in Rosholt, Administrative History of NASA, p. iv.

²⁰ Siepert and Finger, "NASA's Management," pp. 20-25.

²¹ The NASA financial data are contained in Chapter Four of this volume and the sources are cited there.

²² The three major segments of the NASA budget are Research and Development (R&D), Construction of Facilities (CoF), and Administrative Operations (AO). AO was changed to Research and Program Management (R&PM) after 1968.

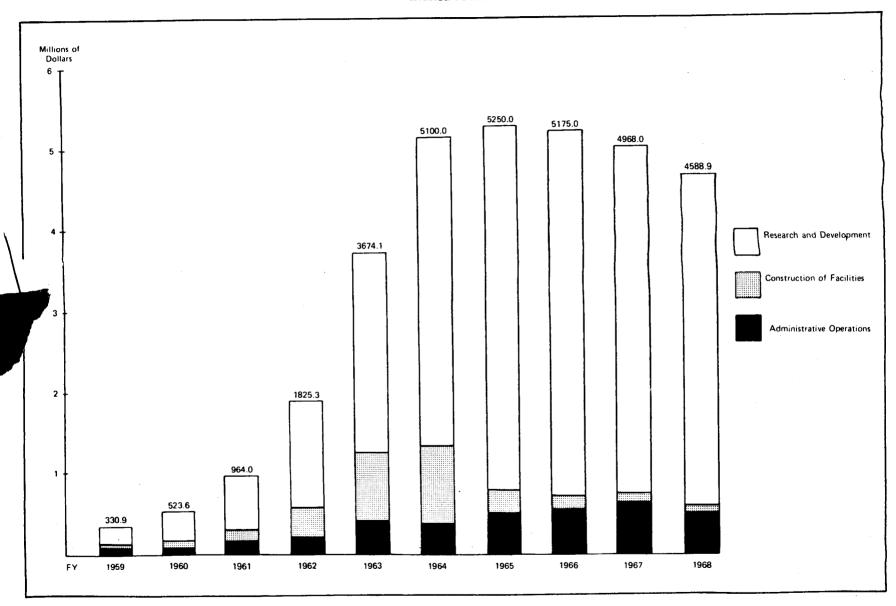


Figure 1-1. NASA Appropriations Summary by Fiscal Year.

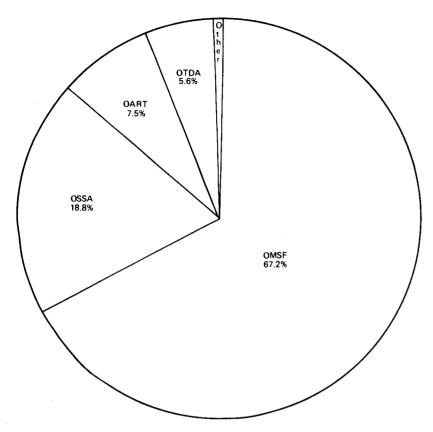


Figure 1-2. FY 1958-1968 R&D Obligation Totals by NASA Program Office.

Advanced Research and Technology, and 5.6 percent for the Office of Tracking and Data Acquisition.

A similar 10-year R&D expenditures comparison among NASA's 11 installations reveals Marshall Space Flight Center with the largest 10-year obligations total of \$8.359 billion; more than half (\$5.083 billion) this total was spent for development of the Saturn V launch vehicle. Nearly as much was obligated by the Manned Spacecraft Center—and, of its \$7.901-billion 10-year total, about two thirds (\$5.883 billion) was spent developing the Apollo spacecraft. The next largest total was that of Goddard Space Flight

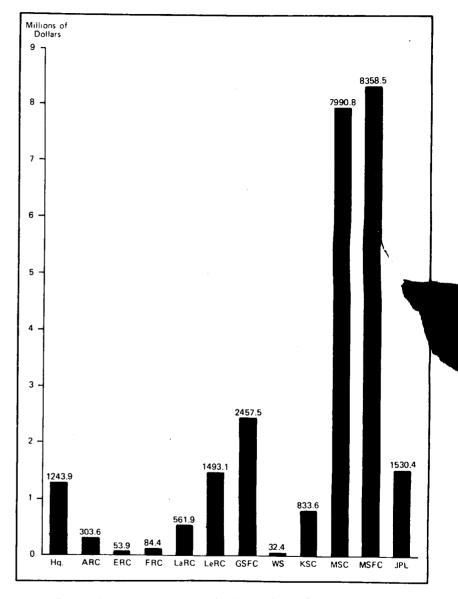


Figure 1-3. R&D Expenditure by NASA Installation FY 1958-FY 1968.

INTRODUCTION 9

Center—\$2.458 billion (only a portion of which was Apollo-related). All of the remaining Centers' totals slowly declined from that figure.

Most major construction was funded in the early years, with the fiscal years 1959-1964 Construction of Facilities appropriations total averaging 16.8 percent of the total appropriations, contrasting with the 2.2 percent of the years 1965-1968 when most construction was completed.

During its first decade, NASA built four major installations from the ground up (Goddard Space Flight Center, Manned Spacecraft Center, Kennedy Space Center, and Electronics Research Center) and tripled the number of field installations in six years. In its first 10 years, the agency spent \$2.5 billion for the construction of facilities.²³ By far the largest total spent for construction at one Center during that time was the Kennedy Space Center's \$898.2 million. The next largest total was the Mississippi Test Facility's \$266.2 million.

By the end of 1968 NASA owned more than 57 500 hectares (142 000 acres) of land—whose total real property value exceeded \$2.4 billion. And the total investment value (real and personal property, leasehold improvements, and work-in-progress) equaled \$4.4 billion by June 30, 1968.

A comparison of 1958 resources with the 1968 status readily indicates the dramatic growth of the agency. Total real property value increased from \$268.2 million in fiscal year 1959 to more than \$2.4 billion in fiscal year 1968. Land value jumped from \$668 thousand in fiscal year 1959 to more than \$104 million in fiscal year 1968. And the number of hectares of land owned during the same period expanded from 2096 to 57 520 hectares (from 5179 to 142 134 acres).

Broken down by individual installations, Kennedy Space Center owned the largest number of hectares, 33 906 (83 783 acres), followed by Marshall Space Flight Center's holdings (which included the Michoud, MTF, and Slidell sites) of 9586 hectares (23 687.8 acres). The same two Centers led by far in real property value, with KSC totaling over \$682 million for fiscal year 1968 and MSFC over \$538 million for the same time.

NASA's personnel story was also one of 10 years of growth.²⁴ NACA employed 8000 persons when dissolved on September 30, 1958; NASA in-house employment peaked at about 36 000 in 1967, an increase of 450

percent. During NASA's first year, approximately one third of its 8000 employees were scientists and engineers. By 1968 nearly half of its total of 35 000 were serving as scientists and engineers. Naturally, as NASA's mission increased in complexity, the agency had to respond by upgrading its capabilities in the research and development areas.

Total employment (in-house and out-of-house) peaked in 1965 with about 411 000 employees. By 1968 this figure was down to about 246 200. Of the 1968 total, 88 percent (211 200) were out-of-house employees and 12 percent in-house (35 000). By 1971, total employment was down to about 150 000, with 122 000 out-of-house and 28 000 in-house.

As for distribution of permanent employees by installation, in 1958 Langley Research Center had the largest number (3458) of the then-existing four major Centers. This number accounted for about 42 percent of the NASA total. By the end of 1960, this top position went to Marshall Space Flight Center, which expanded to over 5000 employees with the transfer to NASA complete. Marshall held this position, possessing nearly 6400 employees (approximately 20 percent of the NASA total) by the end of 1968. During these years, however, other Centers grew remarkably also. By 1968, four NASA Centers had more than 4000 employees.²⁵

A glance at the distribution of permanent civil service positions by NASA program office reveals the following shred-out as of 1968: OART 7871, OSSA 2989, OMSF 10 277, OTDA 1059, and administration and other support 10 226.

Aside from its own people in Headquarters and the field centers, NASA depended in great measure on outside contractors. NASA needed many unique services and products, and the Space Act of 1958 gave the agency the authority to contract for work with individuals, corporations, Government agencies, and others. After the May 1961 Apollo decision and subsequent congressional approval, the agency was able to greatly enlarge its physical plant and manpower resources. The scope of contracted work varied from feasibility studies for particular projects to the planning and construction of research facilities, even sometimes entire new installations.

The requirements for a successful Apollo program as well as a well-rounded overall program (which did not ignore space science, advanced research, aeronautics, and other important fields) were immense and demanded the full and proper use of all of the Nation's aerospace skills. Thus

²³ For a comprehensive, detailed listing of NASA's technical facilities by Center, see *NASA Technical Facilities Catalog*, Vols. I-II (NHB 8800.5, March 1967).

²⁴ The NASA personnel data are in Chapter Three of this volume and the sources are given there.

²⁵ The four Centers were Goddard Space Flight Center, Langley Research Center, Lewis Research Center, and Manned Spacecraft Center.

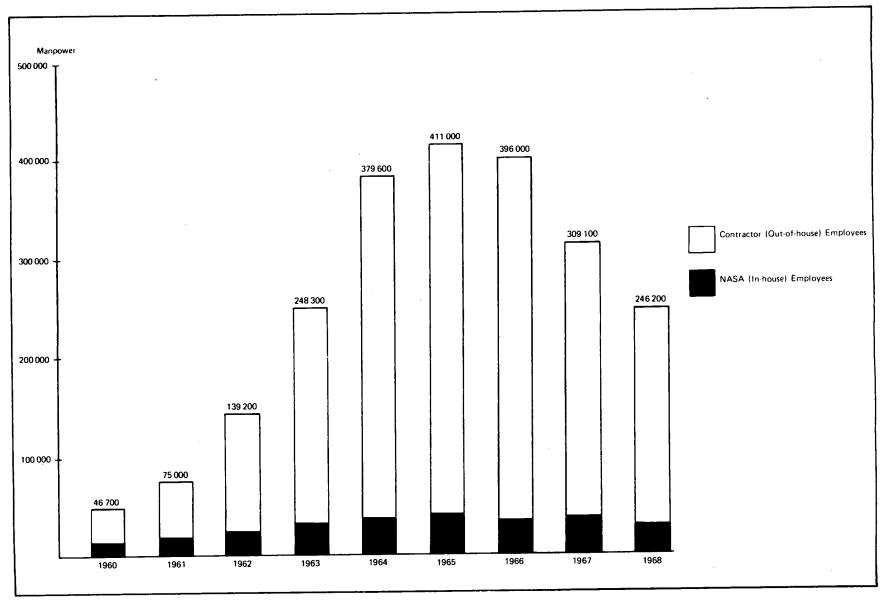


Figure 1-4. Total NASA Employment.

INTRODUCTION

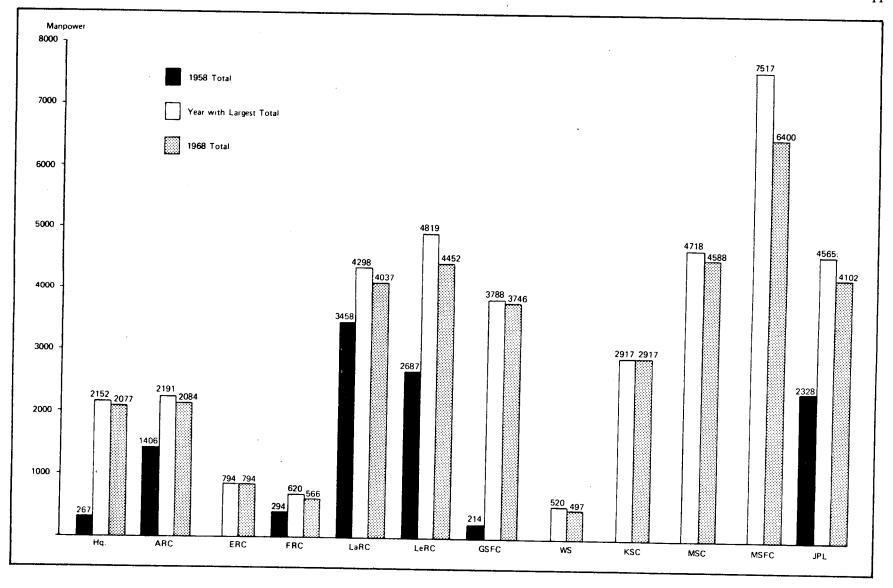


Figure 1-5. Distribution of NASA Employees by Installation (In-house).

Note: Centers with no solid bar were not technically in existence as of December 31, 1958.

NASA procurement naturally skyrocketed as the space program was accelerated after 1961.

The net value of NASA procurement rose from \$756 million in fiscal year 1961 to \$3.2 billion in fiscal year 1963, a 326.4 percent increase. Since the number of procurement actions only doubled during those years, the average value of the procurement action increased considerably. The total net value reached its apex in fiscal year 1965, \$5.2 billion.

An analysis of the distribution of NASA prime contract awards by states reveals California garnered over 43 percent of the 1961-1968 contract award dollar total. New York was second with 10 percent of the total. Most contracts were actually let by the individual centers, and the Marshall Space Flight Center and the Manned Spacecraft Center annually let by far the largest segments of the total. This proportion naturally reflected each Center's prime concern—Marshall built the Saturn V launch vehicle which sent MSC's Apollo spacecraft to the moon.

The top five individual contracts awarded, in terms of cumulative obligations as of March 1968, were:

- 1. to design, develop, and test the Apollo command and service modules (North American Rockwell Corp., Space Division);
- 2. to develop the Apollo lunar module (Grumman Aircraft Engineering Corp.);
- 3. to design, develop, and fabricate the S-IC stage of the Saturn V vehicle and provide launch support services (Boeing Co., Aerospace Division);
- 4. to design, develop, fabricate, and test the S-II stage of the Saturn V vehicle and provide launch support services (North American Rockwell Corp., Space Division);

5. to design, develop, and fabricate the S-IVB stage of the Saturn V vehicle and provide launch support activities (McDonnell Douglas Corp., Douglas Missile & Space Systems Division—which in June 1968 became part of McDonnell Douglas Astronautics Co., still a division of McDonnell Douglas Corp.)

In a ranking of NASA's top 10 contractors according to net value of awards over the years, North American Rockwell Corp. had been number one since fiscal year 1962. Grumman Aircraft Engineering Corp. had been in the top five since fiscal year 1964, along with the Boeing Co. And the combined record of the merged McDonnell Douglas Corp. showed only one year since 1962 in which one of the companies was not among the top six contractors.

Thus NASA's story has been one of many individuals, private corporations, Government agencies, and universities, each contributing. Only by discerning where the dollars went (over 90 percent went outside of the NASA program), and where the people worked, can the full history be appreciated.

By the end of the first decade of operation, the agency had undergone substantial change. Budgets had risen to nearly \$6 billion a year and had dropped back to \$4 billion, in-house personnel had peaked in 1967, and projects had been begun and completed as the base of the Apollo program was achieved. The agency had constructed new facilities from the ground up; expanded research in aeronautics and space science; orbited communications, meteorological, and international satellites of many sorts; sent probes to Mars and Venus; and constructed a new family of launch vehicles. And by the end of NASA's 10th year, the three Apollo 8 astronauts had orbited the moon and returned to earth.

²⁶ The NASA procurement data are given in Chapter Five of this volume and the sources are cited there.

Chapter Two NASA FACILITIES

(Data as of 1968)

Chapter Two

NASA FACILITIES

List of Tables

Table		Page
2-a	Construction of Facilities: Obligations by Fiscal Year and Program Year	18
2-b	Investment Value of Former NACA Installations: 1958 and 1968	19
2-1	Property: FY 1959-FY 1968	26
2-2	Value of Real Property Components as Percentage of Total	27
2-3	Industrial (Contractor-Held) Facilities	27
2-4	Facilities Total Investment Value, FY 1966-FY 1968: In-house and Contractor-Held	28
2-5	Land Owned by Installation and Fiscal Year in Hectares (and Acres)	30
2-6	Land Leased by Installation and Fiscal Year in Hectares (and Acres)	31
2-7	Buildings: Number Owned by Installation and Fiscal Year	32
2-8	Buildings: Thousands of Square Meters (and Square Feet) Owned by Installation and Fiscal Year	33
2-9	Buildings: Thousands of Square Meters (and Square Feet) Leased by Installation and Fiscal Year	34
2-10	Real Property Value by Installation and Fiscal Year	35
2-11	Land Value by Installation and Fiscal Year	36
2-12	Buildings Value by Installation and Fiscal Year	
2-13	Other Structures and Facilities Value by Installation and Fiscal Year	38
2-14	Capitalized Equipment Value by Installation and Fiscal Year	
2-15	Land Value as Percentage of Total Real Property Value by Installation and Fiscal Year	40
2-16	Buildings Value as Percentage of Total Real Property Value by Installation and Fiscal Year	41
2-17	Other Structures and Facilities Value as Percentage of Total Real Property Value by Installation and Fiscal Year.	42
2-18	Real Property Value of Installations Ranked as Percentage of NASA Total	43

NASA HISTORICAL DATA BOOK

Table		Page
	Capitalized Equipment Value of Installations Ranked as Percentage of NASA Total	44
2-19	Industrial (Contractor-Held) Real Property Value by Installation: FY 1967 and FY 1968	45
2-20	Industrial (Contractor-Held) Real Property Value as Percentage of Total by Installation: FY 1967 and FY 1968.	46
2-21	Industrial (Contractor-Held) Real Property Value as references of Total by instantation.	47
2-22	In-house Real Property at Tracking and Data Acquisition Stations: FY 1965-FY 1968	
2-23	Industrial (Contractor-Held) Real Property at Deep Space Network Tracking and Data Acquisition Stations: FY 1967 and FY 1968	47
2-24	FY 1967 and FY 1968	48
	List of Figures	
Figure		Page
1 Iguit	1 A very sisting Amounts by Figgal Vegr	20
2-1	Value of Land, Buildings, and Other Structures and Facilities and Appropriation Amounts by Fiscal Year	
2-2	Components of Real Property Value	21

Chapter Two NASA FACILITIES

This chapter attempts to locate in time and space the \$2.5 billion obligated for construction of NASA facilities between 1958 and 1968. Under Section 203 of the Space Act, NASA was directed:

to acquire (by purchase, lease, condemnation, or otherwise), construct, improve, repair, operate, and maintain laboratories, research and testing sites and facilities. . . and such other real and personal property as the Administration deems necessary within and outside the continental United States. . . .

On August 27, 1958, the NASA FY 1959 supplemental appropriation (Public Law 85-766) made the first \$25 million available for "Construction and Equipment" (C&E), the appropriation account that became in FY 1962 "Construction of Facilities" (CoF). The next day, August 28, the regular NACA appropriation was signed (Public Law 85-844), with an additional \$23 million earmarked for construction. NACA was transferred to NASA on its establishment Oct. 1, 1958. Since the Space Act provided in Section 307 that sums appropriated "for the construction of facilities, or for research and development, shall remain available until expended," the 58 percent of construction and equipment funds still unobligated at the end of FY 1959 was carried over into FY 1960.

Periods and amounts in this continuing carryover system may be seen in Table 2-a. The carryover provision, along with legislation passed in 1959 permitting transfers of up to 5 percent from one appropriation account to another, contributed a good deal to NASA's funding flexibility. Although budgets, appropriations, obligations, and expenditures are examined in detail in Chapter Four, this summary budget history for construction funds is presented here as a reference point for patterns of growth that emerge in Tables 2-1 through 2-23.

On its first day of business, October 1, 1958, NASA inherited from the National Advisory Committee for Aeronautics its three research laboratories—

Langley, Ames, and Lewis; two development stations—High Speed Flight Station at Edwards Air Force Base and Pilotless Aircraft Research Station at Wallops Island; and two liaison offices—one in California and the other at Wright-Patterson Air Force Base in Ohio. By the end of December, Jet Propulsion Laboratory functions and facilities had been transferred from the U.S. Army to NASA. By the end of FY 1959, the first new NASA installation was under construction at Greenbelt, Maryland. Designated Goddard Space Flight Center, this facility was designed to accommodate NASA space flight programs, beginning with personnel transferred from the Naval Research Laboratory. Although the Ohio liaison office had been closed by June 30, 1959, NASA planned a substantial expansion of the California office and announced its evolution into the Western Operations Office later that summer.

These were NASA's installations at the end of its first (nine-month) fiscal year. As revealed in Table 2-1, they stood on 2095 hectares (5179 acres) of NASA-owned land and represented a real property value of just over \$268 million. By the end of FY 1968, NASA's installations accounted for more than 57 465 hectares (142 000 acres) of owned land, and their total real property value had exceeded \$2.4 billion. The total investment value of NASA facilities—comprising real and personal property, leasehold improvements, and work-in-progress—equaled \$4.4 billion by June 30, 1968.

During its first 10 fiscal years NASA was to construct four field installations from the ground up: Goddard Space Flight Center (dedicated March 16, 1961); Manned Spacecraft Center near Houston, Texas (major occupancy in February 1964); John F. Kennedy Space Center, near Cape Kennedy, Florida (occupancy of Headquarters building in April 1965); and Electronics Research Center in Cambridge, Massachusetts (groundbreaking on November 2, 1966). Facilities in Huntsville, Alabama, of the Army Ballistic Missile Agency's Development Operations Division, transferred to NASA on July 1, 1960, were converted into a fifth major field installation, the George C. Marshall Space Flight Center. Component activities of Marshall—Michoud Assembly Facility in New Orleans with its Computer Operations Office in

Table 2-a. Construction of Facilities: Obligations by Fiscal Year and Program Year (in millions of dollars^a)

Program	Appro-	Change	Budget				Oblig	gations b	y Fiscal	Year				Total	Unobligated
Year	priation	from Prior Year	Planb	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Obligations	(as of 6/30/68)
1959	\$ 48.0		\$ 47.7	\$20.1	\$14.3	\$ 8.2	\$ 3.6	\$ 0.5	\$ 0.5	\$ 0.2	\$ *	\$ 0.1	\$ 0	\$ 47.7	\$ 0
1960	84.6	76.3%	98,4		69.2	21.7	5.5	1.1	0.7	0.3	-0.1	_*	0	98.3	.1
1961	122.8	45.1	124.9			65.3	52.5	4.1	1.2	1.0	0.5	.3	0	124.9	0
1962	316.0	157.4	356.1 ^c				154.2	134.8	31.7	19.0	8.4	1.1	5.1	354.3	1.8
1963	776.2	145.6	766.2 ^d					428.8	227.0	51.9	32.5	16.5	2.8	759.5	6.7
1964	680.0	-12.4	746.7						285.1	301.9	122.7	23.5	4.2	737.4	9.3
1965	262.9	-61.4	253.6 ^e							147.8	78.4	10.0	8.9	245.1	8.5
1966	60.0	-77.1	59.1 ^f								28.0	14.5	9.1	51.6	7.5
1967	83.0	38.3	86.2									50.0	21.4	71.4	14.8
1968	35.9	-56.7	33.4										13.0	13.0	20.4
			2572.3	20.1	83.5	95.2	215.8	569.3	546.3	522.1	270,4	115.9	64.5	2503.2	69.1
Pre-NASA	\		53.3 ^g	17.9	6.2	3.0	1.3	0.5	0.3	0.1		*	0	29.3	24.0
	Total		\$2625.6g	\$38.0	\$89.7	\$98.2	\$217.1	\$569.8	\$546.6	\$522.2	\$270.4	\$115.9	\$64.5	\$ 2532.5	\$93.1

^aObligations amounts may not add to totals because of rounding.

*Less than \$0.05 million.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington: NASA, February 1965); NASA, Office of Administration, Budget Operations Division, "History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1964 Through 1966" (draft manuscript, 1968); NASA, Financial Management Division, "Financial Status of Programs, Construction of Facilities," June 30, 1967; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968; NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968.

^bBudget plan figures include appropriations, transfers to and from administrative operations and research and development accounts or from other Government agencies, and unobligated balances brought forward from the previous year. Budget plan figures are not fixed and should be regarded from a reference point in time; those used in this table represent the plan as of June 30, 1968.

^c Includes \$16 000 reserve for claims.

dIncludes \$38 000 reserve for claims.

^eIncludes \$750 000 reserve for claims.

Includes \$1 245 625 reserve for claims.

^gOf this amount, \$23 907 000 was obligated between 1953 and 1959 (pre-NASA).

Slidell, Louisiana, and Mississippi Test Facility in Hancock County—were established in 1961 and 1962 along the inland water route from the Mississippi Delta to Huntsville. In another major construction project, NASA and the Atomic Energy Commission cooperated in building the Nation's test site for nuclear rockets, the Nuclear Rocket Development Station at Jackass Flats, Nevada (occupancy of Administration and Engineering Building on August 2, 1964).

In accordance with NASA's policy of contracting the bulk of its research and development work to be performed out-of-house, during its first 10 years NASA installed over \$400 million worth of capitalized equipment in the plants of more than 20 000 prime and subcontractors. For its three tracking and data acquisition networks—Space Tracking and Data Acquisition Network, Manned Space Flight Network, and Deep Space Network—NASA equipped and inherited stations in North and South America, Europe, Africa, Australia, and on islands in the Atlantic and Pacific Oceans, and their real property value had reached \$54.5 million by the end of FY 1968. In addition, the former NACA installations expanded during this period along with the newer Centers; an indication of their growth is given in Table 2-b.

This enormous facilities expansion reflects the evolution of the civilian portion of the national space program under NASA, one supported by annual congressional decisions on the necessary means. Table 2-a shows that the largest annual percentage increase in both appropriation and budget plan during NASA's first 10 years occurred in FY 1962, although a larger net increase and appropriation total came the following year (see Figure 2-1). The FY 1962 budget submitted in January 1961, the last NASA budget submitted by the Eisenhower Administration, had requested \$99.8 million for construction of facilities, some \$23 million less than the FY 1961 appropriation. Under President Kennedy, NASA was directed to reevaluate the January budget, and a revised request added \$19.2 million to construction funds. But on May 25, 1961, President Kennedy addressed Congress, asking that the United States commit resources to the goal of achieving a manned lunar landing before the end of the decade. He also urged accelerated development of a nuclear rocket and of communications and meteorological satellites. Congress approved this request, appropriating for FY 1962 a total of \$316 million for construction of NASA facilities.

The impact of the lunar landing decision on facilities growth was seen first in land. Large increases at the end of FY 1962 in both land value and acreage may be attributed to land acquisition for John F. Kennedy Space Center,

Table 2-b. Investment Value of Former NACA Installations 1958 and 1968 (in thousands)

Installation ^a	NACA 1958 Plant Cost Estimate	NASA end of FY 1968 Total Investment Value
Langley Research Center	\$125 975	\$358 608
Ames Research Center	86 817	226 711
Lewis Research Center	119 500	385 733
Flight Research Center	16 585	42 819
Wallops Station	3 661	103 388

^aFormerly Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, Lewis Flight Propulsion Laboratory (all redesignated Oct. 1, 1958), High Speed Flight Station, and Pilotless Aircraft Research Station (both redesignated in 1959).

Sources: U.S. Congress, House, Hearings before Select Committee on Astronautics and Space Exploration, Astronautics and Space Exploration, 85th Cong., 2d sess. (Washington, D.C.: GPO, 1958), chart facing p. 404; NASA, Office of Facilities.

which began in late 1961 with funds reprogrammed from the research and development account. During FY 1963, KSC land was supplemented by property acquired by Lewis Research Center at Plum Brook Station and by Marshall's first acquisitions for the Mississippi Test Facility.

Proportional changes among the three variables that make up total real property value show certain trends during the 10 fiscal years (see Figure 2-2 and Table 2-2). As of June 30, 1959, value of buildings was over 90 percent of the total, while the value of other structures and facilities (such as storage tanks, gantries, launch pads; see definition of terms) was 8 percent and land value less than 1 percent. During the 10 years the proportion of buildings value to the total declined almost steadily, until June 30, 1968, the value of buildings was 53.9 percent of total real property value, while value of other structures and facilities increased to 41.8 percent of the total by the end of FY 1968.

Two other trends worth noting are the decline of leased property and work-in-progress. Table 2-1 shows a steadily decreasing leased property rental value and square footage, the result of occupancy of more NASA-owned buildings. Work-in-progress decreased since FY 1966, indicating completion of major projects and declining appropriations since the FY 1963 peak.

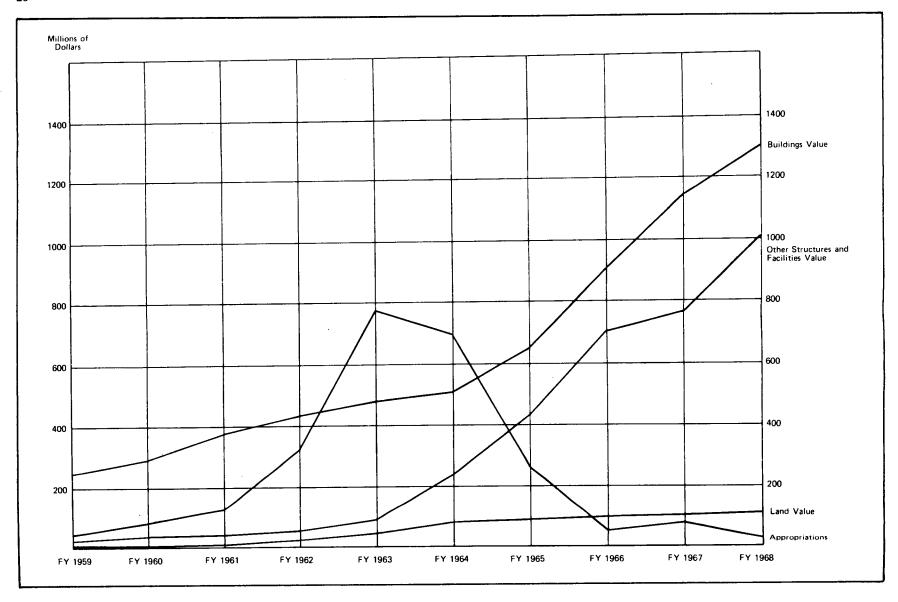


Figure 2.1. Value of Land, Buildings, and Other Structures and Appropriation Amounts by Fiscal Year.

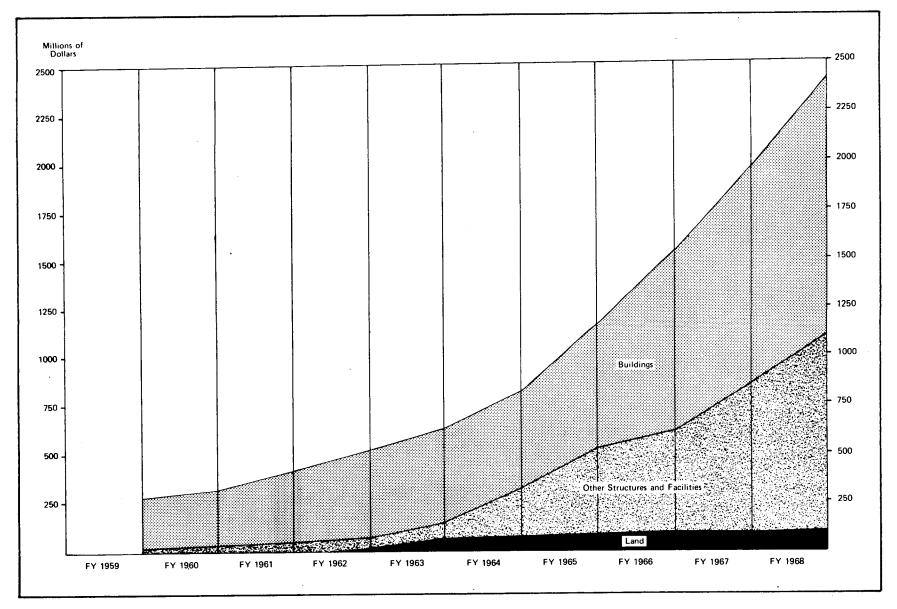


Figure 2.2. Components of Real Property Value.

NASA's FY 1968 appropriation for construction of facilities was \$35.9 million, \$12.1 million less than that for its first fiscal year. Even if other evidence were lacking, this figure would suggest, not only that the Apollo program had reached the flight-test stage, but also that the Nation had not reached a decision on another goal comparable to that of sending Americans to the moon and back in the 1960s. Even when such decisions are reached, as the tables in Chapter Two reveal, long lead times are required before dollar decisions related to a suddenly accelerated program can be measured in terms of real and personal property.

The NASA Office of Facilities provided all figures for Fx 1962 through FY 1968. This office, established as the Facilities Management Office in December 1965 under the Deputy Associate Administrator for Industry Affairs and transferred to the Office of Administration in March 1967, merged functions previously assigned to various Headquarters elements.*

As early as 1962, efforts began within the Procurement and Supply Division of the Office of Administration to set up a real estate recording and reporting system and a central repository for facilities data. This repository became part of the Facilities Management Office, and figures used in this chapter are supported by documents maintained there; they include title opinions, leases, agreements, easements, outgrants, real property records and transaction vouchers, master plans, and annual reports. Property tables prepared from these figures for Chapter Six were circulated for review at the installation level, where they were most often reviewed by the Real Property Accountable Officer responsible for maintaining detailed real property inventory records and reconciling property figures with installation financial accounts. The field installations also supplied figures for FY 1959 through

FY 1961, when available. Property figures used here and in Chapter Six are thus the result of a cooperative effort of Headquarters and field installations.

Definition of Terms

Definitions of the terms used in this chapter were taken from NASA Management Instructions (NMIs) and NASA Handbook (NHB) Approval of Facility Projects.

Buildings. Facilities with the basic function of enclosing usable space. This category of real property includes buildings leased by or on behalf of NASA and improvements to NASA-owned buildings and installed property but excludes leasehold improvements. (NMI 8800 1A)

Note: In the tables of this chapter and Chapter Six, square footage of buildings leased does not include GSA-leased buildings.

Component Installation. An installation, office, or other NASA organizational element which is located geographically apart from a NASA installation and which, pursuant to delegations from the Administrator, is assigned for management purposes to the Official-in-Charge of a Headquarters office, the Director of a field installation, or to an immediate subordinate of these officials (NMI 1132.2A).

Component installations of NASA Headquarters include:

NASA Pasadena Office

NASA Daytona Beach Operation

The AEC-NASA Space Nuclear Propulsion Office is organizationally under the NASA Headquarters Office of Advanced Research and Technology and may in some cases be regarded as a component installation.

Former component installations of NASA Headquarters were:

Western Support Office

Western Operations Office

Western Coordination Office

NASA Office—Downey

North Eastern Office

^{*}The office assumed principally responsibilities of the Construction Office, established August 26, 1963, under the Office of Industry Affairs, and the Facility Standards Division of the Office of Programming. The June 5, 1961, NASA reorganization had established an Office of Programs and, under it, an Assistant Director for Facilities. This title, changed in the November 1, 1961, reorganization to Director of Facilities Coordination, represented the first effort to centralize facilities management responsibilities for the anticipated expansion after the May decision to accelerate NASA's program. On November 1, 1963, the Office of Programs became the Office of Programming, with the Facility Standards Division replacing the Facilities Coordination Directorate. The Office of Programming was separated from the Office of Organization and Management group in the March 15, 1967, reorganization and was renamed the Office of Program Plans and Analysis. The Facilities Management Office was reorganized and renamed the Office of Facilities on May 22, 1968.

¹ NASA, Office of Organization and Management, Administrative Services Division, NASA Management Instruction (NMI) 8800.1A and 1132.2A; NASA Handbook (NHB) 7330.1, Approval of Facility Projects.

Component installations of Centers:

Marshall Space Flight Center-Michoud Assembly Facility with its Computer Operations Office; Mississippi Test Facility

Manned Spacecraft Center-White Sands Test Facility

Lewis Research Center-Plum Brook Station

Kennedy Space Center-Western Test Range Operations Division

Easement. An acquired privilege or right of use or enjoyment which one party may have in the land of another. For example, an easement or right-of-way for road or highway purposes, or for construction and maintenance of utility lines (NHB 7330.1, 26).

Equipment. Personal property which meets all of the following criteria: (a) has an estimated service life of one year or more, (b) has an initial acquisition cost of \$50 or more per unit, (c) retains its identity when put into use, and (d) will not be consumed during an experiment (NHB 7330.1, 26-27).

Collateral equipment. All nonintegral, severable equipment which is acquired for use, or used, in a facility. Collateral equipment is not required to make the structure or building useful and operable as a structure or building, but imparts to the facility its particular character at the time, for example, furniture in an office building or test equipment in a test stand (NHB 7330.1, 25). See Personal Property.

Integral equipment. That equipment which is normally required to make a facility useful and operable as a facility and which is built in or permanently affixed to it in such a manner that removal would impair the usefulness, safety, or comfort of the facility. Integral equipment would include such items as elevators, central air-conditioning systems, and electrical and plumbing fixtures and equipment (NHB 7330.1, 28). See Installed Property.

Note: As used in this chapter and Chapter Six, equipment refers to capitalized equipment only. (To be recorded as capital equipment, the equipment must have an estimated service life of more than one year, be identifiable as equipment when in use and not part of other equipment, generally cost \$200 or more, and not be intended to be consumed in an experiment. Noncapitalized equipment is charged to the appropriate cost account, as "expensed equipment."²)

Facility. A generic term used to encompass real property and related integral and collateral equipment of a capital nature; thus the term would not encompass operating materials, supplies, and noncapitalized equipment. The term "facility" is used in connection with land, buildings (facilities with the basic function of enclosing usable space), structures (facilities with the basic function of a research or operational tool or activity), and other real property improvements (NHB 7330.1,27).

Field Installation. A NASA organizational element located geographically apart from NASA Headquarters and headed by a Director. The following organizations are NASA field installations:

Ames Research Center
Electronics Research Center
Flight Research Center
George C. Marshall Space Flight Center
Goddard Space Flight Center
John F. Kennedy Space Center
Langley Research Center
Lewis Research Center
Manned Spacecraft Center
Wallops Station (NMI 1132.2A)

Jet Propulsion Laboratory is not a NASA field installation, but is operated by California Institute of Technology under contract to NASA.

AEC-NASA Space Nuclear Propulsion Office is not a NASA field installation, but reports to NASA Headquarters Office of Advanced Research and Technology.

Industrial Facility. NASA property which is contractor-held. In Table 2-3 figures for both real and personal property are given; other tables in Chapters Two and Six present figures for real property only. Figures for industrial property are included with NASA's in-house property in all tables, unless otherwise noted.

Installation. A NASA organizational element, including both Headquarters and field installations (NMI 1132.2A).

² NASA, Office of Administration, Financial Management Division, Financial Management Manual, paragraph 9250-32a, 32b.

Installed Property. Items of fixtures and equipment normally required for the functional use of the building or structure, the removal of which would impair the usefulness, comfort, and safety of the building or structure. Installed property is included as part of the building or structure and accounted for accordingly. Examples of installed property items included as real property are plumbing fixtures and equipment, electrical and fixed fire protection systems, overhead crane runways, components which become part of a system, and other similar built-in or permanently affixed items (NMI 8800.1A). See Equipment, Integral.

Investment Value, Total. A figure representing the total of (a) real property value, including land, buildings, and other structures and facilities; (b) value of leasehold improvements; (c) value of capitalized equipment; and (d) work-in-progress. Value is based on cost plus improvements.

Note: As used in Chapter Two, total investment value includes both in-house and industrial (contractor-held) facilities.

Land. A category of real property that includes all acquired interests in land (for example, owned, leased, or acquired by permit) but excludes NASA-controlled easements and rights-of-way which are under leasehold improvements (NMI 8800.1A)

Note: As used in the tables of Chapters Two and Six, land includes only NASA-owned land unless otherwise noted. Figures presented for this variable do not include leased land or land held under use permit or agreement. NASA-owned land means Government-owned land for which NASA has custody and accountability.

Lease. An instrument conveying land, buildings, other structures or facilities or portions thereof for a specified term of time, in consideration of payment of a rental fee (NHB 7330.1, 28).

Leasehold Improvements. Improvements made by or on behalf of NASA to leased land, buildings, other structures and facilities; easements and rights-of-way (NMI 8800.1A).

Note: Although NASA Management Instruction 8800.1A deems leasehold improvements a category of real property, they are considered as a separate component of total investment value in Chapter Two.

Other Structures and Facilities. Category of real property which includes facilities with the basic function of research or operational tools or activities as distinct from buildings, which have the primary function of enclosing usable space. Includes all structures and facilities and installed property owned or leased by or on behalf of NASA; for example, storage tanks, gantry cranes, launch pads, blockhouses, airfield pavements, roads, monuments, sidewalks, parking areas, and fences. Excludes leasehold improvements (NMI 8800.1A).

Personal Property. Items of equipment which are installed in a building or structure to perform or assist in performing the operation housed within the buildings or structures and which, if removed, would retain their identity and usefulness as individual items of equipment; for example, a machine tool installed in a building (NMI 8800.1A). See Equipment Collateral.

Real Property. Land, buildings, structures, utilities systems and their improvements and appurtenances, permanently annexed to land. Real property includes equipment attached to and made a part of buildings, structures, and other facilities (such as heating systems), but excludes collateral equipment (such as machine tools) which is removable without significant damage to the real property (NHB 7330.1, 29).

Real property—when within the control of the United States or of any instrumentality, entity, or wholly-owned corporation of the United States—means any interest in land, excluding lands in the Public Domain or reserved or dedicated for National Forest or National Park purposes, and any fixture, structure, appurtenance, or other improvement permanently annexed to land, including lands to which the United States has no title or interest and lands in Public Domain or dedicated or devoted to National Forest or National Park purposes (NMI 8800.1A).

Note. In the tables of Chapters Two and Six total real property value is the sum of land value, buildings value, and other structures and facilities value. Leasehold improvements are not included in total real property value, but are considered as a separate component of total investment value.

Use Permit. A document conferring temporary permission to NASA to use land, buildings, structures, or other facilities for which another Government agency has custody and accountability.

NASA FACILITIES

NASA Installations and Abbreviations

For installation summaries, see Chapter Six.

Ames Research Center (ARC)

Electronics Research Center (ERC)

Flight Research Center (FRC)

Goddard Space Flight Center (GSFC)

John F. Kennedy Space Center (KSC)

Designated Launch Operations Center from July 1, 1962, until redesignation as KSC was announced Dec. 20, 1963.

Langley Research Center (LaRC)

Lewis Research Center (LeRC)

Figures for LeRC in Tables 2-5 through 2-21 include Plum Brook Station.

Manned Spacecraft Center (MSC)

Figures for MSC in Tables 2-5 through 2-21 include White Sands Test Facility.

Marshall Space Flight Center (MSFC)

MSFC totals used in Tables 2-4 through 2-21 include component installations and Huntsville.

Michoud Assembly Facility (MAF)

Designated Michoud Operations from December 1961 until July 1965.

Mississippi Test Facility (MTF)

Designated Mississippi Test Operations from December 1961 until July 1965.

25

Computer Operations Office (COO)

Space Nuclear Propulsion Office (SNPO)

Wallops Station (WS)

Pacific Launch Operations Office (PLOO)

Pacific Launch Operations Office was disestablished effective October 1, 1965.

Western Support Office (WSO)

NASA Western Coordination Office was redesignated Western Operations Office on August 5, 1959. Western Operations Office was disestablished June 15, 1966, and its functions were realigned in the NASA Office-Downey (a Headquarters component installation) and the Western Support Office established effective June 15, 1966. WSO was disestablished effective March 1, 1968.

Jet Propulsion Laboratory (JPL)

Not a NASA installation, but operated under the provisions of Contract NAS 7-100 (formerly NASw-6) between NASA and the California Institute of Technology.

NASA Headquarters (Hq.)

NASA HISTORICAL DATA BOOK

Table 2-1. Property: FY 1959-FY 1968 (as of June 30; money amounts in thousands)

Category	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Total real property value Percentage increase	\$268 210	\$322 603 20.3%	\$407 692 26.3%	\$513 606 25.9%	\$614 194 19.6%	\$830 704 35.3%	\$1 172 392 41.1%	\$1 518 918 29.6%	\$1 996 267 31.4%	\$2 407 505 20.6%
Land value Percentage increase	\$ 668	\$ 687 2.8%	\$ 887 29.1%	\$ 20 308 2189.5%	\$ 47 700 134.9%	\$ 85 769 79.8%	\$ 91 397 6.6%	\$ 94 579 3.5%	\$ 99 218 4.9%	\$ 104 350 5.2%
Buildings value Percentage increase	\$246 268 	\$286 025 16.1%	\$367 799 28.5%	\$435 069 18.2%	\$ 478 056 9.9%	\$506 149 6.5%	\$ 642 602 26.2%	\$ 902 108 41.3%	\$1 135 080 24.9%	\$1 298 187 14.4%
Other structures and facilities value Percentage increase	\$ 21 274 	\$ 35 891 68.7%	\$ 39 006 8.6%	\$ 58 229 49.2%	\$ 88 438 51.9%	\$235 786 166.6%	\$ 438 393 85.9%	\$ 516 231 17.7%	\$ 761 969 47.6%	\$1 004 963 31.9%
Number of hectares of land (and acres) Percentage increase	2095.8 (5179)	3015.3 (7451) 43.9%	3254.2 (8041) 7.9%	9 050.0 (22 363) 178.1%	32 171.2 (79 497) 255.5%	47 663.2 (117 778) 48.2%	49 931.7 (123 384) 4.8%	57 653.8 (142 466) 15.5%		57 519.7 (142 134) (*)
Number of buildings Percentage increase	NA	NA	NA	NA	1117 	1246 11.5%	1484 19.1%	1645 10.1%	2182 32.6%	2602 19.2%
Number of sq meters of buildings (and sq ft) Percentage increase	471 132.2 (5 071 225)	511 154.0 (5 502 016) 8.4%	705 772.0 (7 596 866) 38.0%	1 051 693.8 (11 320 342) 49.0%	1 232 704.4 (13 268 715) 17.2%	1 516 780.6 (16 326 486) 23.0%	27.2%	2 376 222.4 (25 577 445) 23.1%	13.9%	10.6%
2. Capitalized equipment value Percentage increase	NA	NA	NA	\$185 979	\$255 745 37.5%	\$356 799 39.5%	\$ 507 865 42.3%	\$ 954 948 88.0%		\$1 418 152 22.6%
3. Leasehold improvements value Percentage increase	e NA	NA	NA	NA	NA	NA	NA	\$ 866 	\$ 938 8.3%	\$ 1062 13.2%
4. Work-in-progress value Percentage increase	NA	NA	NA	NA	NA	NA	NA	\$1 176 401 	\$ 889 965 -24.4%	\$ 585 555 34.2%
5. Total investment value (1+2+3) Percentage increase	3+4) NA	NA	. NA	NA	NA	NA	NA	\$3 651 133 	\$4 043 854 10.8%	4 412 274 10.9%
NASA leased property rental value Percentage change	NA	NA	NA	NA	\$ 4285 	\$ 2299 -46.4%	\$ 911 -60.4%	\$ 554 -39.2%	-17.4%	\$ 280 -38.9%
Number of hectares leased (and acres)	NA	NA	NA	92.1 (228)	4381.2 (10 826)	6621.2 (16 361)	6645.7 (16 422)	1182.4 (2922)	475.5 (1176)	1185.2 (2928)
Number of buildings leased	NA	NA	NA	NA	NA	NA	NA	3	10	7
Number of sq meters of buildings leased (and sq ft)	NA	NA	NA	66 910.3 (720 216)	131 081.1 (1 410 945)	83 682.6 (900 752)	38 879.6 (418 432)	15 310.1 (164 797)	14 076.3 (151 516)	9718.0 (104 604)

^{* =} Less than 0.5 percent.

NA = Not available.

Source: NASA, Office of Facilities.

Table 2-2. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1 9 59	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land Buildings Other structures and facilities	0.3% 91.8 7.9	0.2% 88.7 11.1	0.2% 90.2 9.6	4.0% 84.7 11.3	7.8% 77.8 14.4	10.3% 61.3 28.4	7.8% 54.8 37.4	6.2% 59.8 34.0	4.9% 56.9 38.2	4.3% 53.9 41.8
The Landson of the	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total real property value	\$ 268 210	\$ 322 603	\$ 407 692	\$ 513 606	\$ 614 194	\$ 830 704	\$1 172 392	\$1 518 918	\$1 996 267	\$2 403

Source: Derived from Table 2-1.

Table 2-3. Industrial (Contractor-Held) Facilities (as of June 30; money amounts in thousands)^a

Category	1965	1966	1967	1968
1. Total real property value	\$150 990	\$136 166	\$161 383	\$205 518
Percentage increase		-9.9%	18.5%	\$203.318 27.3%
Land value	\$ 6 291	\$ 6374	\$ 8779	\$ 8 183
Buildings value	\$ 71 854	\$ 77 485	\$ 98 830	\$117 400
Other structures and facilities			4 30 050	φ117 4 00
value	\$ 72 845	\$ 52 307	\$ 53 774	\$ 79 935
2. Leasehold improvements value	NA	\$ 210	\$ 276	\$ 79 933 \$ 478
3. Plant equipment value	NA	\$347 662	\$401 086	\$ 478 \$486 696
. Work-in-progress value	NA	\$ 46 593	\$ 71 289	
Total investment value (1+2+3+4)	. NA	\$530 631	\$634 034	\$ 34 940 \$737 633
Percentage increase			(19.4%)	\$727 632
Number of hectares owned	127.5	1256.2	4295.4	(14.8%)
(and acres)	(315)	(3104)		4295.4
Percentage increase		885.3%	(10 614)	(10 614)
Number of buildings	339	340	241.9%	0%
Number of sq meters of bldgs.	1 449 867.6	1 414 680.2	407	468
(and sq ft)	(3 582 701)		1 545 229.0	1 675 351.2
(una sq 11)	(5 502 701)	(3 495 751)	(3 818 344)	(4 139 883)

^aIndustrial property figures are included in Table 2-1; data for earlier years are not available.

NA = Not available.

Source: NASA, Office of Facilities

NASA HISTORICAL DATA BOOK

Table 2-4. NASA Facilities Total Investment Value, FY 1966-FY 1968: In-house and Contractor-Held (as of June 30; in thousands)^a

Facility		Total Rea	l Property V	'alue	Percentage Increase Between 6/30/63	Lease	hold Improv	ements	Plant F	Equipment	
1 400		1966	1967	1968	and 6/30/68	1966	1967	1968	1966	1967	1968
NASA Headquarters b	\$	34 391 \$	32 412 \$	0		\$ 0 0	\$ 0 0	\$ O	\$	28 306 \$ 1 939	8 175 2 035
Office of University Affairs Total		0 34 391	$\frac{0}{32412}$	0		0	0	0	-	30 245	10 210
Office of Manned Space Flight Kennedy Space Center		308 023	531 646	682 378	542.5% °	0	0 156	0 8	\$ 64 307 96 599	94 240 124 958	127 900 154 973
Manned Spacecraft Center Marshall Space Flight Center Total		131 940 286 576 726 539	167 023 409 722 1 108 391	217 227 538 362 1 437 967	875.4° 415.2	156 126 282	$\frac{161}{317}$	184 192	<u>244 962</u> 405 868	256 297 475 495	302 575 585 448
Office of Advanced Research and Technic	ology				44.7		0	0	34 674	41 812	53 670
Ames Research Center Electronics Research Center		136 654 739	164 125 769	166 571 2 779 9 527	46.7 86.9	0 0 0	· 0	0	1 808 29 230	6 961 29 522	13 227 32 332
Flight Research Center Langley Research Center Lewis Research Center		8 778 204 725 197 234	9 312 235 285 203 878	249 588 241 419	58.7 98.0	0 113	0 113	0 155	64 540 77 361	83 212 80 851	91 240 96 884
Space Nuclear Propulsion Office Total	-	16 016 564 146	23 111 636 480	24 915 694 799		113	<u>0</u> 113	$\frac{0}{155}$	$\frac{7728}{215341}$	24 075 266 433	24 408 311 761
Office of Space Science and Application	<u>s</u>	30.1.0						205	.00.021	250 104	271 604
Goddard Space Flight Center NASA Pasadena Office (JPL) Wallops Station	_	91 012 47 175 55 655	111 234 48 620 59 130	132 040 78 771 63 928	218.1	263 206 2	230 · 272 6	307 408 0	199 031 79 252 26 908	258 184 92 093 34 235	371 696 103 796 35 241
Total NASA Total	\$ 1	193 842 518 918 \$	218 984 1 996 267 \$	274 889 2 407 <u>505</u>		471 \$866	508 <u>\$938</u>	715 <u>\$1062</u>	305 191 \$954 948 \$	384 512 1 156 685 \$	510 733 1 418 152

NASA FACILITIES

Table 2-4. NASA Facilities Total Investment Value, FY 1966-FY 1968: In-house and Contractor-Held (Continued)
(as of June 30; in thousands)^a

	V	ork-in-Progr	ess	To	otal Investm	ent	Percentage	of NASA 7	otal Investr
Facility	1966	1967	1968	1966	1967	1968	1966	1967	1968
ASA Headquarters									
Office of University Affairs	\$ 21	\$ 0	\$ 05	•	=		1.6%	1.5%	*
Total	$\frac{0}{21}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{1580}{62960}$	$\frac{1939}{62657}$	$\frac{2\ 035}{10\ 210}$	* 1.7	* 1.5	*
ffice of Manned Space Flight									
Kennedy Space Center	439 648	322 720	240 231	811 978	,	1 050 510	22.2%	23.5	23.8%
Manned Spacecraft Center	85 500	59 332	48 670	314 195	351 469	420 878	8.6	8.7	9.5
Marshall Space Flight Center	394 946	261 177	104 452	926 610	<u>927 357</u>	945 573	25.4	22.9	21.4
Total	920 094	643 229	393 353	2 052 783	2 227 432	2 416 961	56.2	55.1	54.7
office of Advanced Research and Technol	ogy								
Ames Research Center	24 874	4 844	6 470	196 202	210 781	226 711	5.4	5.2	5.1
Electronics Research Center	340	3 847	4 151	2 887	11 577	20 157	*	*	0.5
Flight Research Center	2 187	2 235	960	40 195	41 069	42 819	1.1	1.0	1.0
Langley Research Center	32 316	18 627	17 780	301 581	337 124	358 608	8.3	8.3	8.1
Lewis Research Center	54 250	69 672	47 275	328 958	354 514	385 733	9.0	8.8	8.7
Space Nuclear Propulsion Office	11 422	7 448	529	35 166	54 634	49 852	1.0	1.4	1.1
Total	125 389	106 673	77 165	904 989	1 009 699	1 083 880	24.8	25.0	24.5
office of Space Science and Applications									
Goddard Space Flight Center	- 108 661	126 086	110 817	398 967	495 734	614 860	10.9	12.3	13.9
NASA Pasadena Office (JPL)	10 939		0	137 572	148 271	182 975	3.8	3.7	4.1
Wallops Station	11 297		4 220	93 862	100 061	103 388	2.6	2.5	2.3
Total	130 897	140 063	115 037	630 401	744 066	901 223	17.3	18.4	20.3
NASA Total	\$1 176 401	\$889 965	\$585 555	\$3 651 133	\$4 0 43 854	\$4 412 274			

^aData for earlier years are not available.

Source: NASA, Facilities Management Office, Facilities Data (January 1968), p. III-2.

^bReal property figure was reported by Western Support Office; for breakdown, see section of Western Support Office in Chapter Six.

^cPercentage increase over June 30, 1964

^{* =} Less than 0.5 percent.

Table 2-5. Land Owned by Installation and Fiscal Year in Hectares (and Acres)
(as of June 30)

Installation	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	15.9	15.9	15.9	46.6	46.6	46.6	91.4	91.4	147.9	147.9
	(39.4)	(39.4)	(39.4)	(115.0)	(115.0)	(115.0)	(225.7)	(225.7)	(365.5)	(365.5)
Electronics Research Center							0	2.4	2.5	3.5
								(6.0)	(6.3)	(8.8)
Flight Research Center	0	0	. 0	0	0	0	0	0	0	0
Goddard Space Flight Center	0	0	231.1	231.1	224.2	279.2	288.7	3 728.6	3 728.6	4 857.3
			(571.0)	(571.0)a	(553.9)a		(713.5)	(9 213.6)	(9 213.6)	(12 002.7)
Kennedy Space Center				5 407.0	20 064.7	32 062.5	33 746.9	33 903.5	33 903.5	33 905.8
				(13 361.0)	(49 581.0)	(79 228.0)	(83 390.6)	(83 777.4)	(83 777.4)	(83 783.0)
Langley Research Center	174.0	174.0	174.0	174.0	218.5	218.5	218.5	218.5	218.5	218.5
	(430.0)	(430.0)	(430.0)	(430.0)	(540.0)	(540.0)	(540.0)	(540.0)	(540.0)	(540.0)
Lewis Research Center	130.5	137.1	140.6	141.3	2 561.7	2 563.1	2 653.1	5 557.5	5 557.5	5 34 2.2
	(322.4)	(338.8)	(347.4)	(349.2)	(6 330.0)b				(13 733.1)	(13 201.0)
Manned Spacecraft Center				0	0	655.6	655.6	655.6	655.6	722.8
						(1 620.0)	(1 620.0)	(1 620.0)	(1 620.0)	(1 785.9)
Marshall Space Flight Center Total			654.4	988.3	7 063.7	9 123.7	9 586.0	9 586.0	9 586.0	9 586.0
			(1617.0)	(2442.0)	(17 455.0)	(22 545.0)	(23 687.8)	(23 687.8)	(23 687.8)	(23 687.8)
Marshall Space Flight Center			654.4	654.4	722.8	722.8	727.2	727.2	727.2	727.2
			(1617.0) ^c	(1617.0) ^c	(1 786.0) ^c	(1 786.0)	(1 797.0)	(1 797.0)	(1 797.0)	(1 797.0)
Michoud Assembly Facility				333.9	333.9	333.9	360.5	360.5	360.5	360.5
				(825.0) ^d	(825.0)	(825.0)	(890.8)	(890,8)	(890.8)	(890.8)
Mississippi Test Facility					6 001.5	8 061.3	8 492.7	8 492.7e	8 492.7	8 492.7
					(14 830.0)	(19 920.0)	(20 986.0)	(20 986.0)	(20 986.0)	(20 986.0)
Computer Operations Office					5.7	5.7	5.7	5.7	5.7	5.7
					(14.0)	(14.0)	(14.0)	(14.0)	(14.0)	(14.0)
Space Nuclear Propulsion Office			0	0	0	0	0	0	0	0
Wallops Stations	1248.7	2657.8	2657.8	2656.8	2 655.1	2 655.1	2 655.1	2 655.1	2 676.5	2 676.5
-	(3085.6)	(6567.6)	(6567.6)	(6565.0)	(6 561.0)	(6 561.0)	(6 561.0)	(6 561.0)	(6 613.7)	(6 613.7)
Pacific Launch Operations Office				0	0	0	0			
Western Support Office	NA	NA	NA	NA	NA	NA	67.2	1195.9	1195.9	
							(166.0)	(2955.0)	(2954.9)	
Jet Propulsion Laboratory	30.5	30.5	34.7	59.5	59.5	59.1	59.1	59.1	59.1	59.1
•	(75.2)	(75.2)	(85.8)	(146.9)	(146.9)	(145.9)	(145.9)	(145.9)	(145.9)	(145.9)
Total	2095.8	3015.3	3254.2	9 u50.0	32 171.2	47 663.2	49 931.7	57 653.8	57 731.8	57 519.7
	(5179.0)	(7451.0)	(8041.2)	(22 363.1)	(79 496.8)	(117 778.3)	(123 384.0)	(142 465.5)	(142 658.2)	(142 134.3)

^aAdjusted figure; see Table 6-41 in Chapter Six.

Source: NASA, Office of Facilities.

^b Adjusted figure; see Table 6-80 in Chapter Six.

^cMSFC land was not reported.

d Adjusted figure; see Table 6-121 in Chapter Six.

^eAdjusted figure; see Table 6-123 in Chapter Six.

NA = Not available.

NASA FACILITIES 31

Table 2-6. Land Leased by Installation and Fiscal Year in Hectares (and Acres) (as of June 30)

Installation	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	0	0	0	0	0	0	0	0	0	0.5
Electronics Research Center							0	0	0	(1.1) 0
Flight Research Center	0	0	0	0	0	0	ŏ	ő	0	0
Goddard Space Flight Center	NA	NA	NA	49.0	49.0	49.0	169.6	469.5	422.5	490.5
acada aparo a ngar como.				(121.0)	(121.0)	(121.0)	(419.0)	(1160.0)	(1043.9)	
Kennedy Space Center				NA	NA.	0.4	5.1	0.5	0.6	0.7
somiou, opaco contor				241.2	****	(1.0)	(12.5)	(1.3)	(1.4)	(1.7)
Langley Research Center	NA	NA	NA	NA	0	0.1	0.04	10.5	10.2	10.2
angro, mosculon contor	****				ŭ	(0.2)	(0.1)	(26.0)	(25.3)	
Lewis Research Center	0	0	0	0	4 289.9	5 730.7	5 776.8	6.1	6.1	5.9
DOWN DICTION CONTO	•	•	-		(10 600.7)	(14 160.7)	(14 274.7)	(15.0)	(15.0)	
Manned Spacecraft Center				8.1	8.1	194.3	0.8	0.8	0.7	
				(20.0)	(20.0)	(480.0)	(2.0)	(2.0)	(1.6)	
Marshall Space Flight Center Total			25.9	25.9	25.9	25.9	25.9	25.9	25.9	667.6
Denot ingit contor total			(64.0)	(64.0)	(64.0)	(64.0)	(64.0)	(64.0)	(64.0)	(1649.7)
Marshall Space Flight Center			25.9	25.9	25.9	25.9	25.9	25.9	25.9	667.6
			(64.0)	(64.0)	(64.0)	. (64.0)	(64.0)	(64.0)		(1649.7)
Michoud Assembly Facility				0	0	0	0	0	01.0)	(1015.7)
Mississippi Test Facility					Ö	ő	ő	0	0	0
Computer Operations Office					Ö	. 0	. 0	0	0	0
Space Nuclear Propulsion Office			0	0	0	0	0	0	0	0
Vallops Station	NA	NA	NA.	4.5	3.6	3.6	4.1	4.1	3.8	3.9
variops bration	MA	NA.	MA	(11.0)	(9.0)	(9.0)	(10.0)	(10.0)	(9.6)	(9.8)
acific Launch Operations Office				(11.0)	(3.0)	(9.0)	(10.0)	(10.0)	(9.6)	(9.8)
Vestern Support Office	NA	NA	NA	NA.	NA.	611.5	657.6	659.3		
restern Support Office	NA	NA	NA	NA	NA .	(1 511.0)				
et Propulsion Laboratory	30.6	32.3	29.3	4.7	4.7	(1 511.0)	(1 625.0)	(1629.0)	0	
or responsibiling the contractions							5.9	5.9	5.8	5.8
Total	(75.5)	(79.8)	(72.6)	(11.5)	(11.5)	(14.3)	(14.4)	(14.4)	(14.3)	(14.3)
10121	NA	NA	NA	92.1	4 381.2	6 621.2	6 645.7	1182.4	475.5	1185.2
				(227.5)	(10 826.2)	(16 361.2)	(16 421.7)	(2921.7)	(1175.1)	(2928.4)

NA = Not Available.

Source: NASA, Office of Facilities

Table 2-7. Buildings: Number Owned by Installation and Fiscal Year (as of June 30)

Installation	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center ^a	27	27	30	33	40	44	46	48	50	55
Electronics Research Center							0	0	0	0
Flight Research Center	NA	NA	NA	NA	5	8	18	21	19	33
Goddard Space Flight Center		NA.	NA	NA	8	30	52	216	246	190
Kennedy Space Center				NA.	39	64	114	201	524	611
· ·	NA	NA	NA	NA	106	82	90	96	96	101
Langley Research Center	34	40	40	40	318	367	131	168	191	298
Lewis Research Center				0	2	15	60	83	161	251
Manned Spacecraft Center			(161)	(158)	(166)	(167)	(220)	(214)	(254)	(326)
Marshall Space Flight Center Total			161	158	142	122	192	161	176	182
Marshall Space Flight Center				NA	21	19	23	31	32	33
Michoud Assembly Facility					NA	22	NA	17	41	106
Mississippi Test Facility					3	4	5	5	5	5
Computer Operations Office			NA	NA	NA	NA	2	8	9	9
Space Nuclear Propulsion Office			NA.	NA NA	258	278	270	356	358	385
Wallops Station	NA	NA		NA NA	11	11	14			-
Pacific Launch Operations Office					NA	NA	280	83	85	
Western Support Office	0	NA	NA 122	NA		180	187	151	189	343
Jet Propulsion Laboratory	102	114	122	142	164					
Total	NA	NA	NA	NA	1117	1246	1484	1645	2182	2602

^aSee Table 6-14 in Chapter Six for further explanation of major number of buildings at Ames.

NA = Not available.

Source: NASA, Office of Facilities.

Table 2-8. Buildings: Thousands of Square Meters (and Square Feet) Owned by Installation and Fiscal Year (as of June 30)

Installation	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center ^a	NA	NA	NA	130.7	142.5	153.0	169,6	178.0	160.4	163.3
				(1407)	(1 534)	(1 647)	(1 826)	(1 916)	(1 726)	(1 758)
Electronics Research Center			-			` - -	0	0	0	(1,50)
Flight Research Center	NA	NA	NA	17.8	16.0	23.8	23.9	37.6	28.6	32.7
				(191)	(172)	(256)	(257)	(405)	(308)	(352)
Goddard Space Flight Center		NA	NA	48.4	57.0	113.3	142.6	187.3	232.3	238.4
				(521)	(613)	(1 219)	(1 535)	(2 016)	(2 501)	(2 566)
Kennedy Space Center				2.1	5.8	56.6	151.4	274.7	441.8	472.8
				(23)	(62)	(609)	(1 630)	(2 957)	(4 756)	(5 089)
Langley Research Center	NA	NA	NA	186.6	183.2	122.6	123.7	137.6	161.0	177.0
				(2 009)	(1 972)	(1 320)	(1 332)	(1 481)	(1 733)	(1 905)
Lewis Research Center	115.4	141.6	141.6	141.6	217.8	259.2	213.8	243.2	264.1	291.4
	(1 242)	(1 524)	(1 524)	(1.524)	(2 344)	(2 790)	(2 301)	(2618)	(2 843)	(3 137)
Manned Spacecraft Center				0	0.6	39.5	154.6	200.4	244.5	415.0
					(6)	(425)	(1 664)	(2 157)	(2 632)	(4 467)
Marshall Space Flight Center Total			145.2	386.1	449.6	478.8	567.5	712.6	761.2	810.5
			(1.563)	(4 156)	(4 839)	(5 154)	(6 109)	(7 671)	(8 194)	(8 724)
Marshall Space Flight Center	-		145.2	159.6	208.1	231.3	319.8	339.7	369.6	386.7
			(1 563)	(1 718)	(2 240)	(2 490)	(3 442)	(3 655)	(3 978)	(4 163)
Michoud Assembly Facility				226.5	235.4	237.2	238.7	323.7	330.6	330.6
				(2 4 3 8)	(2 534)	(2 553)	(2569)	(3 484)	(3 459)	(3 559)
Mississippi Test Facility					NA	4.6	2.8	43.1	50.8	85.4
						(49)	(30)	(464)	(547)	(919)
Computer Operations Office	-				6.0	5.8	6.3	6.3	10.2	10.2
					(65)	(62)	(68)	(68)	(110)	(110)
Space Nuclear Propulsion Office			NA	NA	NA	NA	.5	17.0	17.2	17.2
							(5)	(182)	(185)	(185)
Wallops Station	NA	NA	NA	72.7	86.7	167.3	93.5	103.3	103.8	105.9
				(783)	(933)	(1 801)	(1 006)	(1 112)	(1 117)	(1 140)
Pacific Launch Operations Office				3.4	4.5	4.5	6.8			
				(36)	(48)	(48)	(73)			
Western Support Office	NA	NA	NA	NA	NA	NA	165.7	162.2	161.5	
							(1784)	(1 746)	(1 738)	
Jet Propulsion Office	40.7	43.9	54.4	62.3	69.3	98.2	116.7	122.3	129.5	159.5
	(438)	(473)	(586)	(670)	(746)	(1 057)	(1 256)	(1 316)	(1 394)	(1 717)
Total	471.1	511.1	705.8	1 051.6	1 232.7	1 516.8	1 930.4	2 376.2	2 706.0	2 883.7
	(5 071)	(5 502)	(7 597)	$(11\ 320)$	$(13\ 269)$	(16 326)	(20 778)	(25 577)	(29 127)	(31 040)

^aSee Table 6-14 in Chapter Six for figures based on redefinition. NA = Not available.

Table 2-9. Buildings: Thousands of Square Meters (and Square Feet) Leased by Installation and Fiscal Year (as of June 30)^a

	1962 ^b	1963	1964	1965	1966	1967	1968
Ames Research Center	0	1.2 (13)	1.2 (13)	1.2 (13)	0	0	1.5 (16)
Electronics Research Center				0	0	0	0
Flight Research Center	NA	0.7 (8)	NA	0.7 (7)	0.7 (8)	0 .	0
Goddard Space Flight Center	10.7 (115)	23.1 (249)	16.5 (178)	9.9 (106)	4.6 (49)	、5.1 (55)	5.1 (55)
Kennedy Space Center	0. 9 (10)	4.0 (43)	4.9 (53)	4.9 (53)	0.9 (10)	0.9 (10)	0.9 (10)
Langley Research Center	NA	0	0.1 (1)	0.7 (7)	0.1 (1)	0	0
Lewis Research Center	1.5 (16)	3.6 (39)	0	0	0	0	0
Manned Spacecraft Center	29.0 (312)	33.8 (364)	. 4.9 (53)	2.4 (26)	2.4 (26)	2.4 (26)	0
Marshall Space Flight Center Total	22.2 (239)	60.1 (647)	52.7 (567)	14.8 (159)	2.4 (26)	2.2 (24)	2.2 (24)
Marshall Space Flight Center	22.2 (239)	24.7 (266)	24.7 (266)	14.8 (159)	2.4 (26)	2.2 (24)	2.2 (24)
Michoud Assembly Facility	0	35.4 (381)	28.0 (301)	. 0	0	0	0
Mississippi Test Facility		0	0	0	0	0	0
Computer Operations Office		0	0	0	0	0	0
Space Nuclear Propulsion Office	NA	NA	NA	0	0	0	0
Wallops Station	0	0	0	0	0	0	C
Pacific Launch Operations Office	0	0	0	0			
Western Support Office	2.6 (28)	3.2 (34)	3.1 (33)	4.4 (47)	4.2 (45)	3.4 (37)	
Jet Propulsion Laboratory	0	0	0	0	0	0	C
Total	66.9 (720)	131.1 (1411) °	83.7 (901) ^d	38.8 (418)	15.3 (165)	14.1 (152)	9.8 (105)

^a Does not include GSA-leased buildings.

dIncludes 279 sq m (3000 sq ft) leased for a Headquarters component.

NA = Not available.

b Data for earlier years are not available.

^cIncludes 1300 sq m (14 000 sq ft) for North Eastern Office.

NASA FACILITIES

Table 2-10. Real Property Value by Installation and Fiscal Year^a (as of June 30; in thousands)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	\$ 80 410	\$ 82 678	\$ 96 946	\$107 819	\$113 534b	\$123 190b	\$131 906b	\$136 654 \$	164 125 \$	166 571
Electronics Research Center							0	739	769	2 779
Flight Research Center	NA	ŇΑ	NA	NA	5 097	6 842	7 035	8 778	9 312	9 527
Goddard Space Flight Center		NA	NA	NA	13 961	35 350	62 939	91 012	111 234	132 040
Kennedy Space Center			-		38 148	106 206	176 793	308 023	531 646	682 379
Langley Research Center	103 738	116 336	139 240	199 148	157 258	172 964	192 950	204 725	235 285	249 588
Lewis Research Center	63 915	101 725	101 338	101 633	121 911	155 422	197 242	197 234	203 878	241 419
Manned Spacecraft Center				NA	831	22 190	60 822	131 940	167 023	217 227
Marshall Space Flight Center Total			(36 818)	(40 037)	(104 610)	(129 063)	(210 580)	(286 576)	(409 722)	(538 362
Marshall Space Flight Center	-		36 818	40 037	56 246	65 240	134 721	151 658	183 573	208 861
Michoud Assembly Facility				NA	40 972	38 956	49 650	79 985	92 608	94 965
Mississippi Test Facility					4 472	21 532	22 602	51 262	128 284	229 243
Computer Operations Office					2 920	3 335	3 607	3 671	5 257	5 293
Space Nuclear Propulsion Office			NA	NA	NA	NA	92	16 016	23 111	24 915
Wallops Station	NA	NA	NA	NA	31 026	42 978	50 749	55 655	59 130	63 927
Pacific Launch Operations Office	NA	NA	NA	NA	3 005	3 105	3 847			
Vestern Support Office	NA	NA	NA	NA	NA	NA	36 290	34 391	32 412	
et Propulsion Laboratory	10 519	12 081	16 243	21 922	24 813	33 394	41 147	47 175	48 620	78 771
Total	\$268 210	\$322 603	\$407 692	\$513 606	\$614 194	\$830 704 \$	1 172 392 \$	1 518 918 \$1		

^aReal property total = land value + buildings value + other structures and facilities value. Although leasehold improvements are deemed a category of real property in NASA Management Instruction 8800.1A, this variable is not included in the real property totals of this table or the real property tables in Chapter Six. For FY 1966 and FY 1967 figures on leasehold improvements by installation, see Table 2-4.

^bAdjusted figure; see Table 6-14 in Chapter Six.

NA = Not available.

Table 2-11. Land Value by Installation and Fiscal Year (as of June 30; in thousands)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	\$ 20	\$ 20	\$ 20	\$ 663	\$ 663	\$ 663	\$ 773a 0	\$ 773 739	\$ 2 373 769	\$ 2372 1099
Electronics Research Center	0	0	0	0	0	0	0	0	0	0
Flight Research Center	NA	NA	NA	NA	58	421	735	1 145	1 291	1 535
Goddard Space Flight Center	IVA			NA	32 670	55 653	60 117	60 487	60 487	60 516
Kennedy Space Center	110	110	110	110	116	116	116	116	116	116
Langley Research Center	290	292	295	303	1 582	1 597 ^b	1 617	1 618	1 975	1 696
Lewis Research Center				0	0	3 810	4 157	5 446	5 418	9 015
Manned Spacecraft Center			(86)	(86)	(11 217)	(22 115)	(17 330)	(19 321)	(21 762),	(26 591)
Marshall Space Flight Center total Marshall Space Flight Center			86	86	95	95	406	2 106	4 074	3 802
Michoud Assembly Facility				NA	6 598	6 598	7 137	7 380	7 481	7 502
Mississippi Test Facility					4 472	15 370	9 726	9 774	10 144	15 224
					52	52	61	61	63	63
Computer Operations Office			0	0	0	0	0	0	0	0
Space Nuclear Propulsion Office	NA	NA	NA	NA	592	592	592	592	611	611
Wallops Station				0	0	0	0			
Pacific Launch Operations Office	NA	NA	NA	NA	NA	NA	5 158	3 540	3 617	
Western Support Office	117	117	267	807	802	802	802	802	799	799
Jet Propulsion Laboratory Total	\$668	\$687	\$887	\$20 308	\$47 700	\$85 769	\$91 397	\$94 579	\$99 218	\$104 350

^aAdjusted figure; see Table 6-14 in Chapter Six.

NA = Not available.

b Adjusted figure; see Table 6-80 in Chapter Six.

NASA FACILITIES 37

Table 2-12. Buildings Value by Installation and Fiscal Year (as of June 30; in thousands)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	\$ 80 390	\$ 82 658	\$ 96 926	\$107 156	\$110 639a	\$120 259ª	\$129 021	\$13'3 769 \$	159 406 \$	161 816
Electronics Research Center							0	0	0	1 671
Flight Research Center	NA	NA	NA	NA	4 609	6 074	5 458	6 954	7 399	7 627
Goddard Space Flight Center		NA	NA	NA	13 022	32 141	44 358	58 074	68 948	81 064
Kennedy Space Center				NA	474	14 065	42 742	110 335	186.080	242 915
Langley Research Center	NA	NA	NA	NA	145 438	62 808	79 474	86 316	106 050	118 570
Lewis Research Center	57 553	89 971	89 566	89 743	99 102	132 732	111 023	150 573	161 394	179 834
Manned Spacecraft Center				NA	74	11 754	39 974	103 072	119 748	179 634
Marshall Space Flight Center Total			(36 160)		(73 677)	(82 027)	(108 468)	(162 027)	(226 059)	
Marshall Space Flight Center			36 160	39 233	50 136	55 517	77 546	95 431	110 744	(252 101)
Michoud Assembly Facility				NA	21 290	23 044	27 391	52 352		123 089
Mississippi Test Facility					21 230 NA	617	687	-	62 140	63 212
Computer Operations Office					2 251	· - ·		11 337	48 795	61 394
Space Nuclear Propulsion Office			NA	NA		2 849	2 844	2 907	4 380	4 406
Wallops Station	NA	NA	NA NA		NA	NA	71	14 207	14 525	19 680
Pacific Launch Operations Office	NA	NA	NA	NA	13 397	20 602	22 517	22 241	23 159	23 665
Western Support Office	NA	N/A		NA	888	888	1 547			
Jet Propulsion Laboratory		NA 7.000	NA	NA	NA	NA	26 077	25 845	23 769	
•	6 709	7 239	10 631	14 658	16 736	25 799	31 872	34 695	38 543	50 456
Total	\$246 268	\$286 025	\$367 799	\$435 069	\$478 056	\$509 149	\$642 602	\$908 108 \$1	135 080 \$1	298 187

^aAdjusted figure; see Table 6-14 in Chapter Six.

NA = Not available.

Table 2-13. Other Structures and Facilities Value by Installation and Fiscal Year (as of June 30; in thousands)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	NA	NA	NA	NA	\$ 2 232a	\$ 2 268a	\$ 2112a	\$ 2112	\$ 2346\$	2 383
Electronics Research Center							0	0	0	9
Flight Research Center	NA	NA	NA	NA	488	768	1 577	1 824	1 913	1 900
Goddard Space Flight Center		NA	NA	NA	881	2 788	17 846	31 793	40 995	49 441
Kennedy Space Center				NA	5 004	36 488	73 934	137 201	285 079	378 948
Langley Research Center	NA	NA	NA	NA	11 704	110 040	113 360	118 293	129 119	130 902
Lewis Research Center	\$ 6 072	\$11 462	\$11 477	\$11 587	21 227	21 093	84 602	45 043	40 509	59 889
Manned Spacecraft Center				NA	757	6 626	16 691	23 422	41 857	49 424
Marshall Space Flight Center Total			(572)	(718)	(19 716)	(24 921)	(84 782)	(105 228)	(161 901)	(259 670)
Marshall Space Flight Center			572	718	6 015	9 628	56 769	54 121	68 755	81 970
Michoud Assembly Facility				NA	13 084	9 314	15 122	20 253	22 987	24 251
Mississippi Test Facility			-		NA	5 545	12 189	30 151	69 345	152 625
Computer Operations Office					617	434	702	703	814	824
Space Nuclear Propulsion Office			NA	NA	NA	NA	21	1 809	8 586	5 235
Wallops Station	NA	NA	NA	NA	17 037	21 784	27 640	32 822	35 360	39 516
Pacific Launch Operations Office				NA	2 177	2 217	2 300			
Western Support Office	NA	NA	NA	NA	NA	NA	5 055	5 006	5 026	
Jet Propulsion Laboratory	3 693	4 725	5 345	6 457	7 275	6 793	8 473	11 678	9 278	27 516
Total	\$21 274	\$35 891	\$39 006	\$58 229	\$88 438	\$235 786	\$438 393	\$516 231	\$761 969 \$	1 004 968

^a Adjusted figures; see Table 6-14 in Chapter Six.

NA = Not available.

Table 2-14. Capitalized Equipment Value by Installation and Fiscal Year (as of June 30; in thousands)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	\$12 608	\$13 335	\$13 368	\$ 15 120	\$ 17 806	\$ 22 955	\$ 28 119	\$ 34 674\$	41 812 \$	53 670
Electronics Research Center							100	1 808	6 961	13 227
Flight Research Center	NA	NA	NA	6 000	9 093	14 444	22 172	29 230	29 522	32 332
Goddard Space Flight Center	NA	NA	NA	23 000	37 191	59 404	110 243	199 031	258 184	371 696
Kennedy Space Center				7 000	10 294	16 771	28 203	64 307	94 240	127 900
Langley Research Center	NA	NA	NA	25 000	33 314	46 583	55 288	64 540	83 212	91 240
Lewis Research Center	NA	12 479	15 891	21 691	26 836	30 867	40 510	77 361	80 851	96 884
Manned Spacecraft Center				3 800	11 104	19 312	35 623	96 599	124 958	154 973
Marshall Space Flight Center Total			45 000	51 000	64 676	84 149	103 240	244 962	256 297	302 575
Marshall Space Flight Center			(45 000)	NA	NA	NA	NA	(140 000)	(139 000)	(236 080)
Michoud Assembly Facility				NA	NA	NA	NA	NA	NA	41 338
Mississippi Test Facility					NA	NA	NA	NA	NA	24 846
Computer Operations Office					NA	NA	NA	NA	NA	311
Space Nuclear Propulsion Office		·	NA	NA	NA	NA	434	7 728	24 075	24 408
Wallops Station	NA	NA	NA	6 000	9 177	12 965	18 100	26 908	34 235	35 241
Pacific Launch Operations Office				NA	25	642	246			
Western Support Office		- -			194	155	201	22 465	22 943	
Jet Propulsion Laboratory	10 322	12 335	18 220	26 028	34 300	46 894	62 873	79 252	92 093	103 796
NASA Headquarters	NA_	NA	NA	1 340	1 735	1 658	2 5 1 3	6 083	7 302	10 210
Total	NA	NA	NA	\$185 979	\$255 745	\$356 799	\$507 865	\$954 948 \$1	156 685 \$	1 418 152

NA = Not available.

Table 2-15. Land Value as Percentage of Total Real Property Value by Installation and Fiscal Year (as of June 30)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	*	•	*	0.6	0.6	0.5	0.5	0.6	1.5	1.5
Electronics Research Center	_						0	100.0	100.0	40.1
Flight Research Center	0	0	0	0	0	0	0	0	0	0
Goddard Space Flight Center		NA	NA	NA	0.4	1.2	1.1	1.3	1.3	1.2
Kennedy Space Center				NA	85.6	52.4	34.0	19.6	11.4	8.9
Langley Research Center	0.1	*	*	*	0.1	0.1	0.1	*	*	*
Lewis Research Center	0.3	0.2	0.2	0.2	1.3	1.0	0.8	0.8	0.9	0.7
Manned Spacecraft Center				NA	0	17.1	6.8	4.1	3.3	4.2
Marshall Space Flight Center ^a			0.2	0.2	10.7	17.1	8.2	6.8	5.3	4.9
Space Nuclear Propulsion Office			0	0	0	. 0	0	0	0	0
Wallops Station	NA	NA	NA	NA	1.9	1.4	1.1	1.0	1.0	1.0
Pacific Launch Operations Office				NA	0	0	0		-	
Western Support Office	NA	NA	NA	NA	NA	NA	14.2	10.2	11.2	
Jet Propulsion Laboratory	1.1	1.0	1.6	3.7	3.3	2.4	1.9	1.7	1.6	1.0

^aMFSC total only; for breakdown see Tables 6-125 through 6-128 in Chapter Six.

NA = Not available.

Source: Derived from Tables 2-10 and 2-11.

^{*=} Less than 0.5 percent.

Table 2-16. Buildings Value as Percentage of Total Real Property Value by Installation and Fiscal Year (as of June 30)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	99.9a	99.9 a	99.9a	99.4 a	97.5	97.6	97.8	97.8	97.1	97.1
Electronics Research Center							0	0	0	60.5
Flight Research Center	NA	NA	NA	NA	90.4	88.8	77.6	79.2	79.5	80.0
Goddard Space Flight Center		NA	NA	NA	93.3	90.9	70.5	63.8	62.0	61.4
Kennedy Space Center				NA	1.2	13.2	24.2	35.8	35.0	35.6
Langley Research Center	NA	NA	NA	NA	92.5	36.3	41.2	42.2	45.1	47.5
Lewis Research Center	90.2	88.5	88.5	88.4	81.3	85.4	56.3	76.3	79.2	74.5
Manned Spacecraft Center				NA	8.9	53.0	65.7	78.1	71.7	73.1
Marshall Space Flight Center ^b			98.2	98.0	70.4	63.6	51.5	56.5	55.2	46.9
Space Nuclear Propulsion Office			NA	NA	NA	NA	77.2	88.7	62.8	79.0
Wallops Station	NA	NA	NA	ÑΑ	43.2	47.9	44.4	40.0	39.2	37.0
Pacific Launch Operations Office				NA	29.6	28.6	40.2			
Western Support Office	NA	NA	NA	NA	NA	NA	71.9	7.5.2	73.3	
Jet Propulsion Laboratory	63.8	59.9	65.5	66.9	67.4	77.3	77.5	73.5	79.3	64.1

^aIncludes other structures and facilities.

NA = Not available.

^b MSFC total only; for breakdown see Tables 6-125 through 6-128 in Chapter Six.

Table 2-17. Other Structures and Facilities Value as Percentage of Total Real Property Value by Installation and Fiscal Year
(as of June 30)

	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Ames Research Center	NA	NA	NA	NA	1.9	1.9	1.7	1.6	1.4	1.4
Electronics Research Center							0	0	0	*
Flight Research Center	NA	NA	NA	NA	9.6	11.2	22.4	20.8	20.5	20.0
Goddard Space Flight Center		NA.	NA	NA	6.3	7.9	28.4	34.9	36.9	37.4
Kennedy Space Center				NA	13.2	34.4	41.8	44.6	53.6	55.5
Langley Research Center	NA	NA	NA	NA	7.4	63.6	58.7	57.8	54.9	52.4
Lewis Research Center	9.5	11.3	11.3	11.4	17.4	13.6	42.9	22.9	19.9	24.8
Manned Spacecraft Center				NA	91.1	29.9	27.5	17.8	25.0	22.7
Marshall Space Flight Center ^a			1.6	1.8	18.9	19.3	40.3	36.7	39.5	48.2
Space Nuclear Propulsion Office			NA	NA	NA	NA	22.8	11.3	37.2	21.0
Wallops Station	NA	NA	NA	NA	54.9	50.7	54.5	59.0	59.8	62.0
Pacific Launch Operations Office			NA	NA	70.4	71.4	59.8			
Western Support Office	NA	NA	NA	NA	NA	NA	13.9	14.6	15.5	
Jet Propulsion Laboratory	35.1	39.1	32.9	29.4	29.3	20.3	20.6	24.8	19.1	34.9

^a MSFC total only; for breakdown see Tables 6-125 through 6-128 in Chapter Six.

NA = Not available.

^{* =} Less than 0.05 percent.

NASA FACILITIES 43

Table 2-18. Real Property Value of Installations Ranked as Percentage of NASA Total (as of June 30)

NASA Total Ranking	1963 \$614 194 000	1964 \$830 704 000	1965 \$1 172 392 000	1966 \$1 518 918 000	1967 \$1 996 267 000	1968 \$2 407 505 000
1.	LaRC 25.6%	LaRC 20.8%	MSFC 18.0%	KSC 20.3%	KSC 26.6%	KSC 28.3%
2.	LeRC 19.9	LeRC 18.7	LeRC 16.8	MSFC 18.9	MSFC 20.5	MSFC 22.4
3.	ARC 18.4	MSFC 15.5	LaRC 16.5	LaRC 13.5	LaRC 11.8	LaRC 10.4
4.	MSFC 17.0	ARC 14.8	KSC 15.1	LeRC 13.0	LeRC 10.2	LeRC 10.0
5.	LOC a 6.2	KSC 12.8	ARC 11.3	ARC 9.0	MSC 8.4	MSC 9.0
6.	WS 5.1	WS 5.2	GSFC 5.4	MSC 8.7	ARC 8.2	ARC 6.9
7.	JPL 4.0	GSFC 4.3	MSC 5.2	GSFC 6.0	GSFC 5.6	GSFC 5.5
8.	GSFC 2.3	JPL 4.0	W\$ 4.3	WS 3.7	WS 3.0	JPL 3.3
9.	FRC 0.8	MSC 2.7	JPL 3.5	JPL 3.1	JPL 2.4	WS 2.7
10.	PLOO 0.5	FRC 0.8	WOOb 3.1	WSO 2.3	WSO 1.6	SNPO 1.0
11.	MSC 0.1	PLOO 0.4	FRC 0.6	SNPO 1.1	SNPO 1.2	FRC 0.4
12.			PLOO 0.3	FRC 0.6	FRC 0.5	ERC 0.1
13.			SNPO *	ERC *	ERC *	-
	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

^aLaunch Operations Center (LOC) redesignated Kennedy Space Center (KSC) effective Dec. 20, 1963.

Source: Derived from Table 2-10.

^bWestern Operations Office (WOO) functions realigned in Western Support Office (WSO) on June 15, 1966.

^{* =} Less than 0.1 percent. Because of rounding, columns may not add to 100.0 percent.

Table 2-19. Capitalized Equipment Value of Installations Ranked as Percentage of NASA Total (as of June 30)

Ranking NAS	A Total \$185 9	62 79 000	19 \$255 74	63 45 000	\$356 7°	99 000	\$507.80	65 65 000	19 \$954 94	48 000		967 685 000		968 152 000
1.	MSFC	27.4%	MSFC	25.3%	MSFC	23.5%	GSFC	21.7%	MSFC	25.7%	GSFC	22.5%	GSFC	26.2%
2.	JPL	14.0	GSFC	14.5	GSFC	16.6	MSFC	20.3	GSFC	20.8	MSFC	22.2	MSFC	21.3
3.	LaRC	13.4	JPL	13.4	JPL	13.1	JPL	12.3	MSC	10.1	MSC	10.7	MSC	10.9
4.	GSFC	12.4	LaRC	13.0	LaRC	13.0	LaRC	10.8	JPL	8.3	KSC	8.1	KSC	9.0
5.	LeRC	1.1.7	LeRC	10.5	LeRC	8.6	LeRC	7.9	LeRC	8.1	JPL	7.9	JPL	7.3
6.	ARC	8.1	ARC	7.0	ARC	6.4	MSC	7.1	LaRC	6.8	LaRC	7.2	LeRC	6.8
7.	LOCa	3.8	MSC	4.3	MSC	5.5	KSC	5.5	KSC	6.7	LeRC	7.0	LaRC	6.4
8.	FRC	3.2	LOC ^a	4.0	KSC	4.7	ARC	5.5	ARC	3.6	ARC	3.6	ARC	3.9
9.	WS	3.2	FRC	3.6	FRC	4.0	FRC	4.3	FRC	3.1	WS	3.0	WS	2.5
10.	MSC	2.0	WS	3.6	WS	.3.6	WS	3.5	WS	2.8	FRC	2.5	FRC	2.3
11.	Hq.	0.7	Hq.b	0.7	Hq.	0.4	Hq.	0.4	WSO	2.3	SNPO	2.1	SNPO	1.7
12.			WOOc	*	PLOO	0.1	SNPO	*	SNPO	0.9	WSO	2.0	ERC	0.9
13.		'	PLOO	*	WOO'c	*	PLOO	*	Hq.	0.6	Hq.	0.6	Hq.	0.6
14.							WOOc	*	ERC	0.2	ERC	0.6		
15.							ERC	*		-				-
		100.0%		100.0%		100.0%		100.0%		100.0%		100.0%		100.0%

^aLaunch Operations Center (LOC) redesignated Kennedy Space Center (KSC) effective Dec. 20, 1963.

Source: Derived from Table 2-14 above.

^b Including North Eastern Office.

cWestern Operations Office (WOO) functions realigned in Western Support Office (WSO) June 15, 1966.

^{* =} Less than 0.1 percent. Because of rounding, columns may not add to 100.0 percent.

NASA FACILITIES

Table 2-20. NASA Industrial (Contractor-Held) Real Property Value by Installation: FY 1967 and FY 1968 (as of June 30)^a

Installation	Land in Hectares (and acres)		Number of Buildings		Buildings, Sq. Meters (and sq. feet)		Land Value (in thousands)		Buildings, Value (in thousands)		Other Structures & Facilities, Value (in thousands)		Total Real Property Value (in thousands)	
	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968
Marshall Space Flight Center	0	0	32	34	43 089.5 (463 812)	44 403.5 (477 955)	\$3979	\$3707	\$20.979	\$20 492	\$33 275	\$42 778	¢ 58 222	\$ 66 977
NASA Pasadena Officeb	59.1	59.1	189	343	129 490.4 (1 393 823)	159 577.6	799	799	38 543					
Western Support Office	(145.9) 1 195.9				161 449.4			199			9 278		48 620	78 923
Langley Research Center	(2 954.9) 44.5	44.5	85		· (1 737 822) 2 275.2	6 130.7	3617		23 769		5 026		32 412	
Lewis Research Center	(110.0) 2 992.6	(110.0) 2 780.6	1	1	(24 490) 10 020.3	(65 990) 8 957.0	6	6	10 658	15 177	25	25	10 689	15 208
		(6 871.1)	31	23	(107 858) 8 402.5	(96 412) 8 402.5	378	99	2 317	4 228	5 682	4 019	8 377	8 346
Wallops Station	0	0	68	68	(90 443)	(90 443)	0	0	2 258	2 557	270	271	2 828	2 828
SNPO-Cleveland	0	0	0	0	0	0	0	0	0	0	125	125	125	125
Manned Spacecraft Center ^c	0	67.2 (165.9)	1	83	8.9 (96)	160 537.6 (1 728 013)	0	3570	6	23 941	93	5 092	99	32 603
Goddard Space Flight Centerd	1 128.7 (2 789)	1 128.7 (2 789.0)	NA	3	NA	218.5 (2 352)	NA	0	NA	88	NA		NA	133
Total	4 292.2 (10 606.2)(4 080.1	407	555	254 735.8 (3 818 344)	388 207.3	\$8779	\$8183				\$79 872		\$205 143

a Included in real property figures in Table 2-1. Figures are installation totals; for breakdown, see section on each installation in Chapter Six. Data for earlier years are not available.

dTransfer from WSO to GSFC of TRW-Redondo Beach facility and the antenna test range at White Sands Missile Range operated by New Mexico State University is reflected in FY 1968 figures.

NA = Not available.

bJet Propulsion Laboratory, operated under contract with California Institute of Technology. FY 1968 figures include all DSN tracking stations.

^cTransfer from WSO to MSC of NASA Industrial Plant-Downey is reflected in FY 1968 figures.

Table 2-21. Industrial (Contractor-Held) Real Property Value as Percentage of Total by Installation: FY 1967 and FY 1968 (as of June 30) a

]	Percentage of I	nstallation Tot	al			
Installation	Land	Value	Buildin	gs Value	Other S and Facilit	tructures ties Value	Real Property Valu		
	1967	1968	1967	1968	1967	1968	1967	1968	
Marshall Space Flight Center	18.2	13.9	9.2	8.1	20.6	16.5	14.3	12.4	
NASA Pasadena Office ^b	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Western Support Office	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Langley Research Center	5.2	5.2	10.1	12.8	*	*	4.5	6.1	
Lewis Research Center	19.1	5.8	1.4	2.4	14.0	6.7	4.1	3.9	
Wallops Station	0	0	11.0	10.8	6.5	6.4	4.8	4.4	
SNPO-Cleveland	0	0	0	0	1.5	2.4	0.5	0.5	
Manned Spacecraft Center	0	39.6	*	15.1	0.2	10.4	*	15.0	
Goddard Space Flight Center	NA	0	NA	0.1	NA	0.1	NA	0.1	

^aFor breakdown of industrial real property, see section on each installation in Chapter Six. Data for earlier years are not available.

NA = Not available.

Source: Derived from Table 2-20.

^b Jet Propulsion Laboratory, operated under contract with California Institute of Technology.

^{* =} Less than 0.1 percent.

Table 2-22. In-house Real Property at Tracking and Data Acquisition Stations: FY 1965-FY 1968 (as of June 30; in thousands)^a

	1965	1966	1967	1968
Land	\$ 32	\$ 325	\$ 325	\$ 335
Buildings	3 725	11 842	13 438	15 910
Other structures and facilities	16 058	27 170	20.702	
and factities	10 038	27 179	30 782	38 254
Total	\$19 815	\$39 346	\$44 545b	\$54 499

^aIn-house property includes Manned Space Flight Network (MSFN) and Space Tracking and Data Acquisition Network (STADAN); both MSFN and STADAN figures are included in Goddard Space Flight Center reports. Data for earlier years are not available.

^bDoes not include \$1 753 000 for MSFN Goldstone station, for which inventory was in process as of June 30, 1967.

Table 2-23. NASA Industrial (Contractor-Held) Real Property at Deep Space Network Tracking and Data Acquisition Stations: FY 1967 and FY 1968

(as of June 30; in thousands)^a

	Total Real P	roperty Value
Location	1967	1968
Goldstone, California	\$ 5 622	\$20 705
Woomera, Australia	2 424	2 424
Tidbinbilla, Australia	2 391	2 391
Robledo de Chavela, Spain	1 359	1 379
Cebreros, Spain	1 346	1 346
Hartebeesthoek, Republic of S. Africa	768	765
Total	\$13 910	\$29 010

^a DSN property is included in NASA Pasadena Office (JPL) reports; data for earlier years are not available. Source: NASA, Office of Facilities.

Table 2-24. Real Property at Tracking and Data Acquisition Stations by Location (as of June 30; in thousands)^a

	Year	Network		Total Real	Property Va	lue	Remarks
Station Location	Became Opera- tional	Affilia- tions ^b	1965	1966	1967	1968	- Comunica
Ascension Island	1967	MSFN	\$ 0	\$3104	\$3104	\$3 104	
Bermuda	1961	MSFN	132	1303	3173	3 157	
Blossom Point, Maryland	1956	STADAN	135	171			Prototype Minitrack station; phased out in Sept. 1966.
Canton Island	1961	MSFN	380	4165	4075	_	Phased out effective Dec. 31, 1967.
Carnarvon, Australia	1964	STADAN MSFN	0	1448	2527	2 527	
Corpus Christi, Texas	1961	MSFN	449	491	1777	1 782	
Cebreros, Spain	1967	DSN MSFN	0 0	0 0	1346 1468	1 346 2 768	
East Grand Forks, Minnesota	1960	STADAN	-23	202			Phased out in June 1966.
Fairbanks, Alaska	1962	STADAN	1693	4070	4224	5728	Includes all Alaskan STADAN facilities (Ulaska and Gilmore; equipment at College site moved to Ulaska in late 1966).
Fort Meyers, Florida	1959	STADAN	135	194	259	565	Minitrack equipment transferred from Havana, Cuba.
Goldstone, California	1960	STADAN	1510	1745	1985	3153	STADAN site called Mohave; Minitrack equipmen transferred from Brown Field Naval Auxiliary Station, Chula Vista, California.
	1050	MSFN	0	0	1753°	1 932 20 721	Pioneer station operational in 1958; Echo site in
	.1958	DSN	5361	5512	5622	20 /21	1960; Venus site in 1962; Mars site in 1966.
Grand Canary Island, Spain	1961	MSFN	455	515	515	3 115	
Guam	1967	MSFN	0	277	1960	1 960	

NASA FACILITIES 49

Table 2-24. Real Property at Tracking and Data Acquisition Stations by Location (Continued)
(as of June 30; in thousands)^a

Station Location	Year Station Became Opera-	Network Affilia-	Т	otal Real Pro	operty Valu	e	
Station Education	tional	tions ^b	1965	1966	1967	1968	Remarks
Guaymas, Mexico	1961	MSFN	\$ 423	\$ 662	\$ 716	\$ 938	
Hawaii (Kauai)	1961	MSFN	810	1000	2181	2 168	
Honeysuckle Creek (Canberra), Australia	1966	MSFN	0	0	2433	3 229	
Island Lagoon (Woomera), Australia	1961 1960	STADAN DSN	0 NA	278 NA	278 2424	NA 2 424	Smithsonian Astrophysical Observatory optical station established in 1957.
Johannesburg, Republic of South Africa	1960 1961	STADAN DSN	598 NA	903 NA	903 768	938 768	Minitrack equipment moved from Esselen Park (29 km [18 mi] nortneast of Johannesburg) to Hartebeesthoek (61 km [38 mi] northwest of Johannesburg) in 1960.
Kano, Nigeria	1961	MSFN	NA	496			Used for Mercury and Gemini programs; discontinued for Apollo program.
Lima, Peru	1957	STADAN	16	217	241	363	Former Minitrack station.
Orroral Valley, Australia	1965	STADAN	0	3076	3109	3 010	Minitrack equipment from Woomera site moved to Orroral. Valley in late 1966.
Quito, Ecuador	1957	STADAN	748	1287	1191	1 657	Former Minitrack station.
Red Lake (Woomera), Australia	1961	MSFN	0	219	219	219	
Robledo de Chavela, Spain	1965	DSN	NA	NA	1359	1 379	
Rosman, North Carolina	1962	STADAN	5589	5815	6000	6 579	Second 26-m (85-ft.) dish antenna added Aug. 1964
St. John's, Newfoundland	1960	STADAN	306	321	321	343	Former Minitrack station.
Santiago, Chile	1957	STADAN	1038	1441	1365	1 757	Former Minitrack station.
Tananarive, Malagasy Republic	1965- 1966	STADAN	0	375	450	2 008	

Table 2-24. Real Property at Tracking and Data Acquisition Stations by Location (Continued)
(as of June 30; in thousands)^a

	Year Station	Network	То	tal Real Pro	perty Value		Remarks
Station Location	Became Opera- tional	Affilia- tions ^b	1965	1966	1967	1968	
Tidbinbilla, Australia	1965	DSN	NA	NA NA	2391	2 391	
Toowoomba, Australia	1966	ATS	0	NA	NA	NA	Applications Technology Satellite station.
Winkfield, United Kingdom	1961	STADAN	14	59	71	159	Former Minitrack station.
Darwin, Australia	1701	STADAN					Site on north coast of Australia; used for OGO.
Grand Bahama Island Grand Turk Island	1957 1957	MSFN MSFN					Coral island 81 km (50 mi) east of Palm Beach, Fla. Former Minitrack station; phased out during July 196
Merritt Island, Florida	1737	MSFN					Prime station during near-earth phases of Apollo missions.
Muchea, Australia		MSFN					After Mercury, station equipment moved to Carnarvon site.
Network Training Facility, Greenbelt, Maryland		STADAN					Contains equipment employed in various NASA networks for testing and training.
Point Arguello, California		MSFN					Located about 64 km (40 mi) northwest of Santa Barbara.
White Sands, New Mexico		MSFN					Used as a prime site during Mercury and Gemini; provided only C-band radar support during Apollo.

^a Figures for STADAN and MSFN are included in Goddard Space Flight Center reports; DSN figures are included in NASA Pasadena Office (JPL) reports and represent industrial (contractor-held) real property. DSN real property inventory was in process on June 30, 1967, and figures were not included in some end-of-fiscal-year reports.

Source: NASA, Office of Facilities; NASA, Office of Tracking and Data Acquisition; William R. Corliss, The Evolution of the Satellite Tracking and Data Acquisition Network (STADAN), GHN-3 (Greenbelt, Md.: GSFC, January 1967), p. 57 ff.; Corliss, "Histories of STADAN, the MSFN, and NASCOM," unpublished comment draft, June 1, 1972, Appendix A.

b MSFN = Manned Space Flight Network. STADAN = Space Tracking and Data Acquisition Network. DSN = Deep Space Network. ATS = Applications Technology Satellite station.

clnventory was in process on June 30, 1967; this figure was not included in end-of-fiscal-year reports and is not included in Table 2-22.

NA = Not Available.

Chapter Three NASA PERSONNEL

(Data as of 1968)

Chapter Three

NASA Personnel

List of Tables

Table		Page
3-1	Civilian and Military In-house Personnel	58
3-2	Accessions and Separations of Paid Personnel	60
3-3	Paid Employees by NASA Occupation Code Groups	62
3-4	Paid Employees by General Schedule Grade	64
3-5	NASA Excepted, P.L. 313, and Executive Pay Act Employees	66
3-6	Military Detailees, Selected Data	68
3-7	Temporary Employees, Selected Data	70
3-8	Paid Employees by NASA Installation (number on board)	72
3-9	Paid Employees by NASA Installation (percentage of NASA total)	74
3-10	Paid Employees by NASA Installation (changes in number on board)	76
3-11	Permanent Employees by NASA Installation	78
3-12	Temporary Employees by NASA Installation	80
3-13	NASA Excepted, P.L. 313, and EPA Employees by NASA Installation	82
3-14	NASA Excepted, P.L. 313, and EPA Employees by NASA Installation (percentage of NASA total)	84
3-15	Military Detailees by NASA Installation (number on duty)	86
3-16	Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation	88
3-17	Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation (percentage of NASA total)	90
3-18	Technical Support Permanent Personnel (Code Group 300) by NASA Installation	92
3-19	Technical Support Permanent Personnel (Code Group 300) by NASA Installation (percentage of NASA total)	94

Table		Page
3-20	Trades and Labor Permanent Employees (Code Group 100) by NASA Installation	96
3-21	Trades and Labor Permanent Employees (Code Group 100) by NASA Installation (percentage of NASA total)	98
3-22	Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation	100
	Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation (percentage of NASA total)	•
3-24	Permanent Civil Service Positions by NASA Program	104
	Permanent Civil Service Positions by NASA Program (percentage of NASA total)	
	Total NASA Employment, Selected Characteristics	
	Scientists and Engineers Employment, Selected Characteristics	

Chapter Three NASA PERSONNEL

NASA's predecessor agency, the National Advisory Committee for Aeronautics, employed about 8000 persons when it was disestablished on September 30, 1958. On October 1, 1958, these 8000 persons became employees of the National Aeronautics and Space Administration. NACA's annual budget at the time was about \$100 million. In 1967 NASA's employment figure peaked at about 36 000, an increase of 450 percent. NASA's annual expenditures exceeded \$5 billion, an increase of 5000 percent over the figures for NACA.

This almost 10-to-1 disparity in the increase in money compared to that in civil servants is a good indicator that NACA carried out most of its activities in its own installations with its own personnel (i.e., in-house), whereas only about 10 percent of NASA's activity is performed in-house, the major share of it being carried out by contractors and thus done out-of-house.

This in-house and out-of-house factor greatly complicates any attempt to depict NASA's manpower patterns. It is relatively easy to tabulate the number of in-house positions and the number of persons filling them. It is much more difficult to find out how many and what kinds of persons were working on NASA's program via contract. Requirements of public law guaranteed that accurate data on in-house personnel be reported. Data on contractor personnel had to await the development of some kind of reporting system. One result of this situation is that the data in this chapter focus primarily on in-house personnel rather than the much larger number of persons "employed" by NASA through its contractors.

The tables that follow can be divided into four groups. Tables 3-1 through 3-7 consist primarily of data in the form of head counts of in-house personnel for the agency as a whole. Tables 3-8 through 3-23 present much of the same data broken out by installation. Tables 3-24 and 3-25 focus on the number of positions provided for in NASA's annual budget and a distribution of these positions by major program area. Finally Tables 3-26 and 3-27 give some overall dimensions to the number of contractor employees.

The principal cautionary point to be kept in mind when using the data

that follow is that people are not as neatly categorized as the tables might imply. The terms used must be defined and the categories explained. A word must also be said about the principal sources of the data presented.

Sources of Data

- 1. NASA Quarterly Personnel Statistical Report (QPSR). The report was discontinued December 31, 1966. Primarily a head count of NASA employees with information for each reporting installation on such things as kinds of appointment, occupational code groupings, grades, accessions, and separations.
- 2. NASA Personnel Management Information System (PMIS). A computerized successor to the Quarterly Personnel Statistical Report. Generated data in a variety of formats and included a larger number of variables than the OPSR.
- 3. NASA Manpower Information Digest. Issued every January since 1965. Summarized the data available on NASA's out-of-house or contractor manpower. Prepared by the Management Information Systems Division of NASA Headquarters.
- 4. The Resources Analysis Division of NASA Headquarters supplied data on the distribution of personnel positions by major program area. The Manpower Utilization Report prepared by the Financial Management Division of NASA Headquarters presented data on man-months of effort and related obligations, but at a level of detail beyond the scope of this chapter.

Definition of Terms

Many of the terms used in the tables of this chapter are defined in NASA Management Instruction 3291, Subject: Personnel Definitions and Reporting Requirements. All of the quotations that follow are from this Management Instruction.

- 1. Permanent Employees. "... all employees whose appointments are not time limited or ... are for a period of more than one year...."
- 2. Temporary Employees. These are called "Other Than Permanent" in the currently used Personnel Management Information System and include "employees whose appointments are specifically limited to definite periods of one year or less..." and others who are included in this category by definition (such as CO-OP [Cooperative; alternating work and study] students and intermittent employees).

Note: Tables 3-1 through 3-23 use two different sources of data (QPSR through December 31, 1966, and PMIS subsequently) with slightly varying definitions of Permanent Employees and Temporary (QPSR) or Other Than Permanent (PMIS) Employees. This difference must be explained even though the numbers are relatively small. QPST included TAPER's (Temporary Appointments Pending Establishment of Register) in Temporary whereas PMIS includes them in Permanent. CO-OP Students are Other Than Permanent in the PMIS system but in the QPSR were distributed among Permanent and Temporary depending on each student's tenure or type of appointment. Apprentices are Permanent in the PMIS system but handled the same as CO-OP Students in the QPSR.

- 3. Paid Employees. Permanent Employees and Temporary (i.e., Other Than Permanent) Employees Combined. Specifically excluded from this category are military personnel detailed to NASA regardless of any reimbursement.
- 4. Military Detailees. Military personnel detailed to NASA. (See definition 3 above.)
- 5. Excepted Employees. Civil Servants who fill high-level permanent positions created under provisions of Section 203(b) of the Space Act of 1958. (P.L. 313 and Executive Pay Act employees are included under this heading for the purposes of this chapter.)
- 6. Contractor Employees. Persons employed under NASA contracts and thus performing work for NASA without being NASA employees.
- 7. Grade. A civil service categorization scheme to differentiate levels of pay, duties, responsibilities, and so forth. Salaries shown in Table 3-4 are those of the General Schedule. Excepted positions are paid in the range from GS-16 to GS-18 and above. Wage Board pay is locally rather than nationally set.
- 8. Occupational Code Groups. The definitions that follow are verbatim quotations from NASA Management Instruction 3291 mentioned above. The

tables in this chapter give a subtotal from the 200, 700, and 900 code groups. This subtotal represents the number of professional scientific and technological personnel members employed by NASA. As of June 30, 1961, several adjustments were made in the terminology for the 700 code and extensive conversions were made from the 200 code to the 700 code. Table 3-22 combines the 500 code and the 600 code because they were combined in the 500 code before December 31, 1960. Thus the combination in Table 3-22 is one of convenience and not meant to imply any substantive comparability between the codes. Code 600 is made up of professionals; code 500 is not.

100-Trades and Labor Positions: "Includes trade, craft and general laboring positions (non-supervisory, leader and supervisory), compensated on the basis of prevailing locality wage rates."

200—Support Engineering and Related Positions: "Includes professional physical science, engineering, and mathematician positions in work situations not identified with aerospace technology."

300—Technical Support Positions: "Includes scientific and engineering aid, technician, drafting, photography, illustrating, salaried shop superintendents, quality assurance specialists, production planning and inspecting positions."

500—Clerical and Non-Professional Administrative Positions: "Includes secretarial, specialized and general clerical, and administrative specialist positions, the qualification requirements for which are clerical training and experience or specialized non-professional experience in supply, fiscal, procurement and similar or related activities."

600—Professional Administrative Positions: "Includes professional management positions in research and development administration in such activities as financial management, contracting, personnel, security, administration, law, public affairs and the like for which a college degree or the equivalent, and specialized training and experience are required."

700—AST Scientific and Engineering Positions: "Includes professional scientific and engineering positions requiring Aero-Space Technology (AST) qualifications. Includes professional positions engaged in aerospace research, development, operations, and related work including the development and operation of specialized facilities and supporting equipment."

900—Life Science Positions: "Includes life science professional positions not requiring AST qualifications. Includes medical officers and other positions performing professional work in psychology, the biological sciences and professions which support the science of medicine such as nursing and medical technology."

NASA PERSONNEL

Organizational Nomenclature

Tables 3-8 through 3-23 list NASA Installations as they existed in 1968. In the 10 years covered by the tables new installations were established, existing ones abolished or consolidated, and many name changes made. Chapter Six of this volume describes what took place in considerable detail and only minimal information is presented here. The transfers that took place were mostly on paper rather than the physical moving of employees.

- 1. Headquarters. From time to time figures for Headquarters include small ad hoc and emerging units (such as the North Eastern Office before March 31, 1963).
- 2. NASA Pasadena Office. The NASA Resident Office-JPL was established March 3, 1964, and consolidated with two other offices to form NASA Pasadena Office August 8, 1966.
- 3. Western Support Office. The former Western Coordination Office was renamed Western Operations Office in August 1959. Transformed into Western Support Office June 15, 1966. Disestablished March 1, 1968. Until late 1959, personnel figures were included with the totals for the Flight Research Center.
- 4. Other Western Offices. The Pacific Launch Operations Office had an independent reporting status between March 1962 and October 1965. NASA Office-Downey had complex connections with other NASA installations. Its somewhat independent status for reporting purposes stretched from mid-1966 to its disestablishment April 9, 1967, and data for it appear only in the December 31, 1966, column of tables 3-8 through 3-23.
- 5. Langley Research Center. Dates from 1917. In November 1959 the 490-member Space Task Group was transferred to the jurisdiction of the Goddard Space Flight Center. In January 1960, 225 persons were transferred to the jurisdiction of Wallops Station.
 - 6. Ames Research Center. Dates from 1941.
 - 7. Lewis Research Center. Dates from 1942.
- 8. Flight Research Center. Dates from 1947. Name changed from High Speed Flight Station on September 27, 1959.
- 9. Electronics Research Center. Established on September 1, 1964. Data before that date are for NASA's North Eastern Office (NEO).
- 10. AEC-NASA Space Nuclear Propulsion Office. Established as AEC-NASA Nuclear Propulsion Office August 31, 1960, with a further agreement

February 1, 1966, and renamed AEC-NASA Space Nuclear Propulsion Office July 28, 1961.

57

- 11. Goddard Space Flight Center. Dates from NASA's origin. On November 30, 1958, 148 persons were transferred from NRL/Vanguard of the Navy Department. In November 1959 the 490-member Space Task Group was transferred from the Langley Research Center and in January 1961 the Space Task Group, numbering about 660 persons, became independent—to become the Manned Spacecraft Center in August 1961 (moving to Houston in 1962).
- 12. Wallops Station. Dates from 1945. Part of the Langley Research Center until January 1960 when independent status was attained and 225 persons transferred to it from Langley.
- 13. Marshall Space Flight Center. NASA Huntsville Facility established March 14, 1959, and named George C. Marshall Space Flight Center March 15. Mass transfer of 4256 persons from the Army to NASA occurred July 10, 1960. Transfers to the Launch Operations Center occurred in July 1962 (338 persons) and May 1963 (276 persons).
- 14. Manned Spacecraft Center. The Space Task Group was given independent status in January 1961 and about 660 persons were transferred to it from Goddard. The Manned Spacecraft Center was funded in August 1961. The physical move from Langley to Houston took place in mid-1962.
- 15. John F. Kennedy Space Center, NASA. The Launch Operations Center achieved independent status in March 1962 and 338 persons transferred to it from Marshall. In May 1963, 276 more followed. It was named for the late President Kennedy in November 1963.
- 16. Jet Propulsion Laboratory. Owned by NASA but operated and staffed by the California Institute of Technology via contracts. Transferred to NASA from the Army in December 1958.

Tables

In the tables which follow, Tables 3-1 through 3-23 are based on data supplied by the NASA Personnel Division unless otherwise indicated. Through December 31, 1966, the data derive from the NASA Quarterly Personnel Statistical Report (QPSR). Subsequent data derive from the NASA Personnel Management Information System, which superseded the Quarterly Personnel Statistical Report.

Table 3-1. Civilian and Military In-house Personnel (number on board)

	1958		1959		1960		1961		1962	
Category of Employee ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Permanent employees (Civil Service) Temporary employees (Civil Service) Total paid employees (Civil Service) Military detailees Total in-house manpower	7 867 99 7 966 74 8 040	8 326 94 8 420 66 8 486	9 123 112 9 235 58 9 293	9 496 71 9 567 67 9 634	10 085 147 10 232 52 10 284	15 682 360 16 042 77 16 119	16 536 935 17 471 88 17 559	18 454 533 18 987 117 19 104	22 052 1 634 23 686 138 23 824	24 758 909 25 667 161 25 828
Net increase, previous six months Percentage increase		446 5.5%	807 9.5%	341 3.7%	650 6.7%	5 835 56.7%	1 440 8.9%	1 545 8.8%	4 720 24.7%	2 004 8.4%
Net increase, permanent only Percentage increase, permanent only	 	459 5.8%	797 9.6%	373 4.1%	589 6.2%	5 597 55.5%	854 5.4%	1 918 11.6%	3 598 19.5%	2 706

Table 3-1. Civilian and Military In-house Personnel (Continued) (number on board)

	1963	3	1964	<u> </u>	1965	5	1966	5	1967	<u>' </u>	1968
Category of Employee ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Permanent employees (Civil Service)	28 358	29 482	31 285	32 335	32 697	32 663	33 538	33 722	33 677	33 172	32 342
Temporary employees (Civil Service)	1 576	587	1 214	773	1 352	692	2 170	644	2 183	767	2 299
Total paid employees (Civil Service)	29 934	30 069	32 499	33 108	34 049	33 355	35 708	34 366	35 860	33 939	34 641
Military detailees	216	239	250	249	222	280	305	323	309	318	317
Total in-house manpower	30 150	30 308	32 749	33 357	34 271	33 635	36 013	34 689	36 169	34 257	34 958
Net increase, permanent only	4 322	158	2 441	608	914	-636	2 378	-1 324	1 480	-1 912	701
Percentage increase, permanent only	16.7%	0.5%	8.1%	1.9%	2.7%	-1.9%	7.1%	-3.7%	4.3%	-5.3%	2.0%
Net increase, permanent only	3 600	1 124	1 803	1 050	362	-34	875	184	-4 5	-505	-830
Percentage increase, permanent only	14.5%	4.0%	6.1%	3.4%	1.1%	-0.1%	2.7%	0.5%	-0.1%	-1.5%	-2.5%

^aSee introduction to this chapter for a definition of terms.

Table 3-2. Accessions and Separations of Paid Employees (activity for six-month periods)

A addition and	195	8 ^b	1959	•	1960)	1961	l	1962		1963	
Activity and Category of Employee ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Accessions ^c	•											
Permanent employees	375	936	1179	798	995	2066	1568	2616	4428	4006	4700	3002
Temporary employees	84	29	164	64	198	507	1059	543	1740	1058	1865	722
Total	459	965	1343	862	1193	2573	2627	3159	6168	5064	6565	3724
Separations												2161
Permanent employees	226	460	390	420	422	838	783	1015	1138	1693	1548	2161
Temporary employees	85	26	129	94	97	174	360	639	399	1401	723	1404
Total	311	486	519	514	519	1012	1143	1654	1507	3094	2271	3565
Net accessions, total	148	479	824	348	674	1561	1484	1505	4661	1970	4294	159
Percentage increased		6.0%	9.8%	3.8%	7.0%	15.3%	9.3%	8.6%	24.5%	8.3%	16.7%	0.5%
Net accessions, permanent	149	476	789	378	573	1228	785	1601	3320	2313	3152	841
Percentage increase, permanent ^d		6.1%	9.5%	4.1%	6.0%	12.2%	5.0%	9.7%	18.0%	10.5%	12.7%	3.0%

NASA PERSONNEL

Table 3-2. Accessions and Separations of Paid Employees (Continued) (activity for six-month periods)

Activity and	1964	! ·	1965	5	196	6	196	7	1968
Category of Employee ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Accessions c									
Permanent employees	3314	2885	2129	2200	3161	2316	2426	914	1034
Temporary employees	1410	1162	1195	1722	2111	708	1819	596	1963
Total	4724	4047	3324	3922	5262	3024	4245	1510	2997
Separations									
Permanent employees	1784	2134	1945	2471	2420	2329	2268	1449	2009
Temporary employees	502	1329	400	2157	504	1799	487	1802	465
Total	2286	3463	2345	4628	2924	4128	2755	3251	2474
Net accessions, total	2438	584	979	-706	2338	-1104	1490	-1741	523
Percentage increase d	8.1%	1.8%	3.0%	-2.1%	7.0%	-3.1%	4.3%	-4.9%	1.5%
Net accessions, permanent	1530	751	184	-271	741	-13	158	-535	-975
Percentage increase, permanentd	5.2%	2.4%	0.6%	-0.8%	2.3%	-0.04%	0.5%	-1.6%	-2.9%

^aSee introduction to this chapter for a definition of terms.

^bFor three-month periods ending on date indicated. These are the last three months of NACA and the first three months of NASA.

^cExcludes certain transferees such as the July 1, 1960, mass transfer at Huntsville, Alabama.

^dPercentage calculated by dividing the net accessions or separations for a six-month period by the number of paid employees at the beginning of that six-month period.

Table 3-3. Paid Employees by NASA Occupation Code Groups (number on board and percentage of NASA total)

	19:	58	19:	59	196	50	190	61	19	62
NASA Code Occupational Groups ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
200 (General scientists and engineers)	604	660	728	764	783	1 347	312	231	294	375
	7.6%	7.8%	7.9%	8.0%	7.7%	8.4%	1.8%	1.2%	1.2%	1.5%
700 (Aerospace scientists and engineers)	2044	2158	2466	2603	2 726	3 854	5 453	6 087	7 867	8 865
	25.7%	25.6%	26.7%	27.2%	26.6%	24.0%	31.2%	32.1%	33.2%	34.5%
900 (Primarily life sciences)										
200, 700, 900 subtotal	2648	2818	3194	3367	3 509	5 201	5 765	6 318	8 161	9 240
	33.3%	33.5%	34.6%	35.2%	34.3%	32.4%	33.0%	33.3%	34.5%	36.0%
300 (Technical support)	714	785	844	853	922	1 791	2 295	2 272	3 390	3 068
	9.0%	9.3%	9.1%	8.9%	9.0%	11.2%	13.1%	12.0%	14.3%	12.0%
600 (Professional administrative)						792 4.9%	943 5.4%	1 317 6.9%	1 834 7.7%	2 303 9.0%
500 (Primarily clerical)	1045	1186	1445	1602	2 031	2 336	2 635	2 997	3 939	4 474
	13.1%	14.1%	15.6%	18.8%	19.8%	14.6%	15.1%	15.8%	16.6%	17.4%
100 (Trades and labor)	3558	3631	3752	3745	3 770	5 922	5 833	6 083	6 362	6 578
	44.7%	43.1%	40.6%	39.1%	36.8%	36.9%	33.4%	32.0%	26.9%	25.6%
Total paid employees	7966	8420	9235	9567	10 232	16 042	17 471	18 987	23 686	25 667

NASA PERSONNEL 63

Table 3-3. Paid Employees by NASA Occupation Code Groups (Continued) (number on board and percentage of NASA total)

	196	3	196	4	196	5	1966	5	196	7	1968
NASA Code Occupational Groups ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
200 (General scientists and engineers)	405	429	420	427	420	408	422	385	387	361	332
	1.4%	1.4%	1.3%	1.3%	1.2%	1.2%	1.2%	1.1%	1.1%	1.1%	1.0%
700 (Aerospace scientists and engineers)	10 560	11 007	11 966	12 494	12 793	12 726	13 580	13 327	14 018	13 662	13 842
	35.3%	36.6%	36.8%	37.7%	37.6%	38.2%	38.0%	38.8%	39.1%	40.3%	40.0%
900 (Primarily life sciences)	13	27	41	46	52	54	58	48	50	44	47
	0.04%	0.1%	0.1%	0.1%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%
200, 700, 900 subtotal	10 978	11 463	12 427	12 967	13 265	13 188	14 060	13 760	14 455	14 067	14 221
	36.7%	38.1%	38:2%	39.2%	38.9%	39.5%	39.4%	40.0%	40.3%	41.4%	41.1%
300 (Technical support)	4 079	3 637	3 947	3 922	4 144	4 163	4 852	4 610	4 859	4 680	4 977
	13.6%	12.1%	12.1%	11.8%	12.2%	12.5%	13.6%	13.4%	13.5%	13.8%	14.4%
600 (Professional administrative)	2 800	3 064	3 422	3 632	3 762	3 827	4 188	4 417	4 644	4 629	4 477
	9.4%	10.2%	10.5%	11.0%	11.0%	11.5%	11.7%	12.9%	13.0%	13.6%	12.9%
500 (Primarily clerical)	5 292	5 133	5 850	5 816	5 972	5 913	6 492	6 073	6 251	5 499	5 632
	17.7%	17.1%	18.0%	17.6%	17.5%	17.7%	18.2%	17.7%	17.4%	16.2%	16.3%
100 (Trades and labor)	6 785	6 772	6 853	6 771	6 906	6 264	6 116	5 506	5 651	5 064	5 334
	22.7%	22.5%	21.1%	20.5%	20.3%	18.8%	17.1%	16.0%	15.8%	14.9%	15.4%
Total paid employees	29 934	30 069	32 499	33 108	34 049	33 355	35 708	34 366	35 860	33 939	34 641

^aSee introduction to this chapter for a full description of occupational code groups. Note especially the initiation of the 600 category and conversion of the 200 category.

Table 3-4. Paid Employees by General Schedule Grade (number on board)

	1958	3	1959	9	196	0	1961		1963	2
Grade and 6/30/68 General Schedule Salary Rates	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
GS-18 (\$27 055)	0	0	0	0	0	1	1	1	1	0
GS-16 (\$20 982-\$26 574)	26	3	0	0	0	0	4	4	4	4
GS-15 (\$18 404-\$23 921)	242	209	210	262	323	537	614	769	1 001	1 186
GS-14 (\$15 841-\$20 593)	274	313	374	439	508	857	998	1 146	1 495	1 814
GS-13 (\$13 507-\$17 557)	557	591	646	668	755	1 209	1 330	1 542	1 992	2 4 2 8
GS-12 (\$11 461-\$14 899)	557	599	660	689	751	1 223	1 381	1 636	2 064	2 5 1 6
GS-11 (\$ 9 657-\$12 555)	481	543	602	683	782	1 442	1 555	1 783	2 001	2 262
GS-10 (\$ 8 821-\$11 467)	15	16	18	18	14	17	13	13	14	18
GS-9 (\$ 8 054-\$10 475)	543	582	684	762	812	1 151	1 145	1 133	1 486	1 766
GS-8 (\$ 7 384-\$ 9 598)	17	21	21	20	24	25	24	35	30	28
GS-7 (\$ 6 734-\$ 8 759)	343	384	625	598	563	724	987	1 066	1 706	1 623
GS-6 (\$ 6 137-\$ 7 982)	132	157	165	167	198	283	318	370	438	498
GS-5 (\$ 5 565-\$ 7 239)	498	492	457	480	564	918	973	1 063	1 328	1 509
GS-4 (\$ 4 995-\$ 6 439)	381	426	461	459	483	736	926	1 018	1 433	1 529
GS-3 (\$ 4 466-\$ 5 807)	264	262	286	291	335	544	793	813	1 509	1 266
GS-2 (\$ 4 108-\$ 5 341)	52	60	71	76	119	165	278	164	371	172
GS-1 (\$ 3 776-\$ 4 910)	0	0	1	0	0	0	1	5	6	5
Wage Board	3558	3631	3752	3745	3 770	5 922	5 833	6 083	6 362	6 578
Excepted, WAE's, a others	26	131	202	210	231	288	297	343	445	465
Total paid employees	7966	8420	9235	9567	10 232	16 042	17 471	18 987	23 686	25 667
Percentage of total										
GS 14-18 (\$15 841-\$27 055)	6.8%	6.2%	6.3%	7.3%	8.1%	8.79	% 9.3%	10.19	% 10.6%	11.7%
GS 10-13 (\$ 8 821-\$17 557)	20.2	20.8	20.9	21.5	22.5	24.3	24.5	26.2	25.6	28.1
GS 7-9 (\$ 6 734-\$10 475)	11.3	11.7	14.4	14.4	13.7	11.8	12.3	11.8	13.6	13.3
GS 4-6 (\$ 4 995-\$ 7 982)	12.7	12.8	11.7	11.6	12.2	12.1	12.7	12.9	13.5	13.8
GS 1-3 (\$ 3 776-\$ 5 807)	4.0	3.9	3.9	3.8	4.4	4.4	6.1	5.2	8.0	5.6
Wage Board	44.7	43.1	40.6	39.1	36.8	36.9	33.4	32.0	26.7	25.6
Excepted, WAE's others	0.3	1.6	2.2	2.2	2.3	1.8	1.7	1.8	1.9	1.8

NASA PERSONNEL

Table 3-4. Paid Employees by General Schedule Grade (Continued) (number on board)

	196	3	196	4	196	5	196	6	196	7	1968
Grade and 6/30/68 General Schedule Salary Rates	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
GS-18 (\$27 055)	. 0	0	0	0	0	0	0	0	0	0	0
GS-16 (\$20 982-\$26 574)	4	4	4	153	250	274	276	303	310	319	314
GS-15 (\$18 404-\$23 921)	1 360	1 533	1611	1 532	1 606	1 647	1 757	1 812	1 908	1 947	2 029
GS-14 (\$15 841-\$20 593)	2 087	2 285	2 464	2 586	2 640	2 762	2 955	3 101	3 298	3 375	3 429
GS-13 (\$13 507-\$17 557)	2 939	3 232	3 679	3 901	3 984	4 107	4 470	4 658	4 875	5 088	5 130
GS-12 (\$11 461-\$14 899)	2 964	3 3 1 2	3 662	4 002	4 055	4 192	4 265	4 329	4 323	4 290	4 289
GS-11 (\$ 9 657-\$12 555)	2 654	2 885	3 191	3 532	3 622	3 6 5 6	3 665	3 541	3 529	3 423	3 331
GS-10 (\$ 8 821-\$11 467)	21	21	23	34	57	67	178	205	242	285	, 320
GS-9 (\$ 8 054-\$10 475)	2 266	2 374	2 4 5 6	2 499	2 467	2 263	2 374	2 254	2 349	2 341	2 354
GS-8 (\$ 7 384-\$ 9 598)	35	46	50	60	86	90	176	201	199	201	229
GS-7 (\$ 6 734-\$ 8 759)	1 949	1 610	1 701	1 458	1 576	1 383	2 019	1 639	2 002	1 529	1 494
GS-6 (\$ 6 137-\$ 7 982)	541	591	671	684	700	705	809	818	820	782	796
GS-5 (\$ 5 565-\$ 7 239)	1 709	1 779	1 901	1 891	1 926	1 924	2 100	1 990	2 128	2 052	2 043
GS-4 (\$ 4 995-\$ 6 439)	2 117	1 888	2 119	1 941	1 913	1 819	2 002	1 806	2 024	1 740	1 745
GS-3 (\$ 4 466-\$ 5 807)	1 749	1 154	1 324	1 290	1 301	1 209	1 309	1 233	1 254	824	882
GS-2 (\$ 4 108-\$ 5 341)	270	103	291	276	425	479	644	392	442	158	388
GS-1 (\$ 3 776-\$ 4 910)	0	0	3	12	89	19	19	86	9	52	17
Wage Board	6 785	6 772	6 853	6 771	6 906	6 264	6 116	5 506	5 651	5 064	5 334
Excepted, WAE's, others	484	480	496	486	446	475	493	492	487	469	517
Total paid employees	29 934	30 069	32 499	33 108	34 049	33 355	35 708	34 366	35 860	33 939	34 641
Percentage of total											
GS 14-18 (\$15 841-\$27 055)	11.59	6 12.79	% 12.69	6 12.99	% 13.29	% 14.09	% 14.0%	6 15.7%	6 15.49	6 16.6%	16.7%
GS 10-13 (\$ 8 821-\$17 557)	28.7	31.4	32.5	34.6	34.4	36.0	35.2	37.1	36.2	38.6	37.7
GS 7-9 (\$ 6 734-\$10 475)	14.2	13.4	12.9	12.1	12.1	11.2	12.8	11.9	12.7	12.0	11.8
GS 4-6 (\$ 4 995-\$ 7 982)	14.6	14.2	14.4	13.6	13.3	13.3	13.8	13.4	13.9	13.5	13.2
GS 1-3 (\$ 3 776-\$ 5 807)	6.7	4.2	5.0	4.8	5.3	5.1	5.5	5.0	4.8	3.0	3.7
Wage Board	22.7	22.5	21.1	20.5	20.3	18.8	17.1	16.0	15.8	14.9	15.4
Excepted, WAE's, others	1.6	1.6	1.5	1.5	1.3	1.4	1.4	1.4	1.4	1.4	1.5

^aWAE's = employees who are paid when actually employed.

Table 3-5. NASA Excepted, P.L. 313, and Executive Pay Act Employees (positions and numbers on board)

	19	958	19	059	19	060	19	61	19	062
Employee Category	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Authorized ^a						200	200	355	425	425
NASA excepted	260	260	260	260	290	290	290			12
P.L. 313	0	0	0	0	12	12	12	12	12	
Executive Pay Act	2	2	2	2	2	2	2	2	2	2
Total authorized	262	262	262	262	304	304	304	369	439	439
On board	26	130	195	204	221	270	284	301	364	397
Accessions (six-month period)	1	25	10	12	14	15	8	22	45	34
Separations (six-month period)	0	0	1	5	6	7	10	7	10	11
Net transfers ^b	0	79	56	2	9	41	16	2	28	10
Net increase	1	104	65	9	17	49	14	17	63	33

Table 3-5. NASA Excepted, P.L. 313, and Executive Pay Act Employees (Continued) (positions and numbers on board)

	19	63	19	964	19	965	19	966	19	67	1968
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Authorized ^a											1
NASA excepted	425	425	425	425	425	425	425	425	425	425	425
P.L. 313	12	12	12	12	12	12	12	12	12	12	12
Executive Pay Act	2	2	2	9	9	9	9	9	9	9	9
Total authorized	439	439	439	446	446	446	446	446	446	446	446
On board	411	407	415	420	353	355	355	371	368	395	405
Accessions (six-month period)	17	15	22	33	21	22	15	25	29	43	0
Separations (six-month period)	13	28	14	13	7	19	6	15	30	17	0
Net transfers ^b	10	9	0	-15	-81	-1	-9	6	4	1	0
Net increase	14	-4	8	5	-67	2	0	16	-3	27	10

^a For further information on these positions see Rosholt, An Administrative History of NASA, pp. 56-8, 140-1, 268.

^b An artificial figure compiled by subtracting separations from accessions and then subtracting that difference from the net increase figure. See Table 3-4 for data on GS-16.

Table 3-6. Military Detailees, Selected Data (number on duty)

	19	58	19.	59	19	60	190	51	190	52
Category of Data	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Total on duty	74	66	58,	67	52	77	88	117	138	161
Accessions, previous six months	10a	9 a	11	8	4	16	7	36	46	66
Separations, previous six months	16ª	17ª	18	15	20	3	1	10	23	50
Net increase		-8a	-8	9	-15	25	11	29	21	23
Occupation groupings ^b 200 700 900	9 65	9 57	5 53	2 65	1 51	1 76	1 84	6 103	9 124	0 155
Subtotal	74	66	58	67	52	77	85	109	133	155
Percentage of total	100%	100%	100%	1 00 %	100%	100%	96.6%	93.2%	96.4%	96.39
300	0	0	0	0	0	0 	0 2	1 5	1 4	1 5
600 500	0	0	0	0	0	0	1	2	0	0
Total	74	66	58.	67	52	77	88	117	138	161
Number per 10 000 paid civilians	93	78	63	70	51	48	5 0	62	58	63

Table 3-6. Military Detailees, Selected Data (Continued) (number on duty)

	190	63	19	64	19	65	190	56	190	67	1968
Category of Data	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Total on duty	216	239	250	249	222	280	305	323	309	318	317
Accessions, previous six months	51	62	26	65	22	111	72	38	28	NA ·	NA
Separations, previous six months	15	26.	30	59	53	49	41	25	34	NA	NA
Net increase	55	23	11	-1	-27	58	25	18	-14	9	-1
Occupation groupings ^b 200 700 900	0 195 7	1 212 10	1 221 11	1 217 10	0 196 7	0 251 6	0 276 6	0 287 12	0 271 11	0 287 9	0 291 11
Subtotal	202	223	233	228	203	257	282	299	282	296	302
Percentage of total	93.5%	93.3%	93.2%	91.6%	91.4%	91.8%	92.5%	92.6%	91.3%	93.1%	95.3%
300 600 500	3 11 0	2 14 0	2 12 3	4 16 1	3 15 1	9 13 1	8 14 1	11 11 2	11 15 1	10 11 1	5 9 1
Total	216	239	250	249	222	280	305	323	309	318	317
Number per 10 000 paid civilians	72	79	77	75	65	84	85	94	86	94	92

^aFor previous three months. ^bSee Table 3-3.

NA = Not available.

Table 3-7. Temporary Employees, Selected Data (number on board)

	19	58	195	59	196	50	196	51	190	52
Category of Data	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
	99	94	112	71	147	360	935	533	1634	909
Cotal on board Accessions, previous six months	174ª	29ª	164	64	198	507	1059	543	1740	1058
eparations, previous six months	138ª	26ª	129	94	97	174	360	639	399	1401
Vet increase		-5ª	18	-4 1	76	213	575	-4 02	1101	-725
Occupation groupings ^b 200 700	1	2 2	2 14	1 8	2 14	11 26	10 86	7 72 	3 176 	6 88
900 Subtotal	1	4	16	9	16	37	96	79	179	94
Percentage of total	1.0%	4.3%	14.3%	12.7%	10.9%	10.3%		14.8%		10.3
300	2	3	6	4	9	48 16	345 34	115 41	746 79	251 98
600 500 100	12 84	16 71	25 65	24 34	93 29	133 126	307 153	180 118	450 180	360 106
Total	99	94	112	71	147	360	935	533	1634	909

Table 3-7. Temporary Employees, Selected Data (Continued) (number on board)

	19	63	19	64	19	65	19	66	19	67	1968
Category of Data	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Total on board	1576	587	1214	773	1352	692	2170	644	2183	767	2299
Accessions, previous six months	1865	722	1410	1162	1195	1722	2111	708	1819	NA	NA
Separations, previous six months	723	1404	502	1329	400	2157	504	1799	487	NA	NA
Net increase	667	-989	627	-44 1	579	-660	1478	-1526	1539	-1416	1532
Occupation groupings ^b 200 700 900	4 276 3	1 69 1	6 167 5	3 78 6	6 132 12	6 11 <i>5</i> 15	19 471 14	2 118 3	9 481 9	3 75 3	4 362 4
Subtotal	283	71	178	87	150	136	504	123	499	81	370
Percentage of total	18.0%	12.1%	14.7%	11.3%	11.1%	19.7%	23.2%	19.1%	22.9%	10.6%	16.1%
300 600 500 100	571 94 513 115	146 60 207 103	300 62 528 146	180 42 344 120	265 45 447 445	144 30 294 88	423 72 621 550	125 47 205 144	625 126 467 466	411 25 112 138	629 88 396 816
Total	1576	587	1214	773	1352	692	2170	644	2183	767	2299

^aFor previous three months. ^bSee Table 3-3.

NA = Not available.

Table 3-8. Paid Employees by NASA Installation (number on board)

	19	58	19	59	19	60	19	961	19	062
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	180	274	429	484	585	662	748	960	1 477	1 693
NASA Pasadena Office							60	84	136	247
Western Support Office ^b					37	50	00	04	130	14
Other Western offices ^c	-					710	808	1 044	1613	1 954
Subtotal A ^d	180	274	429	484	622	712	808	1 094	1 013	1 754
Langley Research Center	3368	3501	3795	3456	3 191	3 208	3 338	3 460	3 894	4 007
Ames Research Center	1413	1427	1464	1429	1 421	1 418	1 462	1 529	1 658	1 825
Lewis Research Center	2713	2696	2809	2749	2 722	2 743	2 773	3 036	3 800	4 118
Flight Research Center	292	306	340	332	408	416	447	494	538	568
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								1.5	39	67
Subtotal Bd	7786	7930	8408	7966	7 742	7 785	8 020	8 534	9 929	10 585
Goddard Space Flight Center		216	398	1117	1 269	1 881	1 599	1 858	2 755	2 858
Wallops Station					229	297	302	371	421	430
Subtotal Cd		216	398	1117	1 498	2 178	1 901	2 229	3 176	3 288
Marshall Space Flight Center					370	5 367	5 948	6 034	7 182	6 844
							794	1 146	1 786	2 392
Manned Spacecraft Center										604
Kennedy Space Center Subtotal D ^d					370	5 367	6 742	7 180	8 968	9 840
Total paid employees	7966	8420	9235	9567	10 232	16 042	17 471	18 987	23 686	25 667

Table 3-8. Paid Employees by NASA Installation (Continued) (number on board)

	1	963	1	964	1	965	1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	2 001	2 017	2 158	2 026	2 135	2 112	2 336	2 274	2 373	2 176	2 310
NASA Pasadena Office				16	19	20	85	2 2 7 4 87	2 3 7 3 9 1	2176	
Western Support Officeb	308	318	376	370	377	343	294	105			79
Other Western offices ^c	17	19	22	21	21			103		103	
Subtotal Ad	2 326	2 354	2 556	2 433	2 552	2 475	2 715	2 593	2 583	2 366	2 389
Langley Research Center	4 220	4 234	4 330	4 329	4 371	4 263	4 485	4 296	4 405	4 211	4 219
Ames Research Center	2 1 1 6	2 166	2 204	2 215	2 270	2 236	2 310	2 232	2 264	2 171	2 197
Lewis Research Center	4 697	4 760	4 859	4 878	4 897	4 834	5 047	4 825	4 956	4 623	4 583
Flight Research Center	616	618	619	622	669	629	662	618	642	607	622
Electronics Research Center	25	30	33	117	250	340	555	619	791	: 785	950
AEC-NASA Space Nuclear Propulsion Office	96	102	112	111	116	112	115	114	113	117	108
Subtotal B ^d	11 770	11 910	12 157	12 272	12 573	12 414	13 174	12 704	13 171	12 514	12 679
Goddard Space Flight Center	3 487	3 443	3 675	3 640	3 774	3 560	3 958	3 791	3 995	3 752	4 073
Wallops Station	493	502	530	523	554	526	563	538	576	509	565
Subtotal C ^d	3 980	3 945	4 205	4 163	4 328	4 086	4 521	4 329	4 571	4 261	4 638
Marshall Space Flight Center	7 332	7 227	7 679	7 639	7 719	7 503	7 740	7 434	7 602	7 288	6 935
Manned Spacecraft Center	3 345	3 364	4 277	4 721	4 413	4 391	4 889	4 688	5 066		- ,
Kennedy Space Center	1 181	1 269	1 625	1 880	2 464	2 486	2 669	2 618	2 867	4 728	4 956
Subtotal D ^d	11 858	11 860	13 581	14 240	14 596	14 380	15 298	14 740	2 867 15 535	2 782 14 798	3 044 14 935
Total paid employees	29 934	30 069	32 499	33 108	34 049	33 355	35 708	34 366	35 860	33 939	34 641

^aSee introduction to this chapter for an explanation of nomenclature and reporting problems. See Tables 3-11 and 3-15 for data on the Jet Propulsion Laboratory. See Chapter Six for a separate personnel summary for each installation.

^bDiscontinued as of March 1, 1968.

^cThe 12/31/66 figure is for the "NASA Office-Downey." The earlier figures are all for the Pacific Launch Operations Office.

dThese subtotals express an organizational grouping of NASA field installations. Subtotal B components are associated with the Office of Advanced Research and Technology; Subtotal C components, and JPL, with the Office of Space Sciences and Applications; and Subtotal D components with the Office of Manned Space Flight. The NASA Pasadena Office and the Pacific Launch Operations Office are often thought of as components of Subtotal C rather than with NASA Headquarters, as shown here. This organizational arrangement dates from 1963.

Table 3-9 Paid Employees by NASA Installation (percentage of NASA total*)

	19	058	19	959	19	960	19	061	19	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	2.3	3.3	4.6	5.1	5.7	4.1	4.3	5.1	6.2	6.6
NASA Pasadena Office Western Support Office ^b					0.4	. 0.3	0.4	0.4	0.6	1.0
Other Western offices ^c Subtotal A ^d	2.3	3.3	4.6	5.1	6.1	4.4	4.6	5.5	6.8	7.6
Langley Research Center	42.3	41.6	41.1	36.1	31.2	20.0	19.1	18.2	16.4	15.6
Ames Research Center	17.7	16.9	15.9	14.9	13.9	8.8	8.4	8.1	7.0	7.1
Lewis Research Center	34.1	32.0	30.4	28.7	26.7	17.1	15.9	16.0	16.0	16.0
Flight Research Center	3.7	3.6	3.7	3.5	4.0	2.6	2.6	2.6	2.3	2.2
Electronics Research Center								0.1	0.2	0.3
AEC-NASA Space Nuclear Propulsion Office Subtotal B ^d	97.7	94.2	91.0	83.3	75.7	48.5	45.9	44.9	41.9	41.2
Goddard Space Flight Center		2.6	4.3	11.7	12.4	11.7	9.2	9.8	11.6	11.1
Wallops Station					2.2	1.9	1.7	2.0	1.8	1.7
Subtotal C ^d		2.6	4.3	11.7	14.6	13.6	10.9	11.7	13.4	12.8
Marshall Cases Elight Center					3.6	33.5	34.0	31.8	30.3	26.7
Marshall Space Flight Center Manned Spacecraft Center							4.5	6.0	7.5	9.3
Kennedy Space Center										2.4
Subtotal D ^d					3.6	33.5	38.6	37.8	37.9	38.3
Total paid employees	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-9. Paid Employees by NASA Installation (Continued) (percentage of NASA total*)

		1963	1	964	1	965	_ 1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	6.7	6.7	6.6	6.1	6.3	6.3	6.5	6.6	6.6	6.4	6.7
NASA Pasadena Office				*	0.1	0.1	0.2	0.3	0.3	0.3	0.2
Western Support Office ^b	1.0	1.1	1.2	1.1	1.1	1.0	0.8	0.3	0.3	0.3	
Other Western offices ^c	0.1	0.1	0.1	0.1	0.1			0.4			
Subtotal Ad	7.8	7.8	7.9	7.3	7.5	7.4	7.6	7.5	7.2	7.0	6.9
Langley Research Center	14.1	14.1	13.3	13.1	12.8	12.7	12.6	12.5	12.3	12.4	12.2
Ames Research Center	7.1	7.2	6.8	6.7	6.7	6.7	6.5	6.5	6.3	6.4	6.3
Lewis Research Center	15.7	15.8	15.0	14.7	14.4	14.5	14.1	14.0	13.8	13.6	13.2
Flight Research Center	2.1	2.1	1.9	1.9	2.0	1.9	1.9	1.8	1.8	1.8	1.8
Electronics Research Center	0.1	0.1	0.1	0.4	0.7	1.0	1.6	1.8	2.2	2.3	2.7
AEC-NASA Space Nuclear Propulsion Office	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Subtotal B ^d	39.3	39.6	37.4	37.1	36.9	37.2	36.9	37.0	36.7	36.9	36.6
Goddard Space Flight Center	11.6	11.5	11.3	11.0	11.1	10.7	11.1	11.0	11.1	11.1	11.8
Wallops Station	1.6	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.6
Subtotal C ^d	13.3	13.1	12.9	12.6	12.7	12.3	12.7	12.6	12.7	12.6	13.4
Marshall Space Flight Center	24.5	24.0	23.6	23.1	22.7	22.5	21.7	21.6	21.2	21.5	20.0
Manned Spacecraft Center	11.2	11.2	13.2	14.3	13.0	13.2	13.7	13.6	14.1	13.9	14.3
Kennedy Space Center	3.9	4.2	5.0	5.7	7.2	7.5	7.5	7.6	8.0	8.2	8.8
Subtotal D ^d	39.6	39.4	41.8	43.0	42.9	43.1	42.8	42.9	43.3	43.6	43.1
Total paid employees	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}Percentages are rounded to nearest tenth of one percent and thus may not add to totals. An asterisk in the column indicates less than 0.05 percent.

a-d Notes are identical to those for Table 3-8.

Source: Table 3-8.

Table 3-10. Paid Employees by NASA Installation (changes in number on board)*

	19	58	19	95 9	19	060	19	61	19	62
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters		94	155	55	101	77	86	212	517	216
NASA Pasadena Office										
Western Support Officeb					37	13	10	24	52	111 14
Other Western offices ^c									569	341
Subtotal ^d		94	155	55	138	90	96	236	369	341
Landay Danasah Contor		133	294	-339	-265	17	130	122	434	113
Langley Research Center Ames Research Center		14	37	-35	-8	-3	44	67	129	167
Lewis Research Center		-17	113	-60	-27	21	30	263	764	318
Flight Research Center		14	34	-8	76	8	31	47	44	30
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								15	24	28
Subtotal ^d		144	478	-442	-224	43	235	514	1395	656
Goddard Space Flight Center		216	182	719	152	612	-282	259	897	103
Wallops Station					229	68	5	69	50	9
Subtotal ^d		216	182	719	381	680	-277	328	947	112
M. J. H.S., a Flight Conton					370	4997	581	86	1148	-338
Marshall Space Flight Center							794	352	640	606
Manned Spacecraft Center										604
Kennedy Space Center Subtotal ^d					370	4997	1375	438	1788	872
Total increases (decreases)		454	815	332	665	5810	1429	1516	4699	1981

NASA PERSONNEL

Table 3-10. Paid Employees by NASA Installation (Continued) (changes in number on board)*

	19	063	19	064	19	965	1:	966	1	967	1968
Installationa	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	308	16	141	-132	109	-23	224	-62	99	-197	134
NASA Pasadena Office				16	3	1	65	2	4	-4	-8
Western Support Office ^b	61	10	58	-6	7	-34	-49	-189	14	-16	-103
Other Western offices ^c	3	2	3	-1	0	-21		127	-127		
Subtotal ^d	372	28	202	-123	119	-77	240	-122	-10	-217	23
Langley Research Center	213	14	96	-1	42	-108	222	-189	109	-194	8
Ames Research Center	291	50	38	11	5.5	-34	74	-78	32	-93	26
Lewis Research Center	579	63	99	19	19	-63	213	-222	131	-333	-40
Flight Research Center	48	2	1	3	47	-40	33	-44	24	-35	15
Electronics Research Center	25	5	3	84	133	90	215	64	172	; -6	165
AEC-NASA Space Nuclear Propulsion Office	29	6	10	-1	5	-4	3	-1	-1	-4	-9
Subtotal ^d	1185	140	247	115	301	-159	760	-4 70	467	-657	165
Goddard Space Flight Center	629	-44	232	-35	134	-214	398	-167	204	-243	321
Wallops Station	63	9	28	-7	31	-28	37	-25	38	-67	56
Subtotal ^d	692	-35	260	-42	165	-242	435	-192	242	-310	377
Marshall Space Flight Center	488	-105	452	-4 0	80	-216	237	-306	168	-314	-353
Manned Spacecraft Center	953	19	913	444	-308	-22	498	-201	378	-314	228
Kennedy Space Center	577	88	356	255	584	22	183	-51	249	-85	262
Subtotal ^d	2018	2	1721	659	356	-216	918	-558	795	-737	137
Total increases (decreases)	4267	135	2430	609	941	-694	2353	-1342	1494	-1921	702

^{*}Figures shown are the net increase or decrease in the number of paid employees for the six-month period before the date.

a-d Notes are identical to those for Table 3-8.

Source: Table 3-8.

Table 3-11. Permanent Employees by NASA Installation (number on board)

	195	8	19:	59	190	60	19	61	196	52
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	176	267	420	477	561	645	716	922	1 321	1 641
NASA Pasadena Office					36	 49	57	80	130	241
Western Support Officeb					30	4 2				12
Other Western offices ^c	176 ⁻	267	420	477	597	694	773	1 002	1 451	1 894
Subtotal A ^d	1/6	207	420	4//	371	٠, ١	,,,,			
T. I. D Combon	3322	3458	3765	3452	3 189	3 201	3 295	3 441	3 766	3 984
Langley Research Center	1386	1406	1439	1413	1 404	1 397	1 429	1 502	1 631	1 788
Ames Research Center	2703	2687	2802	2741	2 703	2 723	2 751	3 001	3 721	4 025
Lewis Research Center	280	294	312	317	392	401	435	477	·517	∌556
Flight Research Center Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office			<u>-</u>				-	15	39	66
Subtotal Bd	7691	7845	8318	7923	7 688	7 722	7 910	8 436	9 674	10 419
C. 11. 1 Co. or Flight Conton		214	385	1096	1 252	1 741	1 320	1 711	2 287	2 579
Goddard Space Flight Center					228	277	292	359	383	409
Wallops Station Subtotal C ^d		214	385	1096	1 480	2 018	1 612	2 070	2 670	2 988
W 1 10 C 11					320	5 248	5 521	5 911	6 669	6 658
Marshall Space Flight Center							720	1 035	1 588	2 239
Manned Spacecraft Center										560
Kennedy Space Center Subtotal D ^d					320	5 248	6 241	6 946	8 257	9 457
Total permanent employees, NASA	7867	8326	9123	9496	10 085	15 682	16 536	18 454	22 052	24 758
Jet Propulsion Laboratory ^a	2266	2328	2662	2626	2 743	2 65 5	2 817	3 091	3 497	3 821

Table 3-11. Permanent Employees by NASA Installation (Continued) (number on board)

	1	963	1	964	1	965	1	966	19	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	1 846	1 952	1 978	1 966	1 998	2 019	2 081	2 152	2 138	2 093	2 077
NASA Pasadena Office				16	18	20	79	8 7	86	87	76
Western Support Officeb	301	310	369	355	352	339	268	97	, 99	95	
Other Western offices ^c	13	16	17	18	17			125			
Subtotal A ^d	2 160	2 278	2 364	2 355	2 385	2 378	2 428	2 461	2 323	2 275	2 153
Langley Research Center	4 112	4 204	4 255	4 298	4 285	4 237	4 280	4 235	4 227	4 168	4 037
Ames Research Center	1 964	2 110	2 152	2 136	2 175	2 155	2 191	2 189	2 173	2 164	2 084
Lewis Research Center	4 577	4 735	4 805	4 806	4 8 1 5	4 <i>7</i> 78	4 819	4 756	4 704	4 583	4 452
Flight Research Center	613	616	618	620	611	608	609	607	587	582	566
Electronics Research Center	24	29	32	117	238	331	470	570	700	744	794
AEC-NASA Space Nuclear Propulsion Office	94	101	107	110	115	112	114	114	112	115	108
Subtotal B ^d	11 384	11 795	11 969	12 087	12 239	12 221	12 483	12 471	12 503	12 356	12 041
Goddard Space Flight Center	3 030	3 310	3 498	3 531	3 613	3 489	3 718	3 754	3 788	3 702	3 746
Wallops Station	473	483	519	513	520	509	512	506	499	496	497
Subtotal C ^d	3 503	3 793	4 017	4 044	4 133	3 998	4 230	4 260	4 287	4 198	4 243
Marshall Space Flight Center	7 243	7 145	7 467	7 517	7 485	7 4 09	7 416	7 342	7 153	7 026	6 400
Manned Spacecraft Center	3 059	3 297	4 034	4 605	4 274	4 325	4 5 4 8	4 649	4718	4 606	4 588
Kennedy Space Center	1 009	1 174	1 434	1 727	2 181	2 332	2 433	2 539	2 693	2 711	2 917
Subtotal D ^d	11 311	11 616	12 935	13 849	13 940	14 066	14 397	14 530	14 564	14 343	13 905
Total permanent employees, NASA	28 358	29 482	31 285	32 335	32 697	32 663	33 538	33 722	33 677	33 172	32 342
Jet Propulsion Laboratory ^a	4 004	4 134	4 291	4 268	4 027	4 016	4 069	4 333	4 565	4 377	4 102

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation. JPL data supplied by JPL Personnel Office.

Table 3-12. Temporary Employees by NASA Installation (number on board)

	19	58	19	159	19	60	19	61	19	62
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/3
Headquarters	4	7	9	7	24	17	32	38	156	52
NASA Pasadena Office										
Western Support Officeb					1	1	3	4	6	6
Other Western offices ^c										2
Subtotal A ^d	4	7	9	7	25	18	35	42	162	60
A D A Contain	46	43	30	4	2	7	43	19	128	23
Langley Research Center	27	21	25	16	17	21	33	27	27	37
Ames Research Center	10	9	7	8	19	20	22	35	79	93.
Lewis Research Center		12	28	15	16	15	12	17	21	12
Flight Research Center	12	12	20	13						
Electronics Research Center								0	0	1
AEC-NASA Space Nuclear Propulsion Office Subtotal B ^d	95	85	90	43	54	63	110	98	255	166
						140	279	147	468	279
Goddard Space Flight Center		2	13	21	17	140		147	38	21
Wallops Station					1	20	10	_	506	300
Subtotal C ^d		2	13	21	18	160	289	159	300	300
Marshall Space Flight Center					50	119	426	123	513	186
Manned Space raft Center							74	111	198	153
Kennedy Space Center										44
Subtotal D ^d					50	119	500	234	711	383
Total temporary employees	99	94	112	71	147	360	935	533	1634	909

Table 3-12. Temporary Employees by NASA Installation (Continued) (number on board)

	19	063	19	64	19	065	19	66	19	67	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	155	65	180	60	137	93	255	122	235	83	233
NASA Pasadena Office				0	1	0	6	0	5	0	3
Western Support Office ^b	7	8	7	15	25	4	26	8	20	8	
Other Western officesc	4	3	5	3	4			2			
Subtotal A ^d	166	76	192	78	167	97	287	132	260	91	236
Langley Research Center	108	30	75	31	86	26	205	61	178	43	182
Ames Research Center	152	56	52	79	95	81	119	43	91	7	113
Lewis Research Center	120	25 .	54	72	82	56	228	69	252	40	131
Flight Research Center	3	2	1	2	58	21	53	11	55	1 25	56
Electronics Research Center	1	1	1	0	12	9	85	49	91	41	156
AEC-NASA Space Nuclear Propulsion Office	2	1	5	1	1	0	1	0	1	2	0
Subtotal B ^d	386	115	188	185	334	193	691	233	568	158	638
Goddard Space Flight Center	457	133	177	109	161	71	240	37	207	50	327
Wallops Station	20	19	11	10	34	17	51	32	77	13	68
Subtotal C ^d	477	152	1 8 8	119	195	88	291	69	284	63	395
Marshall Space Flight Center	89	82	212	122	234	94	324	92	449	262	535
Manned Spacecraft Center	286	67	243	116	139	66	341	39	348	122	368
Kennedy Space Center	172	95	191	153	283	154	236	7 9	174	71	127
Subtotal D ^d	547	244	646	391	656	314	901	210	971	455	1030
Total temporary employees	1576	587	1214	773	1352	692	2170	644	2183	767	2299

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-13. NASA Excepted, P.L. 313, and EPA Employees by NASA Installation (number on board)

-	19	58	. 19	59	19	060	19	61	19	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	9	46	68	72	88	96	100	108	133	156
NASA Pasadena Office										
Western Support Office ^b					1	1	1	1	3	3
Other Western offices ^c								-		0
Subtotal A ^d	9	46	68	72	89	97	101	109	136	159
Langley Research Center	9	31	46	40	36	37	38	37	40	38
Ames Research Center	0	15	21	21	21	21	22	24	26	25
Lewis Research Center	7	29	33	32	28	27	26	27	32	35
Flight Research Center	1	5	7.	7	8	7	7	7	8	7
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0	2	2
Subtotal B ^d	17	80	107	100	93	92	93	95	108	107
Goddard Space Flight Center		4	20	32	35	37	30	32	36	38
Wallops Station					1	1	2	2	2	2
Subtotal C ^d		4	20	32	36	38	32	34	38	40
Marshall Space Flight Center					3	43	48	47	54	55
Manned Spacecraft Center							10	16	28	34
Kennedy Space Center										2
Subtotal D ^d				_:	3	43	58	63	82	91
Total excepted employees	26	130	195	204	221	270	284	301	364	397

Table 3-13. NASA Excepted, P.L. 313, and EPA Employees by NASA Installation (Continued) (number on board)

	1	963	1	964	1	965	1:	966	19	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	162	154	157	166	147	154	153	160	159	169	177
NASA Pasadena Office				0	0	0	1	1	1	103	1 / /
Western Support Office ^b	3	3	3	3	4	4	3	1	1	1	
Other Western offices ^c	0	0	0	0	0			1			
Subtotal A ^d	165	157	160	169	151	158	157	163	161	171	178
Langley Research Center	38	36	36	35	28	28	28	28	27	28	26
Ames Research Center	28	28	26	25	19	19	20	21	20	20	21
Lewis Research Center	35	36	35	35	27	26	24	25	25	27	27
Flight Research Center	7	7	6	6	5	5	4	4	6		
Electronics Research Center	2	2	2	5	8	7	7	7	7	6	6
AEC-NASA Space Nuclear Propulsion Office	2	3	3	3	2	2	2	2	2	3	3
Subtotal B ^d	112	112	108	109	89	87	85	87	87	92	90
Goddard Space Flight Center	38	39	40	40	33	29	32	31	32	36	37
Wallops Station	2	1	1	1	1	1	1	2	2	2	2
Subtotal C ^d	40	40	41	41	34	30	33	33	34	38	39
Marshall Space Flight Center	53	54	56	52	40	38	38	39	40	40	40
Manned Spacecraft Center	35	38	36	. 35	29	29	2 9	30	28	33	40 34
Kennedy Space Center	6	6	14	14	10	13	13	30 19	28 18	33 21	
Subtotal D ^d	94	98	106	101	79	80	80	88	86	94	24 98
Total excepted employees	411	407	415	420	353	355	355	371	368	395	405

^{a-d}Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-14. NASA Excepted, P.L. 313, and EPA Employees by NASA Installation (percentage of NASA total*)

	19	958	19	959	19	060	19	961	19	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	34.6	35.4	34.9	35.3	39.8	35.6	35.2	35.9	36.5	39.3
NASA Pasadena Office										
Western Support Office ^b					0.5	0.4	0.4	0.3	0.8	0.8 0.0
Other Western offices ^c								26.2	27.4	
Subtotal A ^d	34.6	35.4	34.9	35.3	40.3	35.9	35.6	36.2	37.4	40.1
I . l. Davarah Conton	34.6	23.8	23.6	19.6	16.3	13.7	13.4	12.3	11.0	9.6
Langley Research Center Ames Research Center	0	11.5	10.8	10.3	9.5	7.8	7.7	8.0	7.1	6.3
Lewis Research Center Lewis Research Center	26.9	22.3	16.9	15.7	12.7	10.0	9.2	9.0	8.8	8.8
	3.8	3.8	3.6	3.4	3.6	2.6	2.5	2.3	2.2	1.8
Flight Research Center Electronics Research Center	3.0	J.0							<u></u>	
Electrical actions and a second action and a second action and a second action action and a second action a									0.5	0.5
AEC-NASA Space Nuclear Propulsion Office Subtotal B ^d	65.4	61.5	54.9	49.0	42.1	34.1	32.7	31.6	29.7	26.4
Goddard Space Flight Center	-	3.1	10.3	15.7	15.8	13.7	10.6	10.6	9.9	9.6
Wallops Station					0.5	0.4	0.7	0.7	0.5	0.5
Subtotal C ^d		3.1	10.3	15.7	16.3	14.1	11.3	11.3	10.4	10.1
Marshall Space Flight Center					1.4	15.9	16.9	15.6	14.8	13.9
Manned Spacecraft Center							3.5	5.3	7.7	8.6
Kennedy Space Center										0.5
Subtotal D ^d					1.4	15.9	20.4	20.9	22.5	22.9
Total for NASA	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-14. NASA Excepted, P.L. 313, and EPA Employees by NASA Installation (Continued) (percentage of NASA total*)

	1	963	1	964	1	965	19	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	39.4	37.8	37.8	39.5	41.6	43.4	43.1	43.1	43.2	42.8	43.7
NASA Pasadena Office				0.0	0.0	0.0	0.3	0.3	0.3	0.3	0.2
Western Support Officeb	0.7	0.7	0.7	0.7	1.1	1.1	0.8	0.3	0.3	0.3	
Other Western offices ^c	0.0	0.0	0.0	0.0	0.0			0.3			
Subtotal A ^d	40.1	38.6	38.6	40.2	42.8	44.5	44.2	43.9	43.8	43.3	44.0
Langley Research Center	9.2	8.8	8.7	8.3	7.9	7.9	7.9	7.5	7.3	7.1	6.4
Ames Research Center	6.8	6.9	6.3	6.0	5.4	5.4	5.6	5.7	5.4	5.3	5.2
Lewis Research Center	8.5	8.8	8.4	8.3	7.6	7.3	6.8	6.7	6.8	6.8	6.7
Flight Research Center	1.7	1.7	1.4	1.4	1.4	1.4	1.1	1.1	1.6	1.5	1.5
Electronics Research Center	0.5	0.5	0.5	1.2	2.3	2.0	2.0	1.9	1.9	1.8	1.7
AEC-NASA Space Nuclear Propulsion Office	0.5	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.8	0.7
Subtotal B ^d	27.3	27.5	26.0	26.0	25.2	24.5	23.9	23.5	23.6	23.3	22.2
Goddard Space Flight Center	9.2	9.6	9.6	9.5	9.3	8.2	9.0	8.4	8.7	9.1	9.1
Wallops Station	0.5	0.2	0.2	0.2	0.3	0.3	0.3	0.5	0.5	0.5	0.5
Subtotal C ^d	9.7	9.8	9.9	9.8	9.6	8.5	9.3	8.9	9.2	9.6	9.6
Marshall Space Flight Center	12.9	13.3	13.5	12.4	11.3	10.7	10.7	10.5	10.9	10.1	9.9
Manned Spacecraft Center	8.5	9.3	8.7	8.3	8.2	8.2	8.1	8.1	7.6	8.4	8.4
Kennedy Space Center	1.5	1.5	3.4	3.3	2.8	3.7	3.6	5.1	4.9	5.3	5.9
Subtotal D ^d	22.9	24.1	25.5	24.0	22.4	22.5	22.5	23.7	23.4	23.8	24.2
Total for NASA	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}Percentages are rounded to nearest tenth of one percent and thus may not add to totals.

a-d Notes are identical to those for Table 3-8.

Source: Table 3-13.

Table 3-15. Military Detailees by NASA Installation (number on duty)

	19	58	19	59	19	60	19	061	19	062
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	0	0	0	0	0	11	13	21	26	25
NASA Pasadena Office										
Western Support Officeb					0	0	0	· 0	0	0
Other Western offices ^c										0
Subtotal A ^d	0	0	0	0	0	11	13	21	26	25
Langley Research Center	20	13	11	13	11	12	10	16	19	24
Ames Research Center	21	19	14	19	16	16	16	19	16	12
Lewis Research Center	25	28	30	23	12	11	12	12	15	29
Flight Research Center	8	6	3	2	3	3	4	3	2	3
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0	1	1
Subtotal B ^d	74	66	58	57	42	42	42	50	153	69
Goddard Space Flight Center		0	0	10	10	11	3	6	9	8
Wallops Station					0	2	3	3	4	4
Subtotal C ^d		0	0	10	10	13	6	9	13	12
Marshall Space Flight Center					0	11	16	20	25	22
Manned Spacecraft Center							11	17	21	23
Kennedy Space Center										10
Subtotal D ^d	-				0	11	27	37	46	55
Total military detailees, NASA	74	66	58	67	52	77	88	117	138	161
Jet Propulsion Laboratory	0	.0	0	0	0	9	10	13	17	23

Table 3-15. Military Detailees by NASA Installation (Continued) (number on duty)

	19	963	19	964	19	965	19	66	19	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	32	34	33	40	40	37	33	32	30	24	23
NASA Pasadena Office			0	0	0	0	0	0	0	18	14
Western Support Office ^b	0	0	0	0	0	0	0	0	0	0	
Other Western offices ^c	0	0	0	0	0			0			
Subtotal A ^d	32	34	33	40	40	37	33	32	30	42	37
Langley Research Center	31	32	31	21	16	14	8	6	5	5	5
Ames Research Center	10	14	13	11	11	10	9	10	9	10	13
Lewis Research Center	39	42	40	31	23	18	9	11	13	16	20
Flight Research Center	3	3	5	5	4	4	3	5	7	10	10
Electronics Research Center	0	0	0	3	3	i	3	3	0	5	6
AEC-NASA Space Nuclear Propulsion Office	0	0	0	0	0	0	0:	0	o	0	0
Subtotal B ^d	83	89	89	71	57	47	32	35	34	46	54
Goddard Space Flight Center	14	15	14	11	5	3	5	8	11	10	8
Wallops Station	2	2	2	2	2	1	1	2	1	2	2
Subtotal C ^d	16	17	16	13	7	4	6	10	12	12	10
Marshall Space Flight Center	31	41	46	50	44	37	32	27	26	21	23
Manned Spacecraft Center	46	49	60	69	69	148	195	214	203	192	188
Kennedy Space Center	8	7	6	6	5	7	7	5	4	5	5
Subtotal D ^d	85	97	112	125	118	192	234	246	233	218	216
Total military detailees, NASA	216	239	250	249	222	280	305	323	309	318	317
Jet Propulsion Laboratory	17	17	17	17	17	16	16	16	19	19	13

a-d Notes are identical to Table 3-8. See Chapter Six for a separate personnel summary for each installation. JPL data supplied by JPL Personnel Office.

Table 3-16. Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation* (number on board)

	19	58	19	59	19	60	19	61	19	62
Installation ^a	9/30	12/31	9/30	12/31	9/30	12/31	9/30	12/31	9/30	12/31
Headquarters	37	57	105	120	129	161	187	221	329	452
NASA Pasadena Office										
Western Support Officeb					11	13	15	19	29	32
Other Western officesc										5
Subtotal A ^d	37	57	105	120	140	174	202	240	358	489
Langley Research Center	1149	1162	1344	1155	1130	1127	1189	1193	1365	1422
Ames Research Center	435	435	453	446	456	441	471	506	582	628
Lewis Research Center	948	949	974	936	932	921	928	1041	1431	1575
Flight Research Center	79	83	87	91	110	122	138	148	161	174
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								12	27	36
Subtotal B ^d	2611	2629	2858	2628	2628	2611	2726	2900	3566	3835
Goddard Space Flight Center		128	215	610	682	848	627	726	1022	1149
Wallops Station					28	45	46	49	57	58
Subtotal C ^d		128	215	610	710	893	673	775	1079	1207
Marshall Space Flight Center					15	1486	1714	1855	2194	2334
Manned Spacecraft Center							354	469	785	1116
Kennedy Space Center										165
Subtotal D ^d		- 			15	1486	2068	2324	2979	3615
Total personnel in category	2648	2814	3178	3358	3493	5164	5669	6239	7982	9146

Table 3-16. Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation* (Continued) (number on board)

	- 19	963	19	64	19	965	19	966	19	67	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	516	543	532	523	539	547	547	561	553	553	541
NASA Pasadena Office				2	3	3	8	8	9	. 9	9
Western Support Office ^b	37	40	53	54	53	52	45	17	15	15	
Other Western offices ^c	5	5	5	6	6			1			
Subtotal A ^d	558	588	590	585	601	602	600	587	577	577	550
Langley Research Center	1 536	1 582	1 603	1 612	1 650	1 641	1 652	1 630	1 643	1 636	1 610
Ames Research Center	721	789	814	814	825	827	859	881	887	903	885
Lewis Research Center	1 849	1 936	1 960	1 947	1 958	1 902	1 924	1 883	1 894	1 856	1 814
Flight Research Center	192	19 9	199	202	200	202	203	204	203	200	198
Electronics Research Center	4	5	6	44	94	138	217	268	338	373	400
AEC-NASA Space Nuclear Propulsion Office	51	55	59	59	59	58	59	59	58	: 64	59
Subtotal B ^d	4 353	4 566	4 641	4 678	4 786	4 768	4 914	4 925	5 023	5 032	4 966
Goddard Space Flight Center	1 376	1 499	1 609	1 644	1 692	1 590	1 718	1 755	1 796	1 791	1 818
Wallops Station	70	75	81	82	84	85	85	81	82	81	90
Subtotal C ^d	1 446	1 574	1 690	1 726	1 776	1 675	1 803	1 836	1 878	1 872	1 908
Marshall Space Flight Center	2 486	2 590	2 735	2 788	2 751	2 696	2 740	2 773	2 774	2 791	2 606
Manned Spacecraft Center	1 471	1 621	2 002	2 3 5 7	2 184	2 2 2 2 6	2 383	2 404	2 5 0 5	2 5 1 5	2 5 0 4
Kennedy Space Center	381	453	591	746	1 017	1 085	1 116	1 112	1 199	1 199	1 327
Subtotal D ^d	4 338	4 664	5 328	5 891	5 952	6 007	6 239	6 289	6 478	6 5 0 5	6 437
Total personnel in category	10 695	11 392	12 249	12 880	13 115	13 052	13 556	13 637	13 956	13 986	13 851

^{*}See introduction to this chapter for a full description of code groups.

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-17. Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation (percentage of NASA total*)

	19	958	19	959	1:	960	19	961	1	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	1.4	2.0	3.3	3.6	3.7	3.1	3.3	3.5	4.1	4.9
NASA Pasadena Office										
Western Support Office ^b					0.3	0.3	0.3	0.3	0.4	0.3
Other Western offices ^c										0.1
Subtotal A ^d	1.4	2.0	3.3	3.6	4.0	3.4	3.6	3.8	4.5	5.3
Langley Research Center	43.4	41.3	42.3	34.4	32.4	21.8	21.0	19.1	17.1	15.5
Ames Research Center	16.4	15.5	14.3	13.3	13.1	8.5	8.3	8.1	7.3	6.9
Lewis Research Center	35.8	33.7	30.6	27.9	26.7	17.8	16.4	16.7	17.9	17.2
Flight Research Center	3.0	2.9	2.7	2.7	3.1	2.4	2.4	2.4	2.0	1.9
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0.2	0.3	0.4
Subtotal B ^d	98.6	93.4	89.9	78.3	75.2	50.6	48.1	46.5	44.7	41.9
Goddard Space Flight Center		4.5	6.8	18.2	19.5	16.4	11.1	11.6	12.8	12.6
Wallops Station					0.8	0.9	0.8	0.8	0.7	0.6
Subtotal C ^d		4.5	6.8	18.2	20.3	17.3	11.9	12.4	13.5	13.2
Marshall Space Flight Center					0.4	28.8	30.2	29.7	27.5	25.5
Manned Spacecraft Center							6.2	7.5	9.8	12.2
Kennedy Space Center										1.8
Subtotal D ^d					0.4	28.8	36.5	37.2	37.3	39.5
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-17. Scientific and Technological Permanent Personnel (Code Groups 200, 700, 900) by NASA Installation (Continued) (percentage of NASA total*)

	1	963	1	964	1	965	1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	4.8	4.8	4.3	4.0	4.1	4.2	4.0	4.1	4.0	4.0	3.9
NASA Pasadena Office				*	*	*	0.1	0.1	0.1	0.1	0.1
Western Support Office ^b	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.1	0.1	0.1	
Other Western offices ^c	*	*	*	*	*			*			
Subtotal A ^d	5.2	5.2	4.8	4.5	4.6	4.6	4.4	4.3	4.1	4.1	4.0
Langley Research Center	14.4	13.9	13.1	12.4	12.6	12.6	12.2	12.0	11.7	11.7	11.6
Ames Research Center	6.7	6.9	6.6	6.3	6.3	6.3	6.3	6.5	6.4	6.5	6.4
Lewis Research Center	17.3	17.0	16.0	15.0	14.9	14.6	14.2	13.8	13.6	13.2	13.1
Flight Research Center	1.8	1.7	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.4	1.4
Electronics Research Center	*	*	*	0.3	0.7	1.1	1.6	2.0	2.4	2.7	2.9
AEC-NASA Space Nuclear Propulsion Office	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.5	0.4
Subtotal B ^d	40.7	40.1	37.9	36.3	36.5	36.5	36.2	36.1	36.0	36.0	35.9
Goddard Space Flight Center	12.9	13.2	13.1	12.7	12.9	12.2	12.7	12.9	12.8	12.8	13.1
Wallops Station	0.7	0.7	0.7	0.6	0.6	0.7	0.6	0.6	0.6	0.6	0.6
Subtotal C ^d	13.5	13.8	13.8	13.4	13.5	12.8	13.3	13.5	13.5	13.4	13.8
Marshall Space Flight Center	23.2	22.7	22.3	21.5	21.0	20.7	20.2	20.3	20.0	20.0	18.8
Manned Spacecraft Center	13.8	14.2	16.3	18.2	16.7	17.0	17.6	17.6	17.9	18.0	18.1
Kennedy Space Center	3.6	4.0	4.8	5.8	7.8	8.3	8.2	8.2	8.6	8.6	9.6
Subtotal D ^d	40.6	40.9	43.5	45.7	45.4	46.0	46.0	46.1	46.4	46.5	46.5
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}parcentages are rounded to nearest tenth of one percent and thus may not add to totals. An asterisk in the column indicates less than 0.05 percent.

a-d Notes are identical to those for Table 3-8.

Source: Table 3-16.

Table 3-18. Technical Support Permanent Personnel (Code Group 300) by NASA Installation* (number on board)

	19:	58	19	59	19	060	19	61	19	962
lnstallation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	1	1	4	4	5	5	8	14	19	24
NASA Pasadena Office										
Western Support Officeb					0	0	0	1	5	51
Other Western offices ^c										1
Subtotal A ^d	1	1	4	4	5	5	8	15	24	76
Langley Research Center	266	290	302	268	243	275	291	337	412	414
Ames Research Center	159	162	163	151	147	149	157	167	179	191
Lewis Research Center	265	257	258	247	233	289	308	287	362	366
Flight Research Center	21	19	23	25	33	27	39	31	42	36
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0	0	0
Subtotal B ^d	711	728	746	691	656	740	795	822	995	1007
Goddard Space Flight Center		53	88	154	161	215	202	261	355	404
Wallops Station					17	3 5	31	43	44	51
Subtotal C ^d		53	88	154	178	250	233	304	399	455
Marshall Space Flight Center					74	748	857	932	1077	1033
Manned Spacecraft Center							57	84	149	207
Kennedy Space Center										39
Subtotal D ^d					74	748	914	1016	1226	1279
Total personnel in category	712	782	838	849	913	1743	1950	2157	2644	2817

93

Table 3-18. Technical Support Permanent Personnel (Code Group 300) by NASA Installation* (Continued) (number on board)

	19	063	19	64	19	965	19	66	19	67	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	27	27	18	15	13	7	8	7	11	8	8
NASA Pasadena Office				0	0	0	0	0	0	0	0
Western Support Officeb	76	77	88	88	87	84	81	Ω	0	1	-
Other Western officesc	1	2	2	3	2			69			
Subtotal A ^d	104	106	108	106	102	91	89	76	11	9	8
Langley Research Center	430	452	468	492	507	514	965	985	1022	994	1022
Ames Research Center	208	215	198	199	209	199	.185	181	180	202	213
Lewis Research Center	399	430	417	394	390	408	377	370	361	348	358
Flight Research Center	67	50	62	61	65	60	59	58	49	68	73
Electronics Research Center	2	3	3	4	11	13	30	42	64	66	77
AEC-NASA Space Nuclear Propulsion Office	0	0	0	0	0	0	0	0	0	0	0
Subtotal Bd	1106	1150	1148	1150	1182	1194	1616	1636	1676	1678	1743
Goddard Space Flight Center	484	516	541	538	558	548	544	555	534	526	552
Wallops Station	75	65	71	63	161	175	175	185	176	188	186
Subtotal C ^d	559	581	612	601	719	723	719	740	710	714	738
Marshall Space Flight Center	1283	1122	1131	1138	1126	1140	1092	1067	956	1000	908
Manned Spacecraft Center	333	386	476	516	480	484	504	537	465	451	497
Kennedy Space Center	123	146	172	232	270	387	409	429	415	417	454
Subtotal D ^d	1739	1654	1779	1886	1876	2011	2005	2033	1836	1868	1859
Total personnel in category	3508	3491	3647	3742	3879	4019	4429	4485	4234	4269	4348

^{*}See introduction to this chapter for a full description of code groups.

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-19. Technical Support Permanent Personnel (Code Group 300) by NASA Installation (percentage of NASA total*)

	19	958	19	959	19	960	19	961	19	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	0.1	0.1	0.5	0.5	0.5	0.3	0.4	0.6	0.7	0.9
NASA Pasadena Office									-	
Western Support Office ^b					0.0	0.0	0.0	*	0.2	1.8
Other Western offices ^c										*
Subtotal A ^d	0.1	0.0	0.5	0.5	0.5	0.3	0.4	0.7	0.9	2.7
Langley Research Center	37.4	37.1	36.0	31.6	26.6	15.8	14.9	15.6	15.6	14.7
Ames Research Center	22.3	20.7	19.5	17.8	16.1	8.5	8.1	7.7	6.8	6.8
Lewis Research Center	37.2	32.9	30.8	29.1	25.5	16.6	15.8	13.3	13.7	13.0
Flight Research Center	2.9	2.4	2.7	2.9	3.6	1.5	2.0	1.4	1.6	1.3
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0.0	0.0	0.0
Subtotal B ^d	99.9	93.1	89.0	81.4	71.9	42.5	40.8	38.1	37.6	35.7
Goddard Space Flight Center		6.7	10.5	18.1	17.6	12.3	10.4	12.1	13.4	14.3
Wallops Station					1.9	2.0	1.6	2.0	1.7	1.8
Subtotal C ^d		6.7	10.5	18.1	19.5	14.3	11.9	14.1	15.1	16.2
Marshall Space Flight Center					8.1	42.9	43.9	43.2	40.7	36.7
Manned Spacecraft Center							2.9	3.9	5.6	7.3
Kennedy Space Center										1.4
Subtotal D ^d					8.1	42.9	46.9	47.1	46.4	45.4
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-19. Technical Support Permanent Personnel (Code Group 300) by NASA Installation (Continued) (percentage of NASA total*)

	1	963	1	964	1	965	1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	0.8	0.8	0.5	0.4	0.3	0.2	0.2	0.2	0.3	0.2	0.2
NASA Pasadena Office				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Western Support Office ^b	2.2	2.2	2.4	2.4	2.2	2.1	1.8	0.0	0.0	*	
Other Western offices ^c	*	0.1	0.1	0.1	0.1			1.5			
Subtotal A ^d	3.0	3.0	3.0	2.8	2.6	2.3	2.0	1.7	0.3	0.2	0.2
Langley Research Center	12.3	12.9	12.8	13.1	13.1	12.8	21.8	22.0	24.1	23.3	23.5
Ames Research Center	5.9	6.2	5.4	5.3	5.4	5.0	4.2	4.0	4.3	4.7	4.9
Lewis Research Center	11.4	12.3	11.4	10.5	10.1	10.2	8.5	8.2	8.5	8.2	8.2
Flight Research Center	1.9	1.4	1.7	1.6	1.7	1.5	1.3	1.3	1.2	1.6	1.7
Electronics Research Center	0.1	0.1	0.1	0.1	0.3	0.3	0.7	0.9	1.5	1.5	1.8
AEC-NASA Space Nuclear Propulsion Office	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Subtotal B ^d	31.5	32.9	31.5	30.7	30.5	29.7	36.5	36.5	39.6	39.3	40.0
Goddard Space Flight Center	13.8	14.8	14.8	14.4	14.4	13.6	12.3	12.4	12.6	12.3	12.7
Wallops Station	2.1	1.9	1.9	1.7	4.2	4.4	4.0	4.1	4.2	4.4	4.3
Subtotal C ^d	15.9	16.6	16.8	16.1	18.5	18.0	16.2	16.5	16.8	16.7	16.9
Marshall Space Flight Center	36.6	32.1	31.0	30.4	29.0	28.4	24.7	23.8	22.6	23.4	20.8
Manned Spacecraft Center	9.5	11.1	13.1	13.8	12.4	12.0	11.4	12.0	11.0	10.6	11.4
Kennedy Space Center	3.5	4.2	4.7	6.2	7.0	9.6	9.2	9.6	9.8	9.8	10.4
Subtotal D ^d	49.6	47.4	48.8	50.4	48.4	50.0	45.3	45.3	43.4	43.8	42.7
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}Percentages are rounded to nearest tenth of one percent and thus may not add to totals. An asterisk in the column indicates less than 0.05 percent. a-d Notes are identical to those for Table 3-8.

Source: Table 3-18.

Table 3-20. Trades and Labor Permanent Employees (Code Group 100) by NASA Installation* (number on board)

	19	58	19	59	19	60	19	61	19	062
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	4	7	9	10	12	12	12	15	17	17
NASA Pasadena Office		_					-			
Western Support Officeb			-		0	0	0	0	0	0
Other Western offices ^c										0
Subtotal A ^d	4	7	9	10	12	12	12	15	17	17
Langley Research Center	1545	1609	1656	1604	1452	1439	1422	1470	1480	1578
Ames Research Center	617	628	635	635	628	631	630	644	662	720
Lewis Research Center	1174	1169	1235	1228	1218	1235	1236	1343	1500	1576
Flight Research Center	134	145	148	151	195	199	204	234	243	260
Flectronics Research Center						-				_
AEC-NASA Space Nuclear Propulsion Office								0	0	0
Subtotal B ^d	3470	3551	3674	3618	3493	3504	3492	3691	3885	4134
Goddard Space Flight Center		2	4	83	96	208	129	185	219	245
Wallops Station					133	147	160	192	201	218
Subtotal C ^d		2	4	83	229	355	289	377	420	463
Marshall Space Flight Center					7	1925	1764	1734	1693	1615
Manned Spacecraft Center				_			123	148	167	212
Kennedy Space Center								_		31
Subtotal D ^d					7	1925	1887	1882	1860	1858
Total personnel in category	3474	3560	3687	3711	3741	5796	5680	5965	6182	6472

Table 3-20. Trades and Labor Permanent Employees (Code Group 100) by NASA Installation* (Continued) (number on board)

	19	63	19	64	19	965	19	66	19	67	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	21	20	20	18	17	17	20	26	25	21	20
NASA Pasadena Office				0	0	0	0	0	0	0	. 0
Western Support Officeb	0	0	0	0	0	0	1	1	1	1	
Other Western offices ^c	0	0	0	0	0			0			
Subtotal A ^d	21	20	20	18	17	17	21	27	26	22	20
Langley Research Center	1566	1569	1546	1542	1501	1426	964	910	865	854	761
Ames Research Center	738	758	775	759	766	743	722	694	685	640	587
Lewis Research Center	1710	1713	1746	1755	1741	1758	1775	1771	1739	1701	1635
Flight Research Center	263	273	262	259	253	247	241	241	233	212	198
Electronics Research Center	0	0	0	0	0	1	7	9	9	10	11
AEC-NASA Space Nuclear Propulsion Office	0	0	0	0	0	0	0	0	0	0	0
Subtotal B ^d	4277	4313	4329	4315	4261	4175	3709	3625	3531	3417	3192
Goddard Space Flight Center	245	257	260	253	255	254	245	232	228	219	217
Wallops Station	228	243	254	262	168	142	140	124	120	106	103
Subtotal C ^d	473	500	514	515	423	396	385	356	348	325	320
Marshall Space Flight Center	1565	1530	1477	1450	1424	1346	1239	1146	1065	968	835
Manned Spacrcraft Center	267	246	310	326	239	229	208	205	212	190	148
Kennedy Space Center	67	60	57	27	97	13	4	3	3	4	3
Subtotal D ^d	1899	1836	1844	1803	1760	1588	1451	1354	1280	1162	986
Total personnel in category	6670	6669	6707	6651	6461	6176	5566	5362	5185	4926	4518

^{*}See introduction to this chapter for a full description of code groups.

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-21. Trades and Labor Permanent Employees (Code Group 100) by NASA Installation (percentage of NASA total*)

	19	958	19	959	19	960	19	961	1	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	0.1	0.2	0.2	0.3	0.3	0.2	0.2	0.3	0.3	0.3
NASA Pasadena Office							0.0	0.0	0.0	0.0
Western Support Officeb					0.0	0.0	0.0			0.0
Other Western offices ^c						0.2	0.2	0.3	0.3	0.3
Subtotal A ^d	0.1	0.2	0.2	0.3	0.3	0.2	0.2	0.5	0.5	0.5
Langley Research Center	44.5	45.2	44.9	43.2	38.8	24.8	25.0	24.6	23.9	24.4
Ames Research Center	17.8	17.6	17.2	17.1	16.8	10.9	11.1	10.8	10.7	11.1
Lewis Research Center	33.8	32.8	33.5	33.1	32.6	21.3	21.8	22.5	24.3	24.4
Flight Research Center	3.9	4.1	4.0	4.1	5.2	3.4	3.6	3.9	3.9	4.0
Electronics Research Center			_							
AEC-NASA Space Nuclear Propulsion Office								0.0	0.0	0.0
Subtotal B ^d	99.7	99.7	99.6	97.5	93.4	60.5	61.5	61.9	62.8	63.9
Goddard Space Flight Center		0.1	0.1	2.2	2.6	3.6	2.3	3.1	3.5	3.8
Wallops Station					3.6	2.5	2.8	3.2	3.3	3.4
Subtotal C ^d		0.1	0.1	2.2	6.1	6.1	5.1	6.3	6.8	7.2
Marshall Space Flight Center					0.2	33.2	31.1	29.1	27.4	25.0
Manned Spacecraft Center							2.2	2.5	2.7	3.3
Kennedy Space Center				_						0.5
Subtotal D ^d					0.2	33.2	33.2	31.6	30.1	28.7
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-21. Trades and Labor Permenent Employees (Code Group 100) by NASA Installation (Continued) (percentage of NASA total*)

	1	963	1	964	1	965	1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	0,3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.4	0.4
NASA Pasadena Office				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Western Support Officeb	0.0	0.0	0.0	0.0	0.0	0.0	*	*	*	*	
Other Western offices ^c	0.0	0.0	0.0	0.0	0.0			0.0			
Subtotal A ^d	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.4	0.4
Langley Research Center	23.5	23.5	23.1	23.2	23.2	23.1	17.3	17.0	16.7	17.3	16.8
Ames Research Center	11.1	11.4	11.6	11.4	11.9	12.0	13.0	12.9	13.2	13.0	13.0
Lewis Research Center	25.6	25.7	26.0	26.4	26.9	28.5	31.9	33.0	33.5	34.5	36.2
Flight Research Center	3.9	4.1	3.9	3.9	3.9	4.0	4.3	4.5	4.5	4.3	4.4
Electronics Research Center	0.0	0.0	0.0	0.0	0.0	*	0.1	0.2	0.2	0.2	0.2
AEC-NASA Space Nuclear Propulsion Office	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Subtotal B ^d	64.1	64.7	64.5	64.9	65.9	67.6	66.6	67.6	68.1	69.4	70.7
Goddard Space Flight Center	3.7	3.9	3.9	3.8	3.9	4.1	4.4	4.3	4.4	4.4	4.8
Wallops Station	3.4	3.6	3.8	3.9	2.6	2.3	2.5	2.3	2.3	2.2	2.3
Subtotal C ^d	7.1	7.5	7.7	7.7	6.5	6.4	6.9	6.6	6.7	6.6	7.1
Marshall Space Flight Center	23.5	22.9	22.0	21.8	22.0	21.8	22.3	21.4	20.5	19.7	18.5
Manned Spacecraft Center	4.0	3.7	4.6	4.9	3.7	3.7	3.7	3.8	4.1	3.9	3.3
Kennedy Space Center	1.0	0.9	0.8	0.4	1.5	0.2	0.1	0.1	0.1	0.1	0.1
Subtotal D ^d	28.5	27.5	27.5	27.1	27.2	25.7	26.1	25.3	24.7	23.6	21.8
Total personnel in category	100.0	100.0	100.0	100:0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}Percentages are rounded to nearest tenth of one percent and thus may not add to totals. An asterisk in the column indicates less than 0.05 percent. a-d Notes are identical to those for Table 3-8.

Source: Table 3-20.

Table 3-22. Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation*
(number on board)

	19	58	19	59	19	60	19	61	19	62
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	134	202	302	343	415	467	509	672	956	1148
NASA Pasadena Office										
Western Support Officeb					25	36	42	60	96	158
Other Western offices ^c										6
Subtotal A ^d	134	202	302	343	440	503	551	732	1952	1312
Landay Bassarah Cantar	362	397	463	425	364	360	393	441	509	570
Langley Research Center Ames Research Center	175	181	188	181	173	176	171	185	208	249
Lewis Research Center	316	312	335	330	320	278	279	330	428	508
Flight Research Center	46	47	54	50	54	53	54	64	71	82
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								3	12	30
Subtotal B ^d	899	937	1040	986	911	867	897	1023	1228	1439
Goddard Space Flight Center		31	78	249	313	470	362	539	691	781
Wallops Station					50	50	55	75	81	82
Subtotal C ^d		31	78	249	363	520	417	614	772	863
Marshall Space Flight Center					224	1089	1187	1390	1705	1676
Marshall Space Flight Center							186	334	487	704
Manned Spacecraft Center							_			325
Kennedy Space Center Subtotal D ^d					224	1089	1373	1724	2192	2705
Total personnel in category	1033	1170	1420	1578	1938	2979	3237	4093	5244	6319

Table 3-22. Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation* (Continued) (number on board)

	19	63	19	64	19	65	19	966	19	67	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	1282	1362	1408	1410	1429	1448	1506	1 558	1 549	1511	1508
NASA Pasadena Office				14	15	17	71	79	77	78	67
Western Support Officeb	188	193	228	213	212	203	141	79	82	78	
Other Western offices ^c	7	9	10	10	9			55	_		
Subtotal A ^d	1477	1564	1646	1647	1665	1668	1718	1.771	1 708	1667	1575
Langley Research Center	580	601	638	652	627	656	699	710	697	684	644
Ames Research Center	297	348	365	364	375	386	425	433	421	419	399
Lewis Research Center	619	656	682	710	726	710	743	732	710	678	645
Flight Research Center	91	94	95	98	93	99	106	104	102	102	97
Electronics Research Center	18	21	23	69	133	179	216	251	289	295	306
AEC-NASA Space Nuclear Propulsion Office	43	46	48	51	56	54	55	55	54	51	49
Subtotal B ^d	1648	1766	1851	1944	2010	2084	2244	2 285	2 273	2229	2140
Goddard Space Flight Center	925	1038	1088	1096	1108	1097	1211	1 212	1 230	1166	1159
Wallops Station	100	100	113	106	107	107	112	116	121	121	118
Subtotal C ^d	1025	1138	1201	1202	1215	1204	1323	1 328	1 351	1287	1277
Marshall Space Flight Center	1909	1903	2124	2141	2184	2227	2345	2 3 5 6	2 358	2267	2051
Manned Spacecraft Center	988	1044	1246	1406	1371	1386	1453	1 503	1 536	1450	1439
Kennedy Space Center	438	515	614	722	797	847	904	995	1 076	1091	1143
Subtotal D ^d	3335	3462	3984	4269	4352	4460	4702	4 854	4 970	4808	4633
Total personnel in category	7485	7930	8682	9062	9242	9416	9987	10 238	10 302	9991	9625

^{*}See introduction to this chapter for a full description of code groups and explanation for combining 500 and 600 code groups.

a-d Notes are identical to those for Table 3-8. See Chapter Six for a separate personnel summary for each installation.

Table 3-23. Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation (percentage of NASA total*)

	19	958	19	959	19	960	1	961	1	962
Installation ^a	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Headquarters	13.0	17.3	21.3	21.7	21.5	15.7	15.7	16.4	18.2	18.2
NASA Pasadena Office										
Western Support Office ^b					1.3	1.2	1.3	1.5	1.8	2.5
Other Western offices ^c										0.1
Subtotal A ^d	13.0	17.3	21.3	21.7	22.7	16.9	17.0	17.9	20.1	20.8
Langley Research Center	35.0	33.9	32.6	26.9	18.9	12.1	12.1	10.8	9.7	9.0
Ames Research Center	16.9	15.5	13.2	11.5	9.0	5.9	5.3	4.5	4.0	3.9
Lewis Research Center	30.6	26.7	23.6	20.9	16.6	9.3	8.6	8.1	8.2	8.0
Flight Research Center	4.5	4.0	3.8	3.2	2.8	1.8	1.7	1.6	1.4	1.3
Electronics Research Center										
AEC-NASA Space Nuclear Propulsion Office								0.1	0.2	0.5
Subtotal B ^d	87.0	80.1	73.2	62.5	47.0	29.1	27.7	25.0	23.4	22.8
Goddard Space Flight Center		2.6	· 5.5	15.8	16.2	15.8	11.2	13.2	13.2	12.4
Wallops Station					2.6	1.7	1.7	1.8	1.5	1.3
Subtotal C ^d		2.6	5.5	15.8	18.7	17.5	12.9	10.2	14.7	13.7
Marshall Space Flight Center					11.6	36.6	36.7	34.0	32.5	26.5
Manned Spacecraft Center							5.7	8.2	9.3	11.1
Kennedy Space Center			_							5.1
Subtotal D ^d					11.6	36.6	42.4	42.1	41.8	42.8
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 3-23. Administrative and Clerical Permanent Personnel (Code Groups 600 and 500) by NASA Installation (Continued) (percentage of NASA total*)

	1	963	1	964	1	965	1	966	1	967	1968
Installation ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Headquarters	17.1	17.2	16.2	15.6	15.5	15.4	15.1	15.2	15.0	15.1	15.7
NASA Pasadena Office				0.2	0.2	0.2	0.7	0.8	0.7	0.8	0.7
Western Support Office ^b	2.5	2.4	2.6	2.3	2.3	2.2	1.4	0.8	0.8	0.8	
Other Western offices ^c	0.1	0.1	0.1	0.1	0.1			0.5			
Subtotal A ^d	19.7	19.7	19.0	18.2	18.0	17.7	17.2	17.3	16.6	16.7	16.4
Langley Research Center	7.7	7.6	7.3	7.2	6.8	7.0	7.0	6.9	6.8	6.8	6.7
Ames Research Center	4.0	4.4	4.2	4.0	4.1	4.1	4.2	4.2	4.1	4.2	4.1
Lewis Research Center	8.3	8.3	7.9	7.8	7.9	7.5	7.4	7.1	6.9	6.8	6.7
Flight Research Center	1.2	1.2	1.1	1.1	1.0	1.1	1.1	1.0	1.0	1.0	1.0
Electronics Research Center	0.2	0.3	0.3	0.8	1.4	1.9	2.2	2.5	2.8	3.0	3.2
AEC-NASA Space Nuclear Propulsion Office	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5
Subtotal B ^d	22.0	22.3	21.3	21.5	21.7	22.1	22.5	22.3	22.1	22.3	22.2
Goddard Space Flight Center	12.4	13.1	12.5	12.1	12.0	11.7	12.1	10.9	11.9	11.7	12.0
Wallops Station	1.3	1.3	1.3	1.2	1.2	1.1	1.1	1.1	1.2	1.2	1.2
Subtotal C ^d	13.7	14.4	13.8	13.3	13.1	12.8	13.2	13.0	13.1	12.9	13.3
Marshall Space Flight Center	25.5	24.0	24.5	23.6	23.6	23.7	23.5	23.0	22.9	22.7	21.3
Manned Spacecraft Center	13.2	13.2	14.4	15.5	14.8	(4.7	14.5	14.7	14.9	14.5	15.0
Kennedy Space Center	5.9	6.5	7.1	8.0	8.6	9.0	9.1	9.7	10.4	10.9	11.9
Subtotal D ^d	44.6	43.7	45.9	47.1	47.1	47.4	47.1	47.4	48.2	48.1	48.1
Total personnel in category	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{*}Percentages are rounded to nearest tenth of one percent and thus may not add to totals.

a-d Notes are identical to those for Table 3-8.

Source: Table 3-22.

Table 3-24. Permanent Civil Service Positions by NASA Program (positions budgeted for end of fiscal year)

Program ^a	1961 ^b	1962	1963	1964	1965	1966	1967	1968
Administrative support	c	c	4 068	4 411	4 872	5 203	5 487	5 125
Research and development support	c	c	4 147	6 538	4 936	4 393	4 376	4 202
Other support	c	c	445	472	1 092	1 148	920	899
Subtotal	с	c	8 660	11 421	10 900	10 744	10 783	10 226
Sustaining university program		32	55	68	72	76	57	54
Technology utilization		36	37	50	47	57	51	47
Tracking and data acquisition	1 053	1 007	698	851	780	1 041	976	958
Subtotal	1 053	1 075	790	969	899	1 174	1 084	1 059
Space power/electric propulsion	594	1 856	922	804	931	902	948	925
Nuclear rockets	910	901	626	530	774	676	409	198
Space vehicle systems	1 722	2 945	1 836	1 389	1 483	1 502	1 462	1 362
Electronics systems		1 499	1 098	906	1 068	1 182	1 133	1 123
Aeronautics	2 744	1 984	1 530	1 394	1 5 1 3	1 775	2 118	2 270
Human factor systems		196	142	214	230	354	383	374
Chemical propulsion	1 086	806	503	425	505	459	367	376
Basic research			1 402	1 268	1 258	1 234	1 284	1 243
Subtotal	7 056	10 187	8 059	6 930	7 762	8 084	8 104	7 871
Space applications	338	616	410	480	429	437	515	591
Launch vehicle development	440	1 024	615	340	265	132	182	
Lunar and planetary exploration	379	193	179	296	342	300	405	284
Physics and astronomy	1 651	1 3 2 4	1 048	1 234	1 357	1 364	1 401	1 362
Bioscience		65	207	240	260	273	271	276
Launch vehicle procurement				324	317	510	445	476
Subtotal	2 808	3 222	2 459	2 9 1 4	2 970	3 016	3 219	2 989
Mercury	1 195	747						
Gemini		263	512	1 141	1 050	1 130	30	
Apollo	4 632	6 662	6 876	8 266	9 369	9 348	9 300	7 937
Apollo applications						160	888	2 015
Other manned space flight			548	343	250	268	318	325
Subtotal	5 827	7 672	7 936	9 750	10 669	10 906	10 536	10 277
Total, all programs	16 744	22 156	27 904	31 984	33 200	33 924	33 726	32 422

^aCorresponds closely to the budget line item used for FY 1968. No data available before 1961.

Source: Based on information supplied by the NASA Installation Analysis Branch, BR-2.

^bColumn only roughly comparable to subsequent columns because of organizational and program changes in November 1961.

^cSupport positions included in program totals. Program totals thus inflated when compared with subsequent years.

105

Table 3-25. Permanent Civil Service Positions by NASA Program (percentage of total end of fiscal year positions)

Program ^a	1961 ^b	1962	1963	1964	1965	1966	1967	1968
Administrative support	c	c	14.6	13.8	14.7	15.3	16.3	15.8
Research and development support	c	c	14.9	20.4	14.9	12.9	13.0	13.0
Other support	c	c	1.6	1.5	3.3	3.4	2.7	2.8
Subtotal	c	c	31.0	35.7	32.8	31.7	32.0	31.5
Sustaining university program		0.1	0.2	0.2	0.2	0.2	0.2	0.2
Technology utilization		0.2	0.1	0.2	0.1	0.2	0.2	0.1
Tracking and data acquisition		4.5	2.5	2.7	2.3	3.1	2.9	3.0
Subtotal	6.3	4.9	2.8	3.0	2.7	3.5	3.2	3.3
Space power/electric propulsion		8.4	3.3	2.5	2.8	2.7	2.8	2.9
Nuclear rockets		4.1	2.2	1.7	2.3	2.0	1.2	0.6
Space vehicle systems		13.3	6.6	4.3	4.5	4.4	4.3	4.2
Electronics systems		6.8	3.9	2.8	3.2	3.5	3.4	3.5
Aeronautics		9.0	5.5	4.4	4.6	5.2	6.3	7.0
Human factor systems		0.9	0.5	0.7	0.7	1.0	1.1	1.2
Chemical propulsion		3.6	1.8	1.3	1.5	1.4	1.1	1.2
Basic research			5.0	4.0	3.8	3.6	3.8	3.8
Subtotal	42.1	46.0	28.9	21.7	23.4	23.8	24.0	24.3
Space applications		2.8	1.5	1.5	1.3	1.3	1.5	1.8
Launch vehicle development		4.6	2.2	1.1	0.8	0.4	0.5	
Lunar and planetary exploration		0.9	0.6	0.9	1.0	0.9	1.2	0.9
Physics and astronomy		6.0	3.8	3.9	4.1	4.0	4.2	4.2
Bioscience		0.3	0.7	0.8	0.8	0.8	0.8	0.9
Launch vehicle procurement				1.0	1.0	1.5	1.3	1.5
Subtotal	16.8	14.5	8.8	9.1	8.9	8.9	9.5	9.2
Mercury		3.4						
Gemini		1.2	1.8	3.6	3.2	3.3	0.1	
Apollo		30.1	24.6	25.8	28.2	27.6	27.6	24.5
Apollo applications						0.5	2.6	6.2
Other manned space flight			2.0	1.1	0.8	0.8	0.9	1.0
Subtotal	34.8	34.6	28.4	30.5	32.1	32.1	31.2	31.7
Total, all programs	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^{a-c}Notes are identical to those for Table 3-24.

Source: Table 3-24.

Table 3-26. Total NASA Employment, Selected Characteristics (June 30 approximations)

Characteristic	1960	1961	1962	1963	1964	1965	1966	1967	1968
Contractor (out-of-house) employees NASA (in-house) employees	36 500 10 200	57 500 17 500	115 500 23 700	218 400 29 900	347 100 32 500	376 700 34 300	360 000 36 000	272 900 36 200	211 200 35 000
Total employment	46 700	75 000	139 200	248 300	379 600	411 000	396 000	309 100	246 200
Distribution of total employment									
By employer (100%) Contractors NASA	7 8 .2% 21.8	76.7% 23.3	83.0% 17.0	88.0% 12.0	91.4% 8.6	91.7% 8.3	· 90.9% 9.1	88.3% 11.7	88.0% 12.0
By appropriation (100%) Administrative operations Research and development Construction of facilities					9.8 72.7 17.5	10.1 77.2 12.7	11.2 77.7 11.1	14.8 78.3 6.9	17.6 79.0 3.4
By program office (100%) University affairs Technology utilization Tracking and data acquisition Advanced research and technology Space sciences and applications Manned space flight					0.1 3.9 11.6 15.3 69.1	0.1 5.5 10.1 15.0 69.3	0.2 8.0 8.9 13.6 69.3	1.6 0.1 8.1 10.2 14.6 65.4	6.4 11.6 12.8 66.7
By sector (100%) Government Industry University and nonprofit					8.6 90.0 1.4	8.3 90.0 1.7	9.1 88.8 2.1	11.7 85.4 2.9	14.2 83.2 2.6
Other characteristics (100%) ^a Prime and subcontractors-R&D Prime and subcontractors-CoF Subtotal Materials and supplies-R&D Materials and supplies-CoF Subtotal Service contractors-R&D Service contractors-AO					57.1 7.2 64.3 14.2 10.3 24.5	61.8 5.7 67.5 13.7 7.1 20.7	58.9 4.9 63.8 12.5 6.2 18.7 4.2 2.1	58.5 3.1 61.6 10.3 3.8 14.1 6.6 3.1	63.9 1.5 65.4 12.5 1.9 14.4
Subtotal University and nonprofit-R&D ^b NASA employees-AO					1.2 1.4 8.6	1.7 1.7 8.3	6.3 2.1 9.1	9.7 2.9 11.7	3.4 2.6 14.2

^aBased on data from a variety of sources. See page 8 of "NASA Manpower Information Digest," January 26, 1968.

Source: "NASA Manpower Information Digest," January 26, 1968; January 23, 1967; January 25, 1966; and February 16, 1965.

bExcludes JPL and MIT.

Table 3-27. Scientists and Engineers Employment, Selected Characteristics (June 30 approximations)

Characteristic ^a	1960	1961	1962	1963	1964	1965	1966	1967	1968
Contractor scientists and engineers	7 300	12 600	25 000	48 200	68 800	72 600	77 400	64 800	51 350
Percentage of contractor employment	20.0%	21.9%	21.6%	22.1%	19.8%	19.3%	21.5%	23.7%	24.3%
NASA scientists and engineers	3 500	5 800	8 200	11 000	12 400	13 500	14 300	14 500	13 715
Percentage of NASA employment	34.3%	33.1%	34.6%	36.8%	38.2%	39.4%	39.7%	40.1%	39.2%
Total scientists and engineers	10 800	18 400	33 200	59 200	81 200	86 100	91 700	79 300	65 065
Percentage of total employment	23.1%	24.5%	23.9%	23.8%	21.4%	20.9%	23.2%	25.7%	26.4%
Distribution of total S&E's									
By employer (100%)									
Contractors	67.6%	68.5%	75.3%	81.4%	84.7%	84.3%	84.4%	81.7%	78.9%
NASA	32.4	31.5	24.7	18.6	15.3	15.7	15.6	18.3	21.1
By appropriation (100%)									
Administrative operations					15.5	16.6	16.5	18.5	21.7
Research and development					82.8	81.8	82.5	81.1	78.5
Construction of facilities					1.7	1.6	1.0	0.4	0.2
By program office (100%)									
University affairs								0.5	
Technology utilization					0.1	0.3	0.3	0.2	
Tracking and data acquisition					4.6	4.7	6.5	6.8	6.6
Advanced research and technology					14.3	12.5	10.2	11.5	13.3
Space sciences and applications					19.0	17.2	14.6	16.8	14.3
Manned space flight					62.0	65.3	68.4	64.2	65.4
By sector (100%)									
Government					15.3	15.7	15.6	18.3	21.1
Industry					81.9	81.2	81.8	78.3	77.1
University and nonprofit					2.8	3.1	2.6	3.4	1.8
Other characteristics (100%)									
Prime and subcontractors-R&D					71.8	70.7	67.2	64.8	68.2
Prime and subcontractors-CoF					1.7	1.6	0.5	0.4	0.2
Service contractors-R&D							5.5	5.1	
Service contractors-AO					0.2	0.9	0.9	0.2	0.2
Materials and supplies-R&D					8.1	7.9	7.3	5.6	8.5
University and nonprofit—R&D ^b					2.8	3.1	2.6	3.4	1.8
NASA employees-AO					15.3	15.7	15.6	18.3	21.1

^a Based on data from a variety of sources. See page 10 of "NASA Manpower Information Digest," January 26, 1968.

Source: "NASA Manpower Information Digest," January 26, 1968. January 23, 1967; January 25, 1966; and February 16, 1965.

^bExcludes JPL and MIT.

Chapter Four NASA FINANCES

(Data as of 1968)

Chapter Four

NASA FINANCES

List of Tables

Table		Page
4-1	NASA Appropriations by Appropriation Title and Fiscal Year	115
4-2	Adjusted Appropriations as of June 30, 1968	
4-3	Authorizations and Appropriations Compared with Budget Requests	117
4-4	Requests, Authorizations, Appropriations, Obligations, and Disbursements-All Appropriations	
4-5	Requests, Authorizations, Appropriations, Obligations, and Disbursements-Administrative Operations	
4-6	Requests, Authorizations, Appropriations, Obligations, and Disbrusements-Research and Development	
4-7	Requests, Authorizations, Appropriations, Obligations, and Disbursements-Construction of Facilities	
4-8	Funding NASA's Program for FY 1959	
4-9	Funding NASA's Program for FY 1960	
4-10	Funding NASA's Program for FY 1961	
4-11	Funding NASA's Program for FY 1962	125
4-12	Funding NASA's Program for FY 1963	126
4-13	Funding NASA's Program for FY 1964	127
4-14	Funding NASA's Program for FY 1965	
4-15	Funding NASA's Program for FY 1966	
4-16	Funding NASA's Program for FY 1967	
4-17	Funding NASA's Program for FY 1968	
4-18	Direct Obligations, Actual and Comparative, by Appropriation Title	
4-19	Administrative Operations Direct Obligations, by Installation	
4-20	Amounts Programmed for Administrative Operations (1968 only), by NASA Installation	

4-21	Research and Development Direct Obligations, by Budget Line Item (Program)	134
4-22	Research and Development Direct Obligations, by Budget Line Item and Unique Project Number	136
4-23	Research and Development Direct Obligations, by Unique Project Number	143
4-24	Research and Development Reimbursable Obligations, by Project	149
4-25	Research and Development Direct Obligations (Cumulative), by NASA Installation and Major Project	150
4-26	Amounts Programmed for Research and Development, by NASA Installation	152
4-27	Amounts Programmed for Research and Development, by Program Office Area	153
4-28	Construction of Facilities Direct Obligations, by Installation	153
4 20	Fiscal Vear Obligations Costs and Disbursements as Percentages of Program Year Budget Plan	155

Chapter Four NASA FINANCES

During its first decade the National Aeronautics and Space Administration spent (obligated) just over \$32 billion. This sum represented a little over three percent of the money spent by the United States Government during that period and about one half of one percent of the Nation's gross national product. The goal of this chapter is to present in tabular form some of the details making up the \$32-billion figure.

The sources of financial data were numerous. Almost all of these sources were summary in nature and no attempt was made to look at the detailed documents behind them. The recently computerized SCAG (Status of Contracts and Grants) will someday prepare information like this by simply writing the proper program for it. At present, however, the press of serving management on a current day-to-day basis does not allow for a great deal of attention to be paid by NASA financial offices to reconstructing the past.

This chapter can present only a small fraction of the financial data generated during NASA's first decade. The several sources of data have not necessarily been reconciled with one another in the manner that an accountant might hope for. Rather the goal has been to give perspective to the vicissitudes (or absence thereof) of NASA's activities over a 10-year period. To indicate what has been excluded from this chapter and to point out some of the difficulties in using and comparing financial data, a brief overview of the entire budgeting and financial management processes might be helpful. The major steps in the process of financing NASA's program are these:

- 1. Long-range Financial Planning. (This function appears to have a very spotty history in NASA and no attempt has been made to summarize it.)
- 2. Preparing NASA's Annual Budget. This step includes the preparation of spending proposals by NASA's field installations, the aggregation and winnowing of these proposals by NASA Headquarters, the receiving of

¹ See Rosholt, Administrative History of NASA, pp. 211-217, for a brief account of early planning for the manned lunar landing program.

Presidential guidelines from the Bureau of the Budget, and the subsequent reconciliation of differences between NASA and the Bureau. (Little data are available on what NASA stood ready to spend if resources had been made available. The general assumption is that agencies always want more and ask for more than they eventually get.)

- 3. President's Budget Submitted to Congress. The President's January budget submission to Congress publicly reveals NASA's portion of the overall national budget and constitutes the basis for subsequent congressional action. (The President's requests for NASA, hereafter referred to as NASA's budget requests, have been summarized in this chapter. The total for the agency is comparable over time but any breakdowns of the total are subject to changing definitions, as indicated in the footnotes. It should be kept in mind that the January submission is six months before the beginning of the fiscal year upon which the budget is based. Thus the FY 1968 budget was submitted to Congress in January 1967 and was for the period from July 1, 1967, through June 30, 1968.)
- 4. Congressional Authorization. The President's budget is primarily a request for congressional appropriations, but for certain agencies and programs it is necessary for Congress to enact a law authorizing the appropriation. This two-step process applies to NASA.² The authorization law is largely the product of the House and Senate Space Committees, although it may be altered on the House and Senate floors and in the House-Senate Conference Committee. (Most of the authorization legislation is summarized later in this chapter.)
- 5. Congressional Appropriation. It is at this point that Congress makes its chief input as to the amount of national resources allocated to NASA. The President's request may be modified at five principal points—the House Appropriations Subcommittee on Independent Offices, the House floor, the Senate Appropriations Subcommittee on Independent Offices, the Senate

² Ibid., p. 60, gives the origin of this requirement.

floor, and the compromising conference committees. It is possible that the full appropriations committees may become involved as well. (Data on NASA appropriations are presented in detail in this chapter.)

- 6. Bureau of the Budget Apportionment. The Bureau of the Budget establishes certain controls on the release of appropriated funds to the various agencies. (There has been no indication that this process has had an adverse affect on NASA up to 1968 and no attempt has been made to summarize it here.)
- 7. NASA Programming. Once NASA has obtained primary jurisdiction over the funds appropriated to it by Congress a detailed pie-cutting operation takes place. Funds are earmarked for various programs, projects, and places, setting the stage for the ongoing spending. (Constant reprogramming makes it very difficult to summarize this step and very little is done with it in this chapter. It must be recognized, however, that this is a very dynamic element in the agency's ongoing activities.)
- 8. Committing, Obligating, Costing, Disbursing. The flow of financial activity really requires a moving picture camera to depict it but this data book can present only a series of still pictures. NASA carries out most of its program by contract and whenever a contract is entered into, an appropriate amount of money is obligated to fulfill eventually the terms of the contract. At some later point the money actually changes hands and thus is disbursed or expended.
- 9. Auditing. The financial activities described above are eventually reviewed or audited both by NASA and by Congress's General Accounting Office to determine the legality of all actions and in some cases the quality of agency procedures and performance.

In summary, only a relatively small amount of financial data can be presented in this chapter. Primary emphasis will be on NASA's budget requests, congressional authorizations, and congressional appropriations-all for obtaining resources-and on obligations, for the disposition of resources. The tables can be divided into three groups. Tables 4-1 through 4-7 are summary tables providing an overview of the entire budget process. Tables 4-8 through 4-17 focus on the obtaining of resources to carry out NASA's programs. Tables 4-18 through 4-29 focus on the disposition of those resources. It will readily be noted that money is made available to NASA in rather large chunks, but is disposed of in relatively small pieces. In 9 of the 10 years covered in this chapter NASA appropriation acts were divided into three parts or "Titles," which now are termed Administrative Operations (AO), Research and Development (R&D), and Construction of Facilities (CoF). The last two are "no-year" appropriations and thus have no time limit placed on their use. Nevertheless, they are kept intact as "program year" monies, and thus during any one fiscal year, funds may be available from the current program year and several past program years. For the most part, this chapter ignores this phenomenon except for table 4-29, which attempts to articulate programmed funds, obligated funds, and disbursed funds.

In depicting the dispostion of the agency's resources, principal attention has been paid to actual obligations for each fiscal year. This probably gives the best measure of the flow of agency activity. Because disbursements lag after the event (often by several years), programmed amounts antedate the event and the ideal, accrued costs were not available for much of the 10 years covered in this chapter.

Table 4-1. NASA Appropriations by Appropriation Title and Fiscal Year (in millions of dollars)

Fiscal Year	S&E/AO ^a	R&D ^b	C&E/CoF ^c	Total
1959 ^d	86.3	. 196.6	48.0	330.9
1960	91.4	347.6	84.6	523.6
1961	170.8	670.4	122.8	964.0
1962	206.8	1 302.5	316.0	1 825.3
1963		2 897.9 ^e	776.2	3 674.1
1964	494.0	3 926.0	680.0	5 100.0
1965	623.5	4 363.6	262.9	5 250.0
1966	584.0	4 531.0	60.0	5 175.0
1967	640.0	4 245.0	83.0	4 968.0
1968	628.0	3 925.0	35.9	4 588.9
Total	3524.8 ^f	26 405.6 ^g	2469.4	32 399.8

^a Salaries and Expenses 1959-1962; Administrative Operations 1963-1968.

Source: Tables 4-8 through 4-17 of this chapter.

b Research and Development. See Note e below.

^cConstruction and Equipment 1959-1961; Construction of Facilities 1962-1968.

d See subsequent tables for FY 1959 funding pattern. Funds were appropriated to NACA, NASA, and transferred from DOD.

Research, Development, and Operations (RD&O).

f Because of 1963 arrangement this total is understated by about \$440 000 000. (See Note e.)

^gBecause of 1963 arrangement this total is overstated by about $$440\ 000\ 000$. (See Note e.)

Table 4-2. Adjusted Appropriations as of June 30, 1968 (in millions of dollars)

Fiscal Year	Total	S&E/AO ^a	Percentage of Total	R&D ^a	Percentage of Total	C&E/CoF ^a	Percentage of Total
1959 ^a	330.9	86.3	26.1	196.6	59.4	48.0	14.5
1060	523.6	90.9	17.4	333.4	63.7	99.4	19.0
1961	964.0	166.8	17.3	671.4	69.6	125.8	13.0
1962	1 824.9	213.8	11.7	1 268.1	69.5	343.0	18.8
1963	3 673.0	440.0 ^b	12.0	2 470.5 ^b	67.3	762.6	20.8
1964	5 099.7	496.1	9.7	3 861.5	75.7	742.1	14.6
1965	5 249.7	623.3	11.9	4 360.1	83.1	266.4	5.1
1966	5 174.9	611.8	11.8	4 502.2	87.0	60.9	1.2
1967	4 967.6	647.5	13.0	4 235.1	85.3	85.0	1.7
1968	4 588.8	640.4	14.0	3 910.6	85.2	37.8	0.8
Total	32 397.1	4016.9 ^b	12.4	25 809.5 ^b	79.7	2571.0	7.9

^a See Notes a, b, c, d of previous table.

^b Adjusted appropriation for RD&O for FY 1963 as of June 30, 1968, stood at \$2 910 491 027. For rough comparability \$440 000 000 was moved into the AO column and thus all indicated figures are estimates.

Source: Tables 4-8 through 4-17 of this chapter.

Table 4-3. Authorizations and Appropriations Compared with Budget Requests (in millions of dollars)

			Amounts and	Percentages	Cut (or Added	i) by Congre	ss	
	S&E	/AO	R&			/CoF	Tot	al
Action	\$	%	\$	%	\$	%	\$	%
FY 1959	-	***						
Auth.	0	0	0	0	(3.7)	(3.8)	(3.7)	(0.9)
Appr.	4.5	5.0	41.0	17.3	50.3	51.2	95.8	22.5
FY 1960					-			
Auth.	0	0	12.2	3.5	5.8	8.5	18.0	3.5
Appr.	3.0	3.2	(2.3)	(0.7)	(16.0)	(23.3)	(15.3)	(3.0)
FY 1961			(===7	(511)	(10.0)	(20.0)	(13.0)	(3.0)
Auth.	0	0	(0.4)	(0.1)	(5.0)	(4.1)	(5.4)	(0.6)
Appr.	0	0	0,6	0.1	0	0	0.6	0.1
FY 1962			0,0		· ·	Ü	0.0	0.1
Auth.	0	0	75.0	5.4	10.0	3.0	85.0	4.4
Appr.	19.9	8.8	78.0	5.7	17.1	5.1	115.0	5.9
FY 1963			, 5.5	· · ·		5.1	113.0	3.7
Auth.	_	_	10.4 ^a	0.4 ^a	32.8	4.0	43.2	1.1
Appr.	_	_	70.4 ^a	2.4 ^a	42.8	5.2	113.2	3.0
FY 1964								2.0
Auth.	42.1	7.5	232.1	5.3	87.0	10.9	361.2	6.3
Appr.	66.3	11.8	425.7	9.8	120.0	15.0	612.0	10.7
FY 1965						10.0	012.0	10.7
Auth.	17.5	2.7	181.9	4.0	18.1	6.4	217.5	4.0
Appr.	17.5	2.7	159.4	3.5	18.1	6.4	195.0	3.6
FY 1966							175.0	5.0
Auth.	18.4	3.0	38.9	0.9	12.3	16.5	69.6	1.3
Appr.	25.4	4.2	44.9	1.0	14.7	19.7	85.0	1.6
FY 1967					• • • • • • • • • • • • • • • • • • • •	,	03.0	1.0
Auth	8.0	1.2	(2.0)	(*)	5.6	5.5	11.6	0.2
Appr.	23.9	3.6	1.6	*	18.5	18.2	44.0	0.9
FY 1968			1.5		10.5	10.2	77.0	0.5
Auth.	23.1	3.4	204.4	4.7	6.7	8.7	234.2	4.6
Аррг.	43.3	6.5	427.0	9.8	40.8	53.2	511.1	10.0
Total		0.5	727.0	7.0	₹0.0	33.2	311.1	10.0
Auth.	109.1	2.9	752.5	2.7	169.6	6.1	1031.2	3.0
Appr.	203.8	5.5	1246.3	4.5	306.3	11.0		
лург.	203.0	J.J	1 240.3	4.3	300.3	11.0	1756.4	5.1

^aResearch, Development, and Operations.

Source: Tables 4-4 through 4-7.

^{* =} Less than \$50 000, and less than 0.1 percent.

Table 4-4. Requests, Authorizations, Appropriations, Obligations, and Disbursements—All Appropriations (in millions of dollars)

Fiscal Year	Budget Request	Authorization	Appropriation	Obligations ^a	Expenditures ^a
1959	146.6	146.6	146.6		
1959	280.0 ^b	259.2 ^c	184.3 ^d	298.7	145.5
1960	508.3	490.3	523.6 ^e	487.0	401.0
1961	964.6	970.0	964.0	908.3	744.3
1961 ^f	2.7	2.7	2.7		
1962	1 940.3	1 855.3 ^g	1 825.3	1 691.6	1 257.0
1963	3 787.3	3 744.1	3 674.1	3 448.4	2 552.4
1964	5 712.0	5 350.8	5 100.0	4 864.8	4 171.0
1965	5 445.0 ^h	5 227.5	5 250.0 ⁱ	5 500.7	5 092.9
1966	5 260.0	5 190.4	5 175.0	5 350.5	5 932.9
1967	5 012.0	5 000.4	4 968.0	5 01 I.8	5 425.7
1968	5 100.0	4 865.8	4 588.9	4 520.4	4 723.7
Total	34 158.8	33 103.1°	32 402.5	32 082.2	30 446.4

^aActual obligations and disbursements during the fiscal year.

bRequests for NACA/NASA amounted to \$280 054 000. Requests for transfers from DOD resulted in the transfer of \$146 619 532 in obligational authority to NASA.

^cSee the next three tables for the derivation of these figures.

d_{Includes} \$101 100 000 appropriated to NACA, \$83 186 300 to NASA, and \$146 619 532 transferred from DOD.

e\$38 500 000 based on FY 1959 authorization P.L. 86-12.

 $f_{Unobligated}$ balances transferred from DOD (\$1 661 488 R&D; \$1 070 005 CoF).

 $g_{Includes}$ \$71 000 000 supplemental for CoF for which existing authorization was available.

h_{Includes} \$141 000 000 supplemental request for FY 1964 R&D program.

ⁱIncludes \$72 494 000 R&D supplemental against FY 1964 authorization.

Source: NASA, Office of Administration, Budget
Operations Division, "Budget History,
Summary All Appropriations," Jan. 18, 1968;
Tables 4-8 through 4-17 of this chapter.

Table 4-5. Requests, Authorizations, Appropriations, Obligations, and Disbursements-Administrative Operations (in millions of dollars)

Fiscal Year	Budget Request	Authorization	Appropriation	Obligations ^a	Expenditures ^a
1959	90.8 ^b	90.8 ^c	86.3 ^d	85.0	86.7
1960	94.4	94.4	91.4	89.4	91.0
1961	170.8	170.8	170.8	166.0	159.1
1962	226.7	226.7	206.8	213.2	207.1
1963 ^e	_		_	_	18.7
1964	560.3	518.2	494.0	493.8	415.9
1965	641.0	623.5	623.5	619.9	577.5
1966	609.4	591.0	584.0	611.2	619.4
1967	663.9	655.9	640.0	646.6	649.9
1968	671.3	648.2	628.0	639.2	651.5
Total	3728.6 ^f	3619.5 ^f	3524.8 ^f	3564.3	3476.8

^aActual obligations and disbursements during the fiscal year.

f Understated because of 1963 problem.

Source: NASA, Office of Administration, Budget Operations Division, "Budget History, Administrative Operations," Jan. 18, 1968; Tables 4-8 through 4-17 of this chapter.

b\$80 480 000 for NACA, \$10 354 000 for NASA.

^cActual authorization of \$3 354 000. Implied authorization of \$87 480 000.

d\$78 100 000 to NACA, \$8 186 300 to NASA. eIn FY 1963, R&D and S&E were combined as RD&O. See Table 4-12.

Table 4-6. Requests, Authorizations, Appropriations, Obligations, and
Disbursements—Research and Development
(in millions of dollars)

Fiscal Year	Budget Request	Authorization	Appropriation	Obligations ^a	Expenditures ^a
1959	237.6 ^b	237.6 ^c	196.6 ^d	175.7	34.0
1960	345.3	333.1	347.6 ^e	307.9	255.7
1961	671.0	671.4	670.4	644.1	487.0
1962	1 380.5	1 305.5	1 302.5	1 261.3	935.6
1963	2 968.3 f	2 957.9 ^f	2 897.9 ^f	2 878.6	2 308.4
1964	4 351.7	4 119.6	3 926.0	3 824.4	3 317.4
1965	4 523.0 ^g	4 341.1	4 363.6 ^h	4 358.6	3 984.5
1966	4 575.9	4 537.0	4 531.0	4 468.9	4 741.1
1967	4 246.6	4 248.6	4 245.0	4 249.3	4 487.2
1968	4 352.0	4 147.6	3 925.0	3 881.3	3 945.1
Total	27 651.9 ⁱ	26 899.4 ⁱ	26 405.6 ⁱ	26 050.1	24 496.0

^aActual obligations and disbursements during the fiscal year.

b\$90 950 000 for NASA, \$146 619 532 for transfer to NASA from DOD.

^cActual authorization of \$20 750 000 for NASA, the rest is implied authorization.

d\$50 000 000 to NASA, \$146 619 532 transferred from DOD.

eIncludes \$16 675 000 based on FY 1959 authorization.

fIncludes AO money and thus overstated.

gIncludes \$141 000 000 supplemental request for FY 1964 R&D program.

h_{Includes} \$72 494 000 supplemental against FY 1964 authorization.

iOverstated as per Note f above.

Source: NASA, Office of Administration, Budget
Operations Division, "Budget History,
Research and Development," Jan. 18, 1968;
Tables 4-8 through 4-17 of this chapter.

Table 4-7. Requests, Authorizations, Appropriations, Obligations and Disbursements-Construction of Facilities (in millions of dollars)

Fiscal Year	Budget Request	Authorization	Appropriation	Obligations ^a	Expenditures ^c
1959	98.3 ^b	102.0 ^c	48.0 ^d	38.0	24.7
1960	68.6	62.8	84.6 ^e	89.7	54.4
1961	122.8	127.8	122.8	00.2	00.2
1961 (DOD	transfer) 1.1	1.1	1.1	98.2	98.2
1962	333.1	323.1 ^f	316.0	217.1	114.3
1963	819.0	786.2	776.2	569.8	225.3
1964	800.0	713.0	680.0	546.6	437.7
1965	281.0	262.9	262.9	522.2	530.9
1966	74.7	62.4	60.0	270.4	572.4
1967	101.5	95.9	83.0	115.9	288.6
1968	76.7	70.0	35.9	64.4	126.1
Total	2776.8	2607.2	2470.5	2532.3	2472.6

^aActual obligations and disbursements during the fiscal year. ^b\$26 220 000 for NACA, \$72 050 000 for NASA.

Source: NASA, Office of Administration, Budget Operations Division, "Budget History, Construction of Facilities," Jan. 18, 1969; Tables 4-8 through 4-17 of this chapter.

c \$29 933 000 for NACA, \$72 050 000 for NASA. d \$23 000 000 for NACA, \$25 000 000 for NASA.

eIncludes \$21 825 000 based on FY 1959 authorization.

fincludes \$71 000 000 supplemental for which existing authorization was available.

Table 4-8. Funding NASA's Program for FY 1959

Action	S&E ^a	R&D ^a	C&E ^a	Total
Regular request (NACA) ^b	80 480 000		26 220 000	106 700 00
Authorization ^c	(80 480 000) ^d		29 933 000	(110 413 000)
Appropriation ^e	78 100 000		23 000 000	101 100 000
Supplemental request (NASA)f	7 000 000	70 200 000	47 800 000	125 000 000
Authorizationg	(7 000 000) ^h	(70 200 000) ^h	47 800 000	(125 000 000)
Appropriation ⁱ	5 000 000	50 000 000	25 000 000	80 000 000
Supplemental request (NASA) ^j	3 354 000	20 750 000	24 250 000	48 354 000
Authorization ^k	3 354 000	20 750 000	24 250 000	48 354 000
Appropriation ¹	3 186 300	m	m	3 186 300
FY 1959 NOA Transfers				
From ARPAn		59 200 000		
From Air Force ^o		57 800 000		
From Army ^p		4 078 250		•
Subtotal		121 078 250		121 078 250
Total FY 1959 NOA available	86 286 300	171 078 250	48 000 000	305 364 550
DOD unobligated balances ^q		25 541 282		25 541 282
FY 1959 funding base	86 286 300	196 619 532 ^r	48 000 000	330 905 832s
Additional transfers:				
ARPA working fund		+8 000 000		
To prior years	-1 011 000			

 a S&E = Salaries and Expenses; R&D = Research and Development; C&E = Construction and Equipment.

bSubmitted in January 1958, before the Space Act was being considered. NASA was established and NACA disestablished at the end of 3 months of FY 1959.

^cP.L. 85-617, August 8, 1958.

d_{No} authorizing legislation needed.

^eP.L. 85-844, August 28, 1958.

fRequested on July 30, 1958, the day after the Space Act was passed.

^gP.L. 85-657, August 14, 1958.

hNo authorization needed because of blanket authorization in Section 307 of the Space Act, P.L. 85-568.

ⁱP.L. 85-766, August 27, 1958.

Requested in January 1960.

^kP.L. 86-12, April 22, 1959.

¹P.L. 86-30, May 20, 1959, a Government-wide pay increase.

 ^{m}See the next table for the disposition of the R&D and C&E requests.

ⁿBased on Executive Order 10783. The \$59 200 000 excludes an \$8 000 000 working fund (see Note r below).

^OBased on EO 10783.

^pBased on EO 10793. Consists of NOA associated with the Jet Propulsion Laboratory, transferred from the Army to NASA in December 1958.

^qBased on EO 10783. Consists of prior years unobligated balances associated with the U.S. Scientific Satellite Project (Project Vanguard).

^rConsists of \$50 000 000 in appropriations directly to NASA and \$146 619 532 in appropriations transferred from DOD.

 $^{\circ}$ Consists of \$101 100 000 appropriated to NACA, \$83 186 300 appropriated to NASA, and \$146 619 532 transferred from DOD.

Source: Rosholt, Administrative History of NASA, pp. 58-59, 85-88; NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1959 Budget Submission (Washington, D.C.: NASA, undated).

Table 4-9. Funding NASA's Program for FY 1960

Action	S&E ^a	$R\&D^a$	C&E ^a	Total
Regular request ^b	94 430 000	333 070 000	57 800 000	485 300 000
Authorization ^c	94 430 000	333 070 000	62 800 000 ^d	490 300 000
Appropriation ^e	91 400 000	$335\ 350\ 000^{\mathrm{f}}$	73 825 000 ^g	500 575 000 ^h
Supplemental request ⁱ		12 200 000	10 800 000	23 000 000
Authorization Appropriation ^k	,	j 12 200 000	j 10 800 000	j 23 000 000
Later transfers ¹				
From S&E to R&D	- 550 000	+ 550 000		
From R&D to C&E		- 14 730 366	+ 14 730 366	
Adjusted appropriations	90 850 000	333 369 634	99 355 366	523 575 000

^aS&E = Salaries and Expenses; R&D = Research and Development; C&E = Construction and Equipment. ^bJan. 19, 1959.

Source: Rosholt, Administrative History of NASA, pp. 85-88; [Bureau of the Budget], The Budget of the U.S. Government, Fiscal Year 1962, pp. 175-181; NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1960 Budget Submission, undated; information supplied by Budget Operations Division, NASA.

^cP.L. 86-45, June 15, 1959. P.L. 86-45 extended the need for annual authorizations indefinitely. This had originally been a one-year rider to the FY 1959 appropriation (P.L. 87-766).

d Includes an implied authorization of \$5 000 000 for "unforeseen" contingencies.

^eP.L. 86-213, Sept. 1, 1959.

^{\$16 675 000} based on FY 1959 authorization.

g\$21 825 000 based on FY 1959 authorization.

h \$38 500 000 based on FY 1959 authorization, P.L. 86-12.

ⁱJanuary 1960.

P.L. 86-213 had provided excess authorization of \$23 225 000.

^kP.L. 86-425, April 14, 1960.

¹Based upon provisions in NASA's authorization and appropriation acts. Figures as of June 30, 1968.

Table 4-10. Funding NASA's Program for FY 1961

Action	S&E ^a	R&D ^a	C&E ^a	Total
Regular request ^b	167 560 000	545 153 000	89 287 000	802 000 000
Budget amendment ^c	3 200 000	76 300 000	33 500 000	113 000 000
Total	170 760 000	621 453 000	122 787 000	915 000 000
Authorization ^d	170 760 000	671 453 000	127 787 000	970 000 000
Appropriation ^e	170 760 000	621 453 000	122 787 000	915 000 000
Supplemental request ^f		49 606 000		49 606 000
Authorization		g		g
Appropriation ^h		49 000 000		49 000 000
Later transfers ⁱ				
From S&E to R&D	-3 352 000	+ 3 352 000		
From S&E to C&E	- 590 000		+ 590 000	
From R&D to C&E		$-2\ 442\ 877$	+ 2 442 877	
Adjusted appropriations	166 818 000	671 362 123	125 819 877	964 000 000
Transfers from DOD ^j		1 661 488	1 070 005	2 731 493

^aS&E = Salaries and Expenses; R&D = Research and Development; C&E = Construction and Equipment.

Source: Rosholt, Administrative History of NASA, pp. 136-138; [Bureau of the Budget], The Budget of the U.S. Government, Fiscal Year 1963, Appendix, pp. 745-751; NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1961 Budget Submission, undated; information supplied by Budget Operations Division, NASA.

^bJan. 18, 1960.

^cFeb. 8, 1960. The February 1960 budget amendment stemmed primarily from the transfer of the Saturn project from the Army to NASA.

dP.L. 86-481, June 1, 1960 (the increase stemmed from the work of Senate Leader Lyndon Johnson).

^eP.L. 86-626, July 12, 1960.

fJan. 18, 1961.

^gP.L. 86-481 provided excess authorization of \$55 000 000.

^hP.L. 87-14, March 31, 1961.

¹Based on provisions of public law. Figures as of June 30, 1968.

¹Prior year unobligated balances transferred from ARPA-DOD (42 U.S.C. 2453).

Table 4-11. Funding NASA's Program for FY 1962

Action	S&E ^a	R&D ^a	CoF ^a	Total
Regular request ^b	189 986 000	819 819 000	99 825 000	1 109 730 000
Budget amendment ^c	6 700 000	99 720 000	19 250 000	125 670 000
Budget amendment ^d	30 000 000	376 000 000	143 000 000	549 000 000
Total	226 686 000	1 295 539 000	262 075 000	1 784 300 000
Authorization ^e	226 686 000	1 305 539 000	252 075 000	1 784 300 000
Appropriation ^f	206 750 000	1 220 000 000	245 000 000	1 671 750 000
Supplemental appropriation ^g	+ 10 000 000	-10 000 000		
Supplemental request ^h		85 000 000	71 000 000	156 000 000
Authorization		i	$(71\ 000\ 000)^{i}$	(71 000 000)
Appropriation ^j		82 500 000	71 000 000	153 500 000
Later transfers ^k				
From S&E to R&D	-660 000	+ 660 000		
From S&E to CoF	- 2 000 000		+ 2 000 000	
From R&D to CoF		- 25 040 864	+ 25 040 864	
From S&E to GSA	- 320 000			-320 000
Adjusted appropriations	213 770 000	1 268 119 136	343 040 864	1 824 930 000

^aS&E = Salaries and Expenses; R&D = Research and Development; CoF = Construction of Facilities.

Source: Rosholt, Administrative History of NASA, pp. 193-196, 233-234, 285; [Bureau of the Budget], The Budget of the U.S. Government, Fiscal Year 1964, Appendix, pp. 781-787, NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1962 Budget Submission, undated; information supplied by NASA, Budget Operations Division.

^bJanuary 1961 Eisenhower budget.

^cMarch 1961 amendment.

^dMay 26, 1961, amendment associated with the accelerated manned lunar landing program.

^eP.L. 87-98, July 21, 1961.

^fP.L. 87-141, Aug. 17, 1961.

^gP.L. 87-332, Sept. 30, 1961.

h Feb. 7, 1962.

ⁱP.L. 87-98 provided excess authorizations of \$113 550 000. P.L. 87-584, Aug. 14, 1962, amended P.L. 87-98 to authorize explicitly the land acquisitions for which the CoF supplemental was sought.

^jP.L. 87-545, July 25, 1962.

^kBased on provisions of public law. Figures as of June 30, 1968.

Table 4-12. Funding NASA's Program for FY 1963

Action	RD&O ^a	CoF ^b	Total
Regular request	2 968 278 000	818 998 000	3 787 276 000
Authorization ^c	2 957 878 000	786 237 250	3 744 115 250
Appropriation ^d	2 897 878 000	776 237 000	3 674 115 000
Later transferse			
From CoF to RD&O	+ 13 686 750	- 13 686 750	
From RD&O to GSA	-1 073 723		-1 073 723
Adjusted appropriations	2 910 491 027	762 550 250	3 673 041 277

^aRD&O = Research, Development, and Operations. The amalgamation of R&D and S&E into RD&O greatly complicates year to year comparisons. In FY 1964 RD&O is split into R&D and AO. AO becomes roughly comparable to S&E. For FY 1963 AO can be roughly set at about \$440 million.

Source: Rosholt, Administrative History of NASA, pp. 284-285; [Bureau of the Budget], The Budget of the U.S. Government, Fiscal Year 1965, Appendix, pp. 765-772; NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1963 Budget Submission, undated; information supplied by NASA, Budget Operations Division.

^bCoF = Construction of Facilities.

^cP.L. 87-584, Aug. 14, 1962.

^dP.L. 87-741, Oct. 3, 1962.

^eBased on provisions of public law. Figures as of June 30, 1968.

Table 4-13. Funding NASA's Program for FY 1964

Action	AO^a	R&D ^a	CoF ^a	Total
Regular request b	(560 300 000)	(4 351 700 000)	800 000 000	5 712 000 000
Authorization ^C	518 185 000	4 119 575 000	713 060 400	5 350 820 400
Appropriation ^d	494 000 000	3 926 000 000	680 000 000	5 100 000 000
Later transfers ^e	,			
From AO to CoF	-13 300 000		+13 300 000	
From R&D to AO	+15 685 000	-15 685 000		
From R&D to CoF		-48 845 300	+48 845 300	
From AO to GSA	-285 956			-285 956
Adjusted appropriations	496 099 044	3 861 469 700	742 145 300	5 099 714 044

^aAO = Administrative Operations; R&D = Research and Development; CoF = Construction of Facilities.

Source: Rosholt, Administrative History of NASA, pp. 285-289; The Budget of the U.S. Government, Fiscal Year 1966, Appendix, pp. 845-851; NASA, Office of Administration, Budget Operations Division, Chronological History, Fiscal Year 1964 Budget Submission, Nov. 26, 1963; information supplied by NASA, Budget Operations Division.

^bIn the budget request AO and R&D were submitted as one account, RD&O.

^cP.L. 88-113, Sept. 6, 1963. P.L. 88-215, Dec. 19, 1963.

dBased on provisions of public law. Figures as of June 30, 1968.

Table 4-14. Funding NASA's Program for FY 1965

Action	AO	R&D	CoF	Total
Action	110			
Supplemental request ^a		141 000 000		141 000 000
Regular request	641 000 000	4 382 000 000	281 000 000	5 304 000 000
Authorization	623 525 500	4 341 000 000	262 880 500	5 227 506 000
Appropriation ^c	623 525 500	4 363 594 000 ^d	262 880 500	5 250 000 000 ^d
Later transfers ^e				
From R&D to CoF		-3 496 993	+3 496 993	272.012
From AO to GSA	-272 812			-272 812
Adjusted appropriations	623 252 688	4 360 097 007	266 377 493	5 249 727 188

^aFor FY 1964 Program. Note cuts in 1964 request shown in previous table.

Source: The Budget of the U.S. Government, Fiscal Year 1967, Appendix, pp. 867-873; NASA, Office of Programming, Budget Operations Division, Chronological History, Fiscal Year 1965 Budget Submission, Sept. 14, 1964; information supplied by NASA, Budget Operations Division.

^bP.L. 88-369, July 11, 1964.

^cP.L. 88-507, Aug. 30, 1964.

dOf this appropriation, \$72 494 000 was charged against the FY 1964 authorization. This was Congress's response to the supplemental request mentioned in the first footnote.

^eBased on provisions of public law. Figures as of June 30, 1968.

Table 4-15. Funding NASA's Program for FY 1966

Action	AO	R&D	CoF	Total
Regular request	609 400 000	4 575 900 000	74 700 000	5 260 000 000
Authorization ^a	591 048 850	4 536 971 000	62 376 350	5 190 396 200
Appropriation ^b	584 000 000	4 531 000 000	60 000 000	5 175 000 000
Later transfers ^c				
From R&D to AO	+ 27 896 000	- 27 896 000		
From R&D to CoF		- 940 000	+ 940 000	
From AO to GSA	- 76 000			- 76 000
Adjusted appropriations	611 820 000	4 502 164 000	60 940 000	5 174 924 000

^aP.L. 89-53, June 28, 1965.

Source: The Budget of the U.S. Government, Fiscal Year 1968, Appendix, pp. 873-879; NASA, Office of Programming, Budget Operations Division, Chronological History, Fiscal Year 1966 Budget Submission, Sept. 19, 1965; information supplied by NASA, Budget Operations Division.

Table 4-16. Funding NASA's Program for FY 1967

Action	AO	R&D	CoF	Total		
Regular budget	663 900 000	4 246 600 000	101 500 000	5 012 000 000		
Authorization ^a	655 900 000	4 248 600 000	95 919 000	5 000 419 000		
Appropriation ^b	640 000 000	4 245 000 000	83 000 000	4 968 000 000		
Later transfers ^c						
From R&D to AO	+ 7 900 000	- 7 900 000				
From R&D to CoF		- 2 000 000	+ 2 000 000			
From AO to GSA	-417 000			-417 000		
Adjusted appropriations	647 483 000	4 235 100 000	85 000 000	4 967 583 000		

^aP.L. 89-528, Aug. 5, 1966.

Source: The Budget of the U.S. Government, Fiscal Year 1969, Appendix, pp. 873-879; NASA, Office of Programming, Budget Operations Division, Chronological History, Fiscal Year 1967 Budget Submission, Sept. 12, 1966; information supplied by NASA, Budget Operations Division.

^bP.L. 89-128, Aug. 16, 1965.

^cBased on provisions of public law. Figures as of June 30, 1968.

^bP.L. 89-555, Sept. 6, 1966.

^cBased on provisions of public law. Figures as of June 30, 1968

Table 4-17. Funding NASA's Program for FY 1968

Action	AO	R&D	CoF	Total
Budget request	671 300 000	4 352 000 000	76 700 000	5 100 000 000
Authorization ^a	648 206 000	4 147 565 000	69 980 000	4 865 751 000
Appropriation ^b	628 000 000	3 925 000 000	35 900 000	4 588 900 000
Later transfers ^c				
From R&D to AO	+ 12 500 000	-12500000		
From R&D to CoF		- 1 900 000	+ 1 900 000	
From AO to GSA	- 127 000			- 127 000
Adjusted appropriations	640 373 000	3 910 600 000	37 800 000	4 588 773 000

Source: The Budget of the U.S. Government, Fiscal Year 1969, Appendix, pp. 873-879; NASA, Office of Programming, Budget Operations Division, Chronological History, Fiscal Year 1968 Budget Submission, Nov. 8, 1967; information supplied by NASA, Budget Operations Division.

^aP.L. 90-67, Aug. 21, 1967. ^bP.L. 90-131, Nov. 8, 1967.

^cBased on provision of public law. Figures as of June 30, 1968.

Table 4-18. Direct Obligations, Actual and Comparative, by Appropriation Title (in millions of dollars)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Administrative Operations, comparative ^a	86.0 ^b	117.3	222.7	315.5	424.4	493.9	620.0	611.2	(1)	(20.2
Research and Development, comparative ^c	174.7	280.0	587.5	1159.0	2454.2	3824.4		611.2	646.6	639.3
Construction of Facilities, comparative	38.0	89.7	98.2	217.1	569.8	546.6	4358.6 522.2	4468.9 270.4	4249.3 115.9	3816.6 64.5
Total, all appropriations	298.7	486.9	908.3	1691.7	3448.4	4864.8	5500.7	5350.5	5011.7	4520.4
Salaries and Expenses, actual	85.0	89.4	166.0	213.2						
Administrative Operations, actual		-			·	493.9	620.0	611.2	646.6	639.3
Research and Development, actual	175.7	307.9	644.2	1261.3		3824.4	4358.6	4468.9	4249.3	3816.6
Research, Development and Operations, actual			· -		2878.6					
Construction and Equipment, actual	38.0	89.7	98.2			-			_;	
Construction of Facilities, actual				217.1	569.8	546.6	522.2	270.4	115.9	64.5
Total, all appropriations	298.7	486.9	908.3	1691.7	3448.4	4864.8	5500.7	5350.5	5011.7	4520.4
Percentages of yearly total										
Administrative Operations, comparative	28.8%	24.1%	24.5%	18.6%	12.3%	10.2%	11.3%	11.4%	12.00	1.4.10
Research and Development, comparative	58.5	57.5	64.7	68.5	71.2	78.6	79.2	83.5	12.9% 84.8	14.1% 84.5
Construction of Facilities, comparative	12.7	18.4	10.8	12.8	16.5	11.2	9.5	5.1	2.3	84.5 1.4
Total, all appropriations (100%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Percentages of Ten-Year Total								100.0	100.0	100.0
Administrative Operations, comparative	11.1%									
Research and Development, comparative	81.0									
Construction of Facilities, comparative	7.9									
Total, all appropriations (dollars)	32 082.2									

^aCalculated by adding "R&D Support of Plant" to "Salaries and Expenses" for 1959-1962. Figures for 1963 based on data from History of Budget Plans. . . Fiscal Years 1959 Through 1963 (see Source, below).

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959
Through 1963 (Washington, D.C.: NASA, February 1965); an untitled draft History of Budget Plans. ..Fiscal Years 1964-1966. NASA, Office of Administration, Budget Operations Division, "Budget History, Summary All Appropriations," Jan. 18, 1968; "Budget History, Administrative Operations," Jan. 18, 1968; "Budget History, Research and Development," Jan. 18, 1968; "Budget History, Construction of Facilities," Jan. 18, 1968.

b Includes \$1 011 781 made in FY 1958 for FY 1959 program.

^cCalculated by subtracting "R&D Support of Plant" from "Research and Development, actual." Figures used for "R&D Support of Plant" were: \$1.0 million for 1959, \$27.9 million for 1960, \$56.7 million for 1961, and \$102.3 million for 1962. Figures for 1963 based on *History of Budget Plans*. . . Fiscal Years 1959 Through 1963.

Table 4-19. Administrative Operations Direct Obligations, by Installation (in millions of dollars)

Installation	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Mistalian .				25.0	46.3	45.6	51.5	54.1	57.0	55.4
NASA Headquarters	5.5	8.5	13.9	25.9	3.7	5.3	23.3	5.8	3.6	2.7
WSO, NEO, PLOO, NAPO ^a		.5	5.7	1.5		52.1	59.0	63.5	64.3	62.2
Langley Research Center	30.7	32.8	39.1	46.6	51.0		31.8	33.2	33.8	33.8
Ames Research Center	16.0	17.7	19.9	22.9	25.4	29.9	68.5	66.4	66.3	66.2
Lewis Research Center	27.5	31.2	35.8	45.2	53.6	61.5		9.4	9.5	9.5
Flight Research Center	3.2	4.0	5.1	7.2	7.4	9.4	10.5	9.4 6.4	12.2	15.4
Electronics Research Center						1.1	3.2	-	2.0	2.0
Space Nuclear Propulsion Office				.3	1.0	1.5	1.7	1.8	_	68.3
Goddard Space Flight Center	1.8	15.0	20.4	39.1	52.7	61.6	92.6	64.4	71.1	8.8
	1.3	2.6	5.0	7.1	7.2	8.7	10.9	9.3	9.7	
Wallops Station		5.0	68.6	89.2	111.3	123.5	137.8	128.4	128.7	126.3
Marshall Space Flight Center			9.2	24.1	46.6	64.4	88.5	86.5	95.7	95.
Manned Spacecraft Center				6.4	18.2	29.3	40.7	82.0	92.7	93.
Kennedy Space Center	_						(20.0	(11.2	646.6	639.
Total Administrative Operations	86.0	117.3	222.7	315.5	424.4	493.9	620.0	611.2	040.0	057.
1959–1962 Support of Plant	1.0	27.9	56.7	102.3						
1959-1962 Salaries and Expenses	85.0	89.4	166.0	213.2						

^aWestern Support Office, North Eastern Office, Pacific Launch Operations Office, NASA Pasadena Office.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget...1959 Through 1963; draft History of Budget...1964-1966; information supplied by NASA, Budget Operations Division.

Table 4-20. Amounts Programmed for Administrative Operations (1968 only), by NASA Installation (in millions of dollars)^a

Installation	Personal Services	Travel	Operation of Installation	Total ^t
NASA Headquarters	34.1	2.2	21.8	58.1
Western Support Office ^c	.7		.3	1.0
NASA Pasadena Office	1.3	.1	.5	1.9
Langley Research Center	48.5	1.0	12.8	62.3
Ames Research Center	26.7	.7	6.3	33.7
Lewis Research Center	54.7	1.0	10.6	66.3
Flight Research Center	3.8	.2	2.7	6.7
Electronics Research Center	10.0	.3	5.1	15.4
Space Nuclear Propulsion Office-Cleveland	1.0	.1		1.1
Space Nuclear Propulsion Office-Nevada	.5	•	•	.5
Space Nuclear Propulsion Office-W (Headquarters) ^d	.4	.1	0	.5
Goddard Space Flight Center	37.1	2.2	16.6	55.9
Wallops Station	8.5	.1	3.6	12.2
Jet Propulsion Laboratory	0	0	.1	.1
Marshall Space Flight Center	89.7	2.8	33.7	126.2
Manned Spacecraft Center	33.4	4.0	28.6	66.0
Kennedy Space Center	36.9	.7	55.5	93.1
NASA total	387.2	15.4	198.1	600.6

Source: NASA, Financial Management Division, Financial Status of Programs: Administrative Operations (Washington, D.C.: June 30, 1968).

^aAn asterisk indicates less than \$50 000.

^bSum of the rounded figures in the first three columns except in the NASA total.

^cDiscontinued March 1, 1968.

^dIncludes SNPO-Albuquerque.

Table 4-21. Research and Development Direct Obligations, by Budget Line Item (Program) (in millions of dollars) ^a

Budget Line Item b	Number	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^C
	41				10.1	24.7	35.9	45.7	45.2	31.0	11.5	214.8
Sustaining university program	50		_	_	_	-			-	3.5	2.3	5.7
Special support	51	2.2	13.7	23.7	65.4	108.0	148.8	259.7	264.2	260.6	264.0	1 408.9
Tracking and data acquisition	61	3.7	8.0	28.3	75.2	93.2	84.6	69.0	79.2	75.8	90.5	560.3
Space applications	65	_	-	_	_	2.0	3.2	4.3	3.5	5.4	2.3	20.6
Technology utilization	7 A		_	_	_	_	_	_		.7	.3	1.0
OART Apollo Applications experiments		_	_	_	_	_		_	1.4	2.6	1.5	5.5
Mission analysis program	70	-	1.0	4.8	26.6	39.8	42.6	38.5	29.1	49.4	42.7	268.2
Space power and electric propulsion systems	71	.4	3.0	9.1	25.9	67.6	78.7	58.1	57.1	53.5	41.6	396.4
Nuclear rockets	72	1.5		5.2	4.8	7.8	12.5	15.2	13.2	1.2	*	62.3
Chemical and solar power	73	-	1.1		12.2	40.8	42.7	46.0	33.3	35.9	33.4	238.
Space vehicle systems	74	_	2.4	1.5		15.5	24.7	28.0	32.5	33.7	37.1	181.4
Electronics systems	75	_	2.4	2.9	2.5		17.0	36.1	28.5	52.9	65.9	217.9
Aeronautics	76	2.0	4.7	1.3	.2	16.7	11.4	15.6	14.6	16.7	17.8	89.
Human factor systems	77	-	***	.5	3.3	8.8	46.3	60.4	38.6	46.7	30.8	293.
Chemical propulsion	78	6.2	3.5	1.1	22.6	47.8			21.9	21.8	2.1	135.
Basic research program	79	_	_	2.2	7.4	17.0	21.2	22.5		10.0	3.1	36.
Voyager	82			_	_	_		6.7	16.8		.1	614.
Launch vehicle development	83	22.5	50.7	79.2	81.6	98.7	108.5	91.9	51.5	29.8		1 304.8
Lunar and planetary exploration	84	15.6	23.7	88.5	166.9	223.1	182.7	184.0	201.2	172.9	147.2	1 049.3
Physics and astronomy	85	27.6	14.3	44.6	88.2	148.6	146.0	160.1	141.1	134.3	145.3	
Manned space sciences	86	_	_	_	_	_	1.5	7.8	11.4	18.4	3.6	42
Bioscience	87			3.1	2.2	10.1	21.1	29.7	35.5	41.2	42.0	186.
OSS&A vehicles procurement ^d	89	_	_	_	_	8.6	127.3	148.9	170.4	140.8	133.7	974.0
Gemini	91	_	_	_	55.0	287.6	419.2	308.3	163.5	48.0	.7	1 283.
	92	10.1	36.1	190.3	446.5	1160.6	2225.0	2708.9	2971.3	2877.9	2535.2	15 169.
Apollo	93	-	_	_	_	10.1	13.9	20.3	13.4	8.4	1.9	67.
Advanced manned missions	96	_		_			_		13.8	83.4	122.2	219.
Apollo Applications	99	43.0	91.3	91.6	55.4	12.0	1	-6.3	1	.1	_*	295.
Completed missions	NN	39.9	24.2	9.7	7.0	5.2	Ī					
Various early projects ^e	IAIA	37.7	24.2	7.1	,.0	5.2						
Totals		174.7	280.1	587.6	1159.0	2454.3	3814.7	4359.4	4452.1	4256.6	3778.8	25 343.

Table 4-21. Research and Development Direct Obligations, by Budget Line Item (Program) (Continued) (in millions of dollars)^a

Budget Line Item b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^C
Program office percentage of total					-	·					
Aircraft research and technology (76)	1.1%	1.7%	0.2%	*	0.7%	0.4%	0.8%	0.6%	1.2%	1.7%	0.9%
Space research and technology (7A-75, 77-79)	4.6	4.8	4.7	9.1	10.0	7.4	6.5	5.5	6.2	5.5	6.6
(Office of Advanced Research and Technology)	(5.7)	(6.5)	(4.9)	(9.1)	(10.7)	(7.8)	(7.3)	(6.1)	(7.4)	(7.2)	(7.5)
Scientific investigations in space (82-89)	37.6	31.7	36.7	29.2	19.9	15.4	14,4	14.1	12.9	12.6	16.6
Space applications (61)	2.1	2.9	4.8	6.5	3.8	2.2	1.6	1.8	1.8	2.4	2.2
(Office of Space Science and Applications)	(39.7)	(34.6)	(41.5)	(35.7)	(23.7)	(17.6)	(16.0)	(15.9)	(14.7)	(15.0)	(18.8)
Manned Space Flight, Office of (91-99)	30.4	45.5	48.0	48.1	59.9	69.7	69.5	71.0	70.9	70.4	67.2
Tracking and Data Acquisition, Office of (51)	1.3	4.9	4.0	5.6	4.4	3.9	6.0	5.9	6.1	7.0	, 5.6
Other (41, 50, 65)	.0	.0	.0	.9	1.1	1.0	1.1	1.1	.9	.4	1.0
Various early projects (NN) ^f	22.8	8.6	1.7	.6	.2						
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

^aFor Tables 4-21, 4-22, and 4-23, a line has been drawn between the 1959-1963 period and the 1964-1968 period to indicate an occasional lack of continuity between the two periods. This lack of continuity has three principal causes. First, the 1959-1963 period included vehicle procurement costs with the space flight project (see note d below). Second, the coding/accounting structure was in a state of development until about 1963 and it has been difficult to reconstruct the early years. Third, there is a paucity of information from the early years and some of the early projects had to be handled somewhat arbitrarily. The discrepancies between the two periods can be calculated by subtracting years 1964-1968 from the total and comparing it with a total calculated for 1959-1963. An asterisk indicates less than \$50 000.

^dAs explained in footnote a the data for the 1959-1963 period includes vehicle procurement costs in the space flight project amounts.

^eThe amounts on this line are buried somewhere in the totals for other programs. ^fThe amounts upon which these percentages are based are included in the totals for other program areas.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget... 1959 Through 1963; draft History of Budget...1964-1966; NASA, Financial Management Division, Financial Status of Programs: Research and Development (Washington, D.C.: NASA, June 30, 1968); NASA, Financial Management Manual, FMM 9100, Changes 9 and 10 (Washington, D.C.: NASA, undated).

bNomenclature based on Changes 9 and 10 of FMM 9100; i.e., 1968 nomenclature.

^CTotal is what is shown on the current accounts of the agency. Footnote a explains why annual amounts may not add to the Total.

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (in millions of dollars)^a

			(110113 01			_					
	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
	Sustaining university program	_			10.1	24.7	35.9	45.7	45.2	31.0	11.5	214.8
41	181 Training grants				1.4	13.9	19.8	24.5	25.8	15.2	2.4	103.7
	182 Facilities grants				6.4	6.9	9.1	8.2	7.0	4.9	.6	43.2
	183 Research grants				2.4	3.9	7.6	12.3	12.4	10.9	8.6	67.7
	184 Socio-economic studies						.2					.2
									, , , ,	3.5	2.3	5.7
50	Special support						-			3.5	2.3	5.7
	380 Special support (OSS&A)											
51	Tracking and data acquisition	2.2	13.7	23.7	65.4	108.0	148.8	259.7	264.2	260.6	264.0	1 408.9
<i>J</i> 1	150 Tracking and data acquisition SRT	.3	3.7	7.0	14.6	12.4	10.6	15.1	13.3	13.0	11.4	106.4
	311 Network operations	2.0	10.0	11.0	44.0	51.4	68.0	96.7	135.3	184.6	203.4	803.3
	312 Equipment and components			5.7	6.9	44.2	70.2	147.9	115.6	62.6	49.2	498.9
	581 Advanced studies						-			.3		.3
		3.7	8.0	28.3	75.2	93.2	84.6	69.0	79.2	75.8	90.5	560.3
61	Space applications	.1	1.9	3.5	4.1	4.3	6.9	6.5	7.6	7.0	17.7	58.5
	160 Space applications SRT	•1	.8	1.3	4.9	7.7	3.5	1.0	1.7	3.9	.6	26.7
	164 Communications and navigation SRT		.0	1.5	٦.)	,.,	.2	_ *				.6
	165 Future applications SRT						.5	1.3	1.2	.5		3.6
	166 Applications technology SRT	.6	2.6	3.4	6.3	19.3	7.5	5.6	1.3	3.8	10.0	52.4
	601 Tiros/TOS improvements 602 Tiros Operational System (TOS)	.0	2.0	5.1	0.0	.,					*	*
								.6	4.1	5.4	.2	10.4
	603 Meteorological flight experiments 604 Nimbus A-D		.9	6.9	23.4	30.8	40.8	15.0	24.7	24.4	33.2	190.3
	607 Meteorological soundings		.,		.4	1.0	2.3	2.6	2.6	2.6	3.3	14.9
	609 Systems A (automatic picture taking)						*					.3
	610 International Applications Satellite									.1	.1	.2
	621 Echo I (nonrigid) A-11	3.0	1.4	2.1	1.6	- *	.8		_ *	-		1.4
	622 Echo A-12 (includes AVT)			2.0	8.3	2.4	1.6	.3	.1	.2	_ *	8.3
	624 Rebound			.2	.1							1.1
	625 Radiation measurements		.4	.6	1.2	4	*	_		- *		1.7
	626 Relay			7.0	15.3	13.2	5.9	.7	.1	*	-*	33.7
	627 Syncom			1.3	9.6	14.9	3.8	.4	2	_ *	2 21.5	21.0 116.2
	630 Applications Technology Satellites (A-E)						10.2	28.6	31.4	24.6		3.5
	632 Early Gravity Gradient Test Satellite							3.1	.5	1		3.3 .8
	635 Applications Technology Satellites (F-G)										.8 .4	.o 1.1
	682 Advanced studies-space applications							3.4	.4 3.8	.3 3.3	.4 3.1	13.7
	855 Geodetic Satellites			•			.6	3.4	3.8	3.3	3.1	13.7

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued) (in millions of dollars)^a

Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
65 Technology utilization 141 Identification and dissemination 143 Economic studies					2.0 .9 1.1	3.2 2.6 .6	4.3 2.9 1.4	3.5 2.7 .8	5.4 4.6 .7	2.3 1.8 .5	20.6 15.5 5.1
7A (20) OART Apollo Applications experiments 740 OART experiment definition							- 		.7 .7	.3 .3	1.0 1.0
70 Mission analysis program 130 Mission analysis SRT 789 Advanced studies-mission analysis								1.4 .4 1.0	2.6 1.1 1.6	1.5 1.5 -*	5.5 3.0 2.5
71 Space power and electric propulsion systems 120 Space power and electric propulsionSRT 701 SNAP-8 development project 704 SERT (Space Electric Rocket Test) 705 Small nuclear electricflight projects 780 Advanced studies-nuclear electric systems	.4 .1 .3	1.0 .4 .6	4.8 4.2 .6	26.6 15.3 7.9 3.4	39.8 19.4 16.0 3.2 1.2	42.6 23.3 15.4 3.5 .3 .2	38.5 25.4 11.1 2.0	29.1 22.8 5.8 .4 -*	49.4 34.7 11.8 2.9 - *	42.7 33.8 7.5 1.4	268.2 174.0 77.6 14.8 1.5
72 Nuclear rockets 121 Nuclear rocket systems SRT 122 Nuclear rocket propulsion SRT 321 Nuclear rocket Dev. Station operations 706 RIFT (Reactor in Flight Test) 717 KIWI 718 Nerva	1.5	3.0 .4 2.6	9.1 .3 * .3 8.4	25.9 .7 1.2 4.7 19.3	67.6 .2 12.9 10.4 4.5 39.6	78.7 .2 19.3 .8 7.0 1.8 49.7	58.1 1.0 21.1 .7 .1 -1.4 36.6	57.1 .6 18.8 2.0 - * .4 35.3	53.5 1.8 15.2 2.3 -*	41.6 1.2 7.9 4.0 -* -* 28.6	396.4 5.1 96.7 9.8 18.9 21.0 244.8
73 Chemical and solar power 123 Chemical and solar power SRT		1.1 1.1	5.2 5.2	4.8 4.8	7.8 7.8	12.5 12.5	15.2 15.2	13.2 13.2	1.2 1.2	*	62.3 62.3
74 Space vehicle systems 124 Space vehicle systems SRT 709 Small space vehicle flight projects 711 Scout reentry heating experiment 712 Meteoroid Satellite Project S-55b 713 Meteoroid Satellite Project S-55c, S-55d 714 FIRE 725 Pegasus 727 Lifting-body flight program 784 Advanced studies-space vehicle systems		2.4 2.4	1.5 .4 1.1	12.2 5.3 .3 1.7 1.0 4.0	40.8 17.1 1.5 1.5 2.9 13.9 4.0	42.7 23.3 1.7 .3 .3 6.1 9.9 1.2 .2	46.0 24.5 1.2 .3 .3 2.6 13.7 .8 2.5	33.3 25.0 2.0 2.7 .1 1.5 1.5	35.9 27.5 5.0 2.2 .1 .1 1.0	33.4 28.9 1.5 1.9 -* -*	238.4 157.4 13.1 7.7 .1 1.8 20.3 29.1 5.7 3.2

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued)
(in millions of dollars)^a

			(227		,							
	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
75	Electronics systems 125 Electronics systems SRT 715 Small electronics systems flight projects 730 RAM-C (Radio Attenuation Measurements) 785 Advanced studies-electronics		2.4 2.4	2.9 2.9	2.5 2.5	15.5 14.1 1.4	24.7 22.3 2.4 	28.0 25.6 1.6 .9	32.5 29.9 1.1 1.3	33.7 32.3 .4 1.0	37.1 36.6 - * .5	181.4 170.7 6.7 3.6 .4
76	Aeronautics 126 Aeronautics SRT 719 X-15 research aircraft 720 Supersonic aircraft technology 721 V/STOL aircraft technology 729 Hypersonic ramjet experiment 732 XB-70 flight research program 733 Aircraft noise alleviation 786 Advanced studies-Aeronautical Systems	2.0 2.0	4.7 4.7	1.3	.2 .1 .1	16.7 6.0 5.6 4.3	17.0 7.7 .8 5.9 2.6 	36.1 8.2 1.4 21.2 2.2 2.3 	28.5 11.0 .9 11.8 3.0 1.1 .2 	52.9 10.3 .8 13.7 5.8 6.3 11.6 4.4	65.9 18.8 3.5 12.5 7.0 7.0 10.0 7.1	217.9 62.7 13.0 69.6 21.5 16.7 21.9 11.4 1.1
77	Human factor systems 127 Human factor systems SRT 708 Small biotechnology flights 735 Orbiting Frog Otolith (Ofo)			.5 .5	3.3 2.9 .4	8.8 8.7 .1	11.4 11.5 *	15.6 14.6 .9	14.6 12.6 2.0	16.7 15.1 1.6	17.8 16.5 .8 .5	89.1 82.8 5.8 .5
78	Chemical propulsion 128 Chemical propulsion SRT 710 Small chemical propulsion flight projects 726 M-1 engine development 728 Large solid motor program (S-10) 731 Chemical rocket experimental engineering	6.2 6.2	3.5 3.5	1.1 1.1	22.6 5.9 16.7	47.8 12.6 .3 34.9	46.3 22.1 * 24.2 	60.4 17.2 * 20.9 15.6 6.7	38.6 13.5 3.5 8.7 12.9	46.7 18.6 * 2.8 8.5 16.7	30.8 15.5 2 1.6 13.8	293.3 105.8 .4 102.5 34.5 50.2
79	Basic research program 129 Research program SRT			2.2 2.2	7.4 7.4	17.0 17.0	21.2 21.2	22.5 22.5	21.9 21.9	21.8 21.8	2.1 2.1	135.6 135.6
82	Voyager 818 Voyager							6.7 6.7	16.8 16.8	10.0 10.0	3.1 3.1	36.6 36.6
83	Launch vehicle development 839 FLOX (fluorine-oxygen) development 890 Scout development 891 Centaur development 892 Delta development	22.5 5.5 4.0 13.1	50.7 2.9 36.5 11.3	79.2 7.8 62.2 9.3	81.6 4.4 71.8 5.3	98.7 4.7 90.3 3.7	108.5 * -* 108.3 .2	91.9 3.7 .3 87.9 - *	51.5 .5 * 52.0 -1.0	29.8 .2 -* 29.6 -*	.1 * .1	614.6 4.5 25.5 543.3 41.4

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued) (in millions of dollars)^a

	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
0.4		15.6										
84	Lunar and planetary exploration	15.6	23.7 2.6	88.5	166.9	223.1	182.7	184.0	201.2	172.9	149.2	1 304.8
	185 Lunar and planetary exploration SRT-Science	100		1.0	12.7	12.4	9.9	12.6	13.6	13.5	10.5	136.8
	186 Lunar and planetary exploration SRT-ATD	12.2	9.5	19.4	4.2	5.8	3.6	8.8	6.8	7.2 - *	7.2	56.3
	187 Lunar and planetary exploration SRT-SS 194 Planetary extension program SRT					2.9	1.3	7		- ₹		2.6
	1 10										10.6	10.6
	684 Advanced studies—lunar and planetary	2.4		50.2	.4	1.2	1.5	2.2	1.7	2.0	1.2	10.2
	801 Ranger	3.4	11.7	52.3	62.6	89.4	30.2	12.5	5	4	3	169.8
	803 Surveyor			4.8	38.1	66.3	70.4 *	82.7	106.0	80.3	33.0	468.5
	804 Surveyor Orbiter				4.0			1		*		1.1
	806 Mariner A			11.0	-4.0		2.0	4		_ *	_ *	19.9
	807 Mariner B				12.4	5.5	-1.0	6				19.2
	808 Mariner-Mars '64				•••	31.8	37.7	16.2	2.3	.3	3	83.2
	810 Mariner R				39.3	7.7	.1	4		2		21.6
	812 Mariner-Mars '66						7.0	1.6	8	1		7.7
	813 Mariner IV								.3	.8	.6	1.6
	814 Lunar Orbiter				1.2	*	20.0	49.5	56.8	27.2	8.9	162.3
	816 Mariner-Mars '69								4.1	30.3	72.6	107.0
	817 Mariner-Venus '67								10.9	12.1	3.2	26.2
85	Physics and astronomy	27.6	14.3	44.6	88.2	148.6	146.0	160.1	141.1	134.3	145.3	1 049.7
	188 Physics and astronomy SRT	2.5	3.0	2.9	9.4	11.9	15.0	17.3	18.8	20.5	22.7	150.9
	385 Data analysis (OSS&A)								1.6	1.9	2.5	6.0
	685 Advanced studies-physics and astronomy								.4	.7	_ *	1.0
	811 Pioneer (IQSY)					*	15.8	15.1	9.2	10.2	5.9	56.3
	821 Orbiting Solar Observatories		1.0	4.0	5.8	10.0	12.2	10.7	9.8	10.6	11.6	67.4
	822 Advanced Orbiting Solar Observatories				.2	.1	7.2	6.9	10.4	-1.0	*	23.6
	831 Orbiting Astronomical Observatories		.3	11.6	32.9	39.5	35.3	31.8	22.7	28.0	45.8	242.9
	841 Orbiting Geophysical Observatories		.3	8.6	18.4	42.2	32.4	40.1	28.6	24.9	20.7	204.8
	851 Energetic Particles Explorers		.6	1.2	.9	6.8	.9	.9	.4	.5	_ *	7.3
	852 Atmosphere Explorers		.4	1.8	1.9	5.0	.8	1.0	.4	.3	.3	6.5
	853 Ionosphere Explorers		.2	.8	.9	.8	1.1	.5	.2	_ *	_ *	2.9
	854 Micrometeoroid Satellite S-55, S-55a			.,	•-	.5						.3
	857 Small Scientific Satellites									.7	1.4	2.1
	859 University Explorers (Rice University)								2.4	.4	.9	3.7
	861 Interplanetary Explorers/IMP					8.1	4.1	9.3	7.9	6.5	6.2	38.9
	863 Air Density/Injun Explorers					.2	.9	.6	1.3	1.5	1.2	5.6
	865 Electron Density Explorers					•-			_ *	*		.6

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued) (in millions of dollars)^a

			(111 1111)	110312 01	donars)							
	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
85	Physics and astronomy (cont'd)									_		4.7
	866 Manned satellite science						.7	3.7	.3	_ * *	*	4.7 6.7
	870 United Kingdom Explorers			1.1	1.0	.1	.9	.4	.2	*	- +	
	871 ESRO I and II			.1	2.5	3.5		*	.1			.2
	872 ISIS (Int'l Sat. for Ionosphere Studies)		1.1	4.0	7.5	3.3	1.7	1.5	2.1	1.3	1.3 - *	9.0
	873 Beacon Explorers		1.4	1.1	1.1	1.2	1.5	1.8	.5	.4		5.1
	874 German Research Satellite								- ` -	*	.1	.1
	876 French satellite (FR-1)						*	.1	.1			.2
	877 Radio Astronomy Satellites						-	.9	4.4	5.2	2.7	13.3
	878 Small Astronomy Satellites						-			.7	2.7	3.4
	879 Sounding rockets	3.1	5.2	7.4	9.0	11.9	15.7	19.0	18.4	21.0	18.7	129.6
	894 Joint Italian-United States Project					4.0	.3	.1	.9	*	.6	3.7
	895 Juno II payload						1				*	1.0
	896 Vanguard III	22.0	.8	.1	-3.3		-*	-1.7			- *	20.9
	897 Gamma Ray Astronomy Satellite S-15						3		2		_ *	29.8
	898 Ionosphere Measurement Satellite S-30						_*	_ *	_ *		_ *	.9
	899 Ionosphere Beacon Satellite S-45						-*				_ *	.5
86	Manned space sciences						1.5	7.8	11.4	18.4	3.6	42.3
00	169 Earth resources SRT									4.2	.3	4.5
	190 Manned space sciences SRT						1.0	3.4	.5	.5	1	4.7
	749 Apollo Applications experiment definition								.4	1.1	.5	2.0
	848 Returned lunar sample analysis				•					1.8	1.2	3.0
	849 Apollo Applications experiment definition								9.9	7.6	1.1	18.6
	860 Manned flight experiments					•				.1	.3	.3
	867 Manned lunar science						.5	4.4	*	*		5.0
	949 Apollo Applications experiment definition								.7	3.2	.4	4.2
a -				3.1	2.2	10.1	21.1	29.7	35.5	41.2	42.0	186.1
87	Bioscience			3.1	1.7	9.2	13.4	12.3	11.8	9.8	12.2	74.2
	189 Bioscience SRT			3.1	1.7	7.2	15.4	_ *				.4
	880 BIOS						*	_ *	.1			.9
	881 Infrared spectroscopy											*
	882 Bio-sampling lunar and planetary flights 883 Biosatellites				.6	.9	7.8	17.3	23.7	31.4	29.8	110.7
0.0	OSS&A vehicle procurement ^d			(253.1)			127.3	148.9	170.4	140.8	133.7	974.0
89	180 Launch vehicle SRT			(200.1)		.9	2.1	3.4	2.0	3.8	5.4	17.6
	• • • • • • • • • • • • • • • • • • • •			-(14.9)			9.0	5.6	6.6	6.7	5.2	48.0
	490 Scout procurement			(17.7)	_		, , , ,		_			

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued) (in millions of dollars)^a

	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
89 (OSS&A vehicle procurement ^d (cont'd)											
	491 Centaur procurement			-(16.2)	·		32.0	40.0	49.4	46.1	54.0	237.8
	492 Delta procurement		-	-(43.9)			22.2	32.6	8.3	18.9	26.9	152.8
4	493 Agena procurement (excluding Gemini)			(152.8)			48.1	46.6	56.6	32.6	10.6	347.
1	494 Atlas procurement (excluding Mercury)			– (6.5)	-		1.4	1.2	*	_ *		9.
4	495 Thor (Echo) procurement			-(3.2)			j					3.
4	497 Sustaining engineering and maintenance			- (6.9)		7.7	12.4	19.3	46.6	32.2	31.1	156.
6	680 Advanced studies-launch vehicles							.3	.6	.5	.5	2.
∂1 (Gemini				55.0	287.6	419.2	308.3	163.5	48.0	.7	1 283.3
ç	913 Gemini spacecraft				30.6	205.1	280.5	165.3	66.6	46.2	3.2	797.
	923 Gemini support					3.4	16.0	27.7	24.0	4.7	9	76.
ç	939 Gemini launch vehicle				24.4	79.1	122.7	115.4	72.9	- 2.9	- 1.6	410.
	Apollo	10.1	36.1	190.3	446.5	1160.6	2225.0	2708.9	2971.3	2877.9	2535.2	15 169.
1	101 Spacecraft supporting technology			3.6	6.6	6.6	6.9	*	_ *	1	- *	28.
_	103 Launch vehicle supporting technology			5.2	5.3	7.9	13.6	1.2	*	- *	-*	31.
	104 Propulsion supporting technology			1.9	8.0	8.4	8.0	.1	1	2	_ *	43.
	105 Launch operations supporting technology			.3	1.2	1.8	2.5	.3	*	* .	1	6.3
	903 Gemini supporting development							3.2	1	_ *	_ *	3.
-	904 Apollo supporting development							36.2	20.6	6.4	27.0	90.
	905 Apollo Applications supporting development								11.0	20.3	5.9	37.
	908 Advanced manned missions supporting dev.							13.7	2.2	.4	*	16.
	914 Apollo spacecraft				73.4	361.9	881.4	1017.1	1264.4	1288.0	1097.7	5 977.
-	921 Mission control system					7.8	47.7	37.0	3.2	32.7	52.3	181.
	924 Apollo space operations 931 Saturn I vehicle		0.4	06.0	100.0	0550	3.6	29.6	37.8	55.9	50.4	177.
	932 Saturn IB vehicle		9.4	96.9	193.3	255.3	188.1	39.3	- 2.7	9	3	767.
	933 Saturn V vehicle					16.4	149.1	263.6	279.1	223.5	138.8	1 068.
-	940 Engine development	10.1	26.7		54.5	333.9	696.8	1040.9	1158.4	1074.4	1007.0	5 363.
	950 Launch operations support	10.1	20.7	82.4	99.7	136.5	166.0	165.9	133.1	49.6	20.0	886.
	950 Launch operations support 955 Launch instrumentation				2.2	4.9	21.8	35.0	33.4	87.1	91.2	275.
-	980 Systems engineering				2.2	19.0	8.2 31.2	6.6 19.3	10.1 20.9	12.5 28.2	18.2 27.0	55.6 160.
	Advanced manned missions				2.2							
	390 Special support					10.1	13.9	20.3	13.4	8.4	1.9	67.
	981 Advanced studies					10.1	13.9	20.3	13.4	.5 7.9	1.9	.: 67.4

Table 4-22. Research and Development Direct Obligations, by Budget Line Item and Unique Project Number (Continued) (in millions of dollars)^a

	Budget Line Item/Unique Project ^b	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
									13.8	83.4	122.2	219.3
96	Apollo Applications 942 Apollo Applications design and development								13.8	.2	.1	14.0
										1.9	10.2	12.1
										3.6	23.8	27.4
	948 AAP experiment development 961 AAP spacecraft development									22.7	11.1	33.8
	961 AAP spacecraft development 964 Orbital Workshop									15.4	20.7	36.1
	•									8.3	20.9	29.2
	965 Apollo Telescope Mount 972 AAP Uprated Saturn I production									22.9	14.5	37.4
	973 AAP Saturn V production									1.3	2.3	3.6
										4.0	16.3	20.3
	•									3.1	1.1	4.2
	995 Mission operations 996 Program support										1.3	1.3
	•	42.0	91.3	91.6	55.4	12.0	1	- 6.3	1	.1	_ *	295.8
99	Completed missions	43.0	91.3 87.7	92.4	31.2	- 4.3	2	- 1.9	_ *	1	_ *	235.0
	911 Mercury	28.9	01.1	92.4	16.5	16.3	.2	- 4.4	1	_ *	_ *	32.4
	912 Manned one-day mission				10.3	10.5				_ *		.1
	916 Prospector	1 / 1	2.6	8	7.7							28.2
	929 Vega	14.I	3.6	8	7.7					•		20.2
NN	Various early projects ^e	39.9	24.2	9.7	7.0	5.2						

^aFor Tables 4-21, 4-22, and 4-23 a line has been drawn between the 1959-1963 period and the 1964-1968 period to indicate an occasional lack of continuity between the two periods. The lack of continuity has three principal causes. First, the 1959-1963 period included vehicle procurement costs with the space flight project (see note ^d below). Second, the coding and accounting structure was in a state of development until about 1963 and it has been difficult to reconstruct the early years. Third, there is a paucity of information from the early years and some of the early projects had to be handled somewhat arbitrarily. The discrepancies between the two periods can be calculated by subtracting years 1964-1968 from the total and comparing it with a total calculated for 1959-1963. An asterisk indicates less than \$50 000.

^bNomenclature based on Changes 9 and 10 of FMM 9100; i.e., 1968 nomenclature.

^cTotal is what is shown on the current accounts of the agency. Footnote ^a explains why annual amounts may not add to Total.

^dFootnote ^a explains how vehicle procurement amounts were handled in the 1959-1963 period. Figures in parentheses are for information only.

^eThe amounts on this line are buried in the totals for other programs and projects.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget...1959 Through 1963; draft History of Budget...1964-1966; NASA, Financial Management Division, Financial Status of Programs: Research and Development; NASA, Financial Management Manual, FMM 9100, Changes 9 and 10.

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (in millions of dollars)^a

Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
Spacecraft supporting technology	101-92			3.6	6.6	6.6	6.9	*	_ *	- 0.1	_ *	28.4
Launch vehicle supporting technology	103-92			5.2	5.3	7.9	13.6	1.2	*	*	_ *	31.1
Propulsion supporting technology	104-92			1.9	8.0	8.4	8.0	.1	1	2	*	43.5
Launch operations supporting technology	105-92			.3	1.2	1.8	2.5	.3	*	_ *	1	6.2
Space power and electric propulsionSRT	120-71	0.1	.4	4.2	15.3	19.4	23.3	25.4	22.8	34.7	33.8	174.0
Nuclear rocket systems SRT	121-72	.5	.4	.3		.2	.2	1.0	.6	1.8	1.2	5.1
Nuclear rocket propulsion SRT	122-72			*	.7	12.9	19.3	21.1	18.8	15.2	7.9	96.7
Chemical and solar power SRT	123-73		1.1	5.2	4.8	7.8	12.5	15.2	13.2	1.2	*	62.3
Space vehicle systems SRT	124-74		2.4	.4	5.3	17.1	23.3	24.5	25.0	27.5	28.9	157.4
Electronics systems SRT	125-75		2.4	2.9	2.5	14.1	22.3	25.6	29.9	32.3	36.6	170.7
Aeronautics SRT	126-76	2.0	4.7	1.3	.1	6.0	7.7	8.2	11.0	10.3	18.8	62.7
Human factor systems SRT	127-77			.5	2.9	8.7	11.5	14.6	12.6	15.1	16.5	82.8
Chemical propulsion SRT	128-78	6.2	3.5	1.1	5.9	12.6	22.1	17.2	13.5	18.6	15.5	105.8
Research program SRT	129-79			2.2	7.4	17.0	21.2	22.5	21.9	21.8	2.1	135.6
Mission analysis SRT	130-70								.4	1.1	1.5	3.0
dentification and dissemination	141-65					.9	2.6	2.9	2.7	4.6	1.8	15.5
Economic studies	143-65					1.1	.6	1.4	.8	.7	.5	5.1
Tracking and data acquisition SRT	150-51	.3	3.7	7.0	14.6	12.4	10.6	15.1	13.3	13.0	11.4	106.4
Space applications SRT	160-61	.1	1.9	3.5	4.1	4.3	6.9	6.5	7.6	7.0	17.7	58.5
Communications and navigation SRT	164-61		.8	1.3	4.9	7.7	3.5	1.0	1.7	3.9	.6	26.7
Future applications SRT	165-61						.2	_ *				.6
Applications technology SRT	166-61						.5	1.3	1.2	.5		3.6
Earth resources SRT	169-86									4.2	.3	4.5
Launch vehicle SRT	180-89					.9	2.1	3.4	2.0	3.8	5.4	17.6
Training grants	181-41				1.4	13.9	19.8	24.5	25.8	15.2	2.4	103.7
Facilities grants	182-41				6.4	6.9	9.1	8.2	7.0	4.9	.6	43.2
Research grants	183-41				2.4	3.9	7.6	12.3	12.4	10.9	8.6	67.7
Socio-economic studies	184-41						.2					.2
Lunar and planetary exploration SRT-Science	185-84		2.6	1.0	12.7	12.4	9.9	12.6	13.6	13.5	10.5	136.8
unar and planetary exploration SRT-ATD	186-84	12.2	9.5	19.4	4.2	5.8	3.6	8.8	6.8	7.2	7.2	56.3
Lunar and planetary exploration SRT-SS	187-84					2.9	1.3	7		_ *		2.6
hysics and astronomy SRT	188-85	2.5	3.0	2.9	9.4	11.9	15.0	17.3	18.8	. 20.5	22.7	150.9
Bioscience SRT	189-87			3.1	1.7	9.2	13.4					

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (Continued)
(in millions of dollars)^a

		(or done)							
Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
Manned space sciences SRT Planetary extension program SRT	190 - 86 194 - 84						1.0	3.4	.5	.5	1 10.6	4.7 10.6
Network operations (T&DA) Equipment and components (T&DA)	311-51 312-51	2.0	10.0	11.0 5.7	44.0 6.9	51.4 44.2	68.0 70.2	96.7 147.9	135.3 115.6	184.6 62.6	203.4 49.2	803.3 498.9
Nuclear Rocket Dev. Station operations	321-72						.8	.7	2.0	2.3	4.0	9.8
Special support (OSS&A) Data analysis (OSS&A)	380 - 50 385 - 85								1.6	3.5 1.9	2.3 2.5	5.7 6.0
Special support (OMSF)	390-93									.5		.5
Scout procurement ^d Centaur procurement ^d Delta procurement ^d Agena procurement (excluding Gemini) ^d Atlas procurement (excluding Mercury) ^d Thor (Echo) procurement ^d Sustaining engineering and maintenance ^d	490-89 491-89 492-89 493-89 494-89 495-89			-(16.2)- -(43.9)- (152.8)- - (6.5)-			9.0 32.0 22.2 48.1 1.4 12.4	5.6 40.0 32.6 46.6 1.2 19.3	6.6 49.4 8.3 56.6 * 46.6	6.7 46.1 18.9 32.6 -* 32.2	5.2 54.0 26.9 10.6 31.1	48.0 237.8 152.8 347.3 9.1 3.2 156.2
Advanced studies (T&DA)	581-51									.3		.3
Tiros/TOS Improvements Tiros Operational System (TOS) Meteorological flight experiments Nimbus A-D Meteorological soundings Systems A (automatic picture taking)	601-61 602-61 603-61 604-61 607-61	.6	2.6	3.4 6.9	6.3 23.4 .4	19.3 30.8 1.0	7.5 40.8 2.3	5.6 .6 15.0 2.6	1.3 4.1 24.7 2.6	3.8 5.4 24.4 2.6 	10.0 * .2 33.2 3.3 	52.4 * 10.4 190.3 14.9 .3
International Applications Satellite Echo I (nonrigid) A-11 Echo A-12 (Includes AVT) Rebound Radiation Measurements Relay Syncom	610-61 621-61 622-61 624-61 625-61 626-61 627-61	3.0	1.4	2.1 2.0 .2 .6 7.0 1.3	1.6 8.3 .1 1.2 15.3 9.6	-* 2.44 13.2 14.9	.8 1.6 * 5.9 3.8	.3 .7 .4	.1 .1 .1 2	.1 .2 -* -*	.1 * -* 2	.2 1.4 8.3 1.1 1.7 33.7 21.0
Applications Technology Satellites (A-E) Early Gravity Gradient Test Satellite Applications Technology Satellites (F-G)	630-61 632-61 635-61						10.2	28.6 3.1 	31.4 .5 	24.6 1 	21.5 .8	116.2 3.5 .8

NASA FINANCES 145

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (Continued)
(in millions of dollars)^a

(M. Marione of Gordano)													
Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c	
Advanced Studies-launch vehicles	680-89							.3	.6	.5	.5	2.0	
Advanced Studies—space applications	682-61								.4	.3	.4	1.1	
Advanced Studies-lunar and planetary	684-84				.4	1.2	1.5	2.2	1.7	2.0	1.2	10.2	
Advanced Studies-physics and astronomy	685-85								.4	.7	*	1.0	
SNAP-8 Development Project	701-71	.3	.6	.6	7.9	16.0	15.4	11.1	5.8	11.8	7.5	77.6	
SERT (Space Electric Rocket Test)	704-71			*	3.4	3.2	3.5	2.0	.4	2.9	1.4	14.8	
Small nuclear electricflight projects	705-71					1.2	.3	*	_ *	- *		1.5	
RIFT (Reactor in Flight Test)	706-72			.3	1.2	10.4	7.0	.1	_ *	- *	- *	18.9	
Small biotechnology flights	708-77				.4	.1	*	.9	2.0	1.6	.8	5.8	
Small space vehicle flight projects	709-74			1.1	.3	1.5	1.7	1.2	2.0	5.0	1.5	13.1	
Small chemical propulsion flight projects	710-78					.3	*	*		*		.4	
Scout reentry heating experiment	711-74				1.7	1.5	.3	.3	2.7	2.2	1.9	7.7	
Meteoroid Satellite Project S-55b	712-74											.1	
Meteoroid Satellite Project S-55c, S-55d	713-74				1.0	2.9	.3	.3			- *	1.8	
FIRE	714-74				4.0	13.9	6.1	2.6	.1	.1	_ *	20.3	
Small electronics systems flight projects	715-75					1.4	2.4	1.6	1.1	.4	_ *	6.7	
KIWI	717-72	1.0	2.6	8.4	4.7	4.5	1.8	-1.4	.4		_ *	21.0	
Nerva	718-72				19.3	39.6	49.7	36.6	35.3	34.3	28.6	244.8	
X-15 research aircraft	719-76					5.6	.8	1.4	.9	.8	3.5	13.0	
Supersonic aircraft technology	720-76				.1	4.3	5.9	21.2	11.8	13.7	12.5	69.6	
V/STOL aircraft technology	721-76					.9	2.6	2.2	3.0	5.8	7.0	21.5	
Pegasus	725-74					4.0	9.9	13.7	1.5	.1	*	29.1	
M-1 engine development	726-78				16.7	34.9	24.2	20.9	3.5	2.8	2	102.5	
Lifting-body flight program	727-74						1.2	.8	1.5	1.0	1.1	5.7	
Large solid motor program (S-10)	728-78							15.6	8.7	8.5	1.6	34.5	
Hypersonic ramjet experiment	729-76						- - -	2.3	1.1	6.3	7.0	16.7	
RAM-C (Radio Attenuation Measurements)	730~75						 	.9	1.3	1.0	.5	3.6	
Chemical rocket experimental engineering	731-78							6.7	12.9	16.7	13.8	50.2	
XB-70 flight research program	732-76								.2	11.6	10.0	21.9	
Aircraft noise alleviation	733-76									4.4	7.1	11.4	
Orbiting Frog Otolith (Ofo)	735–77								-		.5	.5	
OART experiment definition	740-7A									.7	.3	1.0	
Apollo Applications experiment definition	749-86								.4	1.1	.5	2.0	

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (Continued)
(in millions of dollars)^a

Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
Advanced studies-nuclear electric systems	780–71				-		.2		.1	_ *		.3
Advanced studies—space vehicle systems	784-74						.2	2.5	.5	*	_ *	3.2
Advanced studies—electronics	785-75								.2			.4
Advanced studies—aeronautical systems	786-76							.7	.4	*		1.1
Advanced studies-mission analysis	789–70								1.0	1.6	_ *	2.5
Ranger	·801 - 84	3.4	11.7	52.3	62.6	89.4	30.2	12.5	5	4	3	169.8
Surveyor	803-84			4.8	38.1	66.3	70.4	82.7	106.0	80.3	33.0	468.5
Surveyor Orbiter	804-84						*	1	-	- *		1.1
Mariner A	806-84			11.0	-4.0		2.0	4		*	_ *	19.9
Mariner B	807-84				12.4	5.5	- 1.0	6	_			19.2
Mariner-Mars '64	808-84					31.8	37.7	16.2	2.3	.3	3	83.2
Mariner R	810-84				39.3	7.7	.1	4	_ _ _	2		21.6
Pioneer (IQSY)	811-85					*	15.8	15.1	9.2	10.2	5.9	56.3
Mariner-Mars '66	812-84						7.0	1.6	8	1		7.7
Mariner IV	813-84								.3	.8	.6	1.6
Lunar Orbiter	814-84				1.2	*	20.0	49.5	56.8	27.2	8.9	162.3
Mariner-Mars '69	816-84								4.1	30.3	72.6	107.0
Mariner-Venus '67	817-84								10.9	12.1	3.2	26.2
Voyager	818-82							6.7	16.8	10.0	3.1	36.6
Orbiting Solar Observatories	821-85		1.0	4.0	5.8	10.0	12.2	10.7	9.8	10.6	11.6	67.4
Advanced Orbiting Solar Observatories	822-85				.2	.1	7.2	6.9	10.4	- 1.0	*	23.6
Orbiting Astronomical Observatories	831-85		.3	11.6	32.9	39.5	35.3	31.8	22.7	28.0	45.8	242.9
FLOX (fluorine-oxygen) Development	839-83						*	3.7	.5	.2		4.5
Orbiting Geophysical Observatories	841-85		.3	8.6	18.4	42.2	32.4	40.1	28.6	24.9	20.7	204.8
Returned lunar sample analysis	848-86						-			1.8	1.2	3.0
Apollo Applications experiment definition	849-86								9.9	7.6	1.1	18.6
Energetic Particles Explorers	851-85		0.6	1.2	.9	6.8	0.9	0.9	0.4	0.5	_ *	7.3
Atmosphere Explorers	852-85		.4	1.8	1.9	5.0	.8	1.0	.4	.3	.3	6.5
Ionosphere Explorers	853-85		.2	.8	.9	.8	1.1	.5	.2	- *	_ *	2.9
Micrometeoroid Satellite S-55, S-55a	854-85											.3
Geodetic Satellites	855-61						.6	3.4	3.8	3.3	3.1	13.7
Small Scientific Satellites	857-85						-			.7	1.4	2.1
University Explorers (Rice University)	859-85						l		2.4	.4	.9	3.7

NASA FINANCES 147

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (Continued) (in millions of dollars)^a

L							T					
Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Tota1 ^c
Manned flight experiments	860-86									.1	.3	.3
Interplanetary Explorers/IMP	861-85					8.1	4.1	9.3	7.9	6.5	6.2	38.9
Air Density/Injun Explorers	863-85					.2	.9	.6	1.3	1.5	1.2	5.6
Electron Density Explorers	865-85							_ _ _	_ *	*		.6
Manned satellite science	866-85						.7	3.7	.3	_ *		4.7
Manned lunar science	867-86						.5	4.4	*	*		5.0
United Kingdom Explorers	870-85			1.1	1.0	.1	.9	.4	.2	*	_ *	6.7
ESRO I and II	871-85			.1	2.5	3.5		*	.1	*	*	.2
ISIS (Intl. Sat. for Ionosphere Studies)	872-85		1.1	4.0	7.5	3.3	1.7	1.7	2.1	1.3	1.3	9.0
Beacon Explorers	873-85		1.4	1.1.	1.1	1.2	1.5	1.5	.5	.4	_ *	5.1
German Research Satellite	874-85									*	.,1	.1
French satellite (FR-1)	876-85						*	.1	.1	*		.2
Radio Astronomy Satellites	877-85				•			.9	4.4	5.2	2.7	13.3
Small Astronomy Satellites	878-85								- - -	.7	2.7	3.4
Sounding rockets	879-85	3.1	5.2	7.4	9.0	11.9	15.7	19.0	18.4	21.0	18.7	129.6
BIOS	880-87							_ *				.4
Infrared spectroscopy	881 - 87						-*	- *	.1			.9
Bio-sampling lunar and planetary flights	882-87											*
Biosatellites	883-87				.6	.9	7.8	17.3	23.7	31.4	29.8	110.7
Scout development	890-83	5.5	2.9	7.8	4.4	4.7	- *	.3	*	_ *	_ *	25.5
Centaur development	891-83	4.0	36.5	62.2	71.8	90.3	108.3	87.9	52.0	29.6	.1	543.3
Delta development	892-83	13.1	11.3	9.3	5.3	3.7	.2	- *	-1.0	*		41.4
Joint Italian/United States project	894-85					4.0	.3	.1	.9	*	.6	3.7
Juno II payload	895-85						1				_ *	1.0
Vanguard III	896-85	22.0	.8	.1	- 3.3		-*	-1.7			_ *	20.9
Gamma Ray Astronomy Satellite S-15	897-85						3		2		*	29.8
Ionosphere Measurement Satellite S-30	898-85						-*	_ *	_ *		_ *	.9
Ionosphere Beacon Satellite S-45	899-85						-*				_ *	.5
Gemini supporting development	903-92							3.2	1	*	_ *	3.0
Apollo supporting development	904-92							36.2	20.6	6.4	27.0	90.2
Apollo Applications supporting development	905-92								11.0	20.3	5.9	37.3
Advanced manned missions supporting dev.	908-92							13.7	2.2	.4	_ *	16.4

Table 4-23. Research and Development Direct Obligations, by Unique Project Number (Continued) (in millions of dollars)^a

		(111 111)	шона									
Unique Project ^b	UPN-BLI	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total ^c
	911-99	28.9	87.7	92.4	31.2	-4.3	2	- 1.9	_ *	.1	_ *	235.0
Mercury	912-99	, 20.9	07.7	, 2. 1	16.5	16.3	.2	-4.4	1	*	_ *	32.4
Manned one-day mission	913-91				30.6	205.1	280.5	165.3	66.6	46.2	3.2	797.1
Gemini spacecraft	914-92				73.4	361.9	881.4	1017.1	1264.4	1288.0	1097.7	5977.7
Apollo spacecraft	916-99									_ *		.1
Prospector	710-77							25.0	2.2	32.7	52.3	181.0
Mission control system	921-92					7.8	47.7	37.0	3.2	32.1 4.7	9	76.1
Gemini support	923-91					3.4	16.0	27.7	24.0		50.4	177.3
Apollo space operations	924-92						3.6	29.6	37.8	55.9	3 0.4	28.2
Vega	929-99	14.1	3.6	8	7.7							
Saturn 1 vehicle	931-92		9.4	96.9	193.3	255.3	188.1	39.3	-2.7	9	3	767.2
Saturn IB vehicle	932-92					16.4	149.1	263.6	279.1	223.5	138.8	1068.0
Saturn V vehicle	933-92				54.5	333.9	696.8	1040.9	1158.4	1074.4	1007.0	5363.8
Gemini launch vehicle	939-91				24.4	79.1	122.7	115.4	72.9	- 2.9	- 1.6	410.0
Gemini launch vehicle								165.0	133.1	49.6	20.0	886.7
Engine development	940-92	10.1	26.7	82.4	99.7	136.5	166.0	165.9	133.1	.2	.1	14.0
Apollo Applications design and development	942-96								13.8	1.9	10.2	12.1
MSF experiment definition	945-96									3.6	23.8	27.4
AAP experiment definition	948-96								.7	3.0	.4	4.2
Apollo Applications experiment definition	949-86											
Launch operations support	950-92				2.2	4.9	21.8	35.0	33.4	87.1	91.2	275.7
Launch instrumentation	955-92						8.2	6.6	10.1	12.5	18.2	55.6
	061.06						·			22.7	11.1	33.8
AAP spacecraft development	961-96									15.4	20.7	36.1
Orbital Workshop	964-96									8.3	20.9	29.2
Apollo Telescope Mount	965-96											
AAP Uprated Saturn I production	972-96									22.9	14.5	37.4
AAP Saturn V production	973-96									1.3	2.3	3.6
a	980-92				2.2	19.0	31.2	19.3	20.9	28.2	27.0	160.2
Systems engineering	981-93					10.1	13.9	20.3	13.4	7.9	1.9	67.4
Advanced studies										4.0	16.3	20.3
Payload integration	991-96									3.1	10.3	4.2
Mission operations	995-96									3.1	1.1	1.3
Program support	996-96										1.3	1.3

a-e Identical to notes for Table 4-22.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget...1959 Through 1963; draft History of Budget...1964-1966; NASA, Financial Management Division, Financial Status of Programs: Research and Development; NASA, Financial Management Manual, FMM 9100, Changes 9 and 10.

NASA FINANCES 149

Table 4-24. Research and Development Reimbursable Obligations, by Project (in millions of dollars)

Unique Project (over \$1 million)	UPN-BLI	1968	1959–1968	Reimburser
Aeronautics SRT	126-76	2.1	6.1	Primarily Army
Network Operations, T&DA	311-51	.6	2.4	Primarily ESSA and Air Force
Special support	380-50	1.5	1.5	Primarily Army
Scout procurement	490-89	1.8	54.5	Primarily Air Force
Delta procurement	492-89	11.6	69.1	Primarily ESSA and ComSatCorp
Tiros Operational System	602-61	14.2	57.0	ESSA
Nimbus Operational System, 0-1, 0-2	606-61		10.8	ESSA
Systems A (Automatic Picture Taking)	609-61		1.6	Primarily Air Force
Nerva	718-72	30.8	244.3	AEC
XB-70 flight research program	732-76	1.3	1.3	Air Force
Sounding rockets	879-85	.1	1.0	Navy and Air Force
Gemini spacecraft	913-91	_ *	12.4	Air Force
Saturn V vehicle	933-92	.3	1.5	Primarily Air Force
Subtotal		64.0	463.5	•
Other projects		1.5	6.6	
Total reimbursables		65.5	470.1	

Source: NASA, Financial Management Division, Financial Status of Programs: Research and Development.

Table 4-25. Research and Development Obligations (Cumulative), by NASA Installation and Major Project (in millions of dollars)^a

Installation/Major Project		igations to e 30, 1968	Installation/Major Project		gations to e 30, 1968
(and Unique Project Number)	Direct	Reimbursable	(and Unique Project Number)	Direct	Reimbursable
	1243.9	2.5	Goddard Space Flight Center-total	2457.5	109.1
NASA Headquarters—total	103.7		Network operations (311)	579.4	
Training grants (181)	67.5		Equipment and components (312)	370.2	
Research grants (183)	83.1		Delta procurement (492)	78.1	
Lunar and planetary SRT-Science (185)	104.9		Tiros ITOS improvement (601)	52.4	
Physics and astronomy SRT (188)	57.4		Tiros Operational System, TOS (602)		57.0
Bioscience SRT (189)	63.7		Nimbus A-D (604)	190.3	
Network operations (311)	153.7		Applications Technology Satellites A-E (630)	113.8	
Systems engineering	133.7		Orbiting Solar Observatories (821)	66.0	
	119.6	33.6	Orbiting Astronomical Observatories (831)	239.9	
Western Support Office-total	119.0	33.0	Orbiting Geophysical Observatories (841)	203.9	
Military A. 1. 1. Distribute	3.4		Sounding rockets (879)	94.9	
Mission Analysis Division	3.4				
Langley Research Center-total	561.9	57.1	W B Chatian total	32.4	0.1
Scout procurement (490)		54.5	Wallops Station—total	32	
Lunar Orbiter (814)	162.2				
Lunar Oroller (814)	102.2		Jet Propulsion Laboratory—total	1530.4	1.8
Ames Research Center	303.6	5.7	Tracking and data acquisition SRT (150)	52.6	
Pioneer – IQSY (811)	56.1		Network operations (311)	136.5	
	110.5		Equipment and components (312)	99.4	
Biosatellites (883)	110.0		Ranger (801)	169.2	
Lewis Research Center-total	1493.1	0.1	Surveyor (803)	466.0	
Space power and electric propulsionSRT (120)	118.7		Mariner-Mars '66 (808)	82.4	
Centaur procurement (491)	231.3		Mariner-Mars '69 (816)	106.7	
Agena procurement—excluding Gemini (493)	258.8				
Agena procurement—excluding Gennin (493)	80.4				
Sustaining engineering and maintenance (497)	77.5		Marshall Space Flight Center-total	8358.5	1.5
SNAP-8 development project (701) M-1 engine development (726)	98.7		Agena procurement—excluding Gemini	85.2	
	358.4		Centaur development (891)	141.2	
Centaur development (891)	223.1		Saturn I vehicle (931)	753.8	
Eliche Besserch Center total	84,4	1.6	Saturn IB vehicle (932)	960.3	
Flight Research Center-total	O 1. 1	•••	Saturn V vehicle (933)	5083.3	
Electronics Research Center-total	53.9		Engine development	885.7	
Figer ource Research Course - total	/		11		

NASA FINANCES 151

Table 4-25. Research and Development Obligations (Cumulative), by NASA Installation and Major Project (Continued) (in millions of dollars)^a

Installation/Major Project (and Unique Project Number)		igations to e 30, 1968	Installation/Major Project	Obligations to June 30, 1968		
(and onique Project Number)	Direct	Reimbursable	(and Unique Project Number)	Direct	Reimbursable	
Space Nuclear Propulsion Office-Cleveland-total Nerva (718)	235.5 214.3	244.3 244.3	Apollo spacecraft (914) Mission control system (921)	5883.3 181.0		
Space Nuclear Propulsion Office-Nevada—total	25.0		Gemini support (923) Apollo space operations (924) Gemini launch vehicle (939)	75.3 159.1 410.0		
Space Nuclear Propulsion Office-W (Headquarters)-total (includes SNPO-Albuquerque)	- 55.4		Kennedy Space Center—total Apollo spacecraft (914) Saturn IB vehicle (932)	833.6 61.7 107.5	-	
Manned Spacecraft Center-total Mercury (911) Gemini spacecraft (913)	7990.8 227.9 797.1	12.8	Saturn V vehicle (933) Launch operations support (950) Launch instrumentation (955)	264.9 273.5 55.6		

^aProjects for which installation obligations exceeded \$50 million.

Source: NASA, Financial Management Division, Financial Status of Programs: Research and Development.

Table 4-26. Amounts Programmed for Research and Development, by NASA Installation (in millions of dollars)

Installation	1963 and Before	1964	1965	1966	1967	1968	Total ^a
NACA Handawarters	419.5	157.9	179.5	168.2	152.4	200.0	1 277.5
NASA Headquarters Western Support Office ^b	74.9	46.5	15.4	18.2	13.0	1.9	169.9
Langley Research Center	83.7	78.1	106.6	124.7	91.5	83.2	567.8
Ames Research Center	18.4	40.3	54.2	64.2	65.6	67.1	309.8
Lewis Research Center	326.9	299.9	323.2	249.9	162.7	131.3	1 493.9
Flight Research Center	11.5	12.8	9.6	17.7	10.2	23.5	85.3
Electronics Research Center		.2	2.7	8.8	16.4	27.0	55.1
Space Nuclear Propulsion Office	73.9	60.3	45.8	50.1	47.8	42.0	319.9
Goddard Space Flight Center	577.5	369.7	374.1	354.9	387.3	430.9	2 494.4
Wallops Station	3.2	4.3	6.2	7.5	6.5	7.2	34.9
Jet Propulsion Laboratory	450.4	184.1	202.3	225.7	213.6	194.4	1 470.5
Marshall Space Flight Center	1610.4	1301.4	1474.0	1549.9	1342.1	1110.2	8 388.0
Manned Spacecraft Center	1079.9	1363.7	1431.5	1515.7	1446.5	1184.7	8 022.0
Kennedy Space Center	10.1	57.1	59.5	134.0	217.1	358.4	836.2
NASA Total	4740.3	3976.3	4284.6	4489.5	4172.7	3861.8	25 525.2

^aSum of rounded annual amounts. ^bDiscontinued March 1, 1968.

Source: NASA, Financial Management Division, Financial Status of Programs: Research and Development, column "506 White."

153

NASA FINANCES

Table 4-27. Amounts Programmed for Research and Development, by Program Office Area
(in millions of dollars)

Program Office	1965 and Before	1966	1967	1968	Total
Office of Administration				27.2	27.2
Technology Utilization	10.7	4.8	5.0	4.0	24.
University Affairs	137.0	46.0	31.0	9.9	223.9
Tracking and Data Acquisition	675.2	231.1	270.3	265.2	1 441.8
Advanced Research and Technology	1 054.0	288.9	269.4	301.8	1 914.
Space Science and Applications	2 922.8	742.5	584.0	548.0	4 797.
Manned Space Flight	8 212.5	3187.7	3012.8	2705.7	17 118.
NASA Total	13 012.2	4500.9	4172.6	3861.8	25 547.

Source: NASA, Financial Management Division, Financial Status of Programs: Research and Development, column "506 White."

Table 4-28. Construction of Facilities Direct Obligations, by Installation (in millions of dollars)

	Total Program Plan ^a	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total Obligations
Ames Research Center	55.2	1.7	2.4	3.6	3.1	7.0	11.9	13.6	5.8	1.6	0.9	51.6
Electronics Research Center	29.9					0	0.1	0.4	4.2	2.4	17.3	24.4
Flight Research Center	6.3	0	1.7	*	0.1	1.7	-0.2	1.5	1.4	.1	0.1	6.3
Goddard Space Flight Center	84.8	3.4	5.7	9.5	13.9	13.0	10.6	16.4	6.4	2.7	3.0	84.6 ^b
Kennedy Space Center	917.9		1.0	11.5	83.0	204.3	197.8	190.9	117.9	62.9	28.9	898.2 ^c
Langley Research Center	74.5	2.4	4.4	7.0	15.5	6.5	9.0	7.2	5.1	9.8	6.0	72.9
Lewis Research Center	113.3	3.1	5.9	10.0	5.1	10.9	26.5	18.6	8.2	7.1	2.4	97.8
Manned Spacecraft Center	171.3 ^d				8.7	42.7	39.9	40.0	19.5	11.2	2.4	164.4
Marshall Space Flight Center	143.9 ^e			11.7	26.9	46.2	23.8	27.1	5.3	1.4	0.1	142.5
Michoud Assembly Facility	56.2				5.0	24.7	11.8	10.7	2.1	0.5	0.4	55.2 ^f
Mississippi Test Facility	268.1				5.0	72.0	101.9	67.1	18.9	1.3	0.0	266.2
Space Nuclear Propulsion Office	28.2				0.7	13.2	8.0	2.5	0.9	2.1	0.6	28.0
Wallops Station	38.1	6.4	5.1	2.6	7.1	5.3	4.2	3.4	0.6	0.9	2.0	37.6 ^g

Table 4-28. Construction of Facilities Direct Obligations, by Installation (Continued)

(in millions of dollars)

	Total Program Plan ^a	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total Obligations
Pacific Launch Operations Office	2.6		υ.δ	0.5	0.9	_*	_*	*	0.3	0.8	- 0.7	2.6
Jet Propulsion Laboratory	43.0		7.4	6.9	5.9	10.3	4.6	3.9	1.2	0.6	1.1	41.9 ^h
	536.0 ⁱ	3.1	49.1	31.9	34.9	111.5	96.4	118.8	72.6	10.6	0.0	528.9
Various locations NASA Total	2572.3 ^k	20.1	83.5	95.2	215.8	569.3	546.3	522.1	270.4	115.9	64.5	2503.1 ^j
Pre-NASA projects Total obligations		17.9 38.0	6.2 89.7	3.0 98.2	1.3 217.1	.5 569.8	.3 546.6	.1 522.2	 270.4	 115.9	 64.5	29.3 2532.4

^aAs of June 30, 1968; includes facilities planning and design.

tions to Slidell Computer Operations Office which was reported with "Various locations."

gIncludes \$16.1 million in tracking and data acquisition projects assigned WS facilities project numbers.

^hIncludes \$1.2 million in tracking and data acquisition projects assigned JPL facilities project numbers.

ⁱIncludes unallocated amounts.

^jIncludes \$314.1 million for tracking and data acquisition facilities.

k Includes \$2.1 million reserve for claims (\$2 057 625):

(FY 1962 16 000 1963 46 000 1965 750 000 1966 1 245 625).

Source: NASA, Office of Programming, Budget Operations Division, History of Budget. . . 1959 Through 1963; draft History of Budget. . . 1964-1966; NASA, Financial Management Division, Financial Status of Programs: Construction of Facilities.

^bIncludes \$3.4 million for tracking and data acquisition projects assigned GSFC facilities project numbers.

^cIncludes \$5.5 million in tracking and data acquisition projects assigned KSC facilities project numbers; does not include \$839 000 programmed (FY 1963) and obligated for modifications to Mercury Control Center which was included with "Various locations."

^dDoes not include \$21.7 million programmed (FY 1963) and obligated for Mission Control Center; this project was included with "Various locations."

^eDoes not include \$3.8 million programmed (FY 1963) and obligated for Advanced Saturn Dynamic Test Facility; this project was included with "Various locations."

^fIncludes \$367 000 programmed (FY 1962) and obligated for modifica-

Table 4-29. Fiscal Year Obligations, Costs, and Disbursements as Percentages of Program Year Budget Plana

Category and Program Year			Yea	ar Prog	ram Be	gan						Yea	ır Prog	ram B	egan		
Category and Program Tear	1959	1960	1961	1962	1963	1964	1965	1966	Category and Program Year	1959	1960	1961	1962	1963	1964	1965	1966
All appropriations:			·						R&D for manned space flight:					-			
Obligated, first year	85	86	87	86	89	86	95	96	Obligated, first year	78	94	93	98	98	97	99	99
Disbursed, first year	34	45	49	46	47	49	54	35	Costs, first year					70	71	75	87
									Disbursed, first year	14	46	47	49	59	59	60	75
Obligated, second year	10	10	11	10		11	4		Jisserisse, rast year	1-4	40	7,	77	33	39	60	73
Disbursed, second year	46	43	39	40		36	35		R&D for space sciences and								
•							• •		applications ^b :								
Obligated, third year	3	2				2			Obligated, first year	96	81	91	94	95	92	0.4	0.2
Disbursed, third year	10	6	8			10			Costs, first year		01	91	94	93	92 57	94	93
, ,		•				••			Disbursed, first year	18	32	41	49			63	60
Obligated, first and second years	95	96	98	96		97	99		R&D for advanced research and	10	32	41	49	47	49	46	48
Disbursed, first and second years	80	88	88	86		85	89		technology:								
a social years	00	00	00	00		05	0,7		Obligated, first year	74			0.4				
All appropriations for manned									Costs, first year	74	69	61	94	96	90	87	82
space flight:									Disbursed, first year						43	45	39
Obligated, first year	80	95	87	83	89	89	97	99	Disbursed, first year	19	41	34	28	35	36	33	28
Disbursed, first year	17	46	48	42	49	53	59	77	Deb u u C								;
Disoursed, first year	1,	70	70	4 2	47	33	39	//	R&D, all others ^C :								
Obligated, second year	21	6	13	12		8	2		Obligated, first year	64	82	73	88	84	69	69	89
Disbursed, second year	70	48	41	42		36	34		Costs, first year						32	26	43
Disoursed, second year	70	70	71	42		30	34		Disbursed, first year	22	54	46	60	41	26	22	33
Obligated, third year	*	- 2	– 2			2			Construction of facilities:								
Disbursed, third year	12	•	8			8			Obligated, first year	42	70		4.5		• •		
, , , , , , , , , , , , , , , , , , , ,			Ū			o			Costs, first year	42	70	52	45	57	38	58	48
Obligated, first and second years	101	101	100	95		97	99		Disbursed, first year	5	12				5	12	14
Disbursed, first and second years	87	94	89	84		89	93		Disoursed, first year	3	17	20	11	7	4	7	8
,	٠.	, .	0,	٠,		0,	,,		Obligated, second year	30	22	42	20				
Research and development:									Costs, second year	30	22	42	39		40	31	
Obligated, first year	89	86	89	95	97	94	96	97	Disbursed, second year	41					35	57	
Costs, first year						64	68	77	Disbursed, second year	41	55	40	36		29	50	
Disbursed, first year	17	39	44	47	53	53	53	65	Obligated, third year	17	7	•					
			• •	• •	55	33	33	03	Costs, third year	_	,	3			16		
Obligated, second year	10	11	10	4		6	3		Disbursed, third year						49		
Costs, second year						32	28		Disoursed, third year	24	15	29			42		
Disbursed, second year	63	50	46	47		40	37		Obligated first and access	7.2	0.0	٥.					
seed the year	0.5	50	70	٠,		40	31		Obligated, first and second years	72	92	81	84		78	89	
Obligated, first and second years	99	97	99	99		100	100		Costs, first and second years						40	69	
Costs, first and second years			77	77		96	95		Disbursed, first and second years	46	72	60	47		33	57	
Disbursed, first and second years	89	80	90	94		96 93			Adult to a state of								
Sisterior, instanta second years	0,7	60	70	74		93	90		Administrative operations:								
									Obligated, first year	99		100	100	97			
									Disbursed, first year	88	81	82	79	82			

^aRounded to closest percentage. An asterisk indicates less than half of one percent. bIncludes university affairs for 1959-1963 period.

Source: For 1959-1963, NASA, Office of Programming, Budget Operations Division, History of Budget. . . 1959 Through 1963; for 1964-1966, draft History of Budget. . . 1964-1966.

^cTracking and data acquisition only for 1959-1963 period.

Chapter Five NASA PROCUREMENT

(Data as of 1968)

Chapter Five

NASA PROCUREMENT

List of Tables

Table		Page
5-1	Total Number of Procurement Actions by Kind of Contractor: FY 1960-FY 1968 and Estimated FY 1959	_
5-2	Number of Actions by Kind of Contractor: Six-Month Periods	
5-3	Number of Actions by Kind of Contractor and Fiscal Year	
5-4	Number of Actions Awarded Small and Large Business: Six-Month Periods	
5-5	Number of Actions Awarded Small and Large Business by Fiscal Year	
5-6	Total Procurement Value by Kind of Contractor: FY 1960-FY 1968	
5-7	Value of Awards by Kind of Contractor: Six-Month Periods	
5-8	Value of Awards by Kind of Contractor and Fiscal Year	
5-9	Value of Awards to Small and Large Business: Six-Month Periods	
5-10	Value of Awards to Small and Large Business by Fiscal Year	
5-11	Value of Awards to Business, Competitive and Noncompetitive Procurement: Six-Month Periods	
5-12	Value of Awards to Business, Competitive and Noncompetitive Procurement by Fiscal Year	
5-13	Value of Direct Awards to Business by Contract Pricing Provision: FY 1961-FY 1968	
5-14	Value of Direct Awards to Business by Contract Pricing Provision: Six-Month Periods	
5-15	Total Number of Actions in Direct Awards to Business by Contract Pricing Provisions: Six-Month Periods	
5-16	Total Number of Actions in Direct Awards to Business by Contract Pricing Provisions by Fiscal Year	
5-17	Distribution of NASA Prime Contract Awards by States: FY 1961-FY 1968	
5-18	Distribution of NASA Prime Contract Awards by U.S. Region: FY 1964-FY 1968	
5-19	Value of Awards by Installation	
5-20	NASA's Active Prime Contracts of \$25 Million and Over	

			100
5-21	Ranking of NASA's Top Ten Contractors:	FY 1963-FY 1968	190
5-22	Top One Hundred Contractors: FY 1963		191
5-23	Top One Hundred Contractors: FY 1964		194
5 24	Top One Hundred Contractors: FY 1965		197
3-24	Top One Hundred Contractors. 11 1905		200
5-25	Top One Hundred Contractors: FY 1966		202
5-26	Top One Hundred Contractors: FY 1967		203
5-27	Ton One Hundred Contractors: FY 1968		206

Chapter Five NASA PROCUREMENT

Since FY 1962, more than 90 percent of NASA's annual expenditures have been for goods and services procured from outside contractors. Even before the Space Act was signed on July 29, 1958, large-scale procurement was planned for NASA as a departure from the balance between in-house and contracted effort under the National Advisory Committee for Aeronautics. The NACA had maintained a relatively small contracting staff, for its work was based on an in-house research capability. While the NACA had performed much of its research in response to requirements generated by other organizations, the new space agency would develop its own requirements as program planning expanded.

NASA needed many unique services and products, ranging from whole launch vehicles to miniaturized electronic components. The scope of contracted work varied from feasibility studies for particular projects or parts of projects to the planning and construction of research facilities, sometimes entire new installations.

The Space Act gave NASA authority to develop, construct, test, and operate space vehicles and to contract for the conduct of this work with individuals, corporations, Government agencies, and others. NASA also received the procurement authority outlined in the Armed Services Procurement Act of 1947, which granted certain agencies the option to use both formal advertising and negotiation as procurement methods.

Because the administration of cost contracts (the kind primarily used in R&D work) required day-to-day field supervision, the decision was made in 1958 to decentralize responsibility by letting the field installations handle all procurement within certain dollar limitations. For those awards expected to exceed the prescribed amounts, approval at various stages in the procurement process had to be sought in Headquarters from the Administrator, Deputy Administrator, or, in recent years, the Associate Administrator for Organization and Management. Final approval of source selection in competitive procurements for these awards was given by the Administrator, with the concurrence of the Deputy Administrator and Associate Administrator. This

policy required the three top officials of the agency to participate in question and answer sessions with source evaluation boards on every major procurement decision before making their final judgments.

The balance of effort between in-house research and development and contracted work was based on the concept formulated in 1960 that the NASA Centers should have sufficient in-house capability to allow them to conceive of space flight development projects, develop technical specifications for private contractors, and supervise contractors to ensure high reliability of systems, subsystems, and components in their early development stages. At the same time, NASA management wanted installations to conduct enough research and development work in-house to maintain the excellence of their scientific and technical staffs.

NASA retained in-house the conceptual and preliminary design stage of major projects in every program to be sure that program planning skill was maintained within NASA, that contractors were provided with definitive requirements, and that a sound basis existed for technical direction and supervision of contractor efforts. Four interrelated elements—detailed designing, fabrication, assembly, and test and checkout—were retained in-house for a few selected subsystems (those which would advance the state of the art). Except for these few elements retained in-house to keep the level of technical capability needed to plan and direct the program, NASA contracted out detailed design, fabrication, assembly, and test and checkout. NASA Centers contracted with industry for all production and manufacturing efforts and with the external scientific community for most space flight experiments.

Rapid changes observed throughout the agency after the decision in 1961 to accelerate the NASA program may be measured in procurement trends. The net value of NASA procurement rose from \$756 million in FY 1961 to \$3.2 billion in FY 1963, a 326.4 percent increase. Since the number of procurement actions only doubled during those years, the average value of the procurement action increased considerably.

Use of the firm-fixed-price contract and the cost-plus-fixed-fee contract began declining after FY 1961, when they represented 15.3 percent and 82.7 percent, respectively, of the net value of awards. The incentive contract began in FY 1962 to play an increasing role in NASA procurement, until by FY 1966 incentive contracts accounted for nearly half the new value of awards and increased to 52 percent of the total by FY 1968.

Stages in the NASA Procurement Process¹

Procurement Request: Once a project has been approved and a decision made as to the degree of external participation, the responsible organizational unit prepares a procurement request (PR). The PR, after approval by the proper operating officials, becomes the basic working document for the procurement specialist. The PR includes a description of what is wanted and additional information as needed (suggested suppliers, security classification, etc.).

Procurement Plan: On the basis of the PR and other available information, the procurement specialist draws up a procurement plan. This plan outlines in detail each subsequent step to be taken to carry out the procurement action. It includes a description of the items to be procured, a list of all known sources, a time schedule for completing each major phase of the action, the recommended kind of contract to be used, and special provisions to be included in the contract. If the items to be procured can be clearly and completely defined in specifications and drawings, formal advertising for competitive bids is possible. If the items cannot be well defined (and most R&D work cannot), the negotiation route must be taken, whereby negotiations with potential suppliers (called "sources") are conducted on the basis of competitive technical and business proposals submitted to NASA. The "formal advertising" route usually results in a fixed-price contract whereas the "negotiation route" usually involves a cost reimbursement contractnormally the cost-plus-a-fixed-fee (CPFF) variety. In NASA, 90 percent of the procurement dollar is spent via the negotiation route.

When the procurement plan has been approved by the proper authorities, the stage is set for solicitation.

Soliciting Proposals: At this stage an attempt is made to keep things as competitive as possible. When formal advertising is used, the procurement

action is publicized as widely as possible and an "Invitation for Bid" (IFB) is sent to each interested supplier. The IFB contains all information needed to prepare a bid. It is the crucial instrument in bringing user and supplier together.

Negotiation is more complicated. An instrument called a "Request for Proposal" (RFP) is used instead of an IFB. Since a proposal is infinitely more complicated and expensive to prepare than a bid, NASA attempts to limit the sending of RFPs to parties known to be qualified. This necessitates a screening process, which may be done informally through letters and telephone calls or formally through a "pre-proposal conference" held with interested parties. After the screening, RFPs are sent to firms considered to have the required experience, facilities, and capabilities. A firm may submit a proposal even if it does not initially receive an RFP. All larger RFPs are announced in the Department of Commerce's Business Daily and thus any firm can request them.

Bid and Proposal Evaluation: When formal advertising is used, it is necessary to make sure that the low bidder is responsible and that his bid meets all requirements. When negotiation is used, a much more elaborate evaluation process is necessary since cost figures are only one factor to be considered. Proposals are usually evaluated from three angles—the quality of the proposal (design, cost, schedules, etc.), the technical competence of the proposer (personnel, facilities, experience), and the managerial competence of the proposer (reporting system, accounting system, etc.). The RFP includes the criteria on which the evaluation is made. Administrative and legal personnel, as well as technical personnel, participate in proposal evaluation.

Source Selection, Contract Negotiation, and Contract Award: In formal advertising, a standard contract is awarded to the lowest responsible and responsive bidder. When negotiation is used, a decision is made, from the evaluation described above, on the supplier to do the work. After selection, negotiations are begun to iron out the details of the contract. Since a CPFF contract is used in most cases, thorny problems of clarifying costs and determining the fee must be solved. When both sides agree, the actual contract award is made.

Contract Administration: The award of a contract is only part of the overall procurement process. What follows may be even more significant. It is true that the contractor has primary responsibility for performance and, for routine procurements, contract administration may be only taking delivery of the goods or services. In R&D contracting, however, numerous interim

¹ Rosholt, Administrative History of NASA, p. 63-65.

NASA PROCUREMENT

problems arise in which NASA has vital interest. In such cases, reviewing and evaluating the contractor's progress is very important and may become a specialty in itself. Elaborate reporting techniques have been developed which sometimes reveal the need for NASA to provide technical or administrative assistance to the contractor. NASA may approve certain contractor actions which require changes in costs. In certain cases the contract may have to be modified or terminated.

Contract administration involves NASA operating technicians, procurement specialists, and people from such activities as safety, reporting, and security.

Definition of Terms

Advertised award—Procurement actions resulting from acceptance of bids made by contractors in response to formal advertising.

Award—See Procurement action.

Competitive negotiation—Procurement actions resulting from soliciting proposals or obtaining quotations from two or more sources.

Direct actions (direct awards)—Procurement actions placed directly with business firms and nonprofit institutions or organizations. The term excludes procurement actions placed with or through other Federal agencies.

Intragovernmental award—Procurement actions placed with or through other Federal agencies.

Modification—Any written alteration in the specifications, delivery point, rate of delivery, contract period, price, quantity, or other contract provision of an existing contract, whether accomplished by unilateral action in accordance

with a contract provision or by mutual action of the parties to the contract. It includes (a) bilateral actions, such as supplemental agreements, and (b) unilateral actions such as change orders, notices of termination, and notices of the exercise of an option.

Negotiated award—Procurement actions resulting from negotiation procedures authorized under Title 10 U.S.C. 2304(a).

Net value—Net amount of obligations resulting from debit and credit procurement actions.

Noncompetitive negotiation—Procurement actions resulting from the solicitation of proposals from only one source.

Procurement action (Award)—Any of the following transactions which obligates or deobligates funds:

- a. Letter contracts or other preliminary notices of negotiated awards.
- b. Definitive contracts, including purchase orders.
- c. Orders against indefinite delivery contracts.
- d. Modifications.

Small business—A concern that meets the pertinent criteria established by the Small Business Administration and set forth in Paragraph 1.701 of the NASA Procurement Regulation. Generally a small business concern is one that is independently owned and operated, is not dominant in its field of operations, and with its affiliates does not employ more than a specified number of persons (usually not more than 500, 750, or 1000) depending on the product called for by the contract. For construction and some service industries, the criterion is a specified annual dollar volume of sales or receipts instead of employment.

Table 5-1. Total Number of Procurement Actions by Kind of Contractor: FY 1960-FY 1968 and Estimated FY 1959 (in thousands)

	FY 1960	-FY 1968	Estimate f	or FY 1959
Kind of Contractor	Percentage	Number	Percentage	Number
Business	80.0	1531.4 ^a	93.0	25.0
Small business	(64% of all business)	(984.6)		
Large business	(36% of all business)	(546.8)		
onprofit institutions	1.9	37.5	1.0	0.3
Government agencies	17.0	328.6	6.0	1.6
et Propulsion Laboratory ^b	.1	1.4		
Outside United States ^C	1.0	2.1		
Total	100.0	1886.1	100.0	26.9

^aIncludes 14 900 actions placed under General Service Administration contracts in 1961 and 1962 and not classified as to small or large business.

Source: NASA, Procurement and Supply Division, NASA Procurement, October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Year 1961 and reports through Fiscal Year

1968 (Washington, D.C.: NASA, 1962-1968).

bJuly 1, 1960, through June 30, 1968.

^cJuly 1, 1962, through Dec. 31, 1966, only.

NASA PROCUREMENT

Table 5-2. Number of Actions by Kind of Contractor: Six-Month Periods (in thousands)

•	1	960		19	61			19	62			190	53	
	7/1-	-12/31	1/1	-6/30	7/1-	-12/31	1/1	- 6/30	7/1-	-12/31	1/1	-6/30	7/1-	12/31
Kind of Contractor	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%]	Number
Business	88.2	36.6	88.7	46.1	86.7	48.7	86.3	60.9	94.6	73.8	94.0	102.8	95.9	100.7
Nonprofit institutions	1.2	.5	1.5	.8	1.6	.9	1.4	1.0	.9	0.7	1.6	1.7	1.0 ^d	1.1
(Educational) ^a	-	_		_	_		_	_	(.6)	(.5)	(1.3)	(1.4)	$(0.8)^{d}$	(.8)
(Other institutions) ^a	_	_	-	_	_	_	_	_	(.3)	(.2)	(.3)	(.3)	$(.3)^d$	(.3)
Government agencies	10.6	4.4	9.8	5.1	11.7	6.6	12.3	8.7	4.5	3.5	4.3	4.7	3.0	3.2
Jet Propulsion Laboratory	*	9 ^c	*	22 ^c	*	29 ^c	*	19 ^c	*	30 ^c	.1	70 ^c	*	**
Outside United States ^b	_	_	_	_	_	-	_	_	*	30 ^c	.1	70 ^c	*	**
Total	100.0	41.5	100.0	52.0	100.0	56.2	100.0	70.6	100.0	78.0	100.1 ^d	109.4	99.9 ^d	105.0

Table 5-2. Number of Actions by Kind of Contractor: Six-Month Periods (Continued) (in thousands)

			1964			1	965			15	966			1	967		1	968
	1/1	-6/30	7/1-	12/31	1/1	-6/30	7/1-	12/31	1/1-0	6/30	7/1-	12/31	1/1	1-6/30	7/1-	12/31	1/1	-6/30
Kind of Contractor	%	Number	%	Number	%	Number	%	Number	% N	Number	% I	Number	%	Number	%	Number	%	Number
Business	95.8	136.4	82.2	96.2	77.4	138.9	67.2	97.9	68.9	118.7	74.5	95.2	75.5	116.9	67.8	90.8	73.2	114.2
Nonprofit institutions	1.1	1.6	2.2	2.6	2.3	4.1	1.9	2.8	2.2 ^d	3.7	2.4 ^d	3.1	3.2	5.0	2.0	2.7	3.0	4.7
(Educational) ^a	(.9)	(1.3)	(1.5)	(1.8)	(1.7)	(3.0)	(1.2)	(1.8)	$(1.6)^{d}$	(2.7)	$(1.6)^{d}$	(2.0)	(2.3)	(3.6)	(1.2)	(1.6)	(2.2)	(3.4)
(Other institutions) ^a	(.2)	(.3)	(.7)	(8.)	(.6)	(1.1)	(.7)	(1.0)	$(.6)^{d}$	(1.0)	(.9) ^d	(1.1)	(.9)	(1.4)	(8,	(1.1)	(.8)	1
Government agencies	2.9	4.2	15.2	17.8	20.2	36.2	30.5	44.4	28.7	49.5	22.6	28.8	21.1	32.7	29.8	39.9	23.7	36.9
Jet Propulsion Laboratory	.1	.1	.2	.2	.0	.0	.2	.2	.1	.1	.2	.3	.1	.1	.3	.4	_	_
Outside United States ^b	.1	.1	.2	.2	.1	.2	.2	.3	.2	.3	.2	.3	.1	.2	.1	.2	.1	.2
Total	100.0	142.4	100.0	117.0	100.0	179.4	100.0	145.6	100.1 ^d	172.3	99.9 ^đ	127.7	100.0	154.9	100.0	134.0	100.0	156.0

^aBreakdown of nonprofit institutions first reported for FY 1963.

Source: NASA, Semiannual Procurement Report, July 1 Through Dec. 31, 1961 and reports through 1967 (Washington, D.C.: NASA, 1962-1968); NASA, Annual Procurement Report, FY 1961-1968.

^bCategory first included in FY 1963.

^cActual number, not in thousands.

dDiscrepancy due to rounding.

^{*}Less than 0.05 percent.

^{**}Less than 50 actions.

Table 5-3. Number of Actions by Kind of Contractor and Fiscal Year (in thousands)

	FY	1959 ^c	FY	1960	FY	1961	FY	1962	FY	1963
Kind of Contractor	%	Number	%	Number	%	Number	%	Number	%	Number
Business	93.0	25.0	94.6	41.7	88.4	82.7	86.4	109.6	94.2	176.6
Nonprofit institutions	1.0	.3	.9	.4	1.4	1.3	1.5	1.9	1.3	2.4
(Educational) ^a	_	_	_	_	_	_	_	_	(1.0)	(1.9)
(Other institutions) ^a		_		_	-	_	_		(.3)	(.5)
Government agencies	6.0	1.6	4.5	2.0	10.2	9.5	12.1	15.3	4.4	8.2
Jet Propulsion Laboratory	_	_	ď	d	*	**	*	**	.1	.1
Outside United States	_	_		-	_	_	_	_	.1	.1
Total	100.0	26.9	100.0	44.1	100.0	93.5	100.0	126.8	100.1e	187.4

Table 5-3. Number of Actions by Kind of Contractor and Fiscal Year (Continued) (in thousands)

			(III tile							
Kind of Contractor		1964 Number		1965 Number	FY %	1966 Number	FY %	1967 Number	FY %	1968 Number
Business	95.8	237.1	79.3	235.1	68.1	216.6	75.0	212.1	70.7	205.0
Nonprofit institutions	1.1	2.7	2.3 ^d	6.7	2.1	6.5	2.9	8.1	2.6	7.4
(Educational) ^a	(.9)	(2.1)	$(1.6)^{\circ}$	(4.8)	(1.4)	(4.5)	(2.0)	(5.6)	(1.7)	
(Other institutions) ^a	(.2)	(.6)	(.6)	(1.9)	(.7)	(2.0)	(.9)	(2.5)	(8.)	(2.4)
Government agencies	3.0	7.4	18.2	54.0	29.5	93.9	21.8	61.5	26.5	76.8
Jet Propulsion Laboratory	*	0.1	.1	.2	.1	.3	.1	.4	.1	.4
Outside United States	*	0.1	.1	.4	.2	.6	.2	.5	.1	.4
Total	99.9	247.4	100.0	296.4	100.0	317.9	100.0	282.6	100.0	290.0

^aBreakdown of nonprofit institutions first reported for Fiscal Year 1963.

^dNo listing of number of actions for JPL in FY 1960 report (NASA Procurement).

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

bCategory first included in FY 1963.

^cNumber of actions in FY 1959 not available from Procurement Report. Rough estimate only.

^{*}Less than 1.0 percent.

^{**}Less than 100 actions.

eDiscrepancy due to rounding.

Table 5-4. Number of Actions Awarded Small and Large Business: Six-Month Periods (in thousands)

	1	960	_	19	61			19	62			19	63	
	7/1-	-12/31	1/3	1-6/30	7/1	-12/31	1/3	1-6/30	7/1	-12/31	1/	1-6/30	7/1-1	2/31
Kind of Business	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Small business	65	25.7	64	31.6	66	35.0	65	42.9	66	48.4	67	68.8	68	68.5
Large business	35	13.7	36	17.6	34	17.7	35	23.0	34	25.4	33	34.0	32	32.2
Total	100	39.4	100	49.2	100	52.7	100	65.9	100	73.8	100	102.8	100	100.7
Part of total placed														
through GSA (if any)		2.9		3.0		3.9		5.1						

Table 5-4. Number of Actions Awarded Small and Large Business: Six-Month Periods (Continued) (in thousands)

	_	1	964			1	965			1	966			19	967		1	1968
	1/1	l − 6/30	7/1	-12/31	1/	1-6/30	7/1	-12/31	1/:	1-6/30	7/	1-12/31	· 1	/1-6/30		-12/31		1-6/30
Kind of Business	%	Number	%.	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Small business	63	85.6	62	59.7	64	88.9	65	63.2	64	75.6	63	60.1	63	73.6	64	58.0	63	71.6
Large business	37	50.8	38	36.5	36	50.0	35	34.7	36	43.1	37	35.1	37	43.3	36	32.8	37	42.6
Total	100	136.4	100	96.2	100	138.9	100	97.9	100	118.7	100	95.2	100	116.9	100	90.8	100	114.2

Source: NASA, Semiannual Procurement Report, 1961-1967, and Annual Procurement Report, FY 1961-1968.

Table 5-5. Number of Actions Awarded Small and Large Business by Fiscal Year (in thousands)

	FY	1960	FY	1961	FY	1962	FY	1963	<u>FY</u>	1964	_F	Y 1965	F	Y 1966	FY	1967	_FY	1968
Kind of Business	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Small business	66	27.4	65	57.3	66	77.9	66	117.2	ύ5	154.1	63	148.6	64	138.8	63	133.7	63	129.6
Large business	34	14.3	35	31.3	34	40.7	34	59.4	35	83.0	37	86.5	36	77.8	37	78.4	37	75.4
Total	100	41.7	100	88.6 ^a	100	118.6 ^b	100	176.6	100	237.1	100	235.1	100	216.6	100	212.1	100	205.0
Part of total placed through GSA (if any)		0		5.9		9.0		0										

^aIncludes 5.9 thousand actions placed under General Service Administration contracts. b_{Includes 9.0} thousand actions placed under General Service Administration contracts.

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

Table 5-6. Total Procurement Value by Kind of Contractor: FY 1960-FY 1968 (in millions)

Kind of Contractor	Percentage	Amount
Business	77.9	\$22 990.3 ^a
Small business	(7.0% of all business)	(1 598.0)
Large business	(93.0% of all business)	(21 392.3)
Nonprofit institutions	3.4	1 016.6
Government agencies	12.8	3 761.2
Jet Propulsion Laboratory	5.6	1 638.1
Outside United States ^b	0.3	106.4
Total	100.0	29 512.6
Method of Procurement (Business)		
Competitive awards	63.8	\$14 620.5
Noncompetitive awards	36.2	8 311.9
Total	100.0	22 932.4°

^aIncludes \$40.2 million worth of 1961 and 1962 actions placed under General Services Administration contracts and not classified as to large or small business.

Source: NASA, Procurement Report, 1958-1960, and Annual Procurement Report, FY 1961-1968.

^bJuly 1, 1962, through Dec. 31, 1966, only.

^cDoes not add to business total because it does not include the \$40.2 million in footnote a or \$17.7 million representing amendments, purchases not exceeding \$2500, and purchases under General Services Administration contracts in FY 1960. These amounts were not classified as to competitive or noncompetitive awards.

Table 5-7. Value of Awards by Kind of Contractor: Six-Month Periods (in millions)

							(2-1											
		000		190	<u></u>			196	62			196	53			190		
Kind of Contractor		960 -12/31 Amount	1/1 %	-6/30 Amount		-12/31 Amount	1/1- %	-6/30 Amount		-12/31 Amount	1/1 %	-6/30 Amount	7/1 %	-12/31 Amount	1/1- %	-6/30 Amount	7/1- %	-12/31 Amount
Business Nonprofit institutions (Educational) ^a (Other institutions) ^a Government agencies Jet Propulsion Laboratory Outside United States ^b	48 3 - - 31 18	\$163.5 10.0 - 106.7 59.7	63 4 - - 27 6 -	\$259.8 14.5 - 115.0 26.3	50 4 - - 27 19	\$316.5 22.7 - 169.1 121.7	77.5 3.0 - - 16.6 2.9	\$713.6 27.5 - - 152.7 26.8	63.2 2.7 (2.2) (.5) 22.7 11.2 0.2		3.5 (3.0)		2.6 (2.2)		3.5 (2.7)	92.3 (70.8) (21.5)	1.5 (1.3)	·:
Total	100	\$339.9	100	\$415.6	100	\$630.0	100.0	\$920.6	100.0	\$1307.3	100.0	\$1923.2	100.0	\$1939.2	100.0	\$2654.7	100.0	\$2927.9

Table 5-7. Value of Awards by Kind of Contractor: Six-Month Periods (Continued) (in millions)

		1	965			_1	96 <u>6</u>			19	967			<u> 1968 </u>
	1/1-	-6/30		12/31	1/1	-6/30	7/1-	-12/31	1/1	-6/30	7/1-	-12/31	1/1	1–6/3 0
Kind of Contractor	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Business	77.7	\$1755.4	83.1	\$2309.3	79.0	\$1778.4	85.5	\$2381.8	79.4	\$1482.3	85.3	\$1879.9	81.2	\$1566.8
Nonprofit institutions	5.4	121.5	2.1	58.5	5.3	119.2	2.1	57.2	6.2	115.3	2.5	54.8	5.7	110.3
(Educational) ^a	(4.5)				(4.7)	(105.8)	(1.7)	(46.1)	(4.7)	(86.8)	(1.9)	(41.8)	(4.6)	(89.7)
(Other institutions) ^a	(9.)				(.6)	(13.4)	(.4)	(11.1)	(1.5)	(28.5)	(.6)	(13.0)	(1.1)	(20.6)
Government agencies	11.4	256.7	9.0	249.5	11.7	263.0	6.7	186.2	9.7	180.7	5.6	123.7	8.5	163.3
JPL ,	5.2	118.4	5.2	145.3	3.8	85.0	5.0	140.5	4.4	81.7	5.7	125.9	4.2	81.3
Outside United States ^b	.3	7.5	.6	16.5	.3	6.9	.7	19.0	.3	6.2	.8	18.5	.4	8.2
Total	100.0	\$2259.5	100.0	\$2799.1	100.1	\$2252.5	100.0	\$2784.7	100.0	\$1866.2	99.9 ^c	\$2202.8	100.0	\$1929.9

^aBreakdown of nonprofit organizations first reported in Semiannual Procurement Report for July 1, 1962, through Dec. 31, 1962.

^cDiscrepancy due to rounding.

Source: NASA, Semiannual Procurement Report, 1961-1967, and Annual Procurement Report, FY 1961-1968.

bCategory first included in Semiannual Procurement Report for July 1, 1962, through Dec. 31, 1962.

NASA PROCUREMENT

Table 5-8. Value of Awards by Kind of Contractor and Fiscal Year (in millions)

	FY	1959 ^a	FY	7 1960	FY	7 1961	F	7 1962	FY	1963
Kind of Contractor	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Business	41	\$ 88	52	\$174.0	56	\$423.3	66	\$1030.1	70.0	\$2261.7
Nonprofit institutions	3	6	5	17.0	3	24.5	3	50.2	3.2	102.2
(Educational) ^D	-	-	_	-	_	_	_		(2.7)	(86.9)
(Other institutions) ^b	_	-	_		_	_	_	_	(.5)	
Government agencies	45	97	32	107.4	29	221.7	21	321.8	19.5	628.5
Jet Propulsion Laboratory	11	23	11	38.3	12	86.0	10	148.5	7.1	230.2
Outside United States ^C	_	_	-	_	_	_	-		.2	7.9
Total	100	\$214	100	\$336.7	100	\$755 . 5	100	\$1550.6	100.0	\$3230.5

Table 5-8. Value of Awards by Kind of Contractor and Fiscal Year (Continued) (in millions)

	FY 1964	<u>FY 1</u>	965	<u>FY</u>	1966	<u>FY</u>	1967	<u>FY</u>	1968
Kind of Contractor	% Amoui	nt % A	Amount	%	Amount	%	Amount	%	Amount
Business	76.7 \$3521.	1 79.8 \$	\$4141.4	81.2	\$4087.7	83.1	\$3864.1	83.4	\$3446,7
Nonprofit institutions	3.1 ^d 142.	0 3.2	164.8	3.5°	1. 177 . 7	3.7	172.5	4.0	165.1
(Educational) ^D	$(2.4)^{d}$ (112)	9) (2.7)	(139.5)	(3.0)	d (150.0)	(2.9)	(132.9)	(3.2)	(131.5)
(Other institutions) ^D	(.6) ^d (29.	1) (.5)	(25.3)	(.6)	d (27.7)	(.8)	(39.6)	(.8)	(33.6)
Government agencies	15.1 692.	6 12.0	622.8	10.2	512.5	7.9	366.9	6.9	287.0
Jet Propulsion Laboratory	4.9 226.	2 4.8	247.2	4.6	230.3	4.8	222.2	5.0	207.2
Outside United States ^c	.3 12.	0 .2	11.2	.5	23.4	.5	25,2	.7	26.7
Total	100.0 \$4593.	9 100.0 \$	55187.4	100.0	\$5031.6	100.0	\$4650.9	100.0	\$4132.7

^aFor the period Oct. 1,1958, through June 30, 1959, only. ^bBreakdown of nonprofit institutions first reported

^cCategory first included in FY 1963.

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

^dDiscrepancy due to rounding.

for FY 1963.

Table 5-9. Value of Awards to Small and Large Business: Six-Month Periods (in millions)

	1	060		190	61			196	52			196	63			190		
Kind of Business		960 -12/31 Amount	1/1 %	-6/30 Amount	_	-12/31 Amount	1/1 %	-6/30 Amount		-12/31 Amount	1/ %	1-6/30 Amount	7/ %	1-12/31 Amount	1/1 %	-6/30 Amount	7/1 %	-12/31 Amount
Small business Large business	16 84	\$ 28.5 146.5	14 86	\$ 36.8 228.2	12 88	\$ 39.6 291.5	12 88	\$ 83.7 638.8	9 91	\$ 71.6 754.5	8 92	\$ 119.7 1315.9	6 94	\$ 93.9 1370.5	7 93	\$ 146.4 1910.3	5 95	\$ 113.6 2272.4
Total	100	\$175.0	100	\$265.0	100	\$331.1	100	\$722.5	100	\$826.1	100	\$1435.6	100	\$1464.4	100	\$2056.7	100	\$2386.0
Part of total placed through GSA (if any)		11.5		5.2		14.6		8.9										

Table 5-9. Value of Awards to Small and Large Business: Six-Month Periods (Continued) (in millions)

		1	965			1	966 _			1	967			1968
	1/1	-6/30		-12/31	1/1	1-6/30	7/1	-12/31	1/1	-6/30	7/1-	-12/31	1/	1-6/30
Kind of Business	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Small business	10	\$ 172.7	5	\$ 115.0	8	\$ 140.9	4	\$ 92.3	8.0	\$ 124.6	4.0	\$ 84.7	7.0	\$ 104.9
Large business	90	1582.7	95	2194.3	92	1637.5	96	2289.5	92.0	1357.7	96.0	1795.2	93.0	1461.9
Total	100	\$1755.4	100	\$2309.3	100	\$1778.4	100	\$2381.8	100.0	\$1482.3	100.0	\$1879.9	100.0	\$1566.8

Source: NASA, Semiannual Procurement Report, 1961–1967, and Annual Procurement Report, FY 1961–1968.

NASA PROCUREMENT

Table 5-10. Value of Awards to Small and Large Business by Fiscal Year (in millions)

	FY	1959 ^a	FY	1960	FY	1961	FY	1962	FY	Y 1963
Kind of Business	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Small business	18	\$16	17	\$ 29.1	15	\$ 65.3	12	\$ 123.3	8	\$ 191.3
Large business	82	72	83	144.9	85	374.7	88	930.3	92	2070.4
Total	100	\$88	100	\$174.0	100	\$440.0	100	\$1053.6	100	\$2261.7
Part of total placed through GSA (if any)		0		0		16.7		23.5		0

Table 5-10. Value of Awards to Small and Large Business by Fiscal Year (Continued) (in millions)

	_F	1964	FY	1965	FY	1966	FY	1967	_FY	1968
Kind of Business	<u></u> %	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Small business	7	\$ 240.3	7	\$ 286.3	6	\$ 255.9	6.0	\$ 216.9	6.0	\$ 189.6
Large business	93	3280.8	93	3855.1	94	3831.8	94.0	3647.2	94.0	3257.1
Total	100	\$3521.1	100	\$4141.4	100	\$4087.7	100.0	\$3864.1	100.0	\$3446.7

^aFor the period Oct. 1, 1958, through June 30, 1959, only.

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

Table 5-11. Value of Awards to Business, Competitive and Noncompetitive Procurement: Six-Month Periods^a (in millions)

		960	-	190	 61			190	62			190	63		_	196		
		-12/31	1/1	I-6/30		-12/31	1/1	-6/30	7/1	-12/31	1/	1-6/30	7/	1-12/31	1/1	-6/30	7/1-	-12/31
Kind of Procurement	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Competitive	63	\$103.3	67	\$173.5	51	\$161.6	57	\$404.2	56	\$466.3	58	\$835.7	57	\$840.0	62		68	\$1617.5
Noncompetive	37	60.2	33	86.3	49	154.9	43	309.4	44	359.8	42	599.9	43	624.4	38	777.2	32	768.5
Total	100	\$163.5	100	\$259.8	100	\$316.5	100	\$713.6	100	\$826.1	100	\$1435.6	100	\$1464.4	100	\$2386.0	100	\$2386.0

Table 5-11. Value of Awards to Business, Competitive and Noncompetitive Procurement: Six-Month Periods^a (Continued) (in millions)

		190	55			196	66			196	57	1968
	1/1	-6/30	7/1-	12/31	1/1	-6/30	7/1-	-12/31	1/	1-6/30	7/1-12/31	1/1-6/30
Kind of Procurement	%	Amount	% Amount	% Amount								
Competitive Noncompetitive	58 42	\$1012.6 742.8	65 35	\$1508.9 800.4	67 33	\$1183.6 594.8	72 28	\$1709.2 672.8	67 33	.0 \$ 989.4 .0 492.9	69.0 \$1302.0 31.0 577.9	64.0 \$1005.8 36.0 561.0
Total	100	\$1755.4	100	\$2309.3	100	\$1778.4	100	\$2381.8	100	.0 \$1482.3	100.0 \$1879.9	100.0 \$1566.8

^aExcludes purchases under \$2500, through GSA, and amendments—not classified as competitive or noncompetitive.

Source: NASA, Semiannual Procurement Report, 1961-1967, and Annual Procurement Report, FY 1961-1968.

Table 5-12. Value of Awards to Business, Competitive and Noncompetitive Procurement by Fiscal Year (in millions)

	_FY	1959 ^a	FY	1960	FY	Y 1961	F	7 1962	F	Y 1963
Kind of Procurement	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Competitive	33	\$26	18	\$ 27.6	65	\$276.8	55	\$ 565.8	58	\$1302.0
Noncompetitive	67	54	82	128.7	35	146.5	45	464.3	42	959.7
Total	100	\$80 ^b	100	\$156.3 ^b	100	\$423.3	100	\$1030.1	100	\$2261.7

Table 5-12. Value of Awards to Business, Competitive and Noncompetitive Procurement by Fiscal Year (Continued) (in millions)

	_FY	1964	FY	1965	FY	7 1966	FY	1967	FY 1968		
Kind of Procurement	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	
Competitive	60	\$2119.5	63	\$2630.1	66	\$2692.5	70.0	\$2698.4	67.0	\$2307.8	
Noncompetitive	40	1401.6	37	1511.3	34	1395.2	30.0	1165.7	33.0	1138.9	
Total	100	\$3521.1	100	\$4141.4	100	\$4087.7	100.0	\$3864.1	100.0	\$3446.7	

^a For the period Oct. 1, 1958, through June 30, 1959, only.

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

bExcludes purchases under \$2500, through GSA, and amendments—not classified as competitive or non-competitive.

Table 5-13. Value of Direct Awards to Business by Contract Pricing Provision: FY 1961-FY 1968^a (in millions)

Pricing Provision	FY %	1961 Amount	FY %	1962 Amount	<u>FY</u>	1963 Amount	FY %	1964 Amount	FY %	1965 Amount	FY %	1966 Amount	FY	Y 1967 Amount	F %	Y 1968 Amount
Incentive	*	\$ 0.1	1.4	\$ 13.1	7.7	\$ 162.7	7.9	\$ 269.3	15.1	\$ 602.2	48.7	\$1922.5	68.0	\$2567.6	•51.9	\$1735.4
Fixed price	*	.1	.4	3.8	.5	10.2	.8	27.2	2.5	100.6	1.9	73.6	3.1	117.1	2.1	71.3
Cost reimbursable	_	-	1.0	9.3	7.2	152.5	7.1	242.1	12.6	501.6	46.8	1848.9	64.9	2450.5	49.8	1664.1
Other fixed price	15.5	56.3	13.8	125.4	11.9	251.8	11.5	388.4	12.3	492.5	10.3	407.1	10.9	411.3	9.2	310.0
Firm	15.3	55.4	13.8	125.0	11.7	247.5	11.5	387.0	12.3	492.0	10.1	399.2	10.9	409.5	9.2	308.8
Redeterminable	.2	.9	*	.4	.2	4.1	*	1.4	*	.3	*	1.3	*	1.2	-	.9
Escalation	-	-	_	_	*	.2	-	-	*	.2	.2	6.6	*	.6	•	.3
Other cost reimbursable	82.9	300.4	83.7	760.2	80.0	1692.5	80.3	2713.6	72.2	2885.5	40.8	1612.1	20.7	780.7	38.4	1282.2
Cost-no-fee	.1	.3	1.2	11.1	3.4	71.4	1.4	46.5	1.1	42.9	.5	20.8	.2	5.6	.5	
Cost-plus-fixed-fee	82.7	299.9	82.4	748.6	76.5	1618.0	78.8	2664.9	71.1	2841.3	40.3	1591.0	20.5	774.6	37.8	
Cost sharing	.1	.2	.1	.5	.1	3.1	.1	2.2	*	1.3	*	.3	*	.5	.1	4.0
Labor hour	-	_	*	.2	.1	1.3	.1	1.7	.1	2.0	*	.1	*	.7	*	.9
Time and materials	1.6	5.7	1.0	9.5	.3	5.5	.2	6.6	.3	10.8	.2	9.4	.4	15.1	.3	10.1
Total	100.0	\$362.5	100.0	\$908.4	100.0	\$2113.8	100.0	\$3379.6	100.0	\$3993.0	100.0	\$3951.2	100.0	\$3775.4	99.8	^b \$3338.6

^aR&D contracts of \$10 000 and over and all other contracts of \$25 000 and over.

bDiscrepancy due to rounding.

Source: NASA, Annual Procurement Report, FY 1966, p. 64.

*Less than 0.05 percent.

Table 5-14. Value of Direct Awards to Business by Contract Pricing Provision: Six-Month Periods^a (in millions)

	1	960		19	61			19	962		1963				
	7/1-	-12/31	1/1	1/1-6/30		-12/31	1/1	-6/30	7/1-	-12/31	1/1	-6/30	7/1	-12/31	
Pricing Provision	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	
Incentive	0.1	\$ 0.1	_	_	_	_	2.1	\$ 13.1	6.5	\$ 48.9	8.4	\$ 113.8	5.6	\$ 79.0	
Fixed price	.1	.1		_	_	_	.6	3.8	.1	.4	.7	9.8		8.5	
Cost reimbursable	_	_	-	_	-	_	1.5	9.3	6.4	48.5	7.7	104.0		70.5	
Other fixed price	18.1	27.0	13.7	\$ 29.3	16.7 ^t	\$ 47.6	12.5	77.8	11.9	90.0	11.9	161.8	9.7	136.6	
Firm	17.5	26.2	13.7	29.2	16.7 ^t	47.4	12.4	77.6	11.8	89.2	11.7	158.3	9.7	136.1	
Redeterminable	.6	.8	*	.1	.1		*	.2	.1	.8	.2	3.3	*	.5	
Escalation	_	, -	_	_	-	-	-	_	-	_	*	.2	_	_	
Other cost reimbursable	80.4	120.0	84.6	180.4	81.9	232.9	84.5 ^t		81.1	613.2	79.5	1079.3	84.4 ^l	1183.2	
Cost-no-fee	_	**	.1	.3	.1	.2	1.7 ^t	10.9	3.4	25.9	3.4	45.5	1.0		
Cost-plus-fixed-fee	80.4	120.0	84.4	179.9	81.7	232.3	82.7 ^b	516.3	77.3	584.5	76.1	1033.5	83.2 ¹		
Cost sharing	_	_	.1	.2	.1	.4	*	.1	.4	2.8	*	.3		1.3	
Labor hour	_	_	_	_	_	-	*	.2	.1	.6	.1	.7	.1	1.1	
Time and materials	1.5	2.2	1.6	3.5	1.4	3.9	.9	5.6	.5	3.7	.1	1.8	.2	2.7	
Total	100.1 ^t	\$149.3	99.9 ^b	\$213.2	100.0	\$284.4	100.0	\$624.0	100.1 ^t	\$756.4	100.0	\$1357.4	100.0	\$1402.6	

Table 5-14. Value of Direct Awards to Business by Contract Pricing Provision: Six-Month Periods^a (Continued) (in millions)

		1	964			1	965			19	966	_	1967					1968	
	1/1	-6/30		-12/31	1/1	-6/30		12/31	1/1-	-6/30	7/1	-12/31		1-6/30		12/31		-6/30	
Pricing Provision	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	<u></u> %	Amount	%	Amount	
Incentive	9.6	\$ 190.3	9.0	\$ 209.6	23.4 ^b	\$ 392.6	22.1	\$ 497.2	83.8	\$1425.3		\$1521.0	73.3	•	60.7	\$1110.2	41.4	\$ 625.2	
Fixed price	.9	18.7	3.0	69.5	1.9 ^b	31.1	1.8	39.9	2.0	33.7	1.3	30.5	6.1	86.6	2.5	46.3	1.7	25.0	
Cost reimbursable	8.7	171.6	6.0	140.1	21.6 ^b	361.5	20.3	457.3	81.8	1391.6	63.5	1490.5	67.2	960.0	58.2	1063.9	39.7	600.2	
Other fined arise	12.7	251.8	9.9	229.9	15.7	263.2	9.1	204.2	13.4	227.5	8.2 ^t	191.5	15.4	219.8	8.2	150.4	10.6	159.6	
Other fixed price			9.9	228.9	15.7	263.1	7.7	172.8	13.3	226.4	8.1 ^t		15.3	218.6	8.2	150.0	10.5	158.8	
Firm	12.7	250.9	7.7 *		13.7	203.1 C	*	.2	.1	1.1	*,b	.2	*	1.0	*	.2	*	.7	
Redeterminable		.9	*	.9	*	•	1.4	31.2	1	d d	*,b	.4	*	.2	*	.2	*	.1	
Escalation	_			.1	*	.1	1.4	31.2	_	_	,0	.7			•				
Other cost reimbursable	77.4	1530.4	80.7	1871.4	60.6	1014.1	68.7	1545.1	3.9.	67.0	26.8	628.4	10.7	152.3	30.8	563.4	47.6	718.8	
Cost-no-fee	1.6	31.8	1.0	22.7	1.2	20.2	.4	9.4	.7 ^t	11.4	.1	1.3	.3	4.3	.3	.5	1.0	14.5	
Cost-plus-fixed-fee	75.8	1497.7	79.7	1848.6	59.3	992.7	68.3	1535.6	3.3 ^t	55.4	26.7	627.1	10.3	147.5	30.7	561.9	46.4	701.3	
Cost sharing	*	.9	*	.1	.1	1.2	*.		*	.2	*	***	*	***	.1	2.0	.7	2.0	
Labor hour	*	.6	.1	1.2	*	.8	*	***	*	.1	*	.2	*	.5	*	.2	*	.7	
Time and materials	.2	3.9	.3	6.9	.2	3.9	.1	3.2	.4	6.2	.3	6.3	.6	8.8	.2	4.3	.3	5.8	
Total	99.9 ^t	\$1977.0	100.0	\$2319.0	99.9 ^l	\$1674.6	100.0	\$2249.7	100.1 ¹	\$1701.5	100.1	^b \$2347.4	100.0	\$1428.0	99.9 ^l	° \$1828.5	99.9 ^t	\$1510.1	

^aIncludes contracts of \$25 000 and above for FY 1964-1967, and contracts of \$25 000 and above, plus R&D contracts of \$10 000 and above for FY 1961-1963.

Source: NASA, Semiannual Procurement Report, 1961-1967, and Annual Procurement Report, FY 1961-1968.

bDiscrepancy due to rounding.

^cProcurement Report for FY 1965 gives \$0.3 million for the entire year, but report for July 1, 1964, through Dec. 31, 1964, reports \$0.9 million for the first half of FY 1965 alone.

dFY 1966 Procurement Report gives \$6.6 million for the entire fiscal year, but Semiannual Procurement Report for July 1, 1965, through Dec. 31, 1965, gives \$31.2 million for the first half of FY 1965 alone.

^{*}Less than 0.05 percent.

^{**}Less than \$0.1 million.

^{***}Less than \$50 000.

Table 5-15. Total Number of Actions in Direct Awards to Business by Contract Pricing Provisions: Six-Month Periods (in thousands)

		960		19	1961				62			19	196	4		
	7/1	7/1-12/31				7/1-12/31		-6/30	7/1-	12/31	1/1-	6/30	7/1-	-12/31	1/1-6	5/30
Pricing Provision	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Incentive	0.2	1		_	_	_	0.6	10	1.9 ^a	26	1.5ª	42	2.8 ^a	66	3.3	171
Fixed price	.2	1		_	_	_	.2	4	.1 ^a		.1 ^a	3	.4ª	10	.7	38
Cost reimbursable	_	_	_	_	-	_	.4	6	1.7 ^a	24	1.3 ^a	39	2.3 ^a	56	2.6	133
Other fixed price	56.7	242	36.7 ^a	309	40.6	310	40.3	674	46.0 ^a	645	45.6	1320	47.0	1127	47.5	2438
Firm	54.8	234	36.4 ^a		40.3	308	40.1	671	45.3 ^a	636	45.1	1395	46.8	1127	47.3	2438
Redeterminable	1.9	8	.2 ^a		.3	2	.2	3	.6 ^a		.4	1333	.2	5	.2	10
Escalation	_	-	_	_	_	_	_	_	-	_	.1	2.	- -	_	-	-
Other cost reimbursable	39.6	169	59.3 ^a	500	56.4	431	55.6	930	49.1	689	51.7	1496	48.1 ^a	1153	48.2	2473
Cost-no-fee	.7	3	.2 ^a	2	.1	1	1.5	25	2.0	28	1.8	52	1.0 ^a	25	1.4	70
Cost-plus-fixed-fee	38.9	166	58.8 ^a	496	56.0	428	54.0	904	46.9	658	49.7	1438	46.6a	1119	46.7	2396
Cost sharing	_	_	.2	2	.3	2	.1	1	.2	3	.2	6	.4a	9	.1	7
Labor hour	_	_	-	_	-	_	.2	3	.4	5	.3	9	.7	17	.2	11
Time and materials	3.5	15	4.0	34	2.9	23	3.4	57	2.7	38	.9	25	1.5	36	1.0	52
Total	100.0	427	100.0	843	99.9	764	100.1 ^a	1674	100.1 ^a	1403	100.0	2895	100.1 ^a	2399	100.2 ^a	5145

Table 5-15. Total Number of Actions in Direct Awards to Business by Contract Pricing Provisions: Six-Month Periods (Continued) (in thousands)

	(III the source)															
	19	64		19	65			19	66			19				968
	7/1-1		1/1	-6/30		12/31	1/1-	6/30	7/1-	-12/31	$\overline{1/1}$	-6/30	7/1	-12/31		1-6/30
Pricing Provision	•	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Incentive	4.8	227	5.4	375	6.8	341	8.8	615	10.1	497	11.5	768	15.8	645	13.1	798
Fixed price	1.0	47	.7	52	1.0	48	.9	62	1.0	47	1.5	98	1.3	52	1.3	81
Cost reimbursable	3.8	180	4.7	323	5.8	293	7.9	553	9.1	450	10.0	670	14.6	593	11.8	717
Other fixed price	53.0 ^a	2529	54.0	3750	59.9	3011	53.9 ^a	3774	51.1	2519	50.0	3351	51.2	2087	47.7	2903
-	52.7a	2516	54.0	3746	59.3	2979	53.8 ^a	3761	50.9	2509	49.8	3335	50.8	2070	47.5	2889
Firm	.2a	11	*	4	.1	5	.1ª		.1	5	.1	8	.2	10	.1	8
Redeterminable Escalation	*	2	-	-	.5	27	.1a	8	.1	5	.1	8	.2	7	*	6
Other cost reimbursable	39.9	1905	40.1	2784	30.8 ^a	1 1547	36.1 ^a	2530	35.1	1730	37.1	2486	28.0	1142	36.8	2239
•	1.0	47	2.1	143	2.1 ^a		1.3 ^a	90	2.0	100	1.0	64	.7	30	1.1	69
Cost-no-fee	38.7	1848	37.9	2636	28.6 ^a	1438	34.8 ^a		33.1	1629	36.0		27.3	1110	35.6	2166
Cost-plus-fixed-fee Cost sharing	.2	1046	.1	5	*	1	.1ª	6	*	1	.2		*	2	*	4
Labor hour	.2	14	.2	17	.1	5	*	3	.1	4	*	2	*	2	*	5
Time and materials	2.0	95	.3	20	2.4	120	1.2	83	3.6	175	1.4	91	4.8	197	2.3	138
Total	100.0	4770	100.0	6946	100.0	5024	100.0	7005	100.0	4925	100.0	6698	100.0	4073	99.9 ^a	6083

^aDiscrepancy due to rounding.

*Less than 0.05 percent

Source: NASA, Semiannual Procurement Report, 1961-1967, and Annual Procurement Report, FY 1961-1968.

Table 5-16. Total Number of Actions in Direct Awards to Business by Contract Pricing Provisions by Fiscal Year (in thousands)

	FY	1961	FY	FY 1962		1963	FY	1964	FY	1965	FY	1966	F	Y 1967	F	Y 1968
Pricing Provision	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number
Incentive	0.1	1	0.4	10	1.6	68	3.1	237	5.1	602	7.9	956	10.9	1 265	14.2	1 443
Fixed price	.1	1	.2	4	.1	5	.6	48	.8	99	.9	110	1.2	145	1.3	133
Cost reimbursable	_		.2	6	1.5	63	2.5	189	4.3	503	7.0	846	9.6	1 120	12.9	1 310
Other fixed price	43.4	551	40.4	984	45.8 ^a	1965	47.3	3565	53.6 ^a		56.4	6 785	50.5	5 870	49.1	4 990
Firm	42.6	541	40.2	979	45.2 ^a	1941	47.1	3550	53.4 ^a	6 262	56.0	6 740	50.3	5 844	48.8	4 959
Redeterminable	.8	10	.2	5	.5ª	22	.2	15	.1ª	15	.1	10	.1	13	.2	18
Escalation	_	_	_	_	*	2	_	_	*	2	.3	35	.1	13	.1	13
Other cost reimbursable	52.7	669	55.8	1361	50.9	2185	48.1	3626	40.0	4 689	33.9	4 077	36.3	4 216	33.3	; 3 381
Cost-no-fee	.4	5	1.1	26	1.9	80	1.3	95	1.6	190	1.6	198	1.4	164	1.0	99
Cost-plus-fixed-fee	52.1	662	54.6	1332	48.8	2096	46.6	3515	38.3	4 484	32.2	3 872	34.8	4 039	32.3	3 276
Cost sharing	.2	2	.1	3	.2	9	.2	16	.1	15	.1	7	.1	13	*	6
Labor hour	-	-	.1	3	.3	14	.4	28	.3	31	.1	8	*	6	*	7
Time and materials	3.9	49	3.3	80	1.5	63	1.2	88	1.0	115	1.7	203	2.3	266	3.3	335
Total	100.1 ^a	1270	100.0	2438	100.1 ^a	4295	100.1 ^a	7544	100.0	11 716	100.0	12 029	100.0	11 623	99.9 ^a	10 156

^aDiscrepancy due to rounding.

Source: NASA, Annual Procurement Report, FY 1961-1968.

^{*}Less than 0.05 percent.

Table 5-17. Distribution of NASA Prime Contract Awards by States: FY 1961-FY 1968^a (thousands of dollars)

									F Y 19		FY 196		FY 196	7	FY 196	8	Total FY 1961-1	
	FY 19		FY 19		FY 19		FY 19		F 1 19	oo %of	11170	% of		% of		% of		% of
State	Amount	% of Total	Amount	% of Total	Amount	% of Total	Amount	% of Total	Amount	Total	Amount	Total	Amount	Total	Amount	Total	Amount	Tota
Total			\$939 143	100.0	\$2 181 405	100.0	\$3 490 238	100.0	\$4 103 399	100.0	\$4 127 046	100.0	\$3 943 466	100.0	\$3 498 450	100.0	\$22 663 323	100.
	37 130	9.8	81 264	8.7	97 068	4.4	146 400	4.2	236 890	5.8	319 163	7.7	241 233	6.1	197 651	5.6	1 356 799	6.
Alabama	-,		4 227	.5	2 057	.1	846		1 351	*	2 210	.1	429	*	225	•	12 020	
Alaska	675	.2		.5 .6	6 291	.3	6 197	.2	10 836	.3	10 077	.2	7 887	.2	7 008	.2	54 281	
Arizona	402	.1	5 583	.0	322	*	336	•	464		233	*	193		116	*	1 726	•
Arkansas	25		37 441 179	47.0	1 098 486	50.4	1 663 071	47.6	1 875 663	45.7	1 808 100	43.8	1 562 968	39.6	1 317 953	37.7	9 916 133	43.
California	148 713	39.1			7 094	.3	12 238	.4	10 292	.3	12 518	.3	20 272	.5	34 762	1.0	103 365	
Colorado	2 567	.7	3 622	.4	9 015	.4	20 226	.6	25 156	.6	28 049	.7	27 980	.7	21 015	.6	138 402	
Connecticut	3 165	.8	3 796	.4			553	.0	807	*	5 1 2 1	.1	6 597	.2	8 301	.2	21 662	
Delaware	45		34		204		41 805	1.2	50 79 5	1.2	21 400	.5	43 104	1.1	78 869	2.3	280 320	
Dist. of Col.	6 231	1.6	10 975	1.1	27 141	1.2 4.2	141 568	4.1	181 606		195 840	4.8	289 210	7.3	336 598	9.6	1 293 203	5
Florida	5 063	1.3	50 925	5.4	92 393		6 416		7 447	.2	4 630	.1	4 709	.1	3 487	.1	38 987	
Georgia	2 921	.8	3 35 2	.4	6 025	.3	394	.2	1 237		3 905	.1	4 698	.1	3 024	.1	13 542	
Hawaii	160	*	-	-	124				132		141		36	•	_	-	2 239	
Idaho	_	-			1 791	.1	139		18 107		16 032	.4	11 681	.3	9 043	.3	97 395	
Ulinois	3 87 2	1.0	8 403		14 837	.7	15 420		6 710		6 957		4 578	.1	3 649	.1	31 683	
lndia na	1 055	.3	1 646		2 921	.1	4 167	.1	2 223		3 584	.1	3 134	.1	5 968	.2	21 856	
lowa	679	.2	1 898	.2	2 548	.1	1 822		1 806		1 202		2 951	.1	820	*	8 180	*
Kansas	-	-	-	-	898	•	503		967		659		685		942		3 765	*
Kentucky	32	*	_	-	82		398		355 342		338 511		272 335	6.9	232 208	6.6	1 688 529	7.
Louisiana	79	•	18 534	2.0	185 263	8.5	286 257		355 342		169		2 802	.1	8 535	.2	12 067	
Maine	_	-	_	-	192		197				112 412		121 555	3.1	125 172	3.6	611 239	2.
Maryland	12 940	3.4	26 773		47 185	2.2	69 528		95 674		71 508		72 787	1.8	79 309	2.3	435 665	1.
Massachusetts	8 008	2.1	19 737	2.1	43 463		78 557		62 296		16 218		34 194	.9	26 628	.8	120 105	
Michigan	3 889	1.0	5 644		9 088		12 023		12 421 45 040		23 703		21 294	.5	23 011	.7	149 990	
Minnesota	1 825	.5	2 927		8 583		23 607				5 025		3 634		1 667	•	15 4 24	
Mississippi	_	_	93		86		609		4 310 171 078		55 2 29		11 554		10 922	.3	830 937	3.
Missouri	42 428	11.2	70 600	7.5	197 104		272 022				471		105		225		1 308	
Montana	-	-	_	-	70	-	161		276 233	,	168		70		102		677	
Nebraska		-	-	-	-	_	104		219		168		230		257		2 304	
Nevada	50	•	43:		484		461		7 002		5 960		7 037	.2	6 501	.2	28 537	
New Hampshire	29	*	320		585		1 103	,			67 368		82 723		72 717	2.1	493 983	
New Jersey	11 893	3.1	26 980	2.9	55 889		62 918		113 43:		14 296		11 552		12476		55 373	
New Mexico	1 302	.3	1 696	5 .2	2 916		3 437		7 70:		464 665		555 609		443 967		2 256 097	
New York	43 872	11.5	55 30	5.9	97 471		251 099		344 11		2 398		1 981	.1	1 568		13 937	
North Carolina	136	*	1 69:	5 .2	1 000	*	3 1 3 6		2 02:				100		13		321	
North Dakota		_	-	-	_	-	38		7.		96 43 190	,	32 473		27 603		260 196	
Ohio	8 136	2.1	11 32		32 268		52 19		53 01		2 508		1 195		907		15 132	
Oklahoma	337	.1	68		1 087		1 87		6 53		2 300 993		860		536		4 614	
Oregon	200		3		575		861		54	,	61 894	,	62 521		55 317		358 274	
Pennsylvania	11 443		25 29		30 489		51 80		59 51		976		875		544		5 326	
Rhode Island	83		24	3 *	356		64		1 60		263		214		109		1 210	
South Carolina	-	_	_	-	76		20-		34		8:		69		113		1 00	
South Dakota	_	_	9		407		16	o .	6	,	1 892	,	1.593		964		14 14	
Tennessee	949		2 16		2 301		2 49		1 78	,	170 12		258 1 28	,	234 515		1 060 82	
Texas	12 180	3,2	32 75	5 3.5	54 772		148 73		149 61		734		1 759		1 879		5 87	
Utah	28	*	3		534		47		43	,		•	357		408		1 82:	
Vermont		-	11		128		9		43	7	29	U	43 754		36 491		234 59	
Virginia	6 830	1.8	13 78	5 1.5	23 96		29 46		42 80		37 50- 61 16		43 754 32 224		16 364		194 73	
Washington	99	*	32	5 *	2 510		27 35		54 67				32 224		100		3 04	
West Virginia	_	_	_	-	531		95		57		55	1	75 07		47 796		389 77	
Wisconsin	705	.2	4 61	8 .5	12 68		45 04		77 27		126 57-		/5 U/; 143		35		70:	
Wyoming				_	31	8 *	11	4 *	26	3 *	11	5 •	14:	, -	33	,	70	•

^aIncludes awards on R&D contracts and awards to educational and nonprofit institutions of \$10 000 and over and all other contracts of \$25 000 and over; excludes awards placed through other Government agencies, awards outside the U.S., and actions on the Jet Propulsion Laboratory contracts.

*Less than 0.05 percent.

Source: NASA, Annual Procurement Report, FY 1968, p. 79.

Table 5-18. Distribution of NASA Prime Contract Awards by U.S. Region: FY 1964-FY 1968^a

Region	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total FY 1964-1968
			Net Value of Awards (Millions of Dollars)		
Total	\$3490	\$4104	\$4127	\$3943	\$3498	\$19 162
New England	101	97	107	112	116	533
Mideast	478	664	7 3 3	872	784	3 531
Southeast	618	835	907	860	812	4 032
Great Lakes	129	167	209	158	115	778
Plains	298	221	84	39	41	683
Southwest	160	175	197	279	255	1 066
Rocky Mountain	13	11	14	22	37	97
Far West	1692	1931	1870	1596	1335	8 424
Alaska & Hawaii	1	3	6	5	3	18
			Percent of	Total	-	
Total	100	100	100	100	100	100
New England	3	2	3	3	3	3
Mideast	14	16	18	22	23	18
Southeast	18	21	22	22	24	21
Great Lakes	4	4	5	4	3	4
Plains	8	6	2	1	1	4
Southwest	5	4	5	7	7	6
Rocky Mountain	*	*	*	1	1	*
Far West	48	47	45	40	38	44
Alaska & Hawaii	*	*	*	*	*	*
		P	ercent Increase (Decreas	se) Over Previous Year		
Total	60	18	1	(5)	(11)	
New England	91	(4)	10	5	4	
Mideast	85	39	10	19	(10)	
Southeast	51	35	9 .	(5)	(6)	
Great Lakes	82	29	25	(24)	(27)	
Plains	43	(26)	(62)	(54)	5	
Southwest	146	9	13	42	(9)	
Rocky Mountain	30	(15)	27	57	68	
Far West	53	14	(3)	(15)	(16)	
Alaska & Hawaii	(50)	200	100	(17)	(40)	

^aIncludes awards on R&D contracts and awards to educational and nonprofit institutions of \$10 000 and over and on all other contracts of \$25 000 and over; excludes awards placed through other Government agencies, awards outside the

U.S., and actions on the JPL contracts.

Source: NASA, Annual Procurement Report, FY 1968, p. 54.

^{*}Less than 0.5 percent.

Table 5-19. Value of Awards by Installation (in millions)

							(200 2											
	EV	1960	FY	 ' 1961	FV	1962	FY	1963	FY	1964	FY	7 1965	F'	Y 1966 _	FY	1967	FY	1968
Installation	 F1	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount	%	Amount
Headquarters	34	\$116.1	3	\$ 25.3	4	\$ 67.7	5	\$ 155.1	4	\$ 189.0	4	\$ 209.0	4	\$ 187.1	4	\$ 168.9	11	\$ 436.1
Ames Research Center	2	7.7	2	11.0	1	14.4	1	28.0	1	47.9	2	80.9	2	77.3	2	86.3	2	78.5
Electronics Research Center	_		_	_	_	_	_	_	_	_	*	4.0	*	14.7		21.7	_1	50.6
Flight Research Center	1	2.0	*	1.3	*	2.5	1	18.3	*	13.7	*	14.7	*	15.4	*	25.5	•	26.2
Goddard Space Flight Center	23	76.0	21	155.0	14	209.3	9	303.5	8	382.8	10	517.7	9	473.8	9	398.9	11	471.0
Kennedy Spacecraft Center	_	-		_	2	36.9	7	232.0	6	261.3	5	287.2	6	292.6	8	375.0	10	414.2
Langley Research Center	35	118.5	9	66.9	5	70.8	2	83.4	2	103.9	3	130.8	3	139.6	3	142.7	3	103.6
Lewis Research Center	5	17.2	3	24.0	2	34.5	7	214.7	8	347.4	6	324.2	5	262.0	5	214.8	4	152.9
Manned Spacecraft Center	_		11	82.1	13	204.8	23	737.2	31	1436.0	29	1487.4	31	1546.7	32	1487.0	30	1233.1
Marshall Space Flight Center		_	34	257.8	39	595.6	29	949.8	30	1378.1	32	1689.9	31	1587.3	28	1304.9	26	1088.3
Space Nuclear Propulsion Office		_	_		2	36.4	3	84.3	2	91.7	2	79.7	2	85.8	2	85.2	2	65.7
Wallops Station	_		*	1.5	1	11.0	*	11.9	*	13.0	*	15.4	*	12.1	*	12.7	*	12.5
Pacific Launch Operations Office	e _		_	-	_	_	_	_	_	_		_	_	-	_	_	_	-
Western Support Office	_	- 0.9	17	130.6	17	266.7	13	412.3	7	329.1	7	346.5	_	_	_	_	_	_
NASA Pasadena	_	-	_		_	_	_	_		_	_	_	7	337.2	7	327.3	_	_
MASA I asaucia																		
Total	100	\$336.7	100	\$755.5	100	\$1550.6	100	\$3230.5	100	\$4593.9	100	\$5187.4	100	\$5031.6	100	\$4650.9	100	\$4132.7

^{* =} Less than 0.05%.

Source: NASA, NASA Procurement, 1958-1960, and Annual Procurement Report, FY 1961-1968.

Table 5-20. NASA's Active Prime Contracts of \$25 Million and Over (contracts under which work was being performed as of June 30, 1968)

Contractor	Contract Description	Procuring Installation	Contract Number	Fy 1968 Obligations (thousands)	Cumulative Obligations (thousands)
North American Rockwell Corp. Space Division	Design, develop and test Apollo command and service module	Manned	NAS 9-150	\$418 741	\$3 015 128
Grumman Aircraft Engineering Corp.	Development of Apollo lunar module	Manned	NAS 9-1100	357 946	1 582 707
Boeing Co. Aerospace Division	Design, develop and fabricate S-IC stage of Saturn V vehicle; construct facilities in support of S-IC and provide launch support services	Marshall Kennedy	NAS 8-5608	234 083	1 198 790
North American Rockwell Corp. Space Division	Design, develop, fabricate and test S-II stage of Saturn V vehicle and provide launch support services	Marshall Kennedy	NAS 7-200	211 581	1 129 389
McDonnell Douglas Co. Missile & Space Division	Design, develop and fabricate S-IVB stage of Saturn V vehicle and associated ground support equipment and provide launch support services	Marshall Kennedy	NAS 7-101	163 859	958 752
General Electric Co. Command Systems Division	Apollo checkout equipment, related engineering design, quality and data management and engineering support; support services to Mississippi Test Facility	Headquarters Manned Marshall Kennedy	NASW 410	136 928	669 694
North American Rockwell Corp. Rocketdyne Division	Develop and procure 200 000-pound-thrust J-2 rocket engine with supporting services and hardware	Marshall	NAS 8-19	82 367	611 498
Chrysler Corp. Space Division	Fabricate, assemble, check out and static test Saturn S-1B stage; provide product improvement program and spare parts support; modify areas of Michoud plant assigned to contractor; provide launch support services	Marshall Kennedy	NAS 8-4016	61 252	457 289
Aerojet-General Corp.	Design, develop and produce nuclear-powered rocket engine (NERVA)	SNPC	SNP-1	52 631	450 187
General Motors Corp. AC Electronics Division	Guidance computer subsystem for Apollo command service module	Manned	NAS 9-497	45 825	340 978
General Dynamics Corp. Convair Division	Develop, fabricate and deliver Centaur vehicles and support equipment	Lewis	NAS 3-3232	1 289	305 869

Table 5-20. NASA's Active Prime Contracts of \$25 Million and Over (Continued) (contracts under which work was being performed as of June 30, 1968)

Contractor	Contract Description	Procuring Installation	Contract Number	FY 1968 Obligations (thousands)	Cumulative Obligations (thousands)
International Business Machines Corp. Federal Systems Division	Fabrication, assembly and checkout of instrument units for Saturn I and V vehicles	Marshall Kennedy	NAS 8-14000	\$ 84 853	\$ 266 086
North American Rockwell Corp. Rocketdyne Division	Fabrication and delivery of F-1 engines; provide supporting services and hardware	Marshall	NAS 8-5604	12 635	238 742
Boeing Co., Aerospace Division	Develop and fabricate Lunar Orbiter spacecraft systems	Langley	NAS 1-3800	7 458	152 708
Philco-Ford Corp. Western Develop. Lab.	Equipment and construction of facilities for integrated mission control center at Manned Spacecraft Center	Manned	NAS 9-1261	22 352	123 047
Grumman Aircraft Engineering Corp.	Design, develop, fabricate and test Orbiting Astronomical Observatories	Goddard	NAS 5-814	9 849	120 202
International Business Machines Corp. Federal Systems Division	Design, develop and implement real-time computer complex for integrated mission control center at Manned Spacecraft Center	Manned	NAS 9-996	24 570	113 516
North American Rockwell Corp. Rocketdyne Division	Fabrication and delivery of F-1 engines; provide supporting services and hardware	Marshall	NAS 8-18734	67 490	104 395
Trans World Airlines	Provide base support services at Kennedy Space Center	Kennedy	NAS 10-1242	24 587	82 002
General Electric Co. Missile & Space Division	Design, fabricate, deliver and provide operational support for Biosatellites	Ames	NAS 2-1900	21 000	81 003
Bendix Corp. Field Engineering Corp.	Apollo launch support services at Kennedy Space Center	Kennedy	NAS 10-1600	33 136	75 800
TRW Inc. TRW Systems Group	Gemini-Apollo mission trajectory and Apollo spacecraft systems analysis program	Manned	NAS 9-4810	25 650	71 966
Aerojet-General Corp.	Development of nuclear power conversion system designed and tested to sustain launch, orbital startup and shutdown	Lewis	NAS 5-417	6 732	70 127

Table 5-20. NASA's Active Prime Contracts of \$25 Million and Over (Continued) (contracts under which work was being performed as of June 30, 1968)

Contractor	Contract Description	Procuring Installation	Contract Number	FY 1968 Obligations (thousands)	Cumulative Obligations (thousands)
International Business Machines Corp. Federal Systems Division	Launch vehicle digital computers, data adapters and associated hardware for Saturn IB and Saturn V vehicles	Marshall	NAS 8-11562	\$ 8683	\$ 61 331
Hughes Aircraft Co. Aerospace Group	Develop and test Applications Technology Satellite	Goddard	NAS 5-3823	7 003	60 047
Bendix Corp. Navigation & Control Division	Stabilized platform systems and associated hardware for Saturn IB and Saturn V vehicles	Marshall	NAS 8-13005	10 868	57 557
Bellcomm, Inc.	Systems analysis, study, planning and technical support for manned space-flight programs	Headquarters	NASW 417	10 000	54 232
General Electric Co. Missile & Space Division	Design, develop, fabricate and test Nimbus spacecraft	Goddard	NAS 5-978	5 775	53 996
Boeing Co.	Apollo/Saturn V technical integration and evaluation	Headquarters	NASW 1650	43 323	52 296
Bendix Corp. Field Engineering Corp.	Operation, maintenance and support services for Manned Space Flight Tracking and Data Acquisition Network	Goddard	NAS 5-9870	693	51 868
Bendix Corp. Aerospace Systems Division	Apollo lunar surface experiments package	Manned	NAS 9-5829	19 836	50 876
TRW Inc. TRW Systems Group	Design, develop, fabricate and test Orbiting Geophysical Observatories	Goddard	NAS 5-3900	16 153	50 483
Catalytic Construction Co.	Management services, fabrication, installation and checkout of propellant servicing systems. Saturn Launch Complex No. 39A	Kennedy	NAS 10-1138	2 470	49 329
Union Carbide Corp. Linde Co.	Liquid hydrogen, lease of trailers and transportation costs	Pasadena	NASW 452	14 092	47 727
Brown Engineering Co.	Engineering, operation and fabrication services in support of the propulsion and vehicle engineering laboratory, Marshall Space Flight Center	Marshall	NAS 8-20073	14 090	46 850

Table 5-20. NASA's Active Prime Contracts of \$25 Million and Over (Continued) (contracts under which work was being performed as of June 30, 1968)

Contractor	Contract Description	Procuring Installation	Contract Number	FY 1968 Obligations (thousands)	Cumulative Obligations (thousands)
North American Rockwell Corp. Rocketdyne Division	Design, develop and fabricate H-1 liquid-propellant rocket engine	Marshall	NAS 7-190	\$ 1460	\$ 44 010
Collins Radio Co. Dallas Division	Design and fabricate S-band tracking data equipment and space components for Project Apollo	Goddard	NAS 5-9035	1 388	43 994
United Aircraft Corp. Hamilton Standard Division	Development of Apollo prototype space suits and portable life support systems	Manned	NAS 9-3535	9 607	42 019
Radio Corp. of America Service Co.	Operation and maintenance of DAF stations and support services for DAF network	Goddard	NAS 5-3480	13 614	41 296
Mason-Rust	Support services for Saturn IB and Saturn V vehicles	Marshall	NAS 8-14017	12 045	39 370
Sperry Rand Corp. Space Support Division	Engineering, operation and fabrication services in support of Astronics Laboratory, Marshall Space Flight Center	Marshall	NAS 8-20055	10 286	38 912
General Dynamics Corp. Convair Division	Management and engineering services in support of Centaur program	Lewis	NAS 3-8711	24 340	38 475
Bendix Corp. Field Engineering Corp.	Operation, maintenance and logistic support of Space Tracking and Data Acquisition Network	Goddard	NAS 5-9968	I1 382	36 633
LTV Aerospace Corp. LTV Range Systems Division	Provide administrative and management services at Kennedy Space Center	Kennedy	NAS 10-1113	10 057	35 918
TRW Inc., TRW Systems Group	Design, develop, fabricate and test Pioneer spacecraft	Ames	NAS 2-1700	2 013	34 843
North American Rockwell Corp. Rocketdyne Division	Provide industrial facilities for Saturn IB and Saturn V vehicles	Marshall	NAS 8-5609	-757	34 692
North American Rockwell Corp. Rocketdyne Division	Production of H-1 liquid propellant rocket engine and supporting supplies and services	Marshall	NAS 7-162	100	31 813

Table 5-20. NASA's Active Prime Contracts of \$25 Million and Over (Continued) (contracts under which work was being performed as of June 30, 1968)

Contractor	Contract Description	Procuring Installation	Contract Number	Fy 1968 Obligations (thousands)	Cumulative Obligations (thousands)
Sperry Rand Corp. Univac Division	Digital data processing systems for Project Apollo including related documentation and support services	Goddard	NAS 5-9816	\$ 1271	\$ 30 146
Lockheed Aircraft Corp. Electronics Co.	General electronics, instrumentation, and engineering support services for Apollo spacecraft	Manned	NAS 9-5191	14 757	29 965
Air Products & Chemicals, Inc.	Liquid hydrogen	Pasadena	NASW 352	59 0	28 313
Boeing Co., Aerospace Division	Facilities for Saturn V S-IC stage program	Marshall	NAS 8-5606	930	28 023
Bendix Corp. Field Engineering Corp.	Maintenance and operation of Manned Space Flight Network	Goddard	NAS 5-10750	27 089	27 089

Source: NASA, Office of Industry Affairs, Procurement Office, NASA Procurement

Program: Policies and Trends Handbook (PATH) (Washington, D.C.: NASA,

October 1968), pp. D-1 to D-9.

Table 5-21. Ranking of NASA's Top Ten Contractors

Contractor	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968
D 1 110 3	1	1	1	1	1	1	1
North American Rockwell Corp.a	1	2	2	6	4	4	4
McDonnell Aircraft Co., Inc.b	2	4	2	4	_	_	_
Douglas Aircraft Co., Inc.b	3	4	9	Q	8	8	8
Aerojet-General Corp.	4	3	0	O	· ·	_	_
United Aircraft Co.	5	9	<u> </u>	_	10	0	10
Chrysler Corp.	6	7	9	_	10	,	_
General Dynamics Corp.	7	5	6	9	9	-	_
Ling-Temco-Vought, Inc.	8	_	_	-	-	-	-
Grumman Aircraft Engineering Corp.	9	10	5	3	2	2	2
General Electric Co.	10	8	7	5	5	6	5
	_	6	4	2	3	3	3
Boeing Co.			10	7	7	5	6
International Business Machines Corp.			_	10	_	_	9
Radio Corp. of America	-	-	_	_	_	7	7
Bendix Corp.			-	_	6	10	_
General Motors Corp.	-	_	_	_	U	10	

^aNorth American Aviation, Inc. until FY 1967.

^bMerged to form McDonnell Douglas Corporation.

Source: NASA, Annual Procurement Report, FY 1962-1968.

Table 5-22. Top One Hundred Contractors: FY 1963

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1962				Contractor and Place of Contract Performance ^a	Rank in FY 1962	Thousands of Dollars	Percentage of Total
	Total Awards to Business		2 261 600	100.0	19.	Mason-Rust Lexington, Ky.	62	16 406	.7
1.	North American Aviation, Inc. Canoga Park, Calif.	1	525 806	23.2	20.	Hayes International Corp. Birmingham, Ala.	17	15 433	.7
2.	McDonnell Aircraft Corp. St. Louis, Mo.	2	193 052	8.5	21.	Philco Corp. Palo Alto, Calif.	26	14 864	.7
3.	Aerojet-General Corp. Azusa, Calif.	4	160 483	7.1	22.	Union Carbide Corp. Fontana, Calif.	25	12 747	.6
4.	Douglas Aircraft Co., Inc. Santa Monica, Calif.	3	133 006	5.9	23.	Lear-Siegler, Inc. Anaheim, Calif.	_	11 582	.5
5.	General Dynamics Corp. San Diego, Calif.	7	103 118	4.6	24.	General Motors Corp. Indianapolis, Indiana	59	10 170	.4
6.	Boeing Co. Seattle, Wash.	13	101 031	4.5	25.	Republic Aviation Corp. Farmingdale, N.Y.	20	9 273	.4
7.	Chrysler Corp. Detroit, Mich.	6	75 416	3.3	26.	Universal Marion Corp. Marion, Ohio	_	8 999	.4
8.	General Electric Co. Philadelphia, Pa.	10	52 957	2.3	27.	Martin Marietta Corp. Baltimore, Md.	47	7 173	.3
9.	United Aircraft Co. Windsor Locks, Conn.	5	48 879	2.2	28.	Raytheon Co. Bedford, Mass.	_	7 141	.3
10.	Grumman Aircraft Engineering Corp. Bethpage, N.Y.	9	48 197	2.1	29.	Norair Engineering Corp. Washington, D.C.	100	7 072	.3
11.	Radio Corporation of America Princeton, N.J.	11	42 169	1.9	30.	Electro-Mechanical Research, Inc. Sarasota, Fla.	79	6 821	.3
12.	International Business Machines Corp. Rockville, Md.	15	36 135	1.6	31.	Bellcomm, Inc. Washington, D.C.	1	6 355	.3
13.	Bendix Corp. Teterboro, N.J.	12	32 517	1.4	32.	Fairchild Stratos Corp. Hagerstown, Md.	×	6 241	.3
14.	Space Technology Laboratories, Inc. Redondo Beach, Calif.	14	32 510	1.4	33.	Catalytic Construction Co. Philadelphia, Pa.	-	5 850	.3
15.	Ling-Temco-Vought, Inc. Dallas, Tex.	8	26 722	1.2	34.	Killsman Instrument Corp. Elmhurst, N.Y.	70	5 061	.2
16.	Brown Engineering Co. Huntsville, Ala.	16	24 104	1.1	35.	Radiation Inc Melbourne, Fla.	37	4 874	.2
17.	Lockheed Aircraft Corp. Sunnyvale, Calif.	21	23 656	1.0	36.	Collins Radio Company Cedar Rapids, Iowa	31 .	4 599	.2
18.	Hughes Aircraft Co. Culver City, Calif.	18	18 317	.8	37.	Federal Mogul Bower Bearings, Inc. Los Alamitos, Calif.	46	4 281	.2

Table 5-22. Top One Hundred Contractors: FY 1963 (Continued)

			Net Value	of Awards ^b					Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1962	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a		Rank in FY 1962	Thousands of Dollars	Percentage of Total
38.	Air Products & Chemicals Inc.	35	3 893	.2	57.	Calumet & Hecla, Inc. Bartlett, Ill.		33	2 687	.1
39.	Allentown, Pa. Westinghouse Electric Corp.	34	3 820	.2	58.		(S)	-	2 673	.1
40.	Baltimore, Md. Ampex Corp.	44	3 765	.2	59.	Ball Bros. Research Corp. Boulder, Colorado		39	2 5 93	.1
41.	Huntsville, Ala. Avco Corp.	57	3 700	.2	60.	Thompson-Ramo-Wooldridge Inc. Cleveland, Ohio		30	2 556	.1
42.	Wilmington, Mass. Thiokol Chemical Corp.	88	3 690	.2	61.	Control Data Corp. Minneapolis, Minn.			2 457	.1
43.	Elkton, Md. Telecomputing Corp.	82	3 632	.2	62.		(S)	-	2 422	.1
44.	San Diego, Calif. Sullivan Long & Hagerty	_	3 515	.2	63.	Doyle & Russell Inc. Norfolk, Va.		45	2 273	.1
45.	Birmingham, Ala. Documentation Inc.	S) 67	3 416	.2	64.	Noble Co.	(S)	95	2 227	.1
46.	Bethesda, Md. Spaco Inc.	S) 56	3 374	.1	65.	Oakland, Calif. Vitro Corp. of America		50	2 187	.1
47.	Huntsville, Ala. Sperry Rand Corp.	41	3 210	.1	66.	Silver Spring, Md. Kaiser Engineers		_	2 144	.1
48.	Great Neck, N.Y. Minneapolis Honeywell Regulator Co	o. 23	3 175	.1	67.	Oakland, Calif. Electronic Associates, Inc.		69	2 045	.1
49.	Minneapolis, Minn. Bell Aerospace Corp.	_	3 096	.1	68.	Long Branch, N.J. Northrop Corp.		63	1 958	.1
5 0.	Buffalo, N.Y. Motorola Inc.	22	3 057	.1	69.	Hawthorne, Calif. Western Electric Inc.		19	1 930	.1
51.	Scottsdale, Arizona Roediger Construction Inc.	-	3 000	.1	70.	New York, N.Y. Sverdrup & Parcel & Associates, In	c.	53	1 928	.1
52.	Cleveland, Ohio Algernon Blair, Inc.	S) 52	2 952	.1	71.		(S)	-	1 897	.1
5 3.	Montgomery, Ala. Garrett Corp.	_	2 937	.1	72.	Van Nuys, Calif. Consolidated Electrodynamics Cor	p.	73	1 764	.1
54.	Los Angeles, Calif. Packard Bell Electronics Corp.	24	2 777	.1	73.	-1	(S)		1 762	.1
55.	Los Angeles, Calif. Swenson, Carl N., Co.	_	2 743	.1	74.	Huntsville, Ala. Wyle Laboratories	(S)	_	1 696	.1
56.	San Jose, Calif. American Telephone & Telegraph C Washington, D.C.	o. 42	2 697	.1	75.	Huntsville, Ala. Scientific Data Systems Santa Monica, Calif.	(S)	-	1 639	.1

Table 5-22. Top One Hundred Contractors: FY 1963 (Continued)

				Net Value	of Awards ^b				Net Value o	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1962	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1962	Thousands of Dollars	Percentage of Total
76.	American Machine & Foundry Co. Stamford, Conn.		_	1 617	.1	89.	International Telephone & Telegraph Corp.	40	1 302	.1
77.	Beech Aircraft Corp.		_	1 586	.1	1	Ft. Wayne, Indiana			
78.	Boulder, Colo. Consolidated Systems, Corp.		48	1 520	.1	90.	Progressive Welder & Machine Co. (S) Pontiac, Mich.	58	1 266	.1
79.	Monrovia, Calif. Textron, Inc.		No.	1 504	.1	91.	Computer Control Corp. (S) Framingham, Mass.		1 253	.1
80.	Belmont, Calif. Management Services Inc.	(S)	43	1 496	.1	92.	Bechtel Corp. San Francisco, Calif.	78	1 249 ;	.1
81.	Oak Ridge, Tenn. Rohr Corp.		71	1 473	.1	93.	Alco Products Inc. Schenectady, N.Y.	_	1 243	.1
82.	Chula Vista, Calif. Space-General Corp.		83	1 448	.1 .	94.	Schrimsher J. T. Construction Co. (S) Huntsville, Ala.	66	1 243	.1
83.	El Monte, Calif. Electronic Communications Inc.			1 440	.1	95.	California Computer Products Inc. (S) Anaheim, Calif.	92	1 230	.1
84.	St. Petersburg, Fla. Electro Optical System Inc.	(S)	. 87	1 397	.1	96.	Minnesota Mining & Mfg. Co. Los Angeles, Caiif.	84	1 186	.1
85.	Pasadena, Calif. Textron Electronics Inc.		_	1 336	.1	97.	Gulton Industries Inc. Metuchen, N.J.	98	1 174	.1
86.	Cumberland, Md. Pacific Gas & Electric Co.		_	1 320	.1	98.	Quiller Construction Co., Inc. (S) Los Angeles, Calif.	-	1 164	.1
87.	San Francisco, Calif. Federal Service Inc.		_	1 320	.1	99.	McDonough Construction Co. Atlanta, Ga.	_	1 151	.1
88.	Washington, D.C. Ryan Aeronautical Co.		_	1 303	.1	100.	Geophysics Corp of America (S) Bedford, Mass.	68	1 148	.1
	San Diego, Calif.			- 555			Other		281 927	11.5

^aAwards during year include awards on several contracts which have different principal places of performance. The place shown in that which has the largest amount of awards.

Source: NASA, Annual Procurement Report, FY 1963.

(S) Indicates small business.

^bData for individual companies include awards on R&D contracts of \$10 000 and over and on all other contracts of \$25 000 and over.

Table 5-23. Top One Hundred Contractors: FY 1964

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1963	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1963	Thousands of Dollars	Percentage of Total
 -	Total Awards to Business		3 521 095	100.00	19.	Raytheon Co. Bedford, Mass.	28	23 422	.67
1.	North American Aviation, Inc. Downey, Calif.	1	917 244	26.05	20.	Ling-Temco-Vought, Inc. Dallas, Tex.	15	21 545	.61
2.	McDonnell Aircraft Corp. St. Louis, Mo.	2	267 623	7.60	21.	Union Carbide Corp. Fontana, Calif.	22	20 100	.57
3.	Douglas Aircraft Co., Inc. Santa Monica, Calif.	4	250 306	7.11	22.	Hayes International Corp. Birmingham, Ala.	20	18 715	.53
4.	Boeing Co. New Orleans, La.	6	197 067	5.60	23.	Blount Brothers Construction Co. Montgomery, Ala.	_	17 005	.48
5.	Grumman Aircraft Engineering Corp.	10	156 393	4.44	24.	Control Data Corp. Minneapolis, Minn.	61	16 940	.48
6.	Bethpage, N.Y. General Dynamics Corp.	5	148 200	4.21	25.	Hughes Aircraft Co. Culver City, Calif.	18	14 907	.42
7.	San Diego, Calif. General Electric Co.	8	143 562	4.08	26.	Kollsman Instrument Corp. Elmhurst, N.Y.	34	13 584	.39
8.	Daytona Beach, Fla. Aerojet-General Corp.	3	135 776	3.86	27.	Mason-Rust Lexington, Ky.	19	11 916	.34
9.	Sacramento, Calif. Chrysler Corp.	7	99 414	2.82	28.	Sperry Rand Corp. Great Neck, N.Y.	47	11 797	.34
10.	New Orleans, La. International Business Machines Corp.	12	85 627	2.43	29.	Ingalls Iron Works Co. Birmingham, Ala.	-	11 385	.32
11.	Rockville, Md. Radio Corporation of America Princeton, N.J.	11	49 815	1.42	30.	Radiation, Inc. Melbourne, Fla.	35	10 797	.31
12.	Bendix Corp.	13	41 886	1.19	31.	Fairchild Stratos Corp. Hagerstown, Md.	. 32	10 412	.30
13.	Owings Mills, Md. General Motors Corp. Milwaukee, Wis.	24	41 886	1.19	32.	Federal-Mogul-Bower Bearings, Inc. Los Alamitos, Calif.	37	10 337	.29
14.	Brown Engineering Co., Inc. Huntsville, Ala.	16	41 566	1.18	33.	Air Products & Chemicals, Inc. Allentown, Pa.	38	10 020	.28
15.	Lockheed Aircraft Corp. Sunnyvale, Calif.	17	39 019	1.11	34.	Ernst/Smith Joint Venture Orlando, Fla.	-	9 847	.28
16.	Thompson-Ramo-Wooldridge Inc. Redondo Beach, Calif.	С	38 995	1.11	35.	Republic Aviation Corp. Farmingdale, N.Y.	25	9 286	.26
17.	United Aircraft Corp. West Palm Beach, Fla.	9	36 7 29	1.04	36.	Northrop Corp. Hawthorne, Calif.	68	9 187	.26
18.	Philco Corp. Palo Alto, Calif.	21	35 690	1.01	37.	Bellcomm, Inc. Washington, D.C.	31	8 670	.25

NASA PROCUREMENT

Table 5-23. Top One Hundred Contractors: FY 1964 (Continued)

		-				71		 		
				Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1963	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1963	Thousands of Dollars	Percentage of Total
38.	Martin Marietta Corp. Baltimore, Md.		27	8 452	.24	57.	Garrett Corp. Phoenix, Ariz.	53	4 256	.12
39.	Documentation, Inc. Bethesda, Md.	(S)	45	7 312	.21	58.	Consolidated Electrodynamics Corp. Pasadena, Calif.	72	3 978	.11
40.	Honeywell, Inc. St. Petersburg, Fla.		48	7 100	.20	59.	Wyle Laboratories Huntsville, Ala.	74	3 771	.11
41.	Jones, J. A. Construction Co. New Orleans, La.		_	6 641	.19	60.	Venneri, Arthur, Co. Westfield, N.J.	_	3 521	.10
42.	Genisco Technology Corp. Compton, Calif.	(S)	_	6 576	.19	61.	Hercules Powder Co. Wilmington, Del.	-	3 479	.10
43.	Ball Brothers Research Corp. Boulder, Colorado		59	5 976	.17	62.	Chicago Bridge & Iron Co. Cleveland, Ohio	-	3 205	.09
44.	Catalytic Construction Co. Philadelphia, Pa.		33	5 931	.17	63.	Electronic Associates, Inc. Long Branch, N.J.	67	3 205	.09
45.	Westinghouse Electric Corp. Baltimore, Md.		39	5 900	.17	64.	Space-General Corp. El Monte, Calif.	82	3 184	.09
46.	Spaco, Inc. Huntsville, Ala.	(S)	46	5 708	.16	65.	Basic Construction Co. Newport News, Va.	-	3 176	.09
47.	Electro-Mechanical Research Inc. Washington, D.C.		30	5 433	.15	66.	American Machine & Foundry Co. Stamford, Conn.	76	2 963	.08
48.	Ampex Corp. Redwood City, Calif.		40	5 200	.15	67.	Graham, Wm. J. & Son Golden Beach, Fla.) –	2 957	.08
49.	Bell Aerospace Corp. Buffalo, N.Y.		49	5 132	.15	68.	Huber, Hunt & Nichols	_	2 851	.08
50.	Sullivan, Long & Hagerty Birmingham, Ala.		44	4 950	.14	69.	Sunnyvale, Calif. Thiokol Chemical Corp.	42	2 792	.08
51.	Collins Radio Co. Dallas, Tex.		36	4 939	.14	70.	Denville, N.J. Doyle & Russell, Inc.	63	2 628	.07
52.	Avco Corp. Cincinnati, Ohio		41	4 898	.14	71.	Norfolk, Va. International Telephone &			
53.	Scientific Data Systems Santa Monica, Calif.	(S)	75	4 877	.14		Telegraph Corp. Nutley, N.J.	89	2 601	.07
54.	Bechtel Corp. San Francisco, Calif.		92	4 737	.13	72.	Vitro Corp. of America Ft. Walton Beach, Fla.	65	2 496	.07
55.	Pearce & Gresham Co. Decatur, Ala.	(S)	58	4 536	.13	73.	Lear Siegler, Inc. Santa Monica, Calif.	23	2 483	.07
56.	American Telephone & Telegraph Washington, D.C.	Co.	56	4 499	.13	74.	Management Services, Inc. (S) Oak Ridge, Tenn.	80	2 444	.07

Table 5-23. Top One Hundred Contractors: FY 1964 (Continued)

			· · · · · ·	Net Value	of Awards ^b					Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1963	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a		Rank in FY 1963	Thousands of Dollars	Percentage of Total
75.	Data Control Systems, Inc. Danbury, Conn.	(S)	-	2 379	.07		Engineering, Inc. Cambridge, Mass.	(S)	_	1 576	.04
76.	Motorola, Inc. Scottsdale, Ariz.		50	2 310	.07	89.	Systems Engineering Labs., Inc. Fort Lauderdale, Fla.	(S)	_	1 575	.04
77.	Beckman Instruments, Inc. Richmond, Calif.		-	2 304	.07	90.	Memorex Corp. Santa Clara, Calif.	(S)		1 556	.04
78.	Geophysics Corp. of America Bedford, Mass.	(S)	100	2 242	.06	91.	Zia Company, The Los Alamos, N. Mex.		-	1 527	.04
79.	Gulton Industries, Inc. Hawthorne, Calif.		97	2 230	.06	92.	Textron Electronics, Inc. New Haven, Conn.		85	1 516	.04
80.	Blaw-Knox Co. Pittsburgh, Pa.		-	2 043	.06	93.	Xerox Corp. Birmingham, Ala.		-	1 457	.04
81.	Consolidated Systems Corp. Monrovia, Calif.		78	1 953	.06	94.	Cleveland Electric Illuminating Cleveland, Ohio		-	1 450	.04
82.	Perkin-Elmer Corp., The Norwalk, Conn.		-	1 942	.06	95.	Canoga Electronics Corp. Van Nuys, Calif.	(S)	71	1 412	.04
83.	Whittaker Corp. Van Nuys, Calif.		43	1 887	.05	96.	Associated Builders Corp. Cleveland, Ohio	(S)	_	1 408	.04
84.	Electro Optical Systems, Inc. Pasadena, Calif.		84	1 808	.05	97.	Radiation Service Co. Melbourne, Fla.		-	1 396	.04
85.	Aluminum Co. of America Rome, N.Y.		-	1 766	.05	98.	Schjeldahl, G. T. Co. Northfield, Minn.	(S)	_	1 395	.04
86.	Goodyear Aerospace Corp. Akron, Ohio		-	1 648	.05	99.	Hewlett-Packard Co. Palo Alto, Calif.		-	1 377	.04
87.	Space Craft, Inc. Huntsville, Ala.	(S)	73	1 589	.05	100.	American Optical Co. Pittsburgh, Pa.		-	1 371	.04
88.	American Science &						Other			324 521	9.22

^aAwards during year include awards on several contracts which have different principal places of performance. The place shown is that which has the largest amount of awards.

 $^{\text{C}}\textsc{Combines}$ awards to Space Technology Laboratories, Inc., and Thompson-Ramo-Wooldridge Inc.

Source: NASA, Annual Procurement Report, FY 1964.

bData for individual companies include awards on R&D contracts of \$10 000 and over and on all other contracts of \$25 000 and over.

⁽S) Indicates small business.

Table 5-24. Top One Hundred Contractors: FY 1965

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1964	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1964	Thousands of Dollars	Percentage of Total
	Total Awards to Business		4 141 434	100.00	19.	Brown Engineering Co., Inc. Huntsville, Ala.	14	30 850	.74
1.	North American Aviation, Inc. Downey, Calif.	1	1 099 448	26.55	20.	Philco Corp. Houston, Tex.	18	30 029	.73
2.	Boeing Co. New Orleans, La.	4	305 988	7.39	21.	Hayes International Corp. Birmingham, Ala.	22	28 496	.69
3.	Grumman Aircraft Engineering Corp. Bethpage, N.Y.	5	267 226	6.45	22.	Honeywell, Inc. St. Petersburg, Fla.	40	27 068	.65
4.	Douglas Aircraft Co., Inc. Santa Monica, Calif.	3	251 668	6.08	23.	Hughes Aircraft Co. Culver City, Calif.	25	26 457	.64
5.	General Electric Co. Huntsville, Ala.	7	181 472	4.38	24.	Catalytic Construction Co. Merritt Island, Fla.	44	25 296	.61
6.	McDonnell Aircraft Corp. St. Louis, Mo.	2	166 670	4.02	25.	Trans World Airlines, Inc.	-	20 862	.50
7.	International Business Machines Corp. Huntsville, Ala.	10	128 312	3.10	26.	Union Carbide Corp. Fontana, Calif.	21	19 954	.48
8.	Aerojet-General Corp. Sacramento, Calif.	8	123 186	2.97	27.	LTV Aerospace Corp. Dallas, Tex.	20 ^d	15 118	.37
9.	General Dynamics Corp. San Diego, Calif.	6	111 148	2.68	28.	Fairchild Hiller Corp. Hagerstown, Md.	31	14 720	.36
10.	Radio Corporation of America Princeton, N.J.	11	106 552	2.57	29.	Mason-Rust New Orleans, La.	27	13 097	.32
11.	Chrysler Corp. New Orleans, La.	9	85 986	2.08	30.	Westinghouse Electric Corp. Baltimore, Md.	45	12 647	.31
12.	General Motors Corp. Milwaukee, Wisc.	13	72 531	1.75	31.	Radiation, Inc. Melbourne, Fla.	30	12 056	.29
13.	Bendix Corp. Teterboro, N.J.	12	66 100	1.60	32.	Control Data Corp. Minnea polis, Minn.	24	11 808	.29
14.	TRW Space Technology Laboratories Redondo Beach, Calif.	16 ^c	50 533	1.22	33.	Bellcomm, 1nc. Washington, D.C.	37	9 804	.24
15.	United Aircraft Corp. West Palm Beach, Fla.	17	43 330	1.05	34.	Pacific Crane & Rigging Merritt Island, Fla.	-	9 280	.22
16.	Sperry Rand Corp. St. Paul, Minn.	28	39 401	.95	35.	Martin Marietta Corp. Baltimore, Md.	38	8 389	.20
17.	Lockheed Aircraft Corp. Sunnyvale, Calif.	15	35 796	.86	36.	Lear Siegler, Inc. Anaheim, Calif.	73	8 260	.20
18.	Collins Radio Co. Richardson, Tex.	51	31 532	.76	37.	Air Products & Chemicals, Inc. Long Beach, Calif.	33	8 135	.20

Table 5-24. Top One Hundred Contractors: FY 1965 (Continued)

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1964	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1964	Thousands of Dollars	Percentage of Total
38.	Republic Aviation Corp. Farmingdale, N.Y.	35	7 537	.18	57.	Electro-Mechanical Research, Inc. Sarasota, Fla.	47	4 615	.11
39.	Thiokol Chemical Corp.	69	7 441	.18	58.	Vitro Corporation of America Huntsville, Ala.	72	4 435	.11
40.	Brunswick, Ga. Northrop Corporation	36	7 297.	.18	59.	Dynamic Corporation of America Garden City, N.Y.	_	4 358	.11
41.	Hawthorne, Calif. Garrett Corp.	57	7 179	.17	60.	Minnesota Mining & Mfg. Co. Camarillo, Calif.	-	4 257	.10
42.	Los Angeles, Calif. Scientific Data Systems	53	6 800	.16	61.		(S) –	4 063	.10
43.	Santa Monica, Calif. American Machine & Foundry Co.	. 66	6 614	.16	62.	Brown/Northrop (joint venture) Houston, Tex.	-	4 060	.10
44.	York, Pa. Dynatronics, Inc. (S)	_	6 436	.16	63.	Beckman Instruments, Inc. Fullerton, Calif.	77	3 997	.10
45.	Orlando, Fla. Spaco, Inc. (S)	46	6 308	.15	64.	Computer Control Co.	_	3 908	.09
46.	Huntsville, Ala. Avco Corp.	52	6 299	.15	65.		(S) –	3 882	.09
47.	Wilmington, Mass. Electronic Associates, Inc.	63	6 025	.15	66.	Houston, Tex. Clark David Co., Inc.	_	3 839	.09
48.	West Long Branch, N.J. Motorola, Inc.	76	5 830	.14	67.	0 0 ,	(S) –	3 790	.09
49.	Scottsdale, Ariz. Sanders Associates, Inc.	_	5 830	.14	68.	College Park, Md. Zia Company	91	3 779	.09
50.	Nashua, N.H. Federal-Mogul-Bower Bearings, Inc.	32	5 603	.14	69.	Las Cruces, N.M. Allis-Chalmers Manufacturing Co.	_	3 701	.09.
	Los Alamitos, Calif.	39	5 240	.13	70.	Milwaukee, Wisc. Pennsalt Chemical Corp.	_	3 559	.09
51.	Bethesda, Md.			.13	71.	Various Consolidated Systems Corp.	81	3 555	.09
52.	Blount/Chicago Bridge (joint venture) Sandusky, Ohio	_	5 178			Monrovia, Calif.			
53.	Ball Bros. Research Corp. Boulder, Colorado	43	5 036	.12	72.	Calumet & Hecla, Inc. Bartlett, Ill.	-	3 418	.08
54.	Keltec Industries (S) Alexandria, Va.	-	4 749	.11	73.	Van Nuys, Calif.	(S) –	3 387	.08
55.	Ampex Corp. Redwood City, Calif.	48	4 747	.11	74.	MSI Corporation Greenbelt, Md.	_	3 386	.08
56.	Norair Engineering Corp. Greenbelt, Md.	-	4 736	.11	75.	Bell Aerospace Corp. Buffalo, N.Y.	49	3 328	.08

Table 5-24. Top One Hundred Contractors: FY 1965 (Continued)

				Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1964	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1964	Thousands of Dollars	Percentage of Total
76.	Space-General Corp. El Monte, Calif.		64	3 293	.08	89.	Western Union Telegraph Co. Various	_	2 397	.06
77.	Hathaway E A & Co. Mountain View, Calif.	(S)	-	3 216	.08	90.	Universal Marion Corp. Marion, Ohio	_	2 341	.06
78.	Systems Engineering Labs, Inc. Ft. Lauderdale, Fla.	(S)	89	3 019	.07	91.	Swenson Carl N. Co. Mountain View, Calif.	-	2 324	.06
79.	Electronic Communications, Inc. St. Petersburg, Fla.		-	2 952	.07	92.	Whittaker Corp.	83	2 297	.06
80.	Consolidated Electrodynamics Con Pasadena, Calif.	p.	58	2 938	.07	93.	Van Nuys, Calif. Consultants & Designers, Inc.	_	2 207	.05
81.	Kiewit/Leavell (joint venture) Sandusky, Ohio			2 820	.07	94.	Arlington, Va. Raytheon Co,	19	2 200	.05
82.	Electro Optical Systems, Inc. Pasadena, Calif.		84	2 808	.07	95.	Wayland, Mass. Canoga Electronics Corp.	(S) 95	2 172	.05
83.	Sylvania Electric Products, Inc. Waltham, Mass.		_	2 652	.06	96.	Van Nuys, Calif.			
84.	Washington Technological Asso., Inc.	(S)		2 615	.06		Int'i. Telephone & Telegraph Corp. San Fernando, Calif.	. 71	2 153	.05
85.	Rockville, Md. Wise Contracting Co.	(S)		2 561		97.	Dow Chemical Co. Various	_	2 070	.05
- • -	Hampton, Va.	(3)			.06	98.	Melpar, Inc. Falls Church, Va.	-	2 069	.05
86.	Sun Shipbuilding & Dry Dock Co. Chester, Pa.		_	2 554	.06	99.	Dortech Corp. Various	_	2 064	.05
37.	Litton Industries, Inc. College Park, Md.		_	2 449	.06	100.	Management Services, Inc.	(S) 74	2 061	.05
8.	Virginia Electric Power Co. Hampton, Va.		-	2 421	.06		Huntsville, Ala. Other		391 374	9.45

^aAwards during year include awards on several contracts which have different principal places of performance. The place shown is that which has the largest amount of awards.

 $^{\mathrm{d}}\mathrm{Rank}$ of Ling-Temco-Vought, Inc., of which LTV Aerospace Corp. was then a division.

(S) Indicates small business,

Source: NASA, Annual Procurement Report, FY 1965.

^bData for individual companies include awards on R&D contracts of \$10 000 and over and on all other contracts of \$25 000 and over.

^CRank of Thompson-Ramo-Wooldridge Inc., of which TRW Space Technology Laboratories was then a division.

Table 5-25. Top One Hundred Contractors: FY 1966

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1965	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1965	Thousands of Dollars	Percentage of Total
	Total Awards to Business		4 087 679	100.00	19.	Hayes International Corp. Birmingham, Ala.	21	28 111	.69
1.	North American Aviation, Inc.	1	1 128 928	27.61	20.	Philco Corp. Houston, Tex.	20	25 445	.62
2.	Downey, Calif. Grumman Aircraft Engineering Corp.	3	381 152	9.32	21.	Brown Engineering Co. Huntsville, Ala.	19	24 303	.59
3.	Bethpage, N.Y. Boeing Co.	2	313 682	7.67	22.	Hughes Aircraft Co. Culver City, Calif.	23	22 365	.55
4.	New Orleans, La. Douglas Aircraft Co., Inc.	4	259 697	6.35	23.	Honeywell, Inc. St. Petersburg, Fla.	22	22 238	.54
5.	Santa Monica, Calif. General Electric Co.	5	235 652	5.76	24.	Union Carbide Corp. Sacramento, Calif.	26	19 735	.48
6.	Huntsville, Ala. General Motors Corp.	12	123 278	3.02	25.	Collins Radio Co. Richardson, Tex.	18	16 968	.42
7.	Milwaukee, Wisc. Int'l Business Machines Corp.	7	108 181	2.65	26.	Fairchild Hiller Corp. Farmingdale, N.Y.	d	15 252	.37
8.	Huntsville, Ala. Aerojet-General Corp.	8	100 494	2.46	27.	Mason-Rust New Orleans, La.	29	12 156	.30
9.	Sacramento, Calif. General Dynamics Corp.	9	92 076	2.25	28.	Thiokol Chemical Corp. Denville, N.J.	39	11 514	.28
10.	San Diego, Calif. Chrysler Corp.	11	83 481	2.04	29.	Vitro Corporation of America Huntsville, Ala.	58	11 243	.28
11.	New Orleans, La. Bendix Corp.	13	78 030	1.91	30.	Air Products & Chemicals, Inc. Long Beach, Calif.	37	10 278	.25
12.	Owings Mills, Md. McDonnell Aircraft Corp.	6	52 316	1.28	31.	Trans World Airlines, Inc. Kennedy Space Center, Fla.	25	10 227	.25
13.	St. Louis, Mo. Radio Corporation of America	10	51 343	1.26	- 32.	Control Data Corp. Minneapolis, Minn.	32	10 137	.25
14.	Huntsville, Ala. TRW Inc.	14 ^c	49 886	1.22	33.	Northrop Corp. Huntsville, Ala.	40	9 704	.24
15.	Redondo Beach, Calif. Lockheed Aircraft Corp.	17	44 541	1.09	34.	Bellcomm, Inc. Washington, D.C.	33	9 685	.24
16.	Sunnyvale, Calif. United Aircraft Corp.	15	40 703	1.00	35.	Westinghouse Electric Corp. Baltimore, Md.	30	9 518	.23
17.	West Palm Beach, Fla. Sperry Rand Corp.	16	29 540	.72	36.	Spaco, Inc. Huntsville, Ala.	(S) 45	8 391	.21
18.	Huntsville, Ala. LTV Aerospace Corp. Dallas, Tex.	27	28 763	.70	37.	Brown/Northrop (joint venture) Houston, Tex.	62	7 394	.18

Table 5-25. Top One Hundred Contractors: FY 1966 (Continued)

				Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1965	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1965	Thousands of Dollars	Percentage of Total
38.	Bechtel Corp. Cape Kennedy, Fla.		_	7 182	.18	57.	Electro Optical Systems, Inc. Pasadena, Calif.	82	4 366	.11
39.	Garrett Corp. Los Angeles, Calif.		41	7 032	.17	58.	Dow Chemical Co. Titusville, Fla.	97	4 223	.10
40.	Scientific Data Systems Santa Monica, Calif.		42	6 340	.16	59.	Electronic Associates, Inc. West Long Branch, N.J.	47	4 212	.10
41.	Graham Engineering Co. Houston, Tex.	(S)	61	6 199	.15	60.	Western Electric Co. New York, N.Y.	-	4 172	.10
42.	Space-General Corp. El Monte, Calif.		76	6 176	.15	61.	American Telephone & Telegraph Co. Greenbelt, Md.	-	4 106	.10
43.	Management Services, Inc. Huntsville, Ala.	(S)	100	6 022	.15	62.	General Precision, Inc. Houston, Tex.	_	4 063	.10
44.	Ball Brothers Research Corp. Boulder, Colo.		53	5 964	.15	63.	Motorola, Inc. Scottsdale, Ariz.	48	3 952	.10
45.	Documentation, Inc. College Park, Md.		51	5 781	.14	64.	Melpar, Inc. Falis Church, Va.	98	3 728	.09
46.	Martin Marietta Corp. Baltimore, Md.		35	5 723	.14	65.	American Machine & Foundry Co. York, Pa.	43	3 692	.09
47.	Catalytic Construction Co. Kennedy Space Center, Fla.		24	5 471	.13	66.	American Science & Engrg., Inc. (S) Cambridge, Mass.	_	3 623	.09
48.	Pacific Crane & Rigging Co. Kennedy Space Center, Fla.		34	5 393	.13	67.	Int'l. Telephone & Telegraph Corp. Fort Wayne, Ind.	96	3 428	.08
49.	Federal Electric Corp. Kennedy Space Center, Fla.		_	5 129	.13	68.	Raytheon Co. Wayland, Mass.	94	3 217	.08
50.	International Latex Corp. Dover, Del.		_	4 943	.12	69.	Sylvania Electric Products, Inc. Waltham, Mass.	83	3 195	.08
51.	Avco Corp. Wilmington, Mass.		46	4 907	.12	70.	Allis-Chalmers Manufacturing Co. Milwaukee, Wisc.	69	3 124	.08
52.	Zia Co. Las Cruces, N. Mex.		68	4 891	.12	71.	Telecomputing Services, Inc. Greenbelt, Md.	_	3 022	.07
53.	Sanders Associates, Inc. Nashua, N.H.		49	4 799	.12	72.	Computer Sciences Corp. El Segundo, Calif.	-	2 941	.07
54.	Radiation, Inc. Melbourne, Fla.		31	4 686	.11	73.	Electronic Communications, Inc. St. Petersburg, Fla.	79	2 872	.07
55.	Gulton Industries, Inc. Albuquerque, N. Mex.		-	4 429	.11	74.	Keltec Industries, Inc. Alexandria, Va.	54	2 869	.07
56.	Ampex Corp. Redwood City, Calif.		55	4 384	.11	75.	Acro Spacelines, Inc. (S) Van Nuys, Calif.	73	2 856	.07

Table 5-25. Top One Hundred Contractors: FY 1966 (Continued)

			Net Value	of Awards ^b					Net Value of	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1965	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	_	tank in Y 1965	Thousands of Dollars	Percentage of Total
76.	David Clark Co., Inc.	66	2 771	.07	89.	GCA Corp. Bedford, Mass.		-	2 142	.05
77.	Worcester, Mass. Systems Engrg. Laboratories, Inc. (S)	78	2 701	.07	90.		(S)	-	2 094	.05
78.	Ft. Lauderdale, Fla. Consolidated Electrodynamics Corp.	80	2 666	.07	91.	Minnesota Mining & Mfg. Co. Camarillo, Calif.		60	2 029	.05
79.	Pasadena, Calif. Electro-Mechanical Research, Inc.	57	2 624	.06	92.	Arinc Research Corp. Huntsville, Ala.			2 006	.05
80.	College Park, Md. Norair Engineering Corp.	56	2 476	.06	93.	Computer Application, Inc. New York, N.Y.		-	1 984	.05
31.	Greenbelt, Md. Texas Instruments, Inc.	_	2 456	.06	94.	Chesapeake & Potomac Telephone Greenbelt, Md.	c Co.	_	1 979	.05
2.	Dallas, Tex. Cryovac, Inc. Houston, Tex.	-	2 321	.06	95.	Bell Aerospace Corp. Buffalo, N.Y.		75	1 971	.05
3.	Air Reduction Co. Buena Park, Calif.	-	2 313	.06	96.	Litton Industries, Inc. Beverly Hills, Calif.		87	1 915	.05
84.	Clevite Corp. Cleveland, Ohio	_	2 268	.06	97.	Marion Power Shovel Co. Marion, Ohio		90	1 844	.05
35.	Carl N. Swenson Co. Mountain View, Calif.	91	2 194	.05	98.	Consultants & Designers, Inc.		93	1 812	.04
6.	Wolf Research & Develop. Corp. (S) Arlington, Va.	65	2 188	.05	99.	Arlington, Va. Marquardt Corp.		_	1 767	.04
7.	Virginia Electric Power Co. Hampton, Va.	88	2 181	.05	100.	Van Nuys, Calif. Kollsman Instrument Corp.		_	1 711	.04
8.	Washington Tech. Assocs., Inc. (S) Rockville, Md.	84	2 146	.05		Syosset, N.Y. Other			373 601	9.14

³Awards during year include awards on several contracts which have different principal places of performance. The place shown is that which has the largest amount of awards.

^dData for current year include awards to Republic Aviation Corp., now a division of Fairchild Hiller Corp. For Fiscal Year 1965, these companies ranked 25th on a combined basis.

(S) Indicates small business.

Source: NASA, Annual Procurement Report, FY 1966.

 b_{Data} for individual companies include awards on R&D contracts of \$10\,000 and over and on all other contracts of \$25 000 and over.

^cRank of TRW Space Laboratories, a division of TRW Inc.

Table 5-26. Top One Hundred Contractors: FY 1967

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1966	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1966	Thousands of Dollars	Percentage of Total
	Total Awards to Business		3 864 133	100.00	19.	Trans World Airlines, Inc. Kennedy Space Center, Fla.	31	25 091	.65
1.	North American Aviation, Inc. Downey, Calif.	1	983 814	25.46	20.	General Precision, Inc. Houston, Tex.	62	24 987	.65
2.	Grumman Aircraft Engrg. Corp. Bethpage, N.Y.	2	481 137	12.45	21.	Honeywell, Inc. St. Petersburg, Fla.	23	22 647	.59
3.	Boeing Co. New Orleans, La.	3	273 514	7.08	22.	Hughes Aircraft Co. Culver City, Calif.	22	19 850	.51
4.	McDonnell Douglas Corp. Santa Monica, Calif.	4 ^c	243 913	6.31	23.	Brown Engineering Co., Inc. Huntsville, Ala.	21	16 713	.43
5.	Int'l. Business Machines Corp. Huntsville, Ala.	7	186 355	4.82	24.	Martin Marietta Corp. Denver, Colo.	46	12 828	.33
6.	General Electric Co. Huntsville, Ala.	5	179 261	4.64	25.	Union Carbide Corp. Sacramento, Calif.	24	12 648	.33
7.	Bendix Corp. Owings Mills, Md.	11	120 028	3.11	26.	Federal Electric Corp. Kennedy Space Center, Fla.	49	12 305	.32
8.	Aerojet-General Corp. Sacramento, Calif.	8	95 691	2.48	27.		72	11 796	.31
9.	Chrysler Corp. New Orleans, La.	10	76 602	1.98	28.	Air Products & Chemicals, Inc. Long Beach, Calif.	30	11 788	.31
10.	General Motors Corp. Milwaukee, Wisc.	6	65 222	1.69	29.	Thiokol Chemical Corp. Denville, N.J.	28	11 455	.30
11.	General Dynamics Corp. San Diego, Calif.	9	60 990	1.58	30.	Mason-Rust New Orleans, La.	27	11 213	.29
12.	Radio Corporation of America Princeton, N.J.	13	57 512	1.49	31.	Catalytic Construction Co. Kennedy Space Center, Fla.	47	11 051	.29
13.	TRW Inc. Redondo Beach, Calif.	14	52 551	1.36	32.	Westinghouse Electric Corp. Baltimore, Md.	35	10 388	.27
14.	LTV Aerospace Corp. Dallas, Tex.	18	46 326	1.20	33.	Brown/Northrop (joint venture) Houston, Tex.	37	10 000	.26
15.	Lockheed Aircraft Corp. Houston, Texas	15	42 036	1.09	34.	Fairchild Hiller Corp. Greenbelt, Md.	26	9 794	.25
16.	United Aircraft Corp. West Palm Beach, Fla.	16	39 989	1.03	35.	Bellcomm, Inc. Washington, D.C.	34	9 318	.24
17.	Sperry Rand Corp. Huntsville, Ala.	17	38 666	1.00	36.	Garrett Corp. Los Angeles, Calif.	39	9 293	.24
18.	Philco-Ford Corp. Houston, Tex.	20	32 059	.83	37.	Bechtel Corp. Cape Kennedy, Fla.	38	9 198	.24

Table 5-26. Top One Hundred Contractors: FY 1967 (Continued)

			Net Valu	ne of Awards ^b					Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rani FY 1		_		Contractor and Place of Contract Performance ^a		Rank in FY 1966	Thousands of Dollars	Percentage of Total
38.	Vitro Corporation of America	29	8 98	8 .23	57.	Southern Bell Telephone Co. Huntsville, Ala.		_	4 432	.11
39.	Huntsville, Ala. Bell Aerospace Corp.	95	8 87	7 .23	58.	American Tel. & Tel. Co. Greenbelt, Md.		61	4 397	.11
4 0.	Buffalo, N.Y. Northrop Corp.	3:	8 81	5 .23	59.	American Science & Engrg., Inc. Cambridge, Mass.	(S)	66	4 175	.11
41.	Huntsville, Ala. Hayes International Corp.	19	7 28	9 .19	60.	Aero Spacelines, Inc. Van Nuys, Calif.	(S)	75	3 631	.09
42.	Birmingham, Ala. Control Data Corp.	32	7 11	1 .18	61.	Gillmore-Olson Co. Cleveland, Ohio	(S)	-	3 602	.09
43.	Minneapolis, Minn. Graham Engineering Co., Inc.	(S) 4	7 10	9 .18	62.	Perkin-Elmer Corp.		-	3 546	.09
44.	Houston, Tex. Scientific Data Systems	4(7 08	.18	63.	Norwalk, Conn. Western Union Telegraph Co.		-	3 472	.09
4 5.	Greenbelt, Md. Spaco, Inc.	(S) 30	6 78	5 .18	64.	Washington, D.C. Computer Application, Inc.		93	3 461	.09
46.	Huntsville, Ala. Ball Brothers Research Corp.	4	6 64	8 .17	65.	-	(S)	86	3 360	.09
47.	Boulder, Colo. Dow Chemical Co.	5	6 47	1 .17	66.	Arlington, Va. Computing & Software, Inc.		71	3 337	.09
48.	Titusville, Fla. ILC Industries, Inc.	5(6 33	6 .16	67.	Greenbelt, Md. Electronic Associates, Inc.		59	3 312	.09
49.	Dover, Del. Documentation, Inc.	4:	5 88	30 .15	68.	West Long Branch, N.J. Pacific Crane & Rigging Co.		48	3 234	.08
5 0.	College Park, Md. Warrior/Natkin/Nat'l. Electric				69.	Kennedy Space Center, Fla. Lawrence, J. H. Co.	(S)	_	3 226	.08
	Houston, Tex.	5			70.	Greenbelt, Md. Ampex Corp.		56	3 176	.08
51.	Sanders Associates, Inc. Nashua, N.H.				71.	Redwood City, Calif.		51	3 049	.08
52.	Zia Company Las Cruces, N.M.	5:				Wilmington, Mass.		57	2 896	.07
53.	Space-General Corp. El Monte, Calif.	4:			72.	Electro Optical Systems, Inc. Pasadena, Calif.		83	2 754	.07
54.	Management Services, Inc. Huntsville, Ala.	4			73.	Air Reduction Co. New Orleans, La.		03		
55.	Basic Construction Co. Hampton, Va.	-	- 473	.12	74.	Andover, Me.		-	2 745	.07
56.	Allis-Chalmers Manufacturing Co. Milwaukee, Wisc.	7	4 73	.12	75.	Int'l. Tel. & Tel. Corp. Fort Wayne, Ind.		67	2 651	.07

Table 5-26. Top One Hundred Contractors: FY 1967 (Continued)

				Net Value	of Awards ^b					Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a		Rank in FY 1966	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a		Rank in FY 1966	Thousands of Dollars	Percentage of Total
76.	Melpar, Inc. Greenbelt, Md.	(S)	64	2 640	.07	89.	Goodyear Aerospace Corp. Akron, Ohio			1 997	.05
77.	Radiation, Inc. Melbourne, Fla.		54	2 506	.06	90.	Greenhut Construction, Inc. Pensacola, Fla.	(S)	-	1 960	.05
78.	Texas Instruments, Inc. Dallas, Texas		81	2 440	.06	91.	Electro-Mechanical Research, Inc. College Park, Md.		79	1 945	.05
79.	Consolidated Electrodynamics Co Rochester, N.Y.	rp.	78	2 405	.06	92.	Kollsman Instrument Corp. Syosset, N.Y.		100	1 939	.05
80.	Systems Engrg. Lab., Inc. Ft. Lauderdale, Fla.	(S)	77	2 360	.06	93.	Minnesota Mining & Mfg. Co. Hutchinson, Minn.		91	1 935	.05
81.	GCA Corp. Bedford, Mass.		89	2 342	.06	94.	Sylvania Electric Products, Inc. Waltham, Mass.		69	1 880	.05
82.	New Orleans Public Service, Inc. New Orleans, La.		_	2 312	.06	95.	Pearce DeMoss King, Inc.	(S)	_	1 858	.05
83.	Western Electric Co. Cape Kennedy, Fla.		60	2 282	.06	96.	Huntsville, Ala. Hazeltine Corp.		_	1 807	.05
84.	Motorola, Inc. Scottsdale, Ariz.		63	2 219	.06	97.	New York, N.Y. Cleveland Electric Illuminating Co.		-	1 790	.05
85.	Dynalectron Corp. Houston, Tex.		_	2 162	.06	98.	Cleveland, Ohio ITT World Communications, Inc.		_	1 764	.05
86.	Keltec Industries, Inc. College Park, Md.		74	2 098	.05	99.	New York, N.Y. Marquardt Corp.		99	1 758	
87.	Virginia Electric Power Co. Hampton, Va.		87	2 053	.05		Van Nuys, Calif.))	,	.05
88.	Kaiser Industries Corp.		_	2 032	.05	100.	Western Union International, Inc. New York, N.Y.		_	1 742	.05
	Oakland, Calif.					H	Other			286 315	7.41

^aAwards during the year include awards on several contracts which have different principal places of performance. The place shown is that which has the largest amount of awards.

^cCombined awards to Douglas Aircraft Co., Inc., and McDonnell Aircraft Corp.

Source: NASA, Annual Procurement Report, FY 1967.

bData for individual companies include awards on R&D contracts of \$10 000 and over and on all other contracts of \$25 000 and over.

⁽S) Indicates small business.

Table 5-27. Top One Hundred Contractors: FY 1968

			Net Value	of Awards ^b				Net Value o	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1967	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1967	Thousands of Dollars	Percentage of Total
	Total Awards to Business		3 446 703	100.00	19.	Trans World Airlines, Inc. Kennedy Space Center, Fla.	19	25 275	.73
1.	North American Rockwell Corp. Downey, Calif.	1	838 734	24.33	20.	Federal Electric Corp. Kennedy Space Center, Fla.	26	21 998	.64
2.	Grumman Aircraft Engrg. Corp. Bethpage, N.Y.	2	394 138	11.43	21.	Catalytic-Dow (joint venture) Kennedy Space Center, Fla.	-	18 836	.55
3.	Boeing Co.	3	296 683	8.61	22.	United Aircraft Corp. Windsor Locks, Conn.	16	18 084	.52
4.	New Orleans, La. McDonnell Douglas Corp.	4	209 001	6.06	23.	Brown Engineering Co., Inc. Huntsville, Ala.	23	16 336	.47
5.	Santa Monica, Calif. General Electric Co. Daytona Beach, Fla.	6	190 723	5.53	24.	Honeywell, Inc. St. Petersburg, Fla.	21	15 749	.46
6.	Int'l. Business Machines Corp.	5	147 653	4.28	25.	Control Data Corp. Minnea polis, Minn.	42	15 518	.45
7.	Huntsville, Ala. Bendix Corp. Owings Mills, Md.	7	123 832	3.59	26.	Northrop Corp. Huntsville, Ala.	40	15 378	.45
8.	Aerojet-General Corp. Sacramento, Calif.	8	67 073	1.95	27.	Union Carbide Corp. Sacramento, Calif.	25	15 345	.45
9.	Radio Corporation of America Princeton, N.J.	12	63 212	1.83	28.	Brown/Northrop (joint venture) Houston, Tex.	33	14 522	.42
0.	Chrysler Corp. New Orleans, La.	9	62 627	1.82	29.	General Precision Systems, Inc. Houston, Tex.	20	12 424	.36
1.	General Dynamics Corp. San Diego, Calif.	11	54 444	1.58	30.	Mason-Rust New Orleans, La.	30	12 094	.35
2.	TRW Inc. Houston, Tex.	13	52 395	1.52	31.	Computer Sciences Corp. Huntsville, Ala.	27	11 796	.34
3.	General Motors Corp. Milwaukee, Wisc.	10	46 838	1.36	32.	Garrett Corporation Los Angeles, Calif.	36	10 661	.31
4.	LTV Aerospace Corp. Dallas, Tex.	14	42 705	1.24	33.	Bellcomm, Inc. Washington, D.C.	35	10 000	.29
5.	Lockheed Aircraft Corp. Houston, Tex.	15	40 460	1.17	34.	Hughes Aircraft Co. Culver City, Calif.	22	9 675	.28
6.	Philco-Ford Corp. Houston, Tex.	18	31 969	.93	35.	Comm. Satellite Corp. Andover, Me.	74	8 460	.25
7.	Sperry Rand Corp. Huntsville, Ala.	17	31 823	.92	36.	ILC Industries, Inc. Dover, Del.	48	8 085	.23
8.	Martin Marietta Corp. Denver, Colo.	24	26 791	.78	37.	Vitro Corporation of America Huntsville, Ala.	38	7 513	.22

NASA PROCUREMENT

Table 5-27. Top One Hundred Contractors: FY 1968 (Continued)

,			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ²	Rank in FY 1967	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1967	Thousands of Dollars	Percentage of Total
38.	Westinghouse Electric Corp. Friendship Airport, Md.	32	7 370	.21	57.	Wackenhut Services, Inc. Houston, Tex.		3 669	.11
39.	Fairchild Hiller Corp. Greenbelt, Md.	34	6 747	.20	58.	American Tel. & Tel. Co. Greenbelt, Md.	58	3 650	.11
40.	American Science & Engrg., Inc. (S)	59	6 471	.19	59.	Scientific Data Systems Santa Monica, Calif.	44	3 336	.10
41.	Cambridge, Mass. Leasco Systems & Research Corp.	49	6 291	.18	60.	Thiokol Chemical Corp. Brunswick, Ga.	29	3 310	.10
42.	College Park, Md. Spaco, Inc. (S)	45	6 039	.18	61.	Aero Spacelines, Inc. (S) Van Nuys, Calif.	60	3 177	.09
43.	Huntsville, Ala. Radiation, Inc.	77	5 507	.16	62.	Graham Engineering Co., Inc. (S) Houston, Tex.	43	3 112	09
44.	Melbourne, Fla. Zia Co.	52	5 364	.16	63.	Computer Application, Inc. New York, N.Y.	64	3 108	.09
45.	Las Cruces, N.M. Avco Corp. Lowell, Mass.	71	5 309	.15	64.	Chesapeake & Potomac Tel. Co. Greenbelt, Md. Southern Bell Tel. Co.	- 57	3 089 2 970	.09
46.	Management Services, Inc. Huntsville, Ala.	54	5 302	.15	66.	Kennedy Space Center, Fla. Dynalectron Corp.	85	2 961	.09
47.	Air Products & Chemicals, Inc. Allentown, Pa.	28	5 244	.15	67.	Houston, Tex. Wolf Research & Develop. Corp.	65	2 950	.09
18.	Sanders Associates, Inc. Nashua, N.H.	51	5 231	.15	68.	Arlington, Va. Texas Instruments, Inc.	78	2 780	.08
49 .	Computing & Software, Inc. Greenbelt, Md.	66	4 721	.14	69.	Attleboro, Mass. Electronic Associates, Inc.	67	2 672	.08
50.	Perkin-Elmer Corp. Norwalk, Conn.	62	4 717	.14	70.	West Long Branch, N.J. Comcor, Inc.	_	2 502	.07
51.	Ball Brothers Research Corp. Boulder, Colo.	46	4 496	.13	71.	Anaheim, Calif. Lawrence, J. H. Co. (S)	69	2 460	.07
52.	Teledyne, Inc. Northridge, Calif.	-	4 177	.12	72.	Greenbelt, Md. Catalytic Construction Co.	31	2 423	.07
3.	Weston Instruments, Inc. College Park, Md.	_	4 037	.12	73.	Kennedy Space Center, Fla. Int'l. Tel. & Tel. Corp.	75	2 285	.07
4.	Minnesota Mining & Mfg. Co. Hutchinson, Minn.	93	4 009	.12	74.	Fort Wayne, Ind. SJ Industries, Inc. (S)	_	2 235	.06
5.	Bell Aerospace Corp. Buffalo, N.Y.	39	3 720	.11	75.	Alexandria, Va. Western Gear Corp. Hampton, Va.	-	2 227	.06
56.	Hayes International Corp. Birmingham, Ala.	41	3 702	.11	76.	Cleveland Elec. Illuminating Co. Cleveland, Ohio	97	2 210	.06

Table 5-27. Top One Hundred Contractors: FY 1968 (Continued)

			Net Value	of Awards ^b				Net Value	of Awards ^b
	Contractor and Place of Contract Performance ^a	Rank in FY 1967	Thousands of Dollars	Percentage of Total		Contractor and Place of Contract Performance ^a	Rank in FY 1967	Thousands of Dollars	Percentage of Total
77.	Textron, Inc. Sylmar, Calif.	-	2 110	.06	89.	Klate Holt Co. (Houston, Tex.	S) –	1 621	.05
78.	Virginia Electric Power Co. Hampton, Va.	87	2 109	.06	90.	Goodyear Aerospace Corp. Akron, Ohio	89	1 610	.05
79.	Collins Radio Co. Richardson, Tex.	-	2 092	.06	91.	Western Union Telegraph Co. Huntsville, Ala.	63	1 537	.04
80.	Chicago Bridge & Iron Co. Hampton, Va.	_	2 081	.06	92.	Memorex Corp. Santa Clara, Calif.	-	1 528	.04
81.	Ampex Co.p. Redwood City, Calif.	70	2 023	.06	93.	Wyle Laboratories Hampton, Va.	_	1 515	.04
82.	Potomac Electric Power Co. Greenbelt, Md.	-	1 973	.06	94.	Motorola, Inc. Scottsdale, Ariz.	84	1 513	.04
83.	Electro Optical Systems, Inc.	72	1 847	.05	95.	Hazeltine Corp. New York, N.Y.	96	1 454	.04
84.	Pasadena, Calif. Western Electric Co., Inc.	83	1 803	.05	96.	Systems Engrg. Labs., Inc. (Ft. Lauderdale, Fla.	S) 80	1 440	.04
85.	Cape Kennedy, Fla. ITT World Communications, Inc.	98	1 782	.05	97.	Xerox Corp. Kennedy Space Center, Fla.		1 347	.04
86.	New York, N.Y. Beckman Instruments, Inc.	_	1 755	.05	98.	Southwestern Bell Tel. Co. Houston, Tex.	_	1 346	.04
87.	Fullerton, Calif. Astrodata, Inc.	_	1 702	.05	99.	Hewlett-Packard Co. Palo Alto, Calif.		1 315	.04
88.	Anaheim, Calif. Western Union Int'l., Inc.	100	1 635	.05	100.	A-V Corp. (Houston, Tex.	S) -	1 306	.04
00.	New York, N.Y.	100	2 000			Other		261 829	7.60

^aAwards during year include awards on several contracts which have different principal places of performance. The place shown is that which has the largest amount of awards.

(S) Indicates small business concerns.

Source: NASA, Annual Procurement Report, FY 1968.

bData for individual companies include awards on R&D contracts of \$10 000 and over and on all other contracts of \$25 000 and over.

Chapter Six NASA INSTALLATIONS

(Data as of 1968)

Chapter Six

NASA INSTALLATIONS

Contents

	Page
Introduction	223
Headquarters	229
Daytona Beach Operation	239
NASA Pasadena Office	240
Ames Research Center	245
Electronics Research Center	259
Flight Research Center	269
Goddard Space Flight Center	279
Goddard Institute for Space Studies	284
John F. Kennedy Space Center	297
Langley Research Center	313
Lewis Research Center	
Plum Brook Station	337
Manned Spacecraft Center	347
White Sands Test Facility	353
George C. Marshall Space Flight Center	377
Michoud Assembly Facility	383
Computer Operations Office	385
Mississippi Test Facility	386

AEC-NASA Space Nuclear Propulsion Office 43	11
Wallops Station	21
Former Field Activities 4:	
Liaison Office, Wright-Patterson Air Force Base	
NASA Office-Downey4:	39
North Eastern Office 44	40
Pacific Launch Operations Office 4	40
Western Support Office 4	46
Jet Propulsion Laboratory 4	53
Goldstone 4	
Edwards Test Station	59
Table Mountain Observatory	

Chapter Six

NASA INSTALLATIONS

List of Tables

Table		Page
	Introduction	
6-a	Distribution of FY 1968 Research and Development Budget Plan by Installation and Program Office	226
	Headquarters	
6-1	Capitalized Equipment Value	235
6-2	Personnel	235
6-3	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	237
6-4	Funding by Fiscal Year	238
6-5	Total Procurement Activity by Fiscal Year	238
6-6	Personnel: NASA Daytona Beach Operation	239
6-7	Industrial Real Property: NASA Pasadena Office	242
6-8	Personnel: NASA Pasadena Office-JPL	243
6-9	Funding by Fiscal Year: NASA Pasadena Office	243
6-10	Total Procurement Activity by Fiscal Year: NASA Pasadena Office	244
	Ames Research Center	
6-11	Technical Facilities: Wind Tunnels	249
6-12	Technical Facilities Other Than Wind Tunnels	251
6-13	Property	252
6-14	Value of Real Property Components as Percentage of Total	253

6-15	Personnel	254
6-16	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	
6-17	Funding by Fiscal Year	256
6-18	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	
6-19	Total Procurement Activity by Fiscal Year	257
6-20	Awards to Personnel Granted under Section 306 of the Space Act of 1958	
	Electronics Research Center	
6-21	Property	264
6-22	Personnel	265
6-23	Distribution of Permanent Positions by Fiscal Year and Budget Activity	266
6-24	Funding by Fiscal Year	
6-25	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	267
6-26	Total Procurement Activity by Fiscal Year	
	Flight Research Center	
6-27	Technical Facilities	
6-28	Property	274
6-29	Value of Real Property Components as Percentage of Total	
6-30	Personnel	275
6-31	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	277
6-32	Funding by Fiscal Year	277
6-33	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	278
6-34	Total Procurement Activity by Fiscal Year	278
	Goddard Space Flight Center	
6-35	Technical Facilities: Environmental Test Chambers	286

6-36	Technical Facilities Other Than Environmental Test Chambers	287
6-37	Property	289
6-38	Value of Real Property Components as Percentage of Total	290
6-39	Personnel	29
6-40	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	293
6-41	Funding by Fiscal Year	294
6-42	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	294
6-43	Total Procurement Activities by Fiscal Year	295
6-44	Awards to Personnel Granted under Section 306 of the Space Act of 1958	295
	John F. Kennedy Space Center	
6-45	Technical Facilities: Launch Complex 39 at Kennedy Space Center	303
6-46	Technical Facilities at Kennedy Space Center Other Than Launch Complex 39	304
6-47	Technical Facilities: NASA Launch Complexes at Cape Kennedy Air Force Station	305
6-48	NASA Technical Facilities at Cape Kennedy Air Force Station Other Than Launch Complexes	306
6-49	Property	308
6-50	Value of Real Property Components as Percentage of Total	309
6-51	Personnel	310
6-52	Personnel: Western Test Range Operations	310
6-53	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	311
6-54	Funding by Fiscal Year	311
6-55	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	312
6-56	Total Procurement Activity by Fiscal Year	312
	Langley Research Center	
6-57	Technical Facilities: Wind Tunnels	319
6-58	Technical Facilities: Environmental Test Chambers	322

6-59	Technical Facilities Other Than Wind Tunnels and Environmental Test Facilities	323
6-60	Industrial Real Property	
6-61	Property	327
6-62	Value of Real Property Components as Percentage of Total	
6-63	Personnel	
6-64	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	
6-65	Funding by Fiscal Year	
6-66	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	
6-67	Total Procurement Activity by Fiscal Year	
6-68	Awards to Personnel Granted under Section 306 of the Space Act of 1958	
	Lewis Research Center	,
6-69	Technical Facilities: Wind Tunnels	338
6-70	Technical Facilities Other Than Wind Tunnels	338
6-71	Technical Facilities: Plum Brook Station	339
6-72	Industrial Real Property	340
6-73	Property	
6-74	Value of Real Property Components as Percentage of Total	342
6-75	Personnel	342
6-76	Personnel: Plum Brook	344
6-77	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	344
6-78	Funding by Fiscal Year	345
6-79	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	
6-80	Total Procurement Activity by Fiscal Year	346
6-81	Awards to Personnel Granted under Section 306 of the Space Act of 1958	

Manned Spacecraft Center

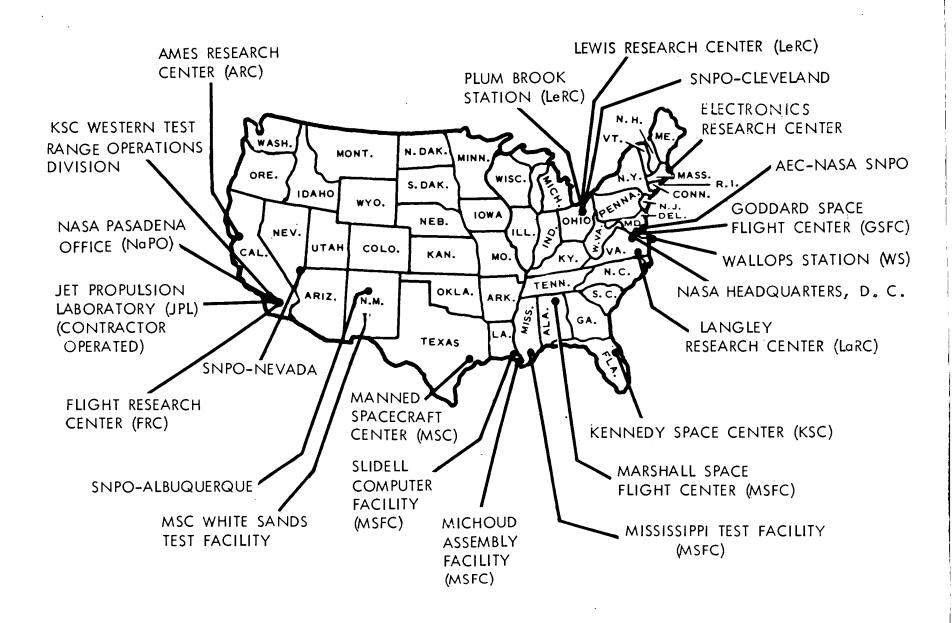
6-82	Technical Facilities: Crew Systems	35
6-83	Technical Facilities: Environmental Test Chambers	35
6-84	Technical Facilities: Flight Simulation and Training	358
6-85	Technical Facilities: Guidance and Control	360
6-86	Technical Facilities: Instrumentation and Electronics Systems	36
6-87	Technical Facilities: Propulsion and Power, Landing and Recovery, and Information Systems	364
6 -88	Technical Facilities: Space Science	36:
6-89	Technical Facilities: Structures and Mechanics	366
6-90	Technical Facilities: White Sands Test Facility	368
6-91	Industrial Real Property	370
6-92	Property	3 7 1
6-93	Value of Real Property Components as Percentage of Total	372
6-94	Personnel	372
6-95	Personnel: White Sands Test Facility	374
6-96	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	374
6-97	Funding by Fiscal Year	375
6-98	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	375
6-99	Total Procurement Activity by Fiscal Year	376
6-100	Awards to Personnel Granted under Section 306 of the Space Act of 1958	376
	Marshall Space Flight Center	
6-101	Technical Facilities: Aero-Astrodynamics	388
6-102		
6-103	Technical Facilities: Manufacturing and Engineering	

6-104	Technical Facilities: Propulsion and Vehicle Engineering	390
6-105	Technical Facilities: Quality and Reliability Assurance	391
6-106	Technical Facilities: Research Projects	392
6-107		393
	Technical Facilities: Michoud Assembly Facility	
	Technical Facilities: Mississippi Test Facility	
6-110	Industrial Real Property	
6-111	Property	398
6-112	Property: Michoud Assembly Facility	399
	Property: Computer Operations Office	400
6-114	Property: Mississippi Test Facility	401
6-115	Value of Real Property Components as Percentage of Total Including Huntsville, Component Installations, and Industrial Property.	402
6-11o	Value of Real Property Components as Percentage of Total Including Huntsville and Industrial Property	402
6-117	Value of Real Property Components as Percentage of Total: Michoud Assembly Facility	403
6-118	Value of Real Property Components as Percentage of Total: Computer Operations Office	403
	Value of Real Property Components as Percentage of Total: Mississippi Test Facility	
6-120	Personnel	404
6-121	Personnel: Michoud Assembly Facility (Including Computer Operations Office)	
6-122	Personnel: Mississippi Test Facility	406
6-123	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	
6-124		
6-125		408
6-126	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Michoud Assembly Facility (Including Computer Operations Office)	409
6-127	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Mississippi Test Facility	409

NASA INSTALLATIONS

6-128	Total Procurement Activity by Fiscal Year	410
6-129	Awards to Personnel Granted under Section 306 of the Space Act of 1958	410
	AEC-NASA Space Nuclear Propulsion Office	
6-130	Industrial Real Property: SNPO-Cleveland	416
6-131	Property	416
6-132	Value of Real Property Components as Percentage of Total	417
6-133	Personnel	417
	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	
6-135	Funding by Fiscal Year	418
6-136	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	419
6-137	Total Procurement Activity by Fiscal Year	419
	Wallops Station	
6-138	Technical Facilities: Launch	426
6-139	Technical Facilities: Radar and Tracking	427
6-140	Technical Facilities: Telemetry	428
6-141	Technical Facilities Other Than Launch, Radar and Tracking, Telemetry	429
6-142	Industrial Real Property	430
6-143	Property	431
6-144	Value of Real Property Components as Percentage of Total	432
6-145	Personnel	433
6-146	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity	434
6-147	Funding by Fiscal Year	434
c 1.40		
6-148	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	435

NASA HISTORICAL DATA BOOK


Former Field Activities

. 150	Personnel: NASA Office-Downey	439
	Property: Pacific Launch Operations Office	443
	Value of Real Property Components as Percentage of Total: Pacific Launch Operations Office	
	Personnel: Pacific Launch Operations Office	
6-154	Funding by Fiscal Year: Pacific Launch Operations Office	445
6-155	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Pacific Launch Operations Office.	445
6-156	Industrial Real Property: Western Support Office	447
6-157	Property: Western Support Office	448
6-158	Value of Real Property Components as Percentage of Total: Western Support Office	449
	Personnel: Western Support Office	
	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity: Western Support Office	
6-161	Funding by Fiscal Year: Western Support Office	452
6-162	Total Procurement Activity by Fiscal Year: Western Support Office	452
	Jet Propulsion Laboratory	
	Technical Facilities: Wind Tunnels	
6-164	Technical Facilities: Environmental Test Chambers	462
6-165	Technical Facilities Other Than Wind Tunnels and Environmental Test Chambers	463
6-166	Technical Facilities: Edwards Test Station	46 6
6-167	Technical Facilities: Table Mountain Observatory	468
6-168	Property	469
6-169	Value of Real Property Components as Percentage of Total	469
6-170	Personnel: Jet Propulsion Laboratory	470
	Actual Obligations for Construction of Facilities by Fiscal Year and Program Year	
	Awards to Personnel Granted under Section 306 of the Space Act of 1958	

NATIONAL AERONAUTICS AND SPACE ACT OF 1958, AS AMENDED Section 203(b)

(b) In the performance of its functions the Administration is authorized—

(3) to acquire (by purchase, lease, condemnation, or otherwise), construct, improve, repair, operate, and maintain laboratories, research and testing sites and facilities, aeronautical and space vehicles. quarters and related accommodations for employees and dependents of employees of the Administration, and such other real and personal property (including patents), or any interest therein, as the Administration deems necessary within and outside the continental United States; to acquire by lease or otherwise, through the Administrator of General Services, buildings or parts of buildings in the District of Columbia for the use of the Administration for a period not to exceed ten years without regard to the Act of March 3, 1877 (40 U.S.C. 34); to lease to others such real and personal property; to sell and otherwise dispose of real and personal property (including patents and rights thereunder) in accordance with the provisions of the Federal Property and Administrative Services Act of 1949, as amended (40 U.S.C. 471 et seq.)....

Chapter Six NASA INSTALLATIONS

Introduction

On October 1, 1958, NASA consisted of a Headquarters staff in Washington and nearly 7700 persons working in the research laboratories that had been part of the National Advisory Committee for Aeronautics. Since the establishment of the first laboratory in 1917, these NACA laboratories with their personnel and facilities had formed the Nation's chief governmental research capability in aeronautics. With the signing of the National Aeronautics and Space Act on July 29, 1958, President Eisenhower implemented the decision made in March 1958 that the civilian space program would be built on the NACA core.

The installation profiles in this chapter describe this effort to structure a new agency. They also show the impact of NASA's program acceleration after 1961 and present a detailed picture of each installation complementary to the overall view of previous chapters.

Of the 7867 persons who became NASA permanent employees on October 1, 1958, more than one third were aeronautical research scientists or engineers. Nearly all of them worked in the field at the three laboratories which became "Centers" with the establishment of NASA—Langley Research Center, Ames Research Center, and Lewis Research Center—and at the High Speed Flight Station (renamed Flight Research Center in 1959). These experienced persons brought to NASA a basic strength in aerodynamics, propulsion, structures, and materials research.

Expansion of the capabilities of the basic group of NASA installations began in December 1958 (see Figure 6-1) when contract functions and Government-owned facilities of the California Institute of Technology's Jet Propulsion Laboratory were transferred from the U.S. Army to NASA. Scientists and engineers at Jet Propulsion Laboratory brought NASA additional competence in spacecraft technology, propulsion, lunar and planetary sciences, and deep-space tracking and data acquisition.

The first new NASA installation was authorized by Congress in August

1958 and was under construction in Greenbelt, Maryland, by the end of FY 1959. The new Center, designated Goddard Space Flight Center, was built to house NASA space flight programs, with an initial complement of earth satellite specialists transferred from the Naval Research Laboratory.

Since the summer of 1946, Langley's Pilotless Aircraft Research Division had operated the experimental station on Wallops Island established under the Langley Research Division in 1945. In 1959 Wallops Station, with its sounding rocket launch facilities, became an autonomous NASA installation.

In 1960 Marshall Space Flight Center was established in Huntsville, Alabama, with the transfer to NASA of the U.S. Army Ballistic Missile Agency's Development Operations Division. This transfer—effective July 1, 1960—added to NASA engineering strength in launch operations and launch vehicle design, development, assembly, and testing.

The decision to "take longer strides" in space by accelerating the Apollo, Rover, and applications satellite programs became public when President Kennedy delivered his second State of the Union message to a joint session of Congress on May 25, 1961. He urged commitment of national resources to the goal of landing men on the moon and returning them safely to earth before the decade was out and asked for quicker development of the nuclear rocket and worldwide weather and communications satellite systems.

Congress endorsed his proposals and, one week after the passage of the FY 1962 Appropriations Act, NASA announced on August 24, 1961, that Cape Canaveral had been chosen as the site for manned lunar mission launches. Acquisition of acreage in the Merritt Island area began before the end of the year, with funds reprogrammed from the NASA research and development account. At that time, all NASA launches were conducted either at Wallops Station or from U.S. Air Force facilities at Cape Canaveral, where Marshall Space Flight Center maintained its Launch Operations Directorate.

To meet precise schedules planned for lunar missions, not only launch facilities but all installations for manned space flight had to be located where year-round operations were possible. Originally NASA's manned space flight

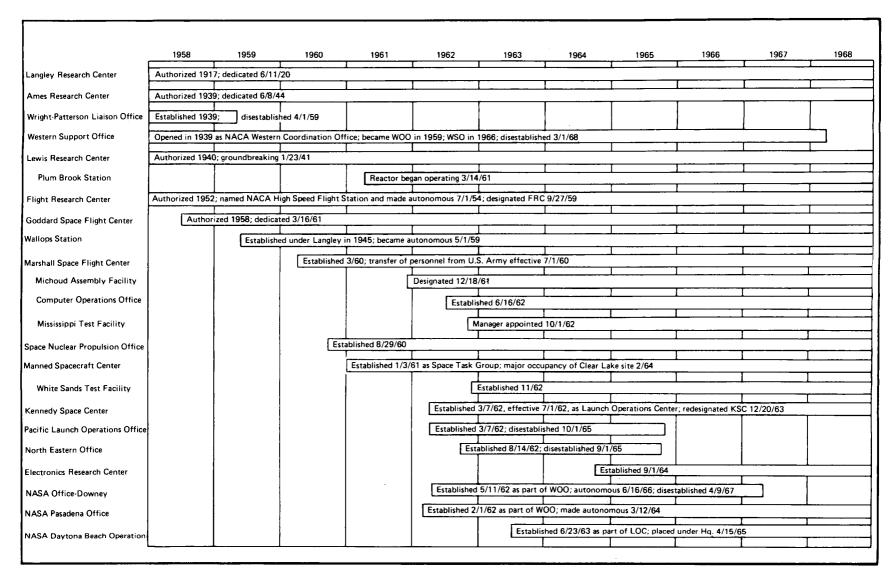


Figure 6-1. NASA installations, 1958-1968.

program had been expected to move to Goddard Space Flight Center, but with the lunar landing decision the expanding program needed separate facilities. On September 19, 1961, NASA announced that a new Manned Spacecraft Center would be built near Houston, Texas.

Two more sites in a temperate climate were required for assembling and testing of launch vehicles. On September 7, 1961, NASA announced its decision to convert an Army manufacturing plant in New Orleans into a launch vehicle assembly facility. The new fabrication site, later designated Michoud Assembly Facility, was to accommodate several contractors under one roof. Organizationally, it was part of Marshall Space Flight Center, which had been assigned responsibility for development of Saturn launch vehicles. A second component of Marshall, near Michoud along the inland water route from Huntsville to the Gulf of Mexico, was announced on October 25, 1961. This site in southwestern Mississippi, later designated Mississippi Test Facility, was to serve as a central test area for launch vehicles and engines.

To carry out the accelerated nuclear rocket program, in July 1961 NASA signed a new, more detailed agreement with the Atomic Energy Commission for the joint Space Nuclear Propulsion Office. In February 1962, NASA and the AEC announced establishment of the Nuclear Rocket Development Station in Nevada.

In March 1962, Marshall's Launch Operations Directorate reorganized, and NASA established two new field installations—Pacific Launch Operations Office and the Launch Operations Center, renamed on December 23, 1963, the John F. Kennedy Space Center, NASA. On October 1, 1965, Pacific Launch Operations Office was disestablished and all NASA launch responsibilities, except for Scout vehicle launches (supervised by Langley Research Center), were consolidated under Kennedy Space Center.

In late 1961 NASA began efforts to remedy a remaining gap in its in-house technical competence. Space flight experience had shown a need for increasing capabilities in electronics research and technology, and NASA's Office of Advanced Research and Technology recommended establishment of a new center specializing in this field. In January 1963, the NASA FY 1964 budget request sent to Congress included \$5 million to begin the new installation and on September 1, 1964, Electronics Research Center was officially established in Cambridge, Massachusetts.

Providing administrative and other support for these field installations were several NASA field offices—the Wright-Patterson Air Force Base Liaison Office, Western Support Office (which evolved from a small NACA California

liaison office), NASA Pasadena Office, NASA North Eastern Office, and NASA Office-Downey. By mid-1968 all these offices had been disestablished except the NASA Pasadena Office, which administered the contract with California Institute of Technology for the operation of Jet Propulsion Laboratory.

Division of effort among the Centers in the early years of NASA was based on an unavoidable distinction between the established Centers that were formerly NACA-operated and the rapidly growing new Centers. Langley, Ames, Lewis, and Flight—occupied with advanced research and technology studies—were thought of as "research" Centers, while Goddard and Marshall (the new "space flight" Centers), Manned Spacecraft Center, and Jet Propulsion Laboratory were considered principally "development" Centers. During this period the development Centers were encouraged to devote a portion of their resources to supporting research, and research Centers were assigned specific development projects closely related to their fields. Lewis's Centaur project, Ames' Pioneer project, and Langley's Scout project were examples of this project distribution.

For an initial period of two years following the manned lunar landing decision, Center directors were placed under the Associate Administrator to clarify and strengthen his central position as general manager. When the program expansion demanded further refinement of the functional management structure in Headquarters to operate the complex programs as a whole, the field installations began in late 1963 to report directly to Associate Administrators of Headquarters program offices, rather than to general management. After November 1963, Marshall, Manned Spacecraft, and Kennedy Space Centers reported to the Office of Manned Space Flight; Goddard, Wallops, Jet Propulsion Laboratory, and Pacific Launch Operations Office reported to the Office of Space Science and Applications; and Ames, Flight, Langley, and Lewis reported to the Office of Advanced Research and Technology. Based on primary program activity of the installation, rather than on a distinction between research and development work, this organizational lineup was still effective in mid-1968. The proportion of work performed by the Centers in each major program area during FY 1968 is indicated in Table 6-a.

This chapter presents data on Headquarters and current NASA field installations arranged alphabetically. Installations that no longer exist are grouped in the section of former field activities. Information on location, land, and leadership; a summary history, documented to a list of sources; and

NASA HISTORICAL DATA BOOK

Table 6-a. Distribution of FY 1968 Research and Development Budget Plan by Installation and Program Office (in thousands)

Installation	Manned Space Flight	Space Science and Applications	Advanced Research and Technology	Tracking and Data Acquisition	University Affairs	Technology Utilization	Total Budget Plan
Installation			e 25 004	\$ 10 500	\$10 000	\$4000	\$ 155 339
Headquarters	\$ 52 700	\$ 52 235	\$ 25 904	(6.8)	(6.4)	(2.6)	(3.9)
(% of total budget plan)	(33.9)	(33.6)	(16.7) 23 502	0.0)	0	0	65 046
Ames Research Center	0	41 544		U			(1.6)
(% of total budget plan)		(63.9)	(36.1)	0	0	0	26 270
Electronics Research Center	2 000	3 615	20 655	U	•		(0.7)
(% of total budget plan)	(7.6)	(13.8)	(78.6)	2 100	0	0	23 768
Flight Research Center	0	0	21 668	(8.8)	· ·		(0,6)
(% of total budget plan)			(91.2)	197 350	0	0	417 063
Goddard Space Flight Center	3 100	207 607	9 006		v		(10.5)
(% of total budget plan)	(0.7)	(49.8)	(2.2)	(47.3)	0	0	362 065
Kennedy Space Center	356 600	5 290	175	0	U	·	(9.1)
(% of total budget plan)	(98.5)	(1.5)	*	1 000	0	0	85 391
Langley Research Center	1 000	25 717	56 774	1 900	U	v	(2.2)
(% of total budget plan)	(1.2)	(30.1)	(66.5)	(2.2)	0	0	139 063
Lewis Research Center	0	79 800	59 263	0	U	v	(3.5)
(% of total budget plan)		(57.4)	(42.6)	•	0	0	1 283 429
Manned Spacecraft Center	1 271 900	7 109	4 420	0	U	U	(32.3)
(% of total budget plan)	(99.1)	(0.6)	(0.3)		0	0	1 139 860
Marshall Space Flight Center	1 121 100	1 276	17 090	400	U	U	(28.7)
(% of total budget plan)	(98.4)	(0.1)	(1.5)	*	0	0	49 700
Space Nuclear Propulsion Office	0	0	49 700	0	0	U	(1.3)
(% of total budget plan)			(100.0)		•	0	8 57
	0	1 640	535	6 400	0	U	(0.2)
Wallops Station		(19.1)	(6.2)	(74.6)	_	0	18 30
(% of total budget plan)	0	11 800	6 506	0	0	. 0	(0.5)
Western Support Office	ŭ	(64.5)	(35.5)		_	•	196 71
(% of total budget plan)	800	115 217	23 502	57 200	0	0	(5.0)
Jet Propulsion Laboratory	(0.4)	(58.6)	(11.9)	(29.1)			(3.0)
(% of total budget plan)	(0.4)	(00.0)	• •				#2 070 CO
21. 62. 4. 1	\$2 809 200	\$552 850	\$318 700	\$278 850	\$10 000	\$4000	\$3 970 60
NASA total (% of total budget plan)	(70.8)	(13.9)	(8.0)	(7.0)	(0.3)	(0.1)	(100.0)

^{*=}Less than 0.1%. Because of rounding, percentages may not add to 100.0.

Source: NASA, Budget Estimates, Fiscal Year 1969, 1, SA-2.

tables on property, personnel, finances, and procurement are given for each installation and its components. These tables offer an installation-by-installation look at data presented for NASA as a whole in other chapters of the book. Definitions of terms used in the tables of Chapter Six may be found in introductions to pertinent preceding chapters.

Tables listing recipients of NASA incentive and contributon awards are given at the end of each installation section. These lists represent, within the limitations of the present volume, a partial substitute for two elements of an installation's history not examined here—the people and their activities. Future program and Center histories should provide the detail omitted in this chapter.

NASA HEADQUARTERS

In 1958 NASA Headquarters was housed in the Dolley Madison House (left), 1520 H Street, N.W., Washington, D.C. In 1963 the new Headquarters offices were in Federal Office Building No. 6 at 400 Maryland Avenue, S.W., south of the Mall, with a view of the National Capitol and the Library of Congress.

1963

NASA HEADQUARTERS

(Hq.)

Location:

Washington, D.C.

Land:

None. As of June 30, 1968, NASA Headquarters occupied all or part of the following Government-owned, GSA-leased, or contractor-leased buildings:

Federal Office Building No. 6, 400 Maryland Ave., S W

Federal Office Building No. 10B, 600 Independence Ave., S.W.

Reporters Building, 300 7th Street, S.W.

Temporary E, 4th Street and Adams Drive, S.W.

Building at 1100 17th Street, N.W. (contractor-leased).

Van Ness Center, 4301 Connecticut Ave., N.W. (contractor-leased).

NASA Warehouse, 1411 South Fern Street, Arlington, Va.

NASA Scientific and Technical Information Facility, 5007-09 Calvert Street, College Park, Md.

Administrator:

Thomas O. Paine (Oct. 7, 1968-, Acting Administrator). James E. Webb (Feb. 14, 1961-Oct. 7, 1968).

T. Keith Glennan (Aug. 19, 1958-Jan. 20, 1961).

Deputy Administrator:

Thomas O. Paine (March 25, 1968-Oct. 7, 1968). Robert C. Seamans, Jr. (Dec. 21, 1965-Jan. 5, 1968). Hugh L. Dryden (Sept. 19, 1958-†Dec. 2, 1965).

Associate Administrator:

Homer E. Newell (Oct. 1, 1967-).

Robert C. Seamans, Jr. (Sept. 1, 1960-Oct. 1, 1967). Richard E. Horner (June 1, 1959-July 15, 1960).

History

The National Advisory Committee for Aeronautics (NACA) Headquarters moved in June 1954 from 1724 F Street, N.W., to the Wilkins Building at 1512 H Street, N.W.¹ It was still on H Street in the fall of 1957 when the launch of the U.S.S.R.'s Sputnik I led to a thorough examination of existing United States space activities and a debate on the Nation's long-range space program, particularly on the extent to which it should be civilian in orientation. NACA management developed space program proposals during early 1958, and on March 5 President Eisenhower approved the recommendations of his Advisory Committee on Government Organization that a civilian space agency be built on the existing NACA structure. On April 2 draft legislation to establish a National Aeronautics and Space "Agency" was sent to Congress, and the NACA was directed to plan the reorientation of its programs, internal organization, and management structure to carry out the new functions to be assigned to NASA.³

After the signing of the Space Act on July 29, 1958, the group planning NASA sought additional building space. In September 1958, the first NASA Administrator occupied the newly acquired Dolley Madison House at 1520 H Street, N.W. Built in 1830 by Benjamin Tayloe, this building had been occupied by the wife of President James Madison from 1837 to 1849. Around the turn of the twentieth century, when the building was called the Cosmos Club, it provided temporary quarters in Washington for the Wright

¹ NACA Headquarters had been on F Street since 1948; from 1942 to 1947, it occupied the Leiter Mansion at 1500 New Hampshire Avenue, N.W.; 1920-1941, the Navy Building; 1918-1919, a building at 4th Street and Missouri Avenue; 1916-1917, the Munsey Building; and in 1915, the State, War, and Navy Department Building.

² Day book, William M. Thompson, General Systems Branch Chief, NASA Financial Management Division, formerly NACA Fiscal Officer; Rosholt, Administrative History of NASA, Chapter One.

³ Memorandum for the President from the President's Advisory Committee on Government Organization, March 5, 1958; cited in Rosholt, Administrative History of NASA, 8-10.

brothers. On October 1, 1958, Dolley Madison House officially became the first home of NASA Headquarters.4

Between July and October 1961, part of NASA Headquarters moved into the newly completed Federal Office Building No. 6, which it shared with the Department of Health, Education, and Welfare. On November 8, 1963, NASA offices began occupancy of a second new Federal Office Building, No. 10B. Other NASA personnel, who since 1963 had occupied the Universal Building, North, at 1875 Connecticut Avenue, N.W., moved in October and November 1965 to the Reporters Building at 300 7th Street, S.W., near the two NASA-occupied Federal Office Buildings. NASA's Procurement Division vacated the Universal Building in April 1966 for space in No. 10B, and in August 1968 the Apollo Program Office left No. 10B to initiate a planned series of moves into L'Enfant Plaza North Building.⁵

This physical expansion reflected the overall growth of NASA. It was also a visible measure of increasingly complex Headquarters functions assumed in the transition from the NACA, with its FY 1958 appropriation of \$117.3 million, to an agency with an appropriation of nearly \$2 billion by FY 1962, and a peak of \$5.3 billion in FY 1965.

Initially, the chief task of Headquarters was to form a unified agency out of disparate entities from the NACA and the Naval Research Laboratory brought together by Executive Order 10783 on October 1, 1958, and subsequent transfers from the U.S. Army of the Jet Propulsion Laboratory and the Development Operations Division of the Army Ballistic Missile Agency. The NACA laboratories had operated with a relatively high degree of autonomy; their program and policy direction had emanated from a small Headquarters organization that permitted many informal and direct contacts.6

The NACA had been led by a Director, Executive Secretary, and Associate Director for Research. The first official NASA Headquarters organization

retained a trio of top management positions—Administrator, Deputy Administrator, and Associate Administrator. Program activities in 1958 were divided between "research" and "development," but after a little more than a year this distinction was changed to "advanced research" and "space flight," with an additional category for launch vehicle programs. A few months later, a fourth program area of life sciences was established.

In 1961 the importance of Headquarters as central coordinator of the agency's projects was heightened by a national policy decision that clarified the immediate goals of United States efforts in space. On May 25, 1961, President Kennedy urged a joint session of Congress to accelerate the Nation's space program by committing resources to a manned lunar landing before the end of the decade and to development of a nuclear rocket and worldwide applications satellite systems. Congress approved his proposal in authorizations enacted in July and the Appropriations Act for FY 1962 in August 1961.

To implement these national objectives, NASA had to expand. Sudden growth demanded immediate solutions to administrative and program problems of directing interrelated research and development projects. Two basic problems were the demarcation of major program areas and the establishment of effective working relationships between Headquarters and the directors of field Centers.

NASA Headquarters responded to the 1961 decision by dropping earlier program area distinctions and establishing four new offices for Manned Space Flight, Space Sciences, Applications, and Advanced Research and Technology. At the same time, the Center directors were placed organizationally directly under the Associate Administrator to strengthen the control of general management. Initial steps to improve staff services to general management also were taken in 1961 by setting up staff offices for Programs and Administration. Division directors in the Headquarters Office of Administration were to serve as functional managers, responsible for high standards of performance in their own areas of specialization throughout NASA and its field installations.9

⁴Between 1958 and 1963, NASA occupied not only Dolley Madison House and the Wilkins Building, but at various times used space in buildings at 736 Jackson Place, 801 19th Street, N.W., 1815 H Street, N.W., 7th and D Streets, S.W., and a temporary structure ("Tempo L") near the Lincoln Memorial.

⁵U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, NASA Authorization for Fiscal Year 1964, Hearings, Pt. 2, 88th Cong., 1st sess., June 12, 13, 17, 18, 1963 (Washington, D.C.: GPO, 1963), 1046-1049; interview with Sidney G. Newman, Buildings Management Branch, NASA Administrative Services Division, July 24, 1968.

⁶ Rosholt, Administrative History of NASA, 29, 33-34.

⁷Major NASA organization charts are given in Appendix B of this volume. A collection of organization charts 1958-1963 is given in Rosholt, *Administrative History of NASA*, Append. B.

⁸P.L. 87-98, 75 Stat. 216, July 21, 1961, and P.L. 87-141, 75 Stat. 342, Aug. 17, 1961.

⁹NASA Announcement 314, June 5, 1961; NASA Release 61-213, Sept. 24, 1961; Rosholt, Administrative History of NASA, 297.

After two years the gain in central control permitted further refinement of the Headquarters organizational structure. After November 1963, Center directors reported directly to program offices instead of to general management, and program office directors were given the title of Associate Administrator for their respective areas. By combining the Office of Applications with the Office of Space Sciences, the program offices were reduced to three, but eventually the Office of Tracking and Data Acquisition became a fourth program office. This group of four was still the same in mid-1968.

With a stable lineup of program offices, organizational planning after 1963 effected a series of realignments in staff offices designed to facilitate the flow of accurate information to the top. By 1968 two new major management positions had evolved to deal with internal and external matters. An Associate Administrator for Organization and Management was placed over staff offices concerned chiefly with internal problems, while an Associate Deputy Administrator managed staff offices concerned with international, legislative, and public affairs.¹²

In addition to the well-known programs managed by Headquarters offices and the normal administrative workload of any large organization, in 1968 Headquarters functions included handling relations with Congress, the Department of Defense, and other Government agencies; patent issues arising from NASA-sponsored investigations; negotiation and review of special contracts; labor relations; contracts with the academic community dealt with by a special Office of University Affairs; and quick dissemination of technical information through the work of the Office of Technology Utilization.

The growing Headquarters personnel complement assembled to carry out these functions can be traced along with the expansion of the physical plant and the refinement of the organizational structure. In the fall of 1958 when the NACA became the National Aeronautics and Space Administration, only 180 persons were employed in NASA Headquarters—a little over two percent of the 7966 total paid employees. The permanent staff included nine persons holding excepted positions and 37 aeronautical research scientists and engineers.

The largest annual increment in personnel came soon after the manned lunar landing decision; between December 1961 and December 1962, Headquarters permanent personnel increased by 78 percent, from 922 to 1641. The total number of NASA permanent employees peaked at 33 722 in the period ending December 31, 1966. On that date, NASA Headquarters reported 2152 permanent employees—more than six percent of the agency total. Of these 2152 persons, 160 held excepted positions and 561 were classified as scientists or engineers. Because of budget restrictions, Headquarters had reduced its permanent staff to 2077 by June 30, 1968.¹³

Mission

As of 1968 the mission of NASA Headquarters was to plan and provide executive direction for programs authorized by the Congress, implementing the national objectives stated in the National Aeronautics and Space Act of 1958, as amended:

- (1) Conducting research into, and for the solution of, problems of flight within and outside the earth's atmosphere and developing, constructing, testing, and operating aeronautical and space vehicles for research;
- (2) conducting activities required for the exploration of space with manned and unmanned vehicles;
- (3) Arranging for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles and conducting or arranging for the conduct of measurements and observations;
- (4) Providing for the widest practicable and appropriate dissemination of information concerning its activities and the results.

The following offices in Headquarters assisted management in carrying out the technical aspects of this mission.

Office of Manned Space Flight—As of 1968 OMSF was responsible for all NASA activities directly related to manned space flight missions. The Office of Manned Space Flight held launch responsibility for all major manned and unmanned missions utilizing the three installations primarily concerned with the manned space flight programs:

- (1) George C. Marshall Space Flight Center, including Michoud Assembly Facility. Computer Operations Office, and Mississippi Test Facility;
 - (2) Manned Spacecraft Center, including White Sands Test Facility;

¹⁰NASA Release 63-225, Oct. 9, 1963.

¹¹NASA Release 66-3, Jan. 2, 1966. The Office of Tracking and Data Acquisition had previously been lined up with the other program offices by an organization chart effective from April 26, 1963, through Nov. 1, 1963.

 $^{^{12}\,\}text{NASA}$ Releases 67-49 and 67-50; NASA Management Instruction 1101.1A, Attachment A, May 1, 1968.

 $^{^{13}}$ NASA Personnel Division. For additional data on Headquarters personnel, see Table 6-2 and Chapter Three.

(3) John F. Kennedy Space Center, including NASA activities at the Eastern and Western Test Ranges.

Office of Space Science and Applications—OSSA was responsible for the NASA automated space flight program directed toward scientific investigations of the earth, moon, sun, planets, and interplanetary space utilizing ground-based, airborne, and space techniques such as sounding rockets, earth satellites, and deep space probes; for scientific experiments to be conducted by man in space and selection and training of astronaut-scientists; for research and development of space flight applications in such areas as meteorology, communications, navigation, geodesy, and earth resources surveys, and for the support of operational systems using these developments; and for the development, procurement, and use of light- and medium-class launch vehicles, such as Centaur. The Office of Space Science and Applications had an over-all institutional responsibility for the NASA installations primarily working in space science and applications programs:

- (1) Goddard Space Flight Center,
- (2) Wallops Station,
- (3) Jet Propulsion Laboratory (Government-owned facility operated for NASA by California Institute of Technology),
 - (4) NASA Pasadena Office (a component field activity of Headquarters).

Office of Advanced Research and Technology—As of 1968 OART was responsible for the planning, direction, execution, evaluation, documentation, and dissemination of the results of all NASA research and technology programs conducted primarily to demonstrate the feasibility of a concept, structure, component, or system which might have general application to the Nation's aeronautical and space objectives; and for coordinating NASA's supporting research and technology program. The Office of Advanced Research and Technology had over-all institutional responsibility for the research Centers primarily carrying out NASA's advanced research programs:

- (1) Ames Research Center,
- (2) Electronics Research Center,
- (3) Flight Research Center,
- (4) Langley Research Center,
- (5) Lewis Research Center,
- (6) Space Nuclear Propulsion Office.

Office of Tracking and Data Acquisition—OTDA was responsible for the development, implementation, and operation of tracking, data acquisition, communications, and data-processing facilities, systems, and services required for NASA flight systems; and for coordination of the management of automatic data-processing systems and services.

Table 6-1. Capitalized Equipment Value (as of June 30; in thousands)

1962 ^a	1963	1964	1965	1966	1967	1968
\$1340	\$1735	\$1658	\$2513	\$6083	\$7302	\$10 210

^aData for earlier years are not available.

Source: NASA, Office of Facilities.

Table 6-2. Personnel

		958	1	959	1	960	19	961	1	962	1	963
	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31 ^a
Requested for FY ending			200 ^e		488 ^f		715 ^g		951		1900	
Total, paid employees	180	274	429	484	585	662	748	960	1477	1693	2001	2017
Permanent	176	267	420	477	561	645	716	922	1321	1641	1846	1952
Temporary	4	7	9	7	24	17	32	38	156	52	155	65
Code group (permanent only)							٠-2	50	130	32	133	03
200 ^b	2	2	4	5	8	7	11	8	9	9	11	13
700 ^c	35	55	101	115	121	154	176	213	320	443	505	528
900	0	0	0	0	0	0	0	0	0	0	0	2
Subtotal	37	57	105	120	129	161	187	221	329	452	516	543
600d	0	0	0	0	0	167	203	274	411	488	549	620
500	134	202	302	343	415	300	306	398	545	660	733	742
300	1	1 -	4	4	5	5	8	14	19	24	733 27	27
100	4	7	9	10	12	12	12	15	17	17	21	20
Subtotal	139	210	315	357	432	484	529	701	992	1189	1330	1409
Excepted: on duty	9	46	68	72	88	96	100	108	133	156	162	
Accessions: permanent	375	107	147	75	135	1412	107	251	435	369	318	154
Accessions: temporary	86	7	11	13	23	281	43	27	123	309		246
Military detailees	0	0	0	0	0	11	13	21	26	25	130 32	79 34

Table 6-2. Personnel (Continued)

	19	964	19	965	19	966	19	967	<u> 1968</u>
	***************************************	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	2300		2100		2156		2135		2611
Total, paid employees	2158	2026	2135	2112	2336	2274	2373	2176	2310
Permanent	1978	1966	1998	2019	2081	2152	2138	2093	2077
Temporary	180	60	137	93	255	122	235	83	233
Code group (permanent only)					•				_
200b	12	10	13	14	13	14	13	9	9
700 ^c	516	509	522	530	531	544	538	542	530
900	4	4	4	3	3	3	2	2	2
Subtotal	532	523	539	547	547	561	553	553	541
600 ^d	663	693	700	708	731	791	788	802	801
500	745	717	729	740	775	767	761	709	707
300	18	15	13	7	8	7	11	8	8
100	20	18	17	17	20	26	25	21	20
Subtotal	1446	1443	1459	1472	1534	1591	1585	1540	1536
Excepted: on duty	157	166	147	154	153	160	159	169	177
Accessions: permanent	118	135	144	169	222	235	162	NA '	NA
Accessions: temporary	152	40	101	91	196	30	104	NA	NA
Military detailees	33	40	40	37	33	32	30	24	23

^aIncludes Electronics Research Task Group.

bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 occupational code group (engineers) to the 700 code group (aerospace technologists). For key to code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 code group (aerospace technologists).

Source: NASA Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from Personnel Management Information System and the NASA supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

^dBefore Dec. 31, 1960, the data reflect inclusion of code group 600 personnel in the 500 code group.

eIn addition to NACA request.

fincludes 2 positions for the Wright-Patterson Liaison Office.

gIncludes 26 positions for Atlantic Missile Range Operations Office and 6 for Pacific Missile Range Office.

NA = Data not available.

Table 6-3. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Activity	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight	_	_	147	567	437	419	453	578	459	409
(% of total)	(2.9)	(16.0)	(19.6)	(41.7)	(23.6)	(20.0)	(20.9)	(22.3)	(18.4)	(19.0)
Space applications	_	_	84	58	27	37	41	48	57	51
(% of total)	(1.0)	(3.0)	(11.2)	(4.3)	(1.5)	(1.8)	(1.9)	(1.9)	(2.3)	(2.4)
Unmanned investigations in space	_	_	243	287	147	159	184	225	256	186
(% of total)	(1.9)	(7.0)	(32.4)	(21.2)	(8.0)	(7.6)	(8.5)	(8.7)	(10.2)	(8.6)
Space research and technology		_	179	279	158	189	190	207	203	176
(% of total)	(15.4)	(24.0)	(23.8)	(20.5)	(8.6)	(9.0)	(8.8)	(8.0)	(8.1)	(8.2)
Aircraft technology ^C	_	_	56	41	22	22	27	27	33	30
(% of total)	(77.9)	(46.0)	(7.4)	(3.0)	(1.2)	(1.1)	(1.3)	(1.0)	(1.3)	(1.4)
Supporting activities ^d	-	_	42	128	1056	1265	1268	1507	1491	1302
(% of total)	(0.9)	(4.0)	(5.6)	(9.4)	(57.2)	(60.5)	(58.6)	(58.1)	(59.7)	(60.4)
Total	_	_	751	1360	1847	2091	2163	2592	2499	2154

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, *Budget Estimates*, FY 1963; FY 1962 actual figure was reported in NASA, *Budget Estimates*, FY 1964; etc.

^bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing *History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963* (Washington, D.C.: NASA, 1965), Section 8.

^cFY 1961 figure represents "Aircraft and missile technology."

dFY 1963 and later figures include tracking and data acquisition, sustaining university program, technology utilization, and general support positions. Until FY 1963, general support positions were reported with the five other budget activities. FY 1961 figure represents tracking and data acquisition only, and FY 1962 figure represents tracking and data acquisition plus technology utilization (reported as "Industrial applications").

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-4. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	\$112.30	\$157.70	\$70.20	\$55.50	\$136.70	\$158.60	\$179.90	\$171.00	\$157.40	\$336.70	\$1536.00
Administrative operations ^a	5.67	8.53	13.87	25.95	51.30	47.09	51.76	54.24	57.53	58.44	374.38
Total	\$117.97	\$166.23	\$84.07	\$81.45	\$188.00	\$205.69	\$231.66	\$225.24	\$214.93	\$395.14	\$1910.38

^aFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-5. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$116.1	\$25.3	\$67.7	\$155.1	\$189.0	\$209.0	\$187.1	\$168.9	\$436.1 ^a	\$1554.3
Percentage of NASA total	34%	3%	4 %	5%	4%	4%	4%	3.6%	10.6%	5.3%

^aThis figure includes 1968 NASA Pasadena Office total.

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

NASA DAYTONA BEACH OPERATION

Location:

Daytona Beach, Volusia County, Florida.

Resident Manager: S. S. Schneider (Jan. 7, 1963-

History 1

On December 1, 1962, NASA established a Headquarters NASA Plant Officer at the General Electric Company, Daytona Beach, Florida.² The office was officially opened February 4, 1963.

NASA Daytona Beach Operation was established June 23, 1963, as an integral part of NASA Launch Operations Center (redesignated John F. Kennedy Space Center, NASA, December 20, 1963).3 On April 15, 1965, Daytona Beach Operation was placed under the NASA Headquarters Office of Manned Space Flight, with the Resident Manager reporting directly to the Director of the Apollo Program.4

Mission

The mission of the Daytona Beach Operation was to provide a focal point for NASA and Department of Defense representation at the General Electric Company, Apollo Systems Department:

(1) Furnishing administrative support and services to all elements of Headquarters program offices, field installations, project offices, and other NASA-DOD activities in residence at the plant;

- (2) Providing support in planning and coordinating the overall role of the contractor in NASA programs:
- (3) Providing local technical guidance, inspection and quality assurance, production planning and control:
- (4) Exercising contract administration authority as delegated by contracting officers and coordinating matters of mutual interest with other NASA elements:
- (5) Representing NASA with DOD field agencies that provided services (such as security) to NASA in connection with the operation of the contractor.5

Table 6-6. Personnel: NASA Daytona Beach Operation (total paid employees)

1	963	19	964	19	965
6/30	12/31	6/30	12/31	6/30	12/31
8	15	28	34	32	32

19	966	19	967	196
6/30	12/31	6/30	12/31	6/30
32	32	31	30	33

Source: Kennedy Space Center, Professional Staffing and Examining Branch.

¹ This section was prepared by S. S. Schneider, NASA Daytona Beach Operation.

² NASA Circular 267, Dec. 1, 1962.

³ NASA Circular 267 A, June 23, 1963; KSC Release 67-64.

⁴NASA Management Instruction 1138.2, April 15, 1965.

⁵ NASA Management Instruction 1138.2A, Sept. 29, 1966.

NASA PASADENA OFFICE (NaPO)

Location:

Pasadena, Los Angeles County, California.

Director:

Earle J. Sample (Oct. 19, 1965-

Paul E. Ross (Director, NASA Resident Office-JPL, March 12, 1964-Oct. 19, 1965; Manager, WOO NASA Residency-JPL,

April 8, 1963-March 12, 1964).

History1

Management of the contract with the California Institute of Technology for operation of the Jet Propulsion Laboratory became a NASA responsibility December 3, 1958.2 The initial NASA contract was negotiated by Headquarters with local day-to-day administration decisions delegated to a Contracting Officer's Representative in the U.S. Army Ordnance District, Los Angeles. Major administrative approvals and decisions were assigned to the Procurement Officer at Ames Research Center, who visited JPL one or two days a week.3 Beginning January 1, 1960, responsibility for negotiation and contract administration was delegated to the new Procurement and Contracting Division of the Western Operations Office (WOO), Santa Monica, California.4 On February 1, 1962, a Contracting Officer's Representative,

¹This section was prepared by Earle J. Sample and his staff at the NASA Pasadena Office.

assisted by a staff of three, was placed in residence at JPL as an extension of the Contracts Management Division (as it was called then) of the Western Operations Office. He was designated Manager, NASA Residency-JPL,5 and was given the duties formerly delegated to Army Ordnance and the Procurement Officer at Ames Research Center. His function was day-to-day contract administration. Responsibility for negotiation of the master contract between NASA and Caltech and major changes to it remained a responsibility of the Procurement Officer in the Contracts Management Division, Western Operations Office.

On April 8, 1963, the staff was increased to 10 persons and the Residency was detached from the Contracts Management Division and assigned to the Director, Western Operations Office. Later in 1963, the staff was increased to 17 persons. On March 12, 1964, NASA established the NASA Resident Office-JPL (NRO-JPL), and the new office reported directly to the NASA Headquarters Associate Administrator for Space Science and Applications. Responsibility for negotiation with Caltech remained with the Contracts Management Division, Western Operations Office.

With the emergence of the Voyager program as a major activity and the decision to assign project management to JPL, with procurement of major system contracts directly by NASA, the Deputy Administrator directed on October 19, 1965, that certain elements of the WOO procurement and contract administration staff be relocated to Pasadena "to form a NASA Voyager Procurement Management Group (VPMG)" and that "certain other procurement functions currently performed by WOO . . . should be relocated to Pasadena" These two groups, plus the JPL contract administration group already in Pasadena, would report to a "single NASA Resident Representative and ... overall Director of NASA contract activities"

²Executive Order 10793, Dec. 3, 1958, Subject: Transferring Certain Functions from the Department of Defense to the National Aeronautics and Space Administration.

³ Letter, Ralph E. Cushman, Contracting Officer, NASA Hq., to Col. Paul H. Scordas, Commanding Officer, U.S. Army Ordnance District, Jan. 22, 1959, Subject: Appointment as Contracting Officer's Representative, Contract No. NASw-6; Letter, C.D. Gang, Contracting Officer's Representative, Army Ordnance, to NASA, June 11, 1959, Subject: Power of Attorney under Contract at California Institute of Technology/Jet Propulsion Laboratory, National Aeronautics and Space Administration Contract NASw-6.

⁴ Letter, Cushman, NASA Hq., to Commanding Officer, Army Ordnance, Nov. 12, 1959, Subject: Contract Administration-Designation of NASA Western Operations Office Representatives; Letter, Cushman, NASA Hq., to WOO, Attn. Earle J. Sample, Nov. 12, 1959, Subject: Contract Administration-Designation of NASA Western Operations Office Representatives; Letter, Cushman, NASA Hq., to Commanding Officer,

Army Ordnance, Jan. 21, 1959, Subject: Appointment as Contracting Officer's Representative, Contract No. NASw-6; Letter, Cushman, NASA Hq., to WOO, Attn. Earle J. Sample, June 6, 1961, Subject: Revisions to Contract NASw-6. For a brief history of WOO and WSO, see the section Former Field Activities in Chapter six.

⁵ Memorandum, Earle J. Sample, Chief Contracts Management Division, WOO, for Director, WOO, Jan. 23, 1962, Subject: Contracts Administration Division Reorganization. ⁶NASA Management Instruction 2-2-17, March 12, 1964, Subject: Establishment and Functions of the NASA Resident Office-JPL.

⁷Memorandum, Dr. Robert C. Seamans, Jr., NASA Associate Administrator, to Associate Administrator for Space Science and Applications and Deputy Associate Administrator for Industry Affairs, Oct. 19, 1965, Subject: Prime Contracting Arrangeents for Voyager.

This action joined three procurement activities and constituted the new NASA Pasadena Office formalized August 8, 1966.*

An initial cadre of 10 relocated to Pasadena from WOO October 21, 1965, grew to a total of 89 in 1966; 15 persons were assigned full-time to the Voyager program until it was canceled November 1, 1967. With cuts in the FY 1968 budget, some elements of the Western Operations Office were made a part of the NASA Pasadena Office. WOO was disestablished and NaPO was substantially reduced to 76 persons.9

Mission

The Pasadena Office's mission was negotiating, executing, and administering NASA contracts with the California Institute of Technology for the operation of the Jet Propulsion Laboratory; providing procurement, contract administration, and related services in support of the Office of Space Science and Applications (OSSA) and other NASA organizational elements; conducting a public affairs program in the western United States; and operating the western terminus of the NASA teletype network.¹⁰

⁸NASA Management Instruction 1138.9, Aug. 8, 1966, Subject: Functions and Authority –NASA Pasadena Office.

⁹NASA Release 67-292; Memorandum, Harold B. Finger, NASA Associate Administrator for Organization and Management, to NASA Administrator James E. Webb, Nov. 15, 1967, Subject: A Plan for Consolidation of Activities at WSO and NaPO; Memorandum, Finger to Earle J. Sample, Director, NaPO, Nov. 21, 1967, Subject: WSO-NaPO Task Force; Proposed NASA Management Instruction 1138.9A [n.d.], Subject: Functions and Authority—NASA Pasadena Office.

¹⁰NASA Management Instruction 1138.9.

Table 6-7. Industrial Real Property: NASA Pasadena Office-JPL (as of June 30; money amounts in thousands)^a

•	•	-	-					
	Land in l		Number	of Buildings		Square Meters sq ft)	Land	l Value
Facility	1967	1968	1967	1968	1967	1968	1967	1968
Let Describe a Let and Contract NAS 7-270 F)	59.1	59.1			117 741.9	129 112.0		
Jet Propulsion Laboratory (Contract NAS 7-270 F)	(145.9)	(145.9)	121	207	(1 267 364)	(1 389 750)	\$799	\$799
Goldstone Space Communications Station	(1 13.5)	(1.0.)			7 792.1	8 362.4		
Goldstone Space Communications Station	0	0	28	36	(83 872)	(90 012)	0	0
Table Mountain Observatory		-			445.2	497.9		_
Table Mountain Observatory	0	0	11	10	(4 792)	(5 359.0)	0	0
Edwards Test Site					3 511.3	3 669.9		_
Dawards 1901 Silv	0	0	29	32	(37 795)	(39 503)	0	0
Total	59.1	59.1			129 490.4	141 642.2		
10121	(145.9)	(145.9)	189	285	(1 393 823)	(1 524 624)	\$799	\$799
				Oth	er Structures	Total Real	Property	
		Building	s Value	and F	acilities Value	Valu		
Facility		1967	1968	1967	1968	1967	1968	
Jet Propulsion Laboratory (Contract NAS 7-270 F)	\$	34 877	\$41 102	\$4 770	\$ 5 084	\$40 446	\$46 985	
Goldstone Space Communications Station	*	2 258	2 923	3 364	17 798	5 622	20 721	
Table Mountain Observatory		180	170	116	189	296	359	
Edwards Test Site		1 228	1 373	1 028	1 176	2 256	2 549	
Total	\$	38 543	\$45 568	\$9 278	\$24 247	\$48 620	\$70 614	

^aFor data on JPL property over 10 years, see section on JPL in this chapter. This table does not include data on DSN tracking stations other than Goldstone; figures for the other stations for FY 1968 are: number of buildings, 58; square meters of buildings, 17 915.4 (192 840 sq ft); buildings value, \$5 040 000; other structures and facilities value, \$3 268 000;

and total real property value, \$8 308 000. Comparable data are not available for FY 1967. For breakdown of DSN tracking stations' total real property for FY 1967 and FY 1968, see Table 2-23 in Chapter Two.

Source: NASA, Office of Facilities.

Table 6-8. Personnel: NASA Pasadena Office

	1964	1	965	1	966	1	967	1968
Classification	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Total, paid employees ^a	16	19	20	85	87	91	87	79
Permanent	16	18	20	79	87	86	87	76
Temporary	0	1	0	6	0	5	0	3
Code group (permanent only) ^a		•						
200	0	0	0	0	0	0	0	1
700	2	3	3	8	8	9	9	8
600	9	10	11	43	49	48	48	39
500	5	5	6	28	30	29	30	28
Excepted: on duty	0	0	0	1	1	1	1	1
Military detailees	0	0	0	0	0	0	0	14

^aFor definition of terms and Code group classifications, see Chapter Three.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-9. Funding by Fiscal Year: NASA Pasadena Office (program plan as of May 31, 1968; in millions)

Appropriation Title	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and developmenta	_	_	_	_	\$184.10	\$202.30	\$225.90	\$213.60	\$188.50	\$1014.40
Construction of facilities ^b	\$7.73	\$8.56	\$3.58	\$11.43	3.00	3.58	.94	.35	1.93	41.10
Administrative operations ^C	_	-	_	_	_	17.47	.88	1.66	1.78	21.79
Total	. \$7.73	\$8.56	\$3.58	\$11.43	\$187.10	\$223.35	\$227.72	\$215.61	\$192.21	\$1077.29

^aData for FY 1963 and prior years included in Western Support Office figures.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

bDoes not include facilities planning and design.

^cData for FY 1964 and prior years included in Western Support Office figures.

NASA HISTORICAL DATA BOOK

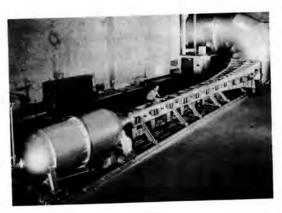
Table 6-10. Total Procurement Activity by Fiscal Year: NASA Pasadena Office (money amounts in millions)

	1966	1967	1968	Total
Net value of contract awards ^a	\$337.2	\$327.3	*	, \$664.5
Percentage of NASA total	7%	7%		2.3%


Laboratory.

*1968 amount included in NASA Headquarters total.

^aFigures include contract with Jet Propulsion Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1959 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).


AMES RESEARCH CENTER

Ames Research Center, Moffett Field, California, photographed from the air in 1963. ARC's mission responsibility has included *Pioneer 6* (upper right; launched Dec. 16, 1965, as the first of a series of deep space probes), VTOL research with the fan-in-wing Ryan jet aircraft (near right) beginning in 1968, and reentry testing in the Atmosphere Entry Simulator (lower far right).

AMES RESEARCH CENTER (ARC)

Location:

Mountain View, Santa Clara County, California.

Land:

148.4 hectares (366.6 acres), total as of June 30, 1968:

- 147.9 hectares (365.5 acres) NASA-owned.

0.5 hectares (1.1 acres) leased.

 Acquisition of two additional parcels of 9.5 and 13.0 hectares (23.5 and 32.0 acres) under consideration.

Director:

H. Julian Allen (Oct. 15, 1965-).

Smith J. DeFrance (Oct. 1, 1958-Oct. 15, 1965; Director,
NACA Ames Aeronautical Laboratory, June 24, 1947-Oct.
1, 1958; Engineer-in-Charge, NACA Ames Aeronautical Laboratory, July 25, 1940-June 24, 1947).

Associate Director:

John F. Parsons (Oct. 1, 1958-NACA Ames Aeronautical Laboratory, Aug. 1, 1952-(Oct. 1, 1958).

History1

The second National Advisory Committee for Aeronautics laboratory was authorized by Congress August 9, 1939. A Special Survey Committee on Aeronautical Research Facilities headed by Col. Charles A. Lindbergh evaluated 54 proposed locations, and the NACA announced selection of the 40.9-hectare (101-acre) Moffett Field site September 22. Moffett Field had

been a Navy rigid-airship base before its transfer to the Army in October 1935 for use as an air training base.³ In April 1942 the Navy reacquired the property, recommissioning it Moffett Naval Air Station.⁴ Ground was broken December 20, 1939, for the first NACA building on the site, and John F. Parsons arrived January 29, 1940, to supervise construction.⁵

The name "Ames Aeronautical Laboratory," proposed to the NACA by Dr. Edward P. Warner, honored Dr. Joseph S. Ames (1864-1943), NACA Chairman from 1927 to 1939. On April 18, 1940, at a luncheon commemorating the NACA's 25th anniversary, the name was announced to the public.

Smith J. DeFrance, Engineer-in-Charge, arrived August 20, 1940, and flight research was under way by 1941. The first research report, dated April 1941, was a study of methods to protect aircraft from icing hazards. On March 13, 1941, 7- by 10-foot wind tunnel No. 1 (the first of two) ran for the first time and in August, when the 16-foot tunnel made its first calibration tests, both 7- by 10-foot tunnels began their first research programs (the 16-foot was converted to the 14-foot transonic tunnel in 1955). On June 8, 1944, upon completion of the 40- by 80-foot wind tunnel and the Administration Building, the facility was formally dedicated.

Renamed "Ames Research Center" October 1, 1958, when it became part of NASA, the laboratory, with about one third of its research already space related, gradually expanded its efforts to cover new areas of space research. In February 1961, Ames' life science research activity began, and the installation undertook space-project management for the first time November 9, 1962, when it was assigned responsibility for the Pioneer project. Biosatellite project management also was assigned to Ames February 13,

¹ This section was prepared by Manley J. Hood with additional information provided by William P. Peterson, both of Ames Research Center.

²Edwin P. Hartman, Adventures in Research: A History of Ames Research Center, 1940-1965 (Washington, D.C.: NASA SP-4302, 1970), Pt. 1, Chap. 4; Twenty-Fifth Annual Report of the NACA, 1939 (Washington, D.C.: GOP, 1940), 38-39. The original site consisted of 25.1 hectares (62 acres) granted Dec. 7, 1939, on revocable use permit from the U.S. War Department and 15.932 hectares (39.369 acres) of purchased land deeded Dec. 15, 1939.

³ Hartman, Pt. I, Chap. 5.

⁴*Ibid.*, Chap. 6.

⁵ Ibid., Chap. 5; Twenty-Sixth Annual Report of the NACA, 1940 (Washington, D.C.: GPO, 1941), 20.

⁶ Hartman, Pt. I, Chaps. 5, 6; Twenty-Sixth Annual Report of the NACA, 1940, 20.

⁷ Hartman, Pt. I, Chaps. 5, 8; George W. Gray, Frontiers of Flight (New York: Alfred

A. Knopf, 1948), 43-50. See Table 6-11 for a list of Ames wind tunnels.

⁸ Hartman, Pt. III, Chap. 2.

1963,9 but management of space flight projects remained a minor portion of its work.

In addition to managing the Pioneer and Biosatellite projects, Ames researchers have been responsible for numerous space flight experiments. Magnetometers, plasma probes, cosmic-dust collection, navigational and control devices, solar emission, thermal-control, and life science experiments were flown on various spacecraft, including Pioneers, Biosatellites, Explorers, OSOs, OGOs, and Gemini. In addition, several Ames experimenters were named to analyze returned lunar material. Much of this research at Ames was stimulated by the formation of the Space Science Division in 1962.

After 1958, Ames extended earlier pioneering research in the field of variable stability aircraft, and developed ground-based simulators into highly sophisticated devices for obtaining design information on critical flight regimes encountered by V/STOL, supersonic, and hypersonic aircraft and by spacecraft. Ames research results contributed to the design and development of the XC-142 tilt-wing and the XV-5A fan-in-wing V/STOL aircraft. Through the years, Ames contributed to improvement of performance, stability, and control of most military and civil aircraft, both conventional and V/STOL.¹⁰

The concept of using blunt, high-drag bodies, developed by H. Julian Allen in 1952, provided a solution to problems caused by the severe aerodynamic heating of atmosphere entry at high speed. Several years later, Ames researchers devised conical spacecraft shapes to ensure the minimum total aerodynamic heating for all atmosphere-entry speeds of interest. In addition, Ames contributed to the basic understanding of ablative heat shields and to development of improved heat-shield materials. Studies of manual control and guidance of spacecraft during atmosphere entry defined optimum flight trajectories for spacecraft with a wide range of lift-drag ratios. 1

Ames led in developing facilities for simulating high-speed atmosphere entry—using models shot from light-gas guns into high-speed jets flowing in the opposite direction or using stationary models in air or other gases heated by gas-heated pebble beds, by rapid compression, or by electric arcs. Arc-jet development, which began at Ames in 1956 and increased in intensity 1960-1962, was a major contribution to aerothermodynamic research. 12

In studies from 1957 on, the use of lifting bodies to develop adequate aerodynamic characteristics including lift-to-drag ratios required for manned entry into planetary atmospheres, maneuvering to desired landing sites, and landing was hypothesized and experimentally verified.

Other significant Ames research achievements included improved techniques for gravity-gradient stabilization of spacecraft and for midcourse navigation of manned spacecraft, evidence for lunar origin of tektites and identification of minerals in meteorites, information on the depth of granular material on the lunar surface, measurements of the flow of solar wind around the earth, and synthesis of nucleotides.

Mission

Ames Research Center's mission was assigned as research responsibility in the physical and life sciences, flight-project management responsibility for Pioneer and Biosatellite projects, and operational responsibility for the NASA Convair 990 aircraft and other research facilities:

- (1) Conducting studies in atmosphere entry and environmental physics, including basic studies of the physics of high-temperature gases; stability, control, and performance of a wide range of spacecraft configurations; and spacecraft materials and structures;
 - (2) Conducting studies in guidance and control systems;
- (3) Conducting aeronautical research directed at fundamental studies in aerodynamics, propulsion, and operating problems of subsonic, supersonic, V/STOL, and hypersonic aircraft;
- (4) Conducting studies in solar physics, planetary environments, and geophysics;
- (5) Conducting basic research in environmental biology, exobiology, and biotechnology, including long-term advanced life support systems.¹³

⁹NASA Hq. Project Approval Documents 00-84-800-811 and 00-87-800-833, for Pioneer and Biosatellite projects, respectively.

¹⁰Gray, 130-154, passim, and 324 ff.

¹¹H. Julian Allen and A. J. Eggers, Jr., Technical Report 1381 in Forty-Fourth Annual Report of the NACA, 1958 (Washington, D.C.: GPO, 1959), 1125-38 (superseding first unclassified publication of blunt-body discoveries, NACA Technical Note 4047, 1957). See also NASA R-236 (May 1966) for a more recent work on optimum shapes for higher atmosphere-entry speeds. For a list of Ames publications on ablative heat shields, see "Ames Ablation Bibliography" (April 18, 1966); for a summary, see Bradford H. Wick, "Ablation Characteristics and Their Evaluation by Means of Arc Jets and Arc Radiation Sources," Seventh International Aeronautical Congress, Paris, June 11-20, 1965.

¹² Hartman, Pt. III, Chap 3.

¹³ NASA, Budget Estimates, FY 1969, I, AO 19-20.

NASA INSTALLATIONS: AMES RESEARCH CENTER

Table 6-11. Technical Facilities: Wind Tunnels (with costs in thousands)

Facility Name	Year Built	• • • • • • • • • • • • • • • • • • • •	Mach No. Range	Reynolds No. Range	Init. Cost	Accum. Cost	Research Supported
7- by 10-foot wind tunnel No. 1	1941	2.1H x 3.0W x 4.9L (7H x 10W x 16L)	CV up to 402.3 km per hr (250 mph)	2.3 x 10 ⁶ max.	\$ 438a	\$ 1318a	Low-speed aerodynamics (on loan to U.S. Army)
7- by 10-foot wind tunnel No. 2	1941	**	,,	**	NAb	NAb	Low-speed aircraft and V/STOL configurations (on standby basis)
40- by 80-foot wind tunnel	1944	12.2H x 24.4W x 24.4L (40H x 80W x 80L)	0.0 to 370 km per hr CV (0.0 to 230 mph CV)	0.0 to 2.1 x 10 ⁶	7 139	8 886	Low-speed aerodynamics research on V/STOL aircraft and hovercraft
12- foot pressure wind tunnel	1946	3.5H x 3.5W x 5.5L (11.3H x 11.3W x 18L)	0.0 to 0.98 CV	0.0 to 9 x 10 ⁶	3 489	5 094	Aerodynamics of aircraft and space- craft at subsonic speeds in airstreams of unusually low turbulence
1- by 3-foot supersonic wind tunnel	1946	0.4 to 1.5H x 0.3W x 1.7L (1.25 to 2.8H x 1W x 5.5L)	0.4 to 0.9 and 1.4 to 6.0	0.5 x 10 ⁶ to 12 x 10 ⁶	1 228	4 118	Aircraft aerodynamics at supersonic and hypersonic ranges
6- by 6-foot supersonic wind tunnel	1948	1.8H x 1.8W x 4.4L (6H x 6W x 14.4L) .	0.25 and 0.6 to 2.2 CV	1 x 106 to 5 x 106	3 802	6 380	Space vehicle aerodynamics, launch vehicle structural loads, aircraft aerodynamics at hypersonic and supersonic ranges
42- inch shock tunnel (formerly 1-foot shock tunnel)	1949	Hexagonal, 1.1 dia x 1.8 L (3.5 dia x 6L)	4.5 to 14.0	1 x 10 ⁴ to 1 x 10 ⁶	327	1 468	Spacecraft aerodynamics, heat transfer studies on reentry
Pressurized ballistic range	1949	0.5 to 1.5 dia x 61L (1.5 to 5 dia x 203L)	3352.8 m per sec (11 000 fps) model speed	300 x 10 ⁶	NAC	NAC	Supersonic and hypersonic aerodynamics
2- by 2-foot transonic wind tunnel	1951	0.6H x 0.6W x 1.5L (2H x 2W x 5L)	0.6 to 1.4 CV	1 x 10 ⁶ to 8.7 x 10 ⁶	447	1 431	Space vehicle aerodynamics, aircraft aerodynamics, structural dynamics
14-foot transonic wind tunnel	1955	4.2H x 4.3W upstream to 4.3W downstream x 10.3L (13.5H x 13.7W upstream to 13.9W downstream x 33.75L)	0.6 to 1.2 CV	2.8 x 106 to 4.2 x 106	1 881	11 427d	Aircraft aerodynamics, structural loads for launch vehicle structures
11- foot transonic wind tunnel (unitary)	1955	3.4H x 3.4W x 6.7L (11H x 11W x 22L)	0.7 to 1.4 CV	1.7 x 10 ⁶ to 9.4 x 10 ⁶	24 848 ^e	32 253e	Subsonic and transonic aerodynamics

NASA HISTORICAL DATA BOOK

Table 6-11. Technical Facilities: Wind Tunnels (Continued) (with costs in thousands)

Facility Name	Year Built	Test Section Size in Meters (and feet)	Mach No. Range	Reynolds No. Range	lnit. Cost	Accum. Cost	Research Supported
8- by 7-foot supersonic wind tunnel	1955	2.4H x 2.1W x 4.9L (8H x 7W x 16L)	2.45 to 3.5 CV	1 x 106 to 5 x 106	NAf	NAf	Aircraft aerodynamics, subsonic and supersonic
9- by 7-foot supersonic	1955	2.1H x 2.7W x 5.5L (7H x 9W x 18L)	1.55 to 2.5 CV	1.5 x 10 ⁶ to 6.5 x 10 ⁶	NAf	NAf	Supersonic aerodynamics
Hypervelocity ballistic range	19558	_	-	_	1 555h	3 272h	Resistance of space structures to meteoroid impact; 4 light-gas-gun and flight-range combinations
Hypersonic helium tunnel	1960	0.5 dia (1.66)	8, 15, 20, 26	7 x 106 to 13 x 106	1 776	2 674	Heat, mass, and momentum transfer, spacecraft, aerothermodynamics
3.5-foot hypersonic wind tunnel	1960	1.1 dia (3.5)	5 to 15, 1 to 4 min, 35-min recycle	1 x 106 to 6.9 x 106	12 630	13 332	Aerodynamics, heat transfer, and ablation
Gas dynamics lab	1962	Model sizes up to 0.2 (0.5) dia	Variable up to 17	-	4 778	5 150	Materials in heat-shield applications; vehicle aerodynamics in planetary atmospheres
Hypervelocity free flight facility (pilot model)	1962	0.6 dia x 12.2L (2 dia x 40L)	8 5 3 4 . 4 m per sec (28 000 fps) model speed	80 x 10 ⁶	374	384	High-temperature gaseous radiation and radiative heat transfer in earth's and planetary atmospheres
Hypervelocity free flight facility	1964	3 gun-range combinations: (a) 1.1 dia x 22.9L (3.5 dia x 75L) (b) 0.9 dia x 17.1L (3 dia x 56L) (c) 1.1 dia x 5.5L (3.5 dia x 18L)	9 144 m per sec (30 000 fps) model speed	80 x 106	5 230	5 412	Gas dynamic problems of hypervelo- city flight, particularly atmosphere entry problems, with models flying 9509.8 m per sec (31 200 fps) into a 3901.4-m-per-sec (12 800-fps) air- stream for a total relative speed of 13 411.2 m per sec (44 000 fps)
Mach 50 helium	1964	0.6 m dia (2 dia)	30, 35, 40, 50	0.18 x 106 to 0.67 x 106	1 530	2 132	Hypersonic aerodynamics

alncluding 7- by 10-foot wind tunnel No. 2

blncluded in costs of tunnel No. 1.

Costs included in Bldg. 208.

d_{Including} costs of conversion from 16-foot high-speed wind tunnel.

eIncluding all wind tunnels in unitary complex.

fIn unitary complex. 8Fourth launcher (impact) built in 1961-1962.

hCosts include Bldg. 224, atmosphere entry simulator.

CV = Continuously variable.

NA = Not available.

^{&#}x27;Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 1.

Table 6-12. Technical Facilities Other Than Wind Tunnels

Functional Name	Year Built	Init. Cost (thousands)	Accum. Cost	Research Supported
Flight Simulation Laboratory	1940	\$248	\$4386	Piloting problems and control systems for all kinds of aircraft, launch vehicles, and spacecraft
Space Technology Facility	1955	1154 ^a	1995 ^a	Geochemical studies of meteorites, cratering studies, spaceborne magnetic-field and plasma analysis and experiments, and basic fluid-physics research
Physical Sciences Research Laboratory	1961	879	959	Fundamentals of gas dynamics under extreme conditions
Bioscience Laboratory	1964	952	1009	Experimental pathology; housing for experimental animals
Life Sciences Research Facility	1965	4204	4629	Biotechnology, environmental biology, and exobiology
Space Environment Research Facility	1965	2124	3464	Effects of space environment on spacecraft materials
Structural Dynamics Laboratory	1966	NA ^b	NA ^b	Response of aircraft, launch vehicle, and spacecraft structures to impact, vibration, and thermal loads
Flight and Guidance Simulation Laboratory	1966	NA ^b	NA ^b	Navigation, guidance, and control systems for aircraft, launch vehicles, and spacecraft

NA = Not available.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 1.

^aIncluding costs of Bldg. 204. ^bBuilding costs estimates pending.

Table 6-13. Property (as of June 30; money amounts in thousands)

Category	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)									_	
Owned	15.9 ^a	15.9	15.9	46.6 ^b	46.6	46.6	91.4 ^c	91.4	147.9 ^d	147.9
Owned	(39.4)	(39.4)	(39.4)	(115.0)	(115.0)	(115.0)	(225.7)	(225.7)	(365.5)	(365.5)
Leased	0	0	0	0	0	0	0	0	0	0.5
Leased	U	O	Ü	ū	-					(1.1)
Buildings								41	40	55
Number of major buildings ownede	27	27	30	33	34	36	38	41	43	33
Area of buildings owned, thousands of										
sq m (and sq ft) ^f								120.5	160.4	163,3
Gross floor areag	85.1	85.1	94.5	101.9	102.8	111.7	116.4	138.5	160.4	
	(916)	(916)	(1017)	(1097)	(1106)	(1202)	(1253)	(1491)	(1727)	(1758)
Including adjacent structures	129.7	129.7	142.0	151.2	152.3	161.2	166.6	188.8	210.7	211.4
	(1396)	(1396)	(1528)	(1628)	(1639)	(1735)	(1792)	(2032)	(2268)	(2276)
Areas previously reportedh				130.7	142.5	153.0	169.6	178.0	160.4	163.3
	0	0	0	(1407)	(1534)	(1647)	(1826)	(1916)	(1726)	(1758)
Area of buildings leased, thousands of	0	0	0	0	1.2	1.2	1.2	0	0	1.5
sq m (and sq ft)					(13)	(13)	(13)			(16)
Value						•				
Land	\$ 20	\$ 20	\$ 20	\$ 663	\$. 663	\$ 7731	\$ 773	\$ 773	\$ 2373	\$ 2372
Buildings	80 390	82 658	96 926	107 156	110 639 ^k	120 259 ^l	129 021	133 769	159 406	161 816
Other structures and facilities ⁱ	_	_	_	-	2 232 ^m	2 268 ⁿ	2 112 ⁰	2 112	2 346	2 383
Paul magnety	\$80 410	\$82 678	\$96 946	\$107 819	\$113 534	\$123 190	\$131 906	\$136 654	\$164 125	\$166 571
Real property	\$12 608	\$13 335	\$13 368	\$ 15 120 ^p	\$ 17 806 ^q	\$ 22 955	\$ 28 119	\$ 34 674	\$ 41 812	\$ 53 670
Capitalized equipment	\$12 000	φ13 333	413 200	Ψ 13 120.	Ψ 17 000-	+ 22 / 33			<u> </u>	

^aTwo tracts 11.3 and 4.7 hectares (28.0 and 11.4 acres), acquired by direct purchases Dec. 15, 1939; 30.6 hectares (75.6 acres) of U.S. Navy land were available to Ames through "license-to-use" permits.

b30.6 hectares (75.6 acres) held under use permit from U.S. Navy transferred to NASA ownership. Acreage included original 25.1 hectares (62.0 acres) granted to NACA by U.S. War Department in December 1939, 5.8 acres granted Ames by use permit from the U.S. Navy April 1945, and 3.1 hectares (7.8 acres) obtained on U.S. Navy use permit later.

c44.8 hectares (110.7 acres) was obtained in May 1964 on a "license-to-use" basis from U.S. Navy and transferred to NASA in 1965.

 $^{\rm d}$ 56.6 hectares (139.8 acres) acquired May 23, 1967, through trade for surplus U.S. Navy land in San Diego.

^eNumber of major structures or complexes assigned an Ames "N" classification number (excluding the Electrical Substation, N-225). Single construction projects were usually assigned one "N" number, and costs were accumulated as one project, even though several buildings or structures were involved. Components of these major buildings are included in totals used in Tables 2-1 and 2-7 in Chapter Two.

fAdjacent structures include vertical projection on horizontal plane of wind tunnels, water cooling towers, docks, outside passageways, vacuum spheres, water towers, etc.

NASA INSTALLATIONS: AMES RESEARCH CENTER

Table 6-14. Value of Real Property Components as Percentage of Total
(as of June 30; total property value in thousands)

Component	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land Buildings Other structures	*	*	*	0.6	0.6	0.5	0.5	0.6	1.5	1.5
	99.9	99.9	99.9	99.4	97.5	97.6	97.8	97.8	97.1	97.1
and facilities ^a	NA	NA	NA	NA	1.9	1.9	1.7	1.6	1.4	1.4
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total ARC-real property value	\$80 410	\$82 678	\$96 946	\$107 819	\$113 534	\$123 190	\$131 906	\$136 654	\$164 125	\$166 571

^aOther structures and facilities were included with buildings during FY 1959 through FY 1962.

NA = Not available.

* = Less than 0.1%

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

gDefinition of floor area was refined in 1967; increase of about 93 sq m (1000 sq feet) in gross floor area over FY 1967 figure previously reported was because of inclusion of a small building (N-205) which was once considered inconsequential.

hPreviously reported figures are used in Tables 2-1 and 2-8 in Chapter Two; decrease in area from 1966 to 1967 was due to a change in definition to "floor area" for Maintenance, Repair, and Operation of Facilities Report. By FY 1968 the reported figure was the same as "gross floor area."

ilncluded in figures for buildings from FY 1959 through FY 1962.

jAdjusted figure: \$1 258 000 appeared in end of fiscal year reports.

kAdjusted figure: \$110 796 000 appeared in end of fiscal year reports.

lAdjusted figure: \$120 417 000 appeared in end of fiscal year reports.

mAdjusted figure: \$1 887 000 appeared in end of fiscal year reports.

nAdjusted figure: \$1 923 000 appeared in end of fiscal year reports.

oAdjusted figure: \$1 925 000 appeared in end of fiscal year reports.

pAdjusted figure: \$15 500 000 appeared in end of fiscal year reports.

qAdjusted figure: \$18 584 000 appeared in end of fiscal year reports.

NA = Not available.

Sources: NASA, Office of Facilities; Ames Master Plan (April 1966). Supplementary information was provided by George H. Holdaway and Merrill H. Mead.

Table 6-15. Personnel

	19	58	19	59	19	60	19	61	19	62		963
Employee Category	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
D					1509	<u> </u>	1440		1437		2051	
Requested for FY ending	1413	1427	1464	1429	1421	1418	1462	1529	1658	1825	2116	2166
Total, paid employees	1386	1406	1439	1413	1404	1397	1429	1502	1631	1788	1964	2110
Permanent	27	21	25	16	17	21	33	27	27	37	152	56
Temporary	21	21	23	10								
Code group (permanent only)	70	00	83	86	82	79	79	33	39	42	48	48
200 ^a	78	80		360	374	362	392	473	543	586	663	725
700 ^b	357	355	370		0	0	0	0	0	0	10	16
900	0	0	0	0	_	441	471	506	582	628	721	789
Subtotal	435	435	453	446	456		40	43	50	61	83	87
600 ^c	0	0	0	0	0	40		142	158	188	214	261
500	175	181	188	181	173	136	131		179	191	208	215
300	159	162	163	151	147	149	157	167		720	738	758
100	617	628	635	635	628	631	630	644	662		1243	1321
Subtotal	951	971	986	967	948	956	958	996	1049	1160		28
Excepted: on duty	0	15	21	21	21	21	22	24	26	25	28	
Accessions: permanent	119	42	115	65	85	63	71	142	178	251	250	223
Accessions: temporary	48	4	9	1	7	22	28	34	26	29	158	42
Military detailees	21	19	14	19	16	16	· 16	19	16	12	10	14

Table 6-15. Personnel (Continued)

	1964			965	196	56	19	967	196
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	2309		2176		2185		2191		2171
Total, paid employees	2204	2215	2270	2236	2310	2232	2264	2171	2197
Permanent	2152	2136	2175	2155	2191	2189	2173	2164	2084
Temporary	52	79	95	81	119	43	91	7	113
Code group (permanent only)							-		
200 ^a	34	30	32	31	28	29	31	31	28
700 ^b	757	768	776	782	815	837	842	859	847
900	23	16	17	14	16	15	14	13	10
Subtotal	814	814	825	827	859	881	887	903	885
600 ^c	109	113	119	125	127	140	140	143	144
500	256	251	256	261	298	293	281	276	255
300	198	199	209	199	185	181	180	202	213
100	775	759	766	743	722	694	685	640	587
Subtotal	1338	1322	1350	1 3 2 8	1332	1308	1286	1261	1199
Excepted: on duty	26	25	19	19	20	21	20	21	21
Accessions: permanent	107	93	115	105	128	104	93	_	
Accessions: temporary	60	114	103	124	143	39	98	_	_
Military detailees	13	11	11	10	9	10	9	10	13

^aBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^bData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

^CBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113 A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-16. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight			16	0	0	19	5	10	7	11
(% of total)	(0.0)	(0.0)	(1.1)	(0.0)	(0.0)	(0.8)	(0.2)	(0.4)	(0.3)	(0.5)
Space applications	(0.0)	(0.0)	30	0	0	0	0	4	9	1
(% of total)	(0.0)	(2.0)	(2.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.2)	(0.4)	(0.05)
Unmanned investigations in space	(0.0)	(2.0)	220	32	336	360	395	395	392	340
(% of total)	(2.0)	(8.0)	(14.8)	(1.9)	(16.9)	(16.4)	(17.9)	(17.8)	(18.0)	(16.3)
Space research and technology	(2.0)	(0.0)	795	1244	1012	863	839	933	916	939
(% of total)	(4.0)	(15.0)	(53.5)	(74.5)	(51.0)	(39.2)	(38.0)	(42.0)	(42.2)	(45.1)
Aircraft technology ^C	(4.0)	(13.0)	426	393	319	292	351	406	399	353
(% of total)	(94.0)	(75.0)	(28.6)	(23.6)	(16.1)	(13.3)	(15.9)	(18.3)	(18.4)	(16.9)
	(54.0)	(73.0)	0	0	318	667	620	475	450	439
Supporting activities ^d	(0.0)	(0.0)	(0.0)	(0.0)	(16.0)	(30.3)	(28.0)	(21.3)	(20.7)	(21.1)
(% of total) Total ARC	(0.0)	(0.0)	1487	1669	1985	2201	2210	2223	2173	2083

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^cFY 1961 figure represents "aircraft and missile technology." dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general-support positions. Until FY 1963 general-support positions were reported with the 5 other budget activities.

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-17. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	0	\$ 3.60	\$ 4.30	\$ 1.50	\$16.80	\$40.30	\$54.20	\$64.00	\$65.60	\$ 66.60	\$316.90
Construction of facilities ^a	\$ 3.75	6.20	0.54	6.30	14.29	11.37	5.67	2.75	0	3.17	54.04
Administrative operations ^b	16.30	17.76	19.89	22.92	25.57	29.87	31.82	33.23	33.81	33.76	264.93
Total	\$20.05	\$27.56	\$24.73	\$30.72	\$56.66	\$81.54	\$91.69	\$99.98	\$99.41	\$103.53	\$635.87

^aDoes not include facilities planning and design.

bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-18. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	\$ 3.7	\$1.7	\$1.4	\$0.5	\$0.1	\$ *	0	_*	0	0	0.	\$ 3.7
1960	6.2		1.0	2.9	1.7	*	\$ 0.3	\$ 0.2	*	Õ	0	6.2
1961	0.5			0.2	0.3	*	0	*	0	0	0	0.5
1962	6.5				1.0	4.5	0.5	0.3	\$0.3	_*	_*	6.5
1963	14.6					2.4	6.9	2.9	1.2	\$0.7	\$0.5	14.5
1964	11.6						4.2	5.3	1.7	0.2	*	11.5
1965	5.8							4.9	0.5	0.2	0.1	5.8
1966	2.8								2.1	0.5	0.1	2.8
1967	0.3									0	0.2	0.2
1968	3.2									Ū	0.2	0.2
Total	\$55.2	\$1.7	\$2.4	\$3.6	\$3.1	\$7.0	\$11.9	\$13.6	\$5.8	\$1.6	\$0.9	\$51.7

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-19. Total Procurement Activity by Fiscal Year (money amounts in millions)

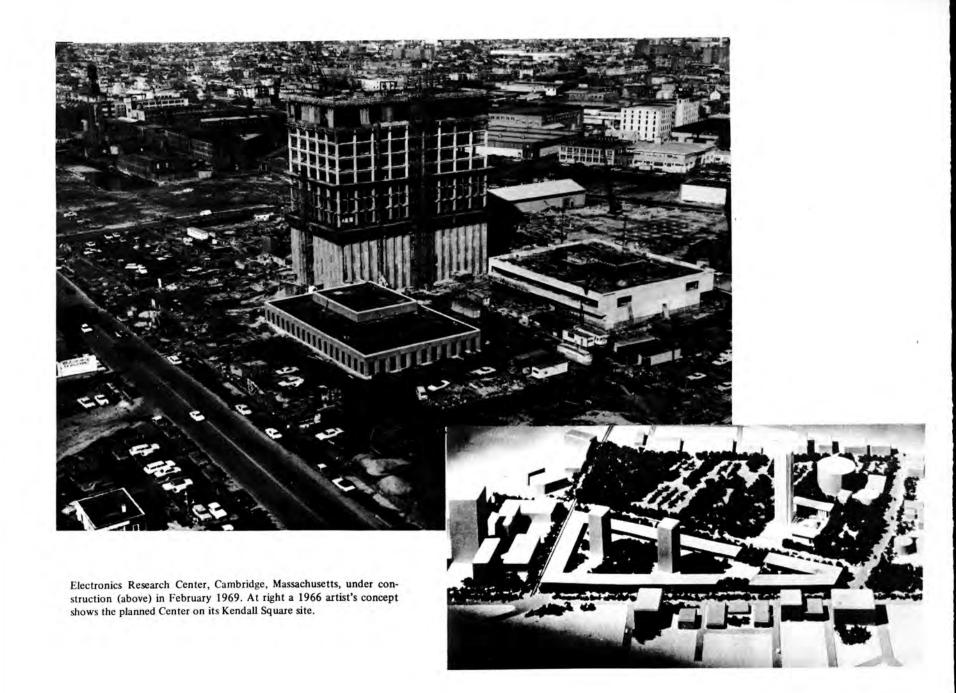
	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$7.7	\$11.0	\$14.4	\$28.0	\$47.9	\$80.9	\$77.3	\$86.3	\$78.5	\$432.0
Percentage of NASA total	2 %	2%	1%	1%	1%	2%	2%	1.9%	1.9%	1.5%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-

1968).

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

NASA HISTORICAL DATA BOOK


Table 6-20. Awards to Personnel Granted under Section 306 of the Space Act of 1958a

Year	Inventor	Contribution	Amount
1964	Adrien E. Anderson Woodrow L. Cook James C. Daugherty J. Lloyd Jones, Jr. David G. Koenig	Commercial air transport	\$1000
	Alfred J. Eggers, Jr. Clarence A. Syvertson George G. Edwards George C. Kenyon	Flight craft	1000
1965	Howard A. Stine Charles E. Shepard Velvin R. Watson	Electric arc apparatus	2500

^aFor complete listing of awards under this Act, see Appendix A, Sect. 1.B.

Source: NASA, Inventions and Contributions Board.

ELECTRONICS RESEARCH CENTER

ELECTRONICS RESEARCH CENTER

(ERC)

Location: Cambridge, Middlesex County, Massachusetts.

3.6 hectares (8.8 acres) NASA-owned; as of June 30, 1968,

1.24 hectares (3.06 acres) planned for acquisition during FY 1969; 5.0 additional hectares (12.4 acres) ulti-

mately would be acquired.

Director: James C. Elms (Oct. 1, 1966-).

Winston E. Kock (Sept. 1, 1964-Oct. 1, 1966).

Deputy Director:

Albert J. Kelly (Sept. 1, 1964-June 1, 1967).

History

Land:

During the first few years after NASA's establishment in 1958, electronics research and development was diffused throughout the agency, conducted as part of the development of booster, spacecraft, or ground support systems. NASA had not fallen heir to electronics research competence to the degree that it had inherited capabilities in other disciplines from the NACA field installations and through the transfer of personnel and projects from the Department of Defense. A limited competence related to specific mission requirements had developed at various NASA Centers, but NASA depended heavily on research conducted in industry and the universities.¹

On November 1, 1961, recognizing the importance of electronics to future space exploration and the need for improving its in-house capability in the field, NASA gave electronics technology the same organizational status as propulsion research and aeronautical and space vehicle studies. On that date, in a major NASA reorganization, a Directorate of Electronics and Control was established in the Office of Advanced Research and Technology. In the March 2, 1962, guidelines from the Associate Administrator for preparation of the FY 1964 NASA budget, OART was directed to include in the budget "a plan to strengthen NASA's capability in the electronics and guidance and control field to support current and long-range programs..."

Establishment of a new research center specializing in electronics was recommended in late September 1962 by the Director of Electronics and Control, and in early October he recommended the Greater Boston area as the best location for the new installation. The area had an "overall university-industrial strength and capability in electronics and guidance research," and because of this concentration of current research, Boston was expected to provide "a compatible, stimulating environment for regenerative growth of NASA electronic capabilities."

In mid-October 1962 in the process of presenting the FY 1964 NASA budget for President Kennedy's approval, the NASA Administrator "initially discussed the proposed Electronics Research Center and the suggested Boston location." During detailed discussions of the entire NASA budget, the

¹Letter, NASA Administrator James E. Webb to Chairman George P. Miller, House Committee on Science and Astronautics, March 21, 1963, reprinted in U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Applications and Tracking and Data Acquisition, 1964 NASA Authorization, Hearings, Pt. 4, 88th Cong., 1st sess., March 12-14, 19, 20, 26, April 2-3, 9, 10, 30, May 2, 9, June 6, 1963 (Washington, D.C.: GPO, 1963), 3012-3015.

The ERC history section was prepared for the *Data Book* by Edward T. Martin, Electronics Research Center, with supplementary information provided by Richard D. Dowling, NASA History Office.

²NASA, Office of Advanced Research and Technology, Electronics and Control Directorate, "NASA Electronics Research Center: Staff Report," January 1963, 1-2; U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, NASA Authorization for Fiscal Year 1964, Hearings, Pt. 1, 88th Cong., 1st sess., April 24-30, 1963 (Washington, D.C.: GPO, 1963), 706-707.

³ Senate, Committee..., NASA Authorization for Fiscal Year 1964, Hearings, Pt. 1, 706; NASA, "NASA Electronics Research Center: Staff Report," 5-6.

⁴Senate, Committee..., NASA Authorization for Fiscal Year 1964, Hearings, Pt. 1, 383-384.

⁵ NASA, "Electronics Research Center: Staff Report," 23.

⁶ Senate, Committee..., NASA Authorization for Fiscal Year 1964, Hearings, Pt. 1, 705.

Administrator reviewed the proposal with the Bureau of the Budget in the first half of December 1962.

President Kennedy sent the FY 1964 budget to Congress January 17, 1963, including \$5 million in the construction of facilities request for land acquisition and design and engineering services for an Electronics Research Center in the Greater Boston area. On February 6, 1963, NASA established an Electronics Research Task Group in Boston as a temporary field annex to the Office of Advanced Research and Technology, to "conduct that planning necessary to prepare NASA for prompt action" when Congress approved the proposed Center. After extensive hearings, in which both House and Senate Committees questioned closely the need for and proposed location of the new Center, \$3.9 million was authorized and appropriated for land acquisition and preliminary design in FY 1964. 10

The NASA Authorization Act, 1964, stipulated that no funds might be expended until the NASA Administrator submitted a full report on the research Center. A fact-finding committee was established to study the geographic location, and other committees were formed to examine the need and the nature of the proposed Center. A complete report was transmitted to Congress January 31, 1964.¹¹

On July 11, 1964, President Johnson signed the NASA Authorization Act, 1965, which included \$10 million in construction funds for the new Center.¹² A site evaluation committee, convened in March 1964, worked through July studying 160 possible locations.¹³ On August 19, 1964, the

NASA Administrator accepted the offer of the City of Cambridge, Massachusetts, of 11.7 hectares (29 acres) of land in Kendall Square.¹⁴

The Electronics Research Center was established officially September 1, 1964. NASA's North Eastern Office (established August 14, 1962) and the Electronics Research Task Group were combined, and the personnel of both (totaling 80) were placed under the ERC Director. November 1964, Electronics Research Center moved from the building occupied by North Eastern Office at 30 Memorial Drive, Cambridge, into leased space at Technology Square in Cambridge. Recruiting of scientists, technicians, and support personnel began immediately, and by June 30, 1965, the Center had 238 permanent, full-time employees. Its permanent staff numbered 794 on June 30, 1968. A broad program was undertaken in five areas of electronics research—electronic components, guidance and control, systems, instrumentation and data processing, and electromagnetics.

The first research and development procurement request to industry was issued December 4, 1964, for a study to identify guidance and navigation research efforts.² The first research grant was awarded in December 1964 to the University of Pennsylvania for a \$40 000 survey of the state of the art in microwave research.²

In-house research began in such varied fields as holography, laser gyroscopes, thin film microelectronics, and aircraft collision avoidance systems. Electronics Research Center was identified as the lead Center to begin the development, in 1967, of a detailed plan to provide the necessary technology for an integrated avionics system for a second-generation supersonic transport during the 1972-1975 time span.²²

⁷ Ibid.

^{*}Ibid., Pt. 2, June 12, 13, 17, 18, 1963, 935 ff.

⁹Memorandum, NASA Associate Administrator Robert C. Seamans, Jr., to R. L. Bisplinghoff, Director, Office of Advanced Research and Technology, Feb. 6, 1963, Subject: Establishment of an Electronics Research Task Group; NASA, Office of Advanced Research and Technology, Electronics Research Task Group, "Electronics Research Center: Requirements, Operations, Implementation Plans," July 1963.

¹ NASA Authorization Act, 1964, P.L. 88-113, 77 Stat. 141, Sept. 6, 1963; Independent Offices Appropriation Act, 1964, P.L. 88-215, 77 Stat. 425, Dec. 19, 1963.

¹¹NASA Release 63-233; NASA Announcement 63-255, Nov. 14, 1963; NASA, Report on Electronics Research Center, prepared for U.S. Congress, Senate, Committee on Aeronautical and Space Sciences (Washington, D.C.: GPO, Jan. 31, 1964).

¹²NASA Authorization Act, 1965, P.L. 88-369, 78 Stat. 310, July 11, 1964.

¹³U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, NASA Authorization for Fiscal Year 1966, Hearings, Pt. 2, 89th Cong., 1st sess., March 22-30, 1965 (Washington, D.C.: GPO, 1965), 760.

¹⁴ Letter, NASA Administrator James E. Webb to Cambridge Mayor Edward Crane, Aug. 19, 1964; NASA Release 64-208.

¹⁵ NASA General Management Instruction No. 2-2-18, Sept. 1, 1964; NASA Releases 64-172, 64-199, and 64-201.

¹⁶ERC Release 64-4; NASA Release 64-219.

¹⁷Senate, Committee..., NASA Authorization for Fiscal Year 1966, Pt. 2, 760; ERC Release (unnumbered), Nov. 13, 1964.

¹⁸ ERC Personnel Files; NASA Office of Administration, Personnel Division.

¹⁹ Senate, Committee..., NASA Authorization for Fiscal Year 1966, Pt. 2, 761, Fig. 233; NASA General Management Instruction 2-2-18, Attachment A.

² ⁰ ERC News Release (unnumbered), Dec. 4, 1964.

²¹ERC News Release (unnumbered), Dec. 18, 1964.

²²U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Advanced Research and Technology, 1968 NASA Authorization, Hearings, Pt. 4, 90th Cong., 1st sess., March 14-22, April 4-20, 1967 (Washington, D.C.: GPO, 1967), 287.

Construction plans for the permanent site were begun December 8, 1964, with the award of a master planning contract to the joint venture firm of Edward Durell Stone, New York City; Giffels & Rossetti, Detroit; and Charles A. Maguire Associates, Boston-Providence.²³ The New England Division of the U.S. Army Corps of Engineers was designated in March 1963 as design and construction agent.²⁴ Groundbreaking for the first phase of construction was held November 2, 1966.²⁵

Mission

The mission of Electronics Research Center was research and development to improve performance and reliability of space and aeronautical electronic systems and components:

(1) Organizing, managing, and conducting basic and applied aerospace electronics research to investigate concepts and techniques leading to space

and aeronautical electronic equipment with reliability and performance characteristics far beyond those of 1968;

(2) Providing a focal point for national aerospace electronics research, coordinating nationwide research efforts and sponsoring electronics research conducted by industry, universities, and private institutions.

Research focused on (a) aerospace electronics materials and components; (b) guidance and navigation of space vehicles, aircraft, and supporting ground-based equipment; (c) space vehicle and aircraft control, stabilization, and information systems; (d) electronic system simulation, analysis, evaluation, and integration in the fields of guidance, control, navigation, tracking, communication, and instrumentation; (e) electronic power conditioning and distribution; (f) bioelectronics; (g) space and ground-based computers, computing systems, and instrumentation technology; (h) solid state physics, microwave propagation, microwave communications, and transmitting and receiving phenomena; (i) optical communications; and (j) astrophysical measurements.²⁶

²³NASA Release 64-307.

²⁴Department of Defense News Release 366-63.

²⁵ ERC Construction Projects Office; Daily Log (Corps of Engineers Notice to Proceed, to Contractor, Oct. 25, 1966).

²⁶ NASA, Budget Estimates, FY 1969, IV, AO 2-57, 2-58.

Table 6-21. Property (as of June 30; money amounts in thousands)a

Category	1965	1966	1967	1968
and in hectares (and acres)				
Owned	0	2.4 (6)	2.6 (6.3)	3.6 (8.8)
Leased	0	0	0	0
Buildings				
Number owned	0	0	0	0
Area owned, thousands of sq m (and sq ft)	0	0	0	0
Area leased, thousands of sq m ^b (and sq ft)	9.0 (97.0)	12.1 (130.3)	20.3 (218.2)	23.0 (247.5
'alue				
Land	0	\$739	\$769	\$1 099
Buildings	0	. 0	0	1 671
Other structures and facilities	0	0	0	9
Real property	0	\$739	\$769	\$2 779
Capitalized equipment	\$100	\$1808	\$6961	\$13 227

Source: NASA, Office of Facilities.

^aFor definition of terms, see Introduction to Chapter Two. ^bGSA-leased; not included in NASA total in Table 2-9 in Chapter Two.

Table 6-22. Personnel

	19	63	19	964	19	55	196	6	196	7	1968
	6/30 ^a	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending			250		250		550		1000		1041
Total, paid employees	25	30	33	117	250	340	555	619	791	785	950
Permanent	24	29	32	117	238	331	470	570	700	744	794
Temporary	1	1	1	0	12	9	85	49	91	41	156
Code group (permanent only)											
200	0	0	0	3	7	7	13	15	19	17	19
700	4	5	6	41	87	131	204	253	319	356	381
900	0	0	0	0	0	0	0	0	0	0	0
Subtotal	4	5	6	44	94	138	217	268	338	373	400
600	8	9	9	24	48	66	83	90	104	113	122
500	10	12	14	45	85	113	133	161	185	182	184
300	2	3	3	4	11	13	30	42	64	66	77
100	0	0	0	0	0	1	7	9	9	10	11
Subtotal	20	24	26	73	144	193	253	302	362	371	394
Excepted: on duty	2	2	2	4	8	7	7	7	7	7	7
Accessions: permanent	2	3	3	66	124	106	151	132	169	NA	NA
Accessions: temporary	0	0	0	0	11	23	98	45	84	NA	NA
Military detailees	0	0	0	3	3	1	3	3	0	5	6

^aIncludes NASA North Eastern Office for last three months of reporting period; personnel of North Eastern Office and Electronics Research Task Group merged on Sept. 1, 1964, to form the initial personnel complement of ERC. For key to Code group numbers and definition of terms, see Chapter Three.

NA = Not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA
Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from
NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-23. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1964	1965	1966	1967	1968
Manned space flight	0	0	0	0	0
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Space applications	0	0	4	13	17
(% of total)	(0.0)	(0.0)	(0.8)	(1.8)	(2.1)
Unmanned investigations in space	0	0	6	18	31
(% of total)	(0.0)	(0.0)	(1.2)	(2.6)	(3.9)
Space research and technology	8	115	256	368	434
(% of total)	(32.0)	(47.1)	(50.2)	(52.6)	(54.7)
Aircraft technology	0	0	1	2	0
(% of total)	(0.0)	(0.0)	(0.2)	(0.3)	(0.0)
Supporting activities b	17	129	243	299	312
(% of total)	(68.0)	(52.9)	(47.6)	(42.7)	(39.3)
Total ERC	25	244	510	700	794

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1964 actual figure was reported in NASA, *Budget Estimates*, FY 1966; FY 1965 actual figure was reported in NASA, *Budget Estimates*, FY 1967; etc.

bFY 1964 and later figures include tracking and data acquisition, technology utilization, and general-support positions.

Source: NASA, Budget Estimates, FY 1966-FY 1969; NASA, Budget Operations Division.

Table 6-24. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1964	1965	1966	1967	1968	Total
Research and development	\$0.20 ^b	\$ 2.70	\$ 8.80	\$16.40	\$27.00	\$ 55.10
Construction of facilities ^a	3.68	10.50	5.25	7.50	0	26.93
Administrative operations	0.51 ^b	3.20	6.36	12.22	15.38	37.67
Total	\$4.39	\$16.40	\$20.41	\$36.12	\$42.38	\$119.70

^aDoes not include facilities planning and design. ^bNASA North Eastern Office.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obliga-

tions and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA February 1965); NASA Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-25. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1963	\$ 0.1	0	\$0.1	\$0	\$0	\$0	\$ 0	\$ 0.1
1964	4.8		0	0.4	1.0	0.6	· · · · · · · · · · · · · · · · · · ·	
1965	11.2		•	0	2.4	1.1	0.3	2.4
1966	6.2			· ·	0.8	0.4	7.3	10.8
1967	7.6				0.6		4.1	5.3
1968	0					0.1	5.9	6.0
1700	Ü						0	0
Total	\$29.9	0	\$0.1	\$0.4	\$4.2	\$2.4	\$17.3	\$24.4

Source:

NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-26. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1965	1966	1967	1968	Total
Net value of contract awards	\$4.0	\$14.7	\$21.7	\$50.6	\$91.0
Percentage of NASA total		*	*	1.2%	0.3%

^{* =} Less than 0.5%.

Source: NASA, Annual Procurement Report, Fiscal Years 1965-1968 (Washington, D.C.: NASA, 1966-1968).

^aAs of June 30, 1968; includes facilities planning and design.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

FLIGHT RESEARCH CENTER

Flight Research Center, Edwards, California, photographed in 1967. Research at FRC has included a joint program with the Air Force to study designs for a space shuttle, flying the wingless lifting bodies X-24A, M2-F3, and HL-10 (left to right at left); investigation of aircraft flight at speeds six times the speed of sound with the rocket-powered X-15 (foreground at right); and studies of large supersonic transports with the XB-70 (right rear).

FLIGHT RESEARCH CENTER

(FRC)

Location: Edwards, Kern County, California.

Land: 88.2 hectares (218 acres) under USAF use permit as of June

30, 1968.

Director: Paul F. Bikle (Sept. 15, 1959-).

Walter C. Williams (Director, NACA High Speed Flight Station, July 1, 1954-Sept. 15, 1959; Supervisor, NACA High Speed Flight Research Station, Fall 1949-July 1, 1954; Supervisor, NACA Muroc Flight Test Unit, Sep-

tember 1946-Fall 1949).

Associate Director:

De E. Beeler (April 1, 1961-1, 1959-April 1, 1961). ; Assistant Director, Nov.

History1

In September 1946, 13 engineers and technicians were sent from the NACA Langley Memorial Aeronautical Laboratory to the U.S. Army Air Corps test facility at Muroc, California. The group, called the Muroc Flight Test Unit, was on temporary assignment at the Rogers Dry Lake location to begin the X-1 flight test program.² The first X-1 aircraft (then called XS-1) arrived at Muroc October 7 from Bell Aircraft's Niagara Falls plant. On October 11, Bell test pilot Chalmers H. (Slick) Goodlin made the first Muroc X-1 glide flight; he made the first powered flight on December 9, 1946.³ The first supersonic flight (mach 1.06 at 13 000-meter [43 000-foot] altitude) was made October 14, 1947, by Capt. Charles E. Yeager (USAF). NACA pilot

Herbert H. Hoover became the first civilian to exceed the speed of sound on March 4, 1948.⁴

The group was given official status as the NACA Muroc Flight Test Unit in September 1947, and by the end of 1948 it had grown to 60 persons. In the fall of 1949 it was permanently established as the NACA High Speed Flight Research Station, a division of Langley. Muroc Air Force Base was renamed Edwards Air Force Base January 27, 1950. The following year, Congress approved a permanent NACA facility at Edwards with appropriations for FY 1952. The U.S. Air Force leased 70.8 hectares (175 acres) to the NACA, and in early February 1953 construction began on a large building with hangar space, instrumentation facilities, shops, and offices.

On July 1, 1954, the station was renamed the NACA High Speed Flight Station and made autonomous. That summer the 250 employees moved into the new NACA facilities, the buildings which were still in use in 1968. Transition from the NACA to the National Aeronautics and Space Administration was accomplished in October 1958, and on September 27, 1959, NASA redesignated the station Flight Research Center.

During its first two decades, Flight Research Center conducted tests of commercial and military aircraft, as well as flight tests of research aircraft X-1 and D-558 through the X-15. On June 8, 1959, the X-15 (No. 1) made its first glide flight, followed by the first powered flight (X-15 No. 2) on September 17, 1959. No funding for the X-15 was requested for FY 1969, and the test program was expected to end in December 1968.

Manned flight tests of the M2-F1 lifting-body vehicle began in 1963; the first glide flight of the heavyweight M2-F2 was made July 12, 1966. 10 The

¹ This section was prepared by Ralph B. Jackson, Flight Research Center.

² Forty-Second Annual Report of the NACA, 1956 (Washington, D.C.: GPO, 1957), 6-7.

³ Ibid. First preliminary glide flight test of the XS-1 had been conducted at Pinecastle Army Air Base (Florida) Jan. 19, 1946.

⁴Ibid., 7; NACA HSFS X-Press (extra edition), Oct. 14, 1957; Air Force Flight Test Center, Historical Division, The Rocket Research Aircraft Program, 1946-1962, AFSC Historical Publications Series 62-110V (Edwards AFB, 1962).

⁵ Forty-Second Annual Report of the NACA, 1956, 7.

^{&#}x27;Ibid.; NACA General Directive Number Two, March 17, 1954.

⁷NASA Release 59-225.

⁸ FRC Release 2-64; Wendell H. Stillwell, X-15 Research Results, NASA SP-60 (Washington, D.C.: NASA, 1965), vi.

⁹NASA, Budget Estimates, FY 1969, II, RD 18-10.

¹⁰FRC Releases 17-63 and 14-66; NASA Release 66-89.

HL-10 lifting-body vehicle's first glide flight was December 22, 1966.¹¹ In mid-1968, a third vehicle, the USAF-developed X-24A, was being prepared for flight tests.¹²

In support of the Apollo program, the first manned test of a free-flight lunar landing simulator (the lunar landing research vehicle) was flown October 30, 1964, by the late NASA research pilot Joseph A. Walker.¹³ Overall management of the XB-70 supersonic aircraft research program was transferred to Flight Research Center March 25, 1967.¹⁴ The program was expected to be completed by January 1969.¹⁵

Mission

The mission of Flight Research Center was research in and evaluation of problems of flight, both within and outside the atmosphere, including problems of takeoff and landing; low-speed, supersonic, and hypersonic flight; and reentry:

- (1) Conducting aerodynamics and aeronautics projects, such as X-15, XB-70, supersonic transport, and hypersonic research; space vehicle systems projects to study flight behavior of advanced reentry vehicles (including M-2, HL-10, and X-24A heavyweight lifting bodies); and electronics systems projects on display, guidance, and control in advanced flight missions and on improvement of systems and sensors used in biomedical monitoring, tracking, and data acquisition;
- (2) Maintaining special facilities, including general-aviation aircraft for handling-qualities investigations; century series fighters used for pilot proficiency and general investigations; X-15 rocket aircraft for hypersonic research and reentry investigations; special-purpose vehicles, such as lifting bodies, variable stability aircraft, or airborne simulators; laboratory facilities; and simulation equipment;
- (3) Operating a three-station radar range for tracking and data acquisition in support of flight activity.¹⁶

¹¹FRC Release 29-66.

¹² NASA, Budget Estimates, FY 1969, II, RD 18-8, 18-9.

¹³ FRC Release 28-64.

¹⁴ NASA Release 67-59; FRC Release 5-67.

¹⁵ NASA, Budget Estimates, FY 1969, II, RD 18-8, 18-9.

¹⁶ Ibid., I, AO 2-65.

Table 6-27. Technical Facilities (with cost in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Research Supported
Air Vehicle Flight Simulation Facility	1956	\$ 63	\$1700	Flight planning, pilot training, systems analysis, vehicle-handling qualities, and flight-data analysis
Edwards, California, Tracking Station	1958	4244	4811	Analog and digital trajectory data, telemetry reception and processing and voice communications for real-time and postflight analysis in support of high-performance aircraft test programs
Ely, Nevada, Tracking Station	1958	2322	2688	"
Beatty, Nevada, Tracking Station	1958	2122	2122	n
Communications Building (voice communications facility)	1963	68	278	Voice communication for real-time support of high-performance aircraft flight-test programs
Runway Noise Acquisition System	1964	127	141	Determination of noise produced by advanced aircraft while taking off and landing
High Temperature Loads Calibration Laboratory	1966	1712	2555	Heating, loading, and calibration for aircraft and components

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 3.

NASA HISTORICAL DATA BOOK

Table 6-28. Property (as of June 30; money amounts in thousands)

1962 ^a	1963	1964	1965	1966	1967	1968
				2	0	0
0	0			=		Ö
0	0	0	0	U	U	U
		_	10	21	10b	33
NA	-	=				32.7
17.8						(352)
(191)	(172)	(256)	` '		(300)	(332)
	0.7		•		0	0
NA	(8)	NA	(7)	(8)	U	v
				0	0	0
0	-	0	·	=	٠.	\$ 7627
NA	\$46 09	• .		• -	• . • • •	1 900
NA_	488	768	1 577	1 824	<u> </u>	
NA	\$5097	\$ 6842	\$ 7 035	\$8778	\$ 9312	\$ 9 527
\$6000	\$9093	\$14 444	\$22 172	\$29 230	\$29 522	\$32 332
	0 0 NA 17.8 (191) NA 0 NA NA	0 0 0 0 0 17.8 16.0 (191) (172) 0.7 NA (8) 0 NA \$4609 NA 488 NA \$5097	0 0 0 0 0 0 0 17.8 16.0 23.8 (191) (172) (256) 0.7 NA (8) NA 0 0 0 0 0 0 0 NA \$4609 \$6074 NA 488 768 NA \$5097 \$6842	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^aData for earlier years are not available. For definition of terms, see Introduction to Chapter Two.

based on an actual engineering review of drawings and an onsite inspection of facilities.

NA = Not available.

Source: NASA Office of Facilities. Supplementary information was provided by E. Harlow Mortensen.

bNumber of buildings decreased because of redefinition; the 1966 figure of 21 includes 2 substations which were dropped from the 1967 report.

^cAlthough number of buildings increased by 10 during FY 1965, building value dropped because of a close analysis of reporting for FY 1964 and previous years showed that figures were erroneous. The FY 1965 report was

Table 6-29. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963 ^a	1964	1965	1966	1967	1968
Land	0.0	0.0	0.0	0.0	0.0	0.0
Buildings	90.4	88.8	77.6	79.2	79.5	80.0
Other structures and facilities	9.6	11.2	22.4	20.8	20.5	20.0
	100.0	100.0	100.0	100.0	100.0	100.0
Total real property value	\$5097	\$6842	\$7035	\$8778	\$9312	\$9527

^aData for earlier years are not available.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-30. Personnel^a

		958	195		19	60	190	61	196	2	196	63
Employee Category	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Requested for FY ending					322		416		494		550	
Total, paid employees	292	306	340	332	408	416	447	494	538	568	616	618
Permanent	280	294	312	317	392	401	435	477	517	556	613	616
Temporary	12	12	28	15	16	15	12	17	21	12	3	
Code group (permanent only)							12	1,	21	12	3	2
200 ^b	11	11	11	12	14	14	1	1	1	1	1	1
700 ^c	68	72	76	79	96	108	137	147	160	173	191	197
900	0	0	0	0	0	0	0	0	0	0	0	197
Sµbtota1	79	83	87	91	110	122	138	148	161	174	192	199
600 ^u	0	0	0	0	0	15	15	17	20	25	30	32
500	46	47	54	50	54	38	39	47	51	61	61	62
300	21	19	23	25	33	27	39	31	42	36	67	50
100	134	145	148	151	195	199	204	234	243	260	263	273
Subtotal	201	211	225	226	282	279	297	329	356	382	421	417
Excepted: on duty	1	5	7	7	8	7	7	7	8	362 7	721	417
Accessions: permanent	28	22	48	37	83	28	47	77	78	80	80	67
Accessions: temporary	13	2	19	8	102	25	22	14	19	9	5	2
Military detailees	8	6	3	2	3	3	4	3	2	3	3	2

Table 6-30. Personnel (Continued)

	19	64	19	065	196	66		67	1968
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
	593		604		605		596		590
Requested for FY ending		622	669	629	662	618	642	607	622
Total, paid employees	619	620	611	608	609	607	587	582	566
Permanent	618	2	58	21	53	11	55	25	56
Temporary	1	2	36	21	00				
Code group (permanent only)				1	1	1	1	1	0
200	1	1	100	200	201	202	201	198	197
700	197	200	198	200	201	1	1	1	1
900	1	1	1	202	202	204	203	200	198
Subtotal	199	202	200	202	203	45	43	43	45
600	37	39	39	41	42	59	59	59	52
500	58	59	54	58	64		49	68	73
300	62	61	65	60	59	58		212	198
100	262	259	253	247	241	241	233	382	368
Subtotal	419	418	411	406	406	403	384		6
Excepted: on duty	6	6	5	5	4	4	6	6	-
Accessions: permanent	58	44	27	32	61	54	40	NA	NA
Accessions: temporary	6	18	59	51	54	16	44	NA	NA
Military detailees	5	5	4	4	3	5	7	10	10

^aUntil Sept. 27, 1959, Flight Research Center was designated High Speed Flight Station. Data before June 30, 1960, include statistics for Western Coordination Office, which was redesignated Western Operations Office Aug. 5, 1959; see section on Western Support Office for later data on Western Operations Office.

bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical research scientists."

Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

dBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Not available.

Source: NASA Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-31. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity²

Program	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight			3	6	19	50	51	34	12	0
(% of total)	(0.0)	(0.0)	(0.7)	(1.2)	(3.2)	(8.3)	(8.4)	(5.6)	(2.0)	(0.0)
Space applications			0	0	0	0	0	0	0	0
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Unmanned investigations in space			0	1	3	3	2	1	1	0
(% of total)	(0.0)	(0.0)	(0.0)	(0.2)	(0.5)	(0.5)	(0.4)	(0.2)	(0.2)	(0.0)
Space research and technology			0	45	56	51	77	104	114	92
(% of total)	(0.0)	(0.0)	(0.0)	(8.6)	(9.5)	(8.4)	(12.7)	(17.2)	(19.3)	(16.2)
Aircraft technology ^C			438	443	361	344	317	308	312	325
(% of total)	(90.0)	(90.0)	(99.3)	(84.5)	(61.6)	(56.8)	(52.4)	(51.1)	(52.9)	(57.4)
Supporting activities ^d			0	29	147	157	158	156	151	149
(% of total)	(10.0)	(10.0)	(0.0)	(5.5)	(25.2)	(26.0)	(26.1)	(25.9)	(25.6)	(26.3)
Total FRC			441	524	586	605	605	603	590	566

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, *Budget Estimates*, FY 1963; FY 1962 actual figure was reported in NASA, *Budget Estimates*, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^cFY 1961 figure represents "aircraft and missile technology."

dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the 5 other budget activities. FY 1962 figure represents tracking and data acquisition plus technology utilization (reported as "Industrial Applications").

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget

Operations Division.

Table 6-32. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	0	\$0.90	\$1.20	\$0.10	\$11.50	\$12.80	\$ 9.50	\$17.70	\$10.30	\$23.50	\$ 87.50
Construction of facilities ^a	0 -	1.74	0	0	1.81	2.50	0	0	0	0	6.05
Administrative operations ⁰	\$3.28	4.35	5.12	7.23	7.54	9.40	10.52	9.38	9.51	9.47	75.80
Total	\$3.28	\$6.99	\$6.32	\$7.33	\$20.85	\$24.70	\$20.02	\$27.08	\$19.81	\$32.97	\$169.35

^aDoes not include facilities planning and design.

^bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

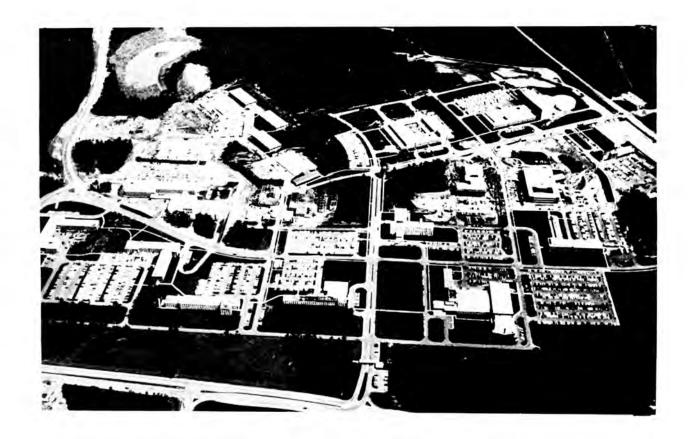
Table 6-33. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	0	0	0	0	0	0	0	0	0	0	0	0
	•	U	\$1.6	*	*	_*	0	_*	0	0	0	\$1.7
1960	\$1.7		\$1.0	0	0	0	Ō	0	0	0	0	0
1961	0			U	•	*	Ŏ	Õ	0	0	0	0.1
1962	0.1				•		Ū	\$0.2	\$0.2	*	0	1.9
1963	1.9					\$1.6	\$-0.2				_*	2.5
1964	2.5						*	1.3	1.2	^		*
1965	*							0	*	0	U	
1966	*								0	*	0	. T
1967	*									0	*	*
	0										0	0
1968	v		¢1 C	*	¢0.1	\$1.7	-\$0.2	\$1.5	\$1.4	*	*	\$6.3
Total	\$6.3	0	\$1.6	*	\$0.1	\$1.7	-\$0.2	\$1.5	\$1.4	•	•	4

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-34. Total Procurement Activity by Fiscal Year (money amounts in millions)

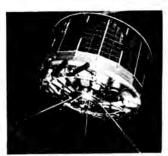

	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$2.0	\$1.3	\$2.5	\$18.3	\$13.7	\$14.7	\$15.4	\$25.5	\$26.2	\$119.6
Percentage of NASA total	1%	*		1%	*	*	*	0.5%	0.6%	0.4%

^{* =} Less than 0.5%.

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

GODDARD SPACE FLIGHT CENTER


Goddard Space Flight Center, Greenbelt, Maryland, in 1967. Communications, meteorological, and scientific satellite projects managed by GSFC have included (left to right below) Syncom 3 in 1964, Explorer 6 Interplanetary Monitoring Platform in 1959, OSO 1 Orbiting Solar Observatory in 1962, OAO 2 Orbiting Astronomical Observatory in 1968, and Tiros 10 Television Infrared Observation Satellite in 1965.

GODDARD SPACE FLIGHT CENTER (GSFC)

Location:

Greenbelt, Prince Georges County, Maryland.

Land:

482.8 total hectares (1193.0 acres) at GSFC as of June 30, 1968:

- 224.3 hectares (554.2 acres) NASA-owned.
- 256.5 hectares (633.8 acres) leases and easements.
- 2.0 hectares (5.0 acres) other.

Total leased at GSFC and tracking stations, 490.5 hectares (1211.9 acres).

NASA-owned land at tracking stations, 3504.3 hectares (8659.4 acres) as of June 30, 1968:

- 3449.2 hectares (8523.16 acres), Alaska.
- 55.1 hectares (136.2 acres), Corpus Christi, Texas.

Total industrial (contractor-held, NASA-owned), 1128.7 hectares (2789.0 acres), White Sands Missile Range.

Director:

John F. Clark (May 5, 1966-1965-May 5, 1966). ; Acting July 22,

Harry J. Goett (Sept. 1, 1959-July 22, 1965).

Deputy Director:

John W. Townsend (July 22, 1965-July 12, 1968).

Associate Director:

Eugene W. Wasielewski (Oct. 16, 1960-).

History

In August 1958, before NASA was officially established, Congress authorized \$3.75 million for a "Space projects center" to be located in the vicinity of Washington. On August 1, Senator J. Glenn Beall of Maryland

announced that the new center would be in Greenbelt "on land already owned by the federal government"; the site was part of the Dept. of Agriculture's Beltsville Agricultural Research Center.² With initial specifications completed by September 16, NASA Administrator T. Keith Glennan approved the first master plan in November, before the Naval Research Laboratory's Vanguard group which was to form the nucleus of the new center's personnel actually joined NASA.³

The October 1, 1958, Executive Order announcing establishment of NASA⁴ legally effected transfer of several space projects, including NRL's U.S. Scientific Satellite Project (Project Vanguard). This project to orbit a small earth satellite had been announced by President Eisenhower July 29, 1955, as part of the U.S. participation in the International Geophysical Year (1957-58), and Vanguard 1 had been launched March 17, 1958.

To accomplish the transfer with "an absolute minimum of interference" with the progress of Project Vanguard, an agreement provided for continued use of Naval Research Laboratory facilities until the Beltsville Space Center was completed; it was expected to be ready about January 1, 1960.6 Actual transfer took place November 30, 1958, of 157 personnel members to what was later (January 1960) designated the Vanguard Division of the Beltsville

¹Public Law 85-657, Aug. 14, 1958; U.S. Congress, House, Select Committee on Astronautics and Space Exploration, Authorizing Construction for the National Aero-

nautics and Space Administration, Hearings, 85th Cong., 2d sess., Aug. 1, 1958 (Washington, D.C.: GPO, 1958), 1, 29-30.

The section on history of GSFC was prepared for the Data Book by Alfred Rosenthal, Goddard Space Flight Center.

²Release by Sen. J. Glenn Beall, Aug. 1, 1958; Rosholt, Administrative History of NASA, 79-80.

³Glennan, Memorandum of Record, Nov. 19, 1958, cited in Rosholt, 79. Subsequent master plans were prepared in 1962 and 1964; see U.S. Congress, House, Committee on Science and Astronautics, *Master Planning of NASA Installations*, House Rpt. No. 167, 89th Cong., 1st sess., March 15, 1965 (Washington, D.C.: GPO, 1965), 8-9.

⁴Executive Order 10783, 23 F.R. 7643 (Federal Register, Sept. 30, 1958).

⁵ Rosholt, Administrative History of NASA, 4, 44-45.

⁶ "Agreement Between Department of Defense and National Aeronautics and Space Administration Regarding Transfer of Records, Property, Facilities, and Civilian Personnel of Project Vanguard," cover letter, Deputy Secy. of Defense Donald A. Quarles to NASA Administrator T. Keith Glennan, Nov. 20, 1958.

Space Center. Effective December 28, another 46 persons from Naval Research Laboratory were transferred to constitute Beltsville's Space Sciences Division. A third group of 73 persons was transferred to or employed directly in the various divisions of the Center between October 1, 1958, and March 1959.

On January 15, 1959, the Beltsville Center came into formal existence, and a construction contract for the first two major buildings was let April 10.9 On May 1, NASA announced that the facility would be named Goddard Space Flight Center, in honor of Dr. Robert Hutchings Goddard (1882-1945), American pioneer in rocket research who had achieved the first launch of a liquid-propellant rocket on March 16, 1926. Goddard Space Flight Center was officially dedicated on the 35th anniversary of that launch in 1961.

The first satellite project for which Goddard Space Flight Center assumed overall responsibility was Explorer 6 launched August 7, 1959. The Explorer series continued and in 1967 Explorer 35, launched July 19, became the first Interplanetary Monitoring Platform (IMP) anchored in lunar orbit. ¹² Goddard was also responsible for a series of orbiting observatory satellites; on March 7, 1962, the first Orbiting Solar Observatory (OSO 1) was launched, and the first Orbiting Geophysical Observatory (OGO 1) September 4, 1964. ¹³

In the area of applications technology, the Center managed the Tiros (Television Infrared Observation Satellite) program, whose initial flight, April

1, 1960, provided the first global cloud-cover photographs from near-circular orbit. The Tiros program evolved into the ESSA weather satellites, operational system of the Department of Commerce's Environmental Science Services Administration. The first operational ESSA satellite was launched by NASA February 3, 1966.¹⁴ Goddard also developed the Nimbus satellites for advanced meteorological research, and on December 6, 1966, launched the first Applications Technology Satellite.¹⁵

Goddard contributed to development of space communications with the Echo passive balloon satellites and on July 10, 1962, launched AT&T's Telstar 1, the first privately built comsat. It also managed Relay (first satellite launched December 13, 1962) and Syncom (first successful launch July 26, 1963) active, repeater satellite projects. This concept was adopted by Communications Satellite Corporation for its commercial satellite system; first in this series was Intelsat 1 ("Early Bird"), launched by NASA April 6, 1965. 16

Goddard Space Flight Center cooperated with the United Kingdom on the first international satellite, Ariel 1 (launched April 26, 1962) and on a joint U.S. Canadian satellite project, Alouette 1 (launched September 29, 1962). Goddard also worked with Italy on the San Marco project, and San Marco 1 became the first satellite built and instrumented in Western Europe and launched in the United States by a European crew, December 15, 1964.17

In the early years of the Center, Goddard launch crews were stationed at the Eastern and Western Test Ranges (then designated Atlantic and Pacific Missile Ranges), from which they supervised launch of all unmanned scientific and applications missions using the Atlas-Agena, Delta, Centaur, and

^{7&}quot;Report to the House Committee on Science and Astronautics" (requested in Hearings before the Committee March 9, 1959; mimeo, prepared by NASA Personnel Division), March 17, 1959, Lists A, B, and C.

⁸NASA Beltsville Space Center, General Notice No. 1, Jan. 15, 1959, Subject: "Designation as Beltsville Space Center"; NASA General Notice, Jan. 22, 1959, Subject: "Establishment of Beltsville Space Center"; reprinted as Exhibits 6 and 7 in Append. D of Alfred Rosenthal, Venture into Space: The Early Years of Goddard Space Flight Center, (Washington, D.C.: NASA SP4301, 1968). See also Exhibits 8-11 for documentation on the evolution of the Center's functions and organization.

NASA Release 59-125.

¹⁰ Ibid.; see Rosenthal, Venture into Space, Chap. 1.

¹¹GSFC Release No. 3-10-61-5. See also Rosenthal, Venture into Space, Chap. 3.

¹²NASA, Significant Achievements in Particles and Fields, 1958-1964 (Washington, D.C.: NASA SP-97, 1966); NASA Release 67-178.

¹³ NASA Releases 62-59, 64-213, 64-232, and 66-313; NASA, Significant Achievements in Solar Physics, 1958-1964 (Washington, D.C.: NASA SP-100, 1966), 68-70, 73, 75 ff.

¹⁴NASA Releases 60-152, 60-167; ESSA Release 66-7; NASA, Significant Achievements in Satellite Meteorology, 1958-1964 (Washington, D.C.: NASA SP-96, 1966); NASA, Significant Achievements in Space Applications, 1965 (Washington, D.C.: NASA SP-137, 1966); see also NASA, Significant Achievements in Space Applications, 1966 (Washington, D.C.: NASA SP-156, 1967).

¹⁵NASA Release 66-308.

¹⁶ See NASA, Significant Achievements in Space Communications and Navigation, 1958-1964 (Washington, D.C.: NASA SP-93, 1966), for a summary of communications satellite development. For a discussion of ComSatCorp, see 35 ff.

¹⁷GSFC, Ariel I: The First International Satellite (Washington, D.C.: NASA SP-119, 1966): Jonathan D. Casper, "The Alouette Program: A Case Study in NASA International Cooperative Activities," NASA HHN-42, NASA Historical Office comment ed.; U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, International Cooperation and Organization for Outer Space, Staff Rpt., Sen. Doc. No. 56, 89th Cong., 1st sess., Aug. 12, 1965 (Washington, D.C.: GPO, 1965).

Thor-Agena launch vehicles (Ranger, Mariner, Tiros, Echo, Explorer, Nimbus, and Syncom missions). On October 1, 1965, these functions were consolidated under John F. Kennedy Space Center, NASA.¹⁸

Included in the 1958 transfer of the Vanguard Division from the U.S. Navy to NASA was the Minitrack tracking network (conceived for IGY Vanguard missions by Naval Research Laboratory in the spring of 1955).¹⁹ From this early radio-interferometer concept evolved the NASA Space Tracking and Data Acquisition Network (STADAN), which combined some of the original Minitrack stations with new 26-m (85-ft) and 13.7-m (45-ft) antenna dishes, the Goddard Range and Range Rate tracking system, the satellite tracking automatic antenna system (SATAN), and enlarged automated ground-based communications links between the STADAN stations.²⁰

NASA's manned space flight program under the Space Task Group, though located physically at Langley Research Center, was part of GSFC's early responsibilities. However, Space Task Group became independent January 3, 1961, and 667 persons left the Goddard staff to form what later became the Manned Spacecraft Center.²¹ Goddard retained responsibility for development and operation of the Project Mercury tracking network. This global system, with its real-time capabilities, became operational in late 1961, supporting the *Mercury-Atlas 4* flight (September 13, 1961); *MA-5* (Novem-

ber 29, 1961); MA-6, the first U.S. manned orbital flight, with John H. Glenn, Jr., as pilot (February 20, 1962); and subsequent Project Mercury missions. The Manned Space Flight Network was continuously upgraded for the Gemini program, began supporting Apollo flights in 1967, and December 21-27, 1968, supported Apollo 8 on man's first escape from the earth's gravitational sphere and first journey around the moon.²

Working closely with the international scientific community, by mid-1968 Goddard had been responsible for some 80 major satellite missions and over 650 sounding rocket experiments to study earth-sun relationships, the nature of near-earth space, and the application of space research to meteorology, communications, and other human needs.

Mission

Goddard Space Flight Center was assigned the mission of managing scientific, communications, and meteorological satellite projects; developing sounding rocket and orbiting spacecraft experiments in basic and applied science; managing the Thor-Delta launch vehicle project; operating NASA's Space Tracking and Data Acquisition Network (STADAN) and the Manned Space Flight Tracking Network (MSFN).²³

¹⁸ NASA Release 65-313. For a summary of the activity of the Goddard launch team at Pacific Missile Range-Western Test Range, see Memorandum, John J. Neilon, Deputy Director, Unmanned Launch Operations, KSC, to Alfred Rosenthal, GSFC Historian, Jan. 23, 1968.

¹⁹ William R. Corliss, *History of the Goddard Networks*, preliminary ed. (Greenbelt, Md.: GSFC, Nov. 1, 1969), 37-41.

²⁰ fbid., Chap. 2.

²¹ Swenson, Grimwood, and Alexander, This New Ocean, 303; Rosholt, Administrative History of NASA, Append. C.

²² Swenson, Grimwood, and Alexander, *This New Ocean*, 383, 401, 419 ff; Corliss, *History of the Goddard Networks*, Chap. 3-5.

²³NASA, Budget Estimates, FY 1969, IV, AO 2-34.

GODDARD INSTITUTE FOR SPACE STUDIES (GISS)

Location: 2880 Broadway, New York, N.Y. 10025.

Land:

4645.2 square meters (50 000 square feet) (3716.1 sq m

[40 000 sq ft] net usable, under 10-year lease with

Columbia University, January 1966 to January 1976).

Director:

Robert Jastrow (Jan. 29, 1961-

History

NASA announced establishment of the Goddard Institute for Space Studies January 29, 1961, and the Institute began formal operations in May of that year as an extension of the GSFC Theoretical Division. In July 1962 it was separated organizationally from the Theoretical Division and thenceforth reported directly to the GSFC Assistant Director, Space Sciences and Satellite Applications.²

Originally, the Institute occupied 102.2 square meters (11 000 square feet) in Interchurch Center, 475 Riverside Drive, New York. In February 1963, it leased an additional 650.3-square-meter (7000-square-foot) area in the Columbia University-owned Watson Building,³ and two years later added 371.6 square meters (4000 square feet) of new office space at 2900 Broadway, New York.⁴ In January 1966 the research staff, management support staff, and computer personnel were brought together with the leasing of a renovated seven-story building at 2880 Broadway.⁵ These facilities included a 12 000-volume library, infrared and microwave radiation

laboratories, conference rooms, exhibit area, and a computer facility (one computer consisting of partly owned, partly leased components).

In addition to a permanent research staff, postdoctoral research associates were supported through NASA grants to the National Academy of Sciences-National Research Council. Staff members held adjunct faculty appointments at various universities in the New York area, and by 1968 these universities had awarded 30 Ph.D. degrees for research sponsored and supervised by Institute staff members.

Goddard Institute sponsored seminars, colloquia, and semiannual conferences and participated in summer institutes. GISS staff members published more than 300 papers in scientific journals and edited or authored 15 books between the Institute's establishment in 1961 and mid-1968.

Mission

Goddard Institute for Space Studies was assigned the responsibility for research in astrophysics, planetary physics, and atmospheric physics in close collaboration with universities in the New York area:

- (1) Conducting an astrophysics program including nucleosynthesis, stellar structure and evolution, galactic structure, and an observational program in infrared and submillimeter astronomy;
- (2) Engaging in planetary physics studies of the origin of the solar system and the evolution of planetary bodies and their atmospheres;
- (3) Undertaking basic studies in atmospheric physics on convection and radiative transfer and of general circulation and heat balance of the earth's atmosphere.

GISS Semiannual Conferences

Title	Date
Origin of the Solar System	January 1962
The Planet Jupiter	October 1962
Radio Sources and Radio Astronomy	December 1962
Origin of the Atmospheres and the Oceans	April 1963
Stellar Evolution	November 1963

¹NASA Release 61-15, approved in December 1960 by NASA Administrator T. Keith Glennan; Memorandum, Glennan to Silverstein, Dec. 14, 1960. The section on history of GISS was prepared for the *Data Book* by Alfred Rosenthal, Goddard Space Flight Center.

²GSFC Announcement No. 398, July 23, 1962.

³ Letter, Lawrence Chamberlain, Vice Pres., Columbia University, to Robert Jastrow, Feb. 4, 1963.

⁴Memorandum, Arthur L. Levine, GISS Executive Officer, to Herbert Fivehouse, Chief, Management Supply and Services Div., GSFC, Sept. 30, 1964.

⁵ Lease executed between General Services Administration and Columbia University, Aug. 23, 1965.

The Earth-Moon System	January 1964	The Surface of Mars	February 1967
Nucleosynthesis	January 1965	(Cosponsored by New York University and	reordary 1707
Infrared Astronomy	April 1966	Yeshiva University)	•
History of the Earth's Crust (Cosponsored by Columbia University)	November 1966	Supernovas (Cosponsored by Yeshiva University)	November 1967
The Atmospheres of Mars and Venus (Cosponsored by Kitt Peak National Observatory)	February 1967	Ocean Circulation and Climatic Changes Pulsars	March 1968 May 1968

NASA HISTORICAL DATA BOOK

Table 6-35. Technical Facilities: Environmental Test Chambers (cost in thousands)

Facility Name ^a	Year Built	Pressure (altitude)	Temperature	Init. Cost	Accum. Cost	. Technological Areas Supported
Environment simulators, 2 x 2 ft (3)	1962	5 × 10 ⁻⁷ torr	77 to 373 K (-196° to +100°C)	\$ 40	\$ 52	Thermal-vacuum, thermal-balance testing of spacecraft materials, subsystems, and experiments
Environment simulators, 7 x 8 ft (2)	1962	10 ⁻⁷ torr	"	168 ^b	267 ^b	Thermal-vacuum, thermal-balance, thermal-gradient testing of Explorer-size spacecraft and experiments
Temperature-humidity chamber, 12 x 12 x 20 ft h.	1962		208 to 423 K (-65° to +150°C)	96	147	Temperature-humidity testing of Explorer or Agena-size spacecraft and ground support equipment
Dynamic test chamber ^c 33.5-ft dia x 59 ft 1.	1962	10 ⁻³ mm Hg	-	878	878	Rough vacuum for structural dynamics tests
Thermal vacuum chamber, 12 x 15 ft (Test volume 10 x 15 ft)	1963	10 ⁻⁹ mm Hg	77 to 373 K (-196° to +100°C	379	382	Performance testing of optical experiments for Orbiting Astronomical Observatories
Thermal vacuum solar simulation chamber, 10 ft d. x 15 ft l.	1963	10 ⁻⁹ toп	LN ₂ baffle	430	850	Research into temperature control of spacecraft
Space environment simulator, 28 x 40 ft	1964	10 ⁻¹⁰ torr	15 K (-258°C)	5015	5346	Thermal-balance and performance testing of spacecraft systems under simulated space conditions of vacuum, heat flux, and cold sinks

^a All facilities except Dynamic Test Chamber and Thermal Vacuum Solar Simulation Chamber contractor-operated (Sperry Gyroscope).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 7, 55-68; Appendix A.

bAverage per chamber.

^cVacuum system Sperry-operated.

Table 6-36. Technical Facilities Other Than Environmental Test Chambers (cost in thousands)

		· · · · ·			
Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Vibration test facility	Vibration System (5000 lbs force) ^a	1960	\$100	\$100	Vibration testing of spacecraft and sounding rockets
Vibration test facility	Vibration System (5000 lbs force) ^b	NA	100	100	"
Vibration test facility	Vibration System (10 000 lbs force)	1963	348	348	"
Vibration test facility	Vibration System (28 000 lbs force)	1963	233	233	"
Antenna test range	RF Anechoic Chamber	1963	20	21	Antenna performance measurement
Antenna test range	Antenna Test Range	1964	250	340	"
Antenna control systems facility	Antenna Control Systems Facility	1964	35	65	Antenna servo control and hydraulic drive investigation; study of existing and new design concepts
Antenna test range (vertical)	Vertical Test Range	1964	140	150	Development and test of antennas for spacecraft applications
Centrifuge, 20-foot	Twenty-Foot Centrifuge	1960	55	55	Steady-state acceleration testing of spacecraft and sounding rocket components
Ultraviolet plasma facility	Ultraviolet Plasma Facility	1961	210	420	Low-temperature plasma studies
Propulsion laboratory, hot gas	Hot Gas Propulsion Laboratory	1963	300	NA	Auxiliary propulsion
Spin device dynamic test facility	Dynamic Test Chamber Spin Device	1963	53	57	Spinning of spacecraft and sounding rockets or components
Optical tracking and communications facility	Goddard Optical Research Facility	1963	230	2500	Development of precise real-time angle tracking instrumentation, precise laser ranging systems
Propulsion facility (chemical)	Chemical Propulsion Research Facility	1964	242	400	R&D of chemical reaction control systems and interactions with spacecraft subsystems
Optical facility, vacuum ultraviolet	Vacuum Optical Bench	1964	473	825	Calibration and alignment of large astronomical experiments

Table 6-36. Technical Facilities Other Than Environmental Test Chambers (continued) (cost in thousands)

Functional Name	Facility Name	Year Built	lnit. Cost	Accum. Cost	Technological Areas Supported
Optical facility, low temperature	Low Temperature Optical Facility	1964	\$361	\$632	Calibration and alignment of large astronomical experiments
Optical coatings laboratory	Optical Coating Laboratory, 80 in.	1964	65	30	Deposition of thin film on large optics in the visible and UV spectral regions
Spin and attitude control systems facility	Air Bearing Table	1965	125	125	Spin and attitude control system testing
Vacuum system, ultrahigh	Ultra High Vacuum System	1965	70	NA	Evaluation of spacecraft components in space thermal and pressure environmen
Magnetic field component test facility	Magnetic Field Component Test Facility	1965	1075	1200	Simultaneous simulation of magnetic field, temperature, and vacuum (10^{-6}) in space
Acoustic test facility, high intensity	. High Intensity Acoustic Facility	1965	130	190	Simulation of launch noise to determine and evaluate effects on spacecraft systems, subsystems, and structures
Launch phase simulator	Launch Phase Simulator	1966	4465	NA	Simulation of launch environment
Attitude control test facility	Attitude Control Test Facility	1966	1835	NA	Determination of spacecraft magnetic moment; evaluation of magnetic moment; evaluation of magnetic attitude control systems
Measurements laboratory	Measurement Systems Section	1966	65	NA	Auxiliary propulsion
Propulsion systems test facility,	Electric Propulsion System & Test Installation	1966	750	NA	Auxiliary propulsion systems for spacecraft station keeping and attitude control
Balancing facility, vertical	Vertical Balancing Facility	1966	78	86	Static and dynamic balancing of spacecraft and sounding rockets
Radiation environment simulation facility	Radiation Environment Simulation Facility	1967	965 ^c	NA	Production of high-energy charged-particle beams, gamma radiation, and neutron beams to determine effects on materials and electrical and optical devices
Launch facility	Aerobee 350 Launcher ^d	1967	1200	NA	Space sciences
Launch facility	Tubular Boom Launcher ^e	1967	50	NA	33

^aSine force rate (lbs vector).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 1, Sect. 7.

bContractor-operated (Sperry Gyroscope).

^cIncluding equipment and safety system; not including building structures.

dAt White Sands Missile Range.

eAt Barriera do Inferno Range, Natal, Brazil.

NA=Data not available.

Table 6-37. Property (as of June 30; money amounts in thousands)^a

Category	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)								
Owned	231.1 (571.0) ^b	231.1 (571.0) ^b	224.2 (553.9) ^c	279.2 (689.9) ^d	288.7 (713.5) ^e	3 728.6 (9 213.6) ^f	3 728.6 (9 213.6)	4 857.3 (12 002.7) ^h
Leased	NA	49.0 (121)	49.0 (121)	49.0 (121)	169.6 (419)	469.5 (1 160)	422.5 (1 043.9)	490.5 (1 211.9)
Buildings								
Number owned	NA	NA	8	30	52	216	246	190
Area owned, thousands of sq m	NA	48.4	57.0	113.3	142.6	187.3	232.3	238.4
(and sq ft)		(521)	(613)	(1 219)	(1 535)	(2 016)	(2 501)	(2 566)
Area leased, thousands of sq m	NA	10.7	23.1	16.5	9.9	. 4.6	5.1	5.1
(and sq ft)		(115)	(249)	(178)	(106)	(49)	(55)	(55)
Value of:								
Land	NA	NA	\$ 58	\$ 421	\$ 735	\$ 1145	\$ 1 29 1	\$ 1535
Buildings	NA	NA	13 022	32 141	44 358	58 074	68 948	81 064
Other structures and facilities	NA	NA	881	2 788	17 846	31 793	40 995	49 441
Real property	NA NA	NA	\$13 961	\$35 350	\$ 62 939	\$ 91 012	\$111 234	\$132 040
Capitalized equipment	NA	\$23 000	\$37 191	\$59 404 ^g	\$110 243 ^g	\$199 031g	\$258 184 ^g	\$371 696

^aIncluding all onsite and offsite property owned or leased by GSFC, including Goddard Institute for Space Sciences in New York City and all STADAN and MSFN tracking stations. For definition of terms, see Introduction to Chapter Two. Data for FY 1960 are not available.

^bAcquired 221.7 hectares (547.7 acres) from Dept. of Agriculture June 9, 1961, for GSFC proper; acquired 9.4 hectares (23.3 acres) from State of Alaska during February 1961 for Gilmore Creek Tracking Station. Adjusted figure; 221.8 hectares (548 acres) appeared in end-of-fiscal-year reports.

^cRelinquished 6.9 hectares (17.06 acres) to Prince Georges County, Md., during 1962 for road construction. Adjusted figure; 248.1 hectares (613 acres) appeared in end-of-fiscal-year reports.

dRelinquished 0.08 hectares (0.2 acres) to Alaska during September 1963 for road construction; acquired 55.1 hectares (136.2 acres) from General Services Administration for tracking station at Corpus Christi, Tex., during June 1964. Adjusted figure; 247.7 hectares (612 acres) appeared in end-of-fiscal-year reports.

eAcquired 7.6 hectares (18.8 acres) from Dept. of Agriculture Dec. 21, 1964; acquired 1.9 hectares (4.8 acres) from the city of Greenbelt, Md., for interchange construction.

fAcquired 3.4 hectares (8.5 acres) from Public Domain in Alaska during July 1965; acquired 3436.4 hectares (8491.6 acres) for Alaska site during FY 1966.

gincludes capital equipment and other property at GSFC, GISS, and tracking stations and Government-furnished equipment at contractors' plants.

hWith the disestablishment of the Western Support Office on March 1, 1968, responsibility for two industrial (contractor-held) facilities was transferred to GSFC. These were TRW-Redondo Beach (NAS 7-223 F), Redondo Beach, Calif., and New Mexico State University (NAS 7-424 F) for a 1128.7-hectare (2789-acre) antenna test range at White Sands Missile Range.

NA = Not available.

Source: NASA, Office of Facilities. Supplementary information was provided by R. M. Buckingham.

NASA HISTORICAL DATA BOOK

Table 6-38. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963 ^a	1964	1965	1966	1967	1968
Land	0.4	1.2	1.1	1.3	1.3	1.2
Buildings	93.3	90.9	70.5	63.8 .	62.0	61.4
Other structures and facilities	6.3	7.9	28.4	34.9	36.9	37.4
	100.0	100.0	100.0	100.0	100.0	100.0
Total real property value	\$13 961	\$34 350	\$62 939	\$91 012	\$111 234	\$132 040

a Data for earlier years are not available.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-39. Personnel

	1958	1	.959	1	960	1961		1962		1963	
Employee Category	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/3
Requested for FY ending	· · · · · · · · · · · · · · · · · · ·	800		1250		2000		2668		2749	
Total, paid employees	216	398	1117 ^a	1269	1881	1599 ^b	1858	2755	2858	3487	3443
Permanent	214	385	1096	1252	1741	1320	1711	2287	2579	3030	3310
Temporary	2	13	21	17	140	279	147	468	279	457	133
Code group (permanent only)											
200 ^c	52	74	151	157	203	23	26	42	50	56	65
700 ^d	76	141	459	525	645	604	700	980	1099	1320	1434
900	0	0	0	0	0	0	0	0	0	0	0
Subtotal	. 128	215	610	682	848	627	726	1022	1149	1376	1499
600 ^e	_		_	-	106	109	166	223	246	309	404
500	31	78	249	313	364	253	373	468	535	616	634
300	53	88	154	161	215	202	261	355	404	484	516
100	2	4	83	96	208	129	185	219	245	245	257
Subtotal	86	170	486	570	893	693	985	1265	1430	1654	1811
Excepted: on duty	4	20	32	35	37	30	32	36	38	38	39
Accessions: permanent	214	187	231	200	566	266	344	621	415	477	430
Accessions: temporary	2	12	23	16	168	222	114	387	147	371	68
Military detailees	0	0	10	10	11	3	6	9	8	14	15

Table 6-39. Personnel (Continued)

	1964		1965		1966		1967		1968	
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	
Requested for FY ending	3700		3612		3677		3759		3782	
Total, paid employees	3675	3640	3774	3560	3958	3791	3995	3752	4073	
Permanent	3498	3 5 31	3613	3489	3718	3754	3788	3702	3746	
Temporary	177	109	161	71	240	37	207	50	327	
Code group (permanent only)										
200 ^c	67	64	63	59	58	60	60	58	56	
700 ^d	1542	1579	1624	1531	1660	1695	1736	1733	1762	
900	0	1	0	0	0	0	0	0	0	
Subtotal	1609	1644	1692	1590	1718	1755	1796	1791	1818	
600 ^e	439	447	461	463	531	540	548	542	540	
500	649	649	647	634	680	672	682	624	619	
300	541	5 38	558	548	544	555	534	526	552	
100	260	253	255	254	245	232	228	219	217	
Subtotal	1889	1887	1921	1899	2000	1999	1992	1911	1928	
Excepted: on duty	40	40	33	29	32	31	32	36	37	
Accessions: permanent	327	208	250	203	462	292	294	· NA	NA	
Accessions: temporary	83	166	105	182	186	73	141	NA	NA	
Military detailees	14	11	5	3	5	8	11	10	8	

^aSpace Task Group (480 employees) was transferred from Langley Research Center to GSFC in November 1959.

^bAbout 660 employees were transferred from GSFC when Space Task Group was established as an independent installation in January 1961. Data henceforth include Goddard Institute for Space Studies.

^cBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^dData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

^eBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Not Available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-40	Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activit	tv ^a

Program	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight		0	0	0	0	0	0	3	. 17
(% of total)	(60.0)	(0.0)	(0.0)	(0.0)	(0,0)	(0.0)	(0.0)	(0.1)	(0.4)
Space applications	(=,	111	325	340	380	358	345	363	420
(% of total)	(7.0)	(7.4)	(13.9)	(11.0)	(10.5)	(9.7)	(9.3)	(9.6)	(11.0)
Unmanned investigations in space	` ,	855	1236	922	1141	1215	1096	1126	1139
(% of total)	(19.0)	(57.1)	(53.0)	(29.7)	(31.6)	(32.8)	(29.5)	(29.8)	(29.8)
Space research and technology	• •	2	16	151	143	163	163	174	175
(% of total)	(1.0)	(0.2)	(0.7)	(4.9)	(4.0)	(4.4)	(4.4)	(4.6)	(4.6)
Aircraft technology	` ,	0	. 0	0	0	0	0	0	0
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Supporting activities ^C	, , , ,	529	756	1689	1946	1968	2108	2116	2071
(% of total)	(13.0)	(35.3)	(32.4)	(54.4)	(53.9)	(53.1)	(56.8)	(55.9)	(54.2)
Total GSFC	(1010)	1497	2333	3102	3610	3704	3712	3782	3822

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in the FY 1960 column are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^cFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities. FY 1961 and FY 1962 figures represent only tracking and data acquisition.

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-41. Funding by Fiscal Year (program plan as of May 31, 1968; in millions)

Appropriations Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development Construction of facilities ^a Administrative operations ^b	\$72.90 3.85 1.82	\$116.70 14.00 15.55	\$140.30 9.40 20.38	\$171.50 11.52 39.11	\$275.40 21.18 52.81	\$370.50 17.53 61.94	\$374.60 2.31 93.25	\$353.10 2.40 64.55	\$386.20 0.71 71.19	\$430.50 0.56 68.44	\$2691.70 83.46 489.04
Total	\$78.57	\$146.25	\$170.08	\$222.13	\$349.39	\$449.97	\$470.16	\$420.05	\$458.10	\$499.50	\$3264.20

^aDoes not include facilities planning and design.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget
Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959
Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget
Operations Division, "Status of Approved Programs," FY 1959-1968, May 1968.

Table 6-42. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan .	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	\$ 3.9	\$3.4	\$0.2	\$0.2	_*	*	*	*	0	0	0	\$ 3.9
1960	13.9		5.5	6.7	\$ 0.9	\$ 0.5	\$ 0.2	*	*	_*	0	13.9
1961	9.4			2.6	5.8	0.7	0.2	*	*	_*	_*	9.4
1962	12.0				7.2	3.9	0.5	\$ 0.2	\$0.2	-*	*	12.0
1963	21.4					7.9	5.2	5.1	1.1	\$0.8	\$0.2	20.2
1964	17.7						4.4	10.3	1.7	1.2	0.1	17.7
1965	2.4							0.7	1.6	*	*	2.4
1966	2.7	•							1.8	0.7	0.1	2.6
1967	0.8									*	0.7	0.7
1968	0.6										0.4	0.4
. Те	otal \$84.8	\$3.4	\$5.7	\$ 9.5	\$ 13.9	\$ 13.0	\$10.6	\$16.4	\$6.4	\$2. 7	\$ 1.6	\$83.3 ^a

^aIncludes \$3.4 million for tracking and data acquisition facilities.

Source:

NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

^bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

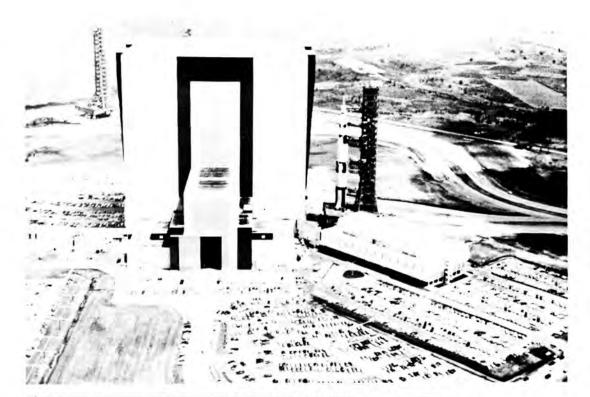
^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Table 6-43. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$76.0	\$155.0	\$209.3	\$303.5	\$382.8	\$517.7	\$473.8	\$398.9	\$471.0	\$2988.0
Percentage of NASA total	23%	21%	14%	9%	8%	10%	9%	8.6%	11.4%	10.1%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual

Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).


Table 6-44. Awards to Personnel Granted under Section 306 of the Space Act of 1958^a

Year	Inventor	Contribution	Amount
1964	Robert C. Baumann Leopold Winkler	Spin adjusting mechanism	\$2000
(with	William R. Cherry Joseph Mandelkorn, LeRC)	Solar cell for radiation environment	6000
1966 (with	John M. Thole Wallace S. Kreisman Robert M. Chapman, Geophysics Corp.)	Inflation system for balloon satellites	1000
1967 (with	John B. Schutt Charles M. Shai, Electro Mechanical Research Inc.)	Alkali-metal silicate protective coating	1500

^aFor complete listing of awards under this Act, see Appendix A, Sect. 1.B.

Source: NASA, Inventions and Contributions Board.

JOHN F. KENNEDY SPACE CENTER

Kennedy Space Flight Center's Vehicle Assembly Building (above left) dwarfed the 111-meter-tall (365-foot-tall) Apollo/Saturn V-500F test vehicle and its mobile launcher in May 1966. The Launch Control Center extends diagonally from the VAB. Heavy launch row at Cape Kennedy (at left), photographed May 1968, shows NASA Complexes 36A and 36B in the foreground with Centaur pads going back to Pad 37. Mariner, Intelsat, Orbiting Astronomical Observatory, and Pioneer spacecraft have been launched on Centaur vehicles. Freedom 7 (above), launched on the Mercury-Redstone 3, carried America's first man into space May 5, 1961. On Dec. 21, 1968, the Saturn V thrust Apollo 8 out of the earth's field of gravity into man's first orbit of the moon.

JOHN F. KENNEDY SPACE CENTER

(KSC)

Location: Kennedy Space Center, Brevard County, Florida.

Land: 35 257.7 total hectares (87 123.7 acres) as of June 30, 1968:

-33905.8 hectares (83 783 acres) NASA-owned.

-1351.3 hectares (3339 acres) perpetual easements from State of Florida.

-0.7 hectares (1.7 acres) leased.

Director:

Kurt H. Debus (Dec. 20, 1963Launch Operations Center, July 1, 1962-Dec. 30, 1963;
Director, MSFC Launch Operations Directorate, July 1,
1960-July 1, 1962; at Redstone Arsenal, Alabama: Chief,
Missile Firing Laboratory [part of Army Ballistic Missile
Agency's Development Operations Division], Feb. 1,
1956-July 1, 1960; Chief, Missile Firing Laboratory [part
of Ordnance Missile Laboratories' Guided Missile Development Division], January 1953-Feb. 1, 1956; Chief, Experimental Missiles Firing Branch [part of Technical and
Engineering Division's Guided Missiles Development
Group], November 1951-January 1953).

Deputy Director, Center Administration:

Albert F. Siepert (February 1963-).

Deputy Director, Center Operations:

Miles Ross (September 1967-).

History

Cape Canaveral, a barren promontory on Florida's Atlantic Coast, was selected as a missile launching site in the late 1940s. On May 11, 1949, President Truman signed a bill authorizing establishment of a launching range for guided missiles. A month later the Banana River Naval Air Station (24)

kilometers [15 miles] south of the Cape), which had been transferred to the United States Air Force September 1, 1948, was redesignated Joint Long Range Proving Ground and was reactivated October 1, 1949, as a joint Army-Navy-Air Force effort under executive control of the USAF Chief of Staff.²

On May 16, 1950, the Department of Defense made the Air Force officially responsible for the installation: Headquarters, Joint Long Range Proving Ground, became Headquarters, Long Range Proving Ground Division. An Air Force order dated May 17 renamed Joint Long Range Proving Ground the Long Range Proving Ground Air Force Base.³ The first rocket launched from Cape Canaveral—on July 24, 1950—was Bumper No. 8, a German V-2 with an Army-JPL WAC-Corporal second stage. On August 1, 1950, Long Range Proving Ground Air Force Base was redesignated Patrick Air Force Base. Long Range Proving Ground Division was assigned to Air Research and Development Command (ARDC) May 14, 1951, and, effective June 30, became Air Force Missile Test Center (AFMTC).⁴

In August of the same year at the Army's Redstone Arsenal in Huntsville, Alabama, organizational changes resulted in the establishment of the Technical and Engineering Division and the subsequent establishment of the Experimental Missiles Firing Branch December 1, 1951. This new Branch was formed to supervise the construction of Redstone missile facilities at Cape Canaveral Missile Test Annex and to conduct the experimental flights of

¹Public Law 60, 81st Congress. Also see Francis E. Jarrett, Jr., and Robert A. Lindemann, "Historical Origins of NASA's Launch Operations Center to July 1, 1962," KHM-1 (KSC Historical Section, October 1964), ix, 14. The KSC history section of the Data Book was prepared by Francis E. Jarrett, Jr., Kennedy Space Center.

²Letter, Department of the Air Force, Subject: Establishment of Advanced Head-quarters, Sept. 30, 1949; Emme, Aeronautics and Astronautics, 1915-1960, 62.

³Départment of the Air Force, General Order GO-38, May 17, 1950; Jarrett and Lindemann, "Historical Origins," ix. 15.

⁴Headquarters, Air Research Development Command, General Order GO-19, June 29, 1951; Jarrett and Lindemann, "Historical Origins," x, 15; Department of the Air Force, General Order GO-51, July 19, 1950.

Redstone missiles. Initial steps had already been taken by Redstone Arsenal to secure launch and support facilities from Air Force Missile Test Center at the Cape Canaveral Missile Test Annex. In early January 1953, the Experimental Missiles Firing Branch was redesignated Missile Firing Laboratory (MFL).⁵

The Department of Defense approved the Army's proposal for development of the Jupiter intermediate-range ballistic missile November 8, 1955, and on December 22 the Department of the Army established the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal to manage both the Redstone weapon system and the Jupiter program. Missile Firing Laboratory became part of the Army Ballistic Missile Agency's Development Operations Division, and the following winter, effective December 24, 1956, 90 Missile Firing Laboratory employees were permanently assigned at Air Force Missile Test Center. By November 1958, Missile Firing Laboratory had grown to 292 civilian personnel members and had been given responsibility for launch complex design and construction for the Juno V booster (redesignated Saturn February 3, 1959).

Within two weeks after the establishment of the National Aeronautics and Space Administration October 1, 1958, the first NASA payload, *Pioneer 1*, was launched from the Atlantic Missile Range (as the test range on the Cape had been redesignated May 1, 1958) under the direction of the U.S. Air Force. On November 28, Air Force Missile Test Center announced establishment of a Directorate of NASA Tests, and NASA Administrator T. Keith Glennan outlined in a May 1, 1959, memorandum the liaison, coordinative, and support functions of this office, which had been designated the Atlantic Missile Range Operations Office (AMROO). Effective July 1, 1960, with the transfer of ABMA's Development Operations Division to NASA, Atlantic Missile Range Operations Office was terminated. Missile Firing Laboratory became the Launch Operations Directorate (LOD) of the new NASA Marshall Space Flight Center, functioning as the central authority at both Atlantic

Missile Range (AMR) and Pacific Missile Range (PMR) for all NASA launch operations and performing liaison work with the military range commanders and their staffs.⁸

Even before the transfer, Missile Firing Laboratory had been negotiating with Air Force Missile Test Center for the reassignment of MFL facilities at Cape Canaveral Missile Test Annex to NASA. Missile Firing Laboratory had also been developing a master plan for future NASA launch facilities. With the decision in the spring of 1961 to undertake a manned lunar landing before 1970, Launch Operations Directorate and Air Force Missile Test Center initiated a joint study of lunar mission launch site facilities and requirements. NASA and the Department of Defense signed an agreement on management and funding of the lunar landing program's launch site August 24, 1961. On the same day NASA announced the decision to acquire some 32 373 hectares (80 000 acres) north and west of Cape Canaveral Missile Test Annex on which to construct facilities for manned lunar launches.

NASA announced March 7, 1962, that Launch Operations Directorate would become an independent NASA field installation effective July 1, 1962. Marshall Space Flight Center retained a "Launch Vehicle Operations Division" and Launch Operations Directorate's NASA Test Support Office at Pacific Missile Range became another independent installation—the Pacific Launch Operations Office (PLOO). The rest of the Launch Operations Directorate—338 former Marshall Space Flight Center employees—formed the Launch Operations Center at Cape Canaveral. The functions of the new Center were to support NASA's launch operations, supervise large-scale construction for the manned lunar landing launch site, and continue liaison with Air Force Missile Test Center.¹⁰

After a series of discussions on their respective mission responsibilities at the Cape, NASA and the Department of Defense signed an agreement January 17, 1963, which provided that Air Force Missile Test Center would continue as "host agency" for the 6070-hectare (15 000-acre) Cape Canaveral launch

⁵ Jarrett and Lindemann, "Historical Origins," 20-23, 32.

⁶/_{Did.}, 40.49. By November 1958, ABMA was operating under Army Ordnance Missile Command (AOMC), established March 1958.

⁷Ibid., 54; Rosholt, Administrative History of NASA, 81, n. 32; 123-124; Memorandum from the Administrator, May 1, 1959, Subject: Functions and Authority—NASA Atlantic Missile Range Operations Office (AMROO). Provisions of the memowere incorporated into the NASA Management Manual by General Management Instruction No. 2-2-13, Sept. 17, 1959.

^{*}NASA Announcement No. 156, June 13, 1960.

⁹"Agreement Between DOD and NASA Relating to the Launch Site for the Manned Lunar Landing Program," signed by Deputy Secretary of Defense Roswell L. Gilpatric and NASA Administrator James E. Webb, Aug. 24, 1961; NASA Release 61-189.

¹⁰NASA Circular No. 208, March 7, 1962, Subject: Establishment of the Launch Operations Center at AMR and the Pacific Launch Operations Office at PMR; NASA Release 62-53; Rosholt, Administrative History of NASA, Append. C; NASA General Management Instruction 2-2-9.1, Jan. 10, 1963.

area, but that NASA would be host agency for the new 35 207.7-hectare (87 000-acre) Merritt Island Launch Area (MILA) to the north and west. NASA and the Department of Defense would carry out their own logistic and administrative functions and would perform specific mission functions in their own behalf regardless of location (such as preparation, checkout, launch, and test evaluation).¹¹

In a televised speech on Thanksgiving Day, 1963, less than a week after the assassination of the late President Kennedy, President Johnson announced that "Station No. 1 of the Atlantic Missile Range and the NASA Launch Operations Center in Florida shall hereafter be known as the John F. Kennedy Space Center." He added: "I have also acted today with the understanding and support of my friend, the Governor of Florida, Farris Bryant, to change the name of Cape Canaveral. It shall be known hereafter as Cape Kennedy." 1 2

The following day, November 29, 1963, the President signed Executive Order 11129 designating both NASA and Department of Defense facilities as "John F. Kennedy Space Center." NASA officially redesignated Launch Operations Center the John F. Kennedy Space Center, NASA, December 20, and in January the Air Force redesignated its Cape Canaveral Missile Test Annex the Cape Kennedy Air Force Station.¹³

In compliance with Secretary of Defense Robert S. McNamara's November 1963 directive to consolidate Department of Defense intercontinental ballistic missile and satellite test range facilities under a central U.S. Air Force authority, the Air Force Systems Command (AFSC) established National Range Division Provisional Headquarters at Patrick Air Force Base January 2, 1964. (Air Force Systems Command had replaced Air Research and Development Command April 1, 1961.) National Range Division, as organized by AFSC May 4, set up permanent headquarters at Andrews Air

Force Base, Maryland. Air Force Missile Test Center became the Air Force Eastern Test Range, and on May 15, 1964, the Atlantic Missile Range became the Eastern Test Range.¹⁴

Ground was broken for the first building in the NASA Merritt Island industrial complex January 28, 1963, and the first employees moved into new KSC headquarters in April 1965.¹⁵ NASA discontinued the Merritt Island Launch Area designation July 26, 1965, and called the entire NASA property the John F. Kennedy Space Center, NASA, including the Industrial Area, Launch Complex 39, and other facilities.¹⁶

Until the first Saturn V was launched November 9, 1967, NASA launches at the Eastern Test Range took place from launch complexes at Cape Kennedy. On August 20, 1963, the Army Corps of Engineers announced that construction had begun on the Vehicle Assembly Building (then called the Vertical Assembly Building) for Launch Complex 39. This new launch complex, with its interrelated mobile launch hardware and facilities for the Saturn V launch vehicle, was the first launch facility built on NASA property north of Cape Kennedy.¹⁷ The crawler transporter, designed to carry the launch vehicle, launch umbilical tower, and the mobile service structure from the Vehicle Assembly Building to the launch pads, lifted a mobile launcher for the first time June 22, 1965. After certain modifications, the crawler transporter completed its first successful load-carrying run January 28, 1966, and moved its first mobile service structure July 22, 1966.¹⁸

About 500 Manned Spacecraft Center employees joined KSC on January 1, 1965, with the transfer of the Manned Spacecraft Center Florida Operations Organization. As a result of this realignment, KSC was made

^{11&}quot;Agreement between the Department of Defense and the National Aeronautics and Space Administration Regarding Management of the Atlantic Missile Range of DoD and the Merritt Island Launch Area of NASA," signed by Secretary of Defense Robert S. McNamara and NASA Administrator James E. Webb, Jan. 17, 1963; NASA Release 63-11.

¹²Cabell Phillips, New York Times, Nov. 29, 1963, 10.

¹³ Angela C. Gresser, "Historical Aspects Concerning the Redesignation of Facilities at Cape Canaveral," KHN-1 (Cocoa Beach, Fla.: KSC Historical Section, April 1964), 15, 17; NASA Announcement 63-283, Dec. 20, 1963; Department of the Air Force, Special Order SO-GA-7, Jan. 22, 1964.

¹⁴Air Force Systems Command, Special Order SO-G-45, May 5, 1964; DOD Release 1494-63; AFSC Releases 41-5-1 and 45-R-50; Department of the Air Force, Special Order SO-GA-93, Nov. 2, 1964. For parallel developments at Western Test Range, see the section on Pacific Launch Operations Office (PLOO) in the section Former Field Activities below.

¹⁵ AP, Baltimore Sun, Jan. 29, 1963; KSC Release 93-65.

¹⁶KSC Announcement, July 26, 1965.

¹⁷DOD Release 1141-63. On redesignation of the Vertical Assembly Building, see Letter, George E. Mueller, NASA Associate Administrator for Manned Space Flight, to KSC, Sept. 9, 1965.

¹⁸ KSC Release 128-65; Aviation Week & Space Technology, June 20, 1966 [special KSC issue], 82 ff.; Missiles and Rockets, Feb. 7, 1966, 34.

responsible for final assembly, checkout, and launch of the Apollo space-craft.19

On October 1, 1965, NASA consolidated its unmanned launch activities by absorbing the Goddard Space Flight Center's Launch Operations Division. Goddard personnel assigned to the Western Test Range, as well as the staff and functions of Pacific Launch Operations Office, became the KSC Western Test Range Operations Division. With this reorganization, KSC assumed responsibility for checkout and launch of all NASA vehicles except the Scout, which was under Langley Research Center management and was launched from Wallops Station and at the Western Test Range.^{2 o}

Mission

Kennedy Space Center was assigned the responsibility for preparation, checkout, and launch of assigned NASA space vehicles:

- (1) Designing, installing, and operating launch facilities, including ground support equipment, for manned and unmanned spacecraft and scientific satellites;
- (2) Furnishing onsite technical and administrative support for all NASA programs;
- (3) Conducting advanced planning and studies leading to development of new launch operations concepts and techniques.²

Defunct Names

Air Force Missile Test Center (AFMTC), Headquarters—formerly Long Range Proving Ground Division (renamed AFMTC June 30, 1951); renamed Headquarters, Air Force Eastern Test Range (AFETR) May 15, 1964.

Air Research and Development Command (ARDC)—replaced by Air Force Systems Command (AFSC) April 1, 1961.

Atlantic Missile Range-renamed Eastern Test Range May 15, 1964.

Banana River Naval Air Station—redesignated Joint Long Range Proving Ground June 10, 1949.

Cape Canaveral-redesignated Cape Kennedy Nov. 29, 1963.

Cape Canaveral Missile Test Annex-redesignated Cape Kennedy Air Force Station Jan. 22, 1964.

Experimental Missiles Firing Branch-became Missile Firing Laboratory January 1953.

Florida Missile Test Range—redesignated Atlantic Missile Range effective May 1, 1958.

Joint Long Range Proving Ground—redesignated Long Range Proving Ground AFB May 17, 1950.

Joint Long Range Proving Ground, Headquarters—redesignated Headquarters, Long Range Proving Ground Division May 16, 1950.

Launch Operations Center (LOC)—became John F. Kennedy Space Center, NASA, Dec. 20, 1963.

Launch Operations Directorate (LOD)—became Launch Operations Center (LOC) July 1, 1962.

Long Range Proving Ground AFB—redesignated Patrick AFB Aug. 1, 1950. Long Range Proving Ground Division—renamed Air Force Missile Test Center June 30, 1951.

Merritt Island Launch Area (MILA)—designation discontinued July 26, 1965; area was to be called John F. Kennedy Space Center, NASA.

Missile Firing Laboratory-became MSFC Launch Operations Directorate (LOD) July 1, 1960.

Mobile Arming Tower-name changed to Mobile Service Structure Sept. 9, 1965.

Pacific Missile Range—established June 16, 1958; part of USN responsibilities transferred to Air Force Western Test Range in May 1965; Pacific Missile Range continues as a national range under U.S. Navy management, but consists of the Sea Test Range, missile impact location stations in the Pacific, and several tracking stations.

Pad A and Pad B-redesignated Launch Area A and Launch Area B Sept. 9, 1965.

Vertical Assembly Building—redesignated Vehicle Assembly Building Sept. 9, 1965.

¹⁹ NASA Announcement 64-301; MSC Roundup, Jan. 6, 1965, 1.

²⁰NASA Release 65-313; KSC Release 238-65. For background on launch activity at Western Test Range, see section on Pacific Launch Operations Office under Former Field Activities below.

²¹U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on

Manned Space Flight, 1968 NASA Authorization; Hearings, Pt. 2, 90th Cong., 1st sess., March 14-21, 1967 (Washington, D.C.: GPO, 1967), 1064; NASA Management Instruction 1142.2, June 29, 1965.

Table 6-45. Technical Facilities: Launch Complex 39 at Kennedy Space Center (with costs in thousands)

Facility Name	Year Completed	Initial Cost	Accumulated Cost	Technological Areas Supported
Launch Area A ^a	1965	\$24 075	\$34 249.2	Launch of Saturn V
Ordnance Laboratory	1965	141	147.6	Ordnance storage; space for receiving retrorockets, escape rockets, and small pyrotechnic devices
Launch Equipment Shop	1965	746	763	Technical support for fabrication and repair of Saturn V launch equipment
Launch Control Center (LCC)		7 000	8 242	Central control for vehicle checkout and launch
Crawler transporters (2)	1965- 1966			Transporting launch vehicle, LUT mobile launchers, and mobile service structure between park areas, Vehicle Assembly Building, and pads
Vehicle Assembly Building, High Bay and Low Bay ^b	1966		97 487.7	Four checkout cells for access and housing of the LUT during assembly and checkout of Saturn V vehicle; doorway in each bay for entrance of LUT and crawler transporter and exit with vehicle aboard as a mobile launcher. Low Bay with eight checkout cells for assembly and test of Saturn 2nd and 3rd stages.
Launch Area B ^C	1967 ^d	20 957	5 431.9	Launch of Saturn V
Launch umbilical towers (3) (LUT)	1967	30 000 each	76 764.9 ^e	Saturn checkout, assembly, fueling, and launch
Mobile service structure ^f (MSS)	1967	13 300	19 809.9	Inspection and malfunction operations for Saturn V space craft; fueling, checkout, final ordnance hookup, and final verification for Apollo spacecraft

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect.

10; "NASA-KSC Quarterly Real Property Inventory as of

December 31, 1967," 36 ff.

^aFormerly called Pad A. ^bFormerly called Vertical Assembly Building.

^cFormerly called Pad B.

dBy late 1967, only launch pad and liquid hydrogen facility had been completed. When completed, Launch Area B would be identical to Launch Area A.

^eFor all three LUTs.

fFormerly called Mobile arming tower.

Table 6-46. Technical Facilities at Kennedy Space Center Other Than Launch Complex 39 (with costs in thousands)

Functional Name	Facility Name	Year Completed	lnit. Cost	Accum. Cost	Technological Areas Supported
Radar boresight range ^a		1964	\$ 95	\$ 304	Radar boresighting, RFI checks; was used for Gemini- Agena docking checks
Cryogenic test facility (Nos. 1 and 2)	Cryogenic Test, Nos. 1 and 2	1964 1966	1200	1 267.6	Mercury, Gemini, and Apollo programs
Environmental systems test facility		1964	834	1 533.9	Spacecraft environmental control systems operations
Fluid test facility	Fluid Test Support Building	1964	228	508	Hypergolic propulsion systems, cryogenic fuel cell systems, life support systems
Hypergolic test facility (Nos. 1 and 2)	Hypergolic Test, Nos. 1, 2	1964	977	3 133.7	Propellant systems
Flight crew and spacecraft test facility	Operation and Checkout Building	1964	8147	28 024.6	Assembly and checkout of manned spacecraft; crew training and preflight preparations
Parachute facility	Parachute	1964	329.4	341	Storage, receiving, inspection, and packing of parachutes and other recovery equipment, flight crew equipment, ar extravehicular activity (EVA) equipment
Propellant systems component laboratory	Propellent Systems Component Laboratory	1964	125	235	Receiving, disassembly, cleaning, reassembly, and testing of contaminated components of Saturn-Apollo propellant systems
Pyrotechnic installation facility	Pyrotechnic Installation	1964	1204	1 320	Manned spacecraft operations
Instrumentation support facility	Central Instrumentation Facility (CIF)	1965	5729	5 827.5	Saturn-Apollo support
Pyrotechnics test facility	Ordnance Laboratory	1965	159.4	178.3	Pyrotechnic testing, inspection, and associated electric and electronic instrumentation
Flight crew training facility ^C	Flight Crew Support Building	1966	1005.2	1 863.2	Manned spacecraft operations

^aIncluding tower and control building.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 11, Sec. 10;

"NASA-KSC Quarterly Real Property Inventory as of December 31,

1967," 39 ff.

b_{No. 2}.

^cAlso listed in *Technical Facilities Catalog* as an MSC technical facility (Sec. 11, 163).

Table 6-47. Technical Facilities: NASA Launch Complexes at Cape Kennedy Air Force Station (with costs in thousands)

Launch Complex Number	Year Completed	Init. Cost	Accum. Cost ^a	Capability and Uses
12 ^b	1957	\$ 6 552	\$ 7 335	Atlas-Agena launch vehicle; supported Ranger, Mariner, Fire, OGO, OAO, and ATS programs
17 (A&B) ^c	1957	2 982	3 445	First used for Thor-Delta, then thrust-augmented Delta (TAD) launch vehicles; supported OSO, IMP, GEOS, Biosatellite, Echo, Explorer, Tiros, Pioneer, Telstar, Relay, Syncom, and Intelsat programs
16 ^d	1959 ^f	3 700	·4 785	Apollo static test facility for operational testing of Apollo service module and associated support equipment
13 ^{b,e}	1958	9 706	9 849.5	Atlas-Agena launch vehicle; service structure modified to accommodate Lunar Orbiter, ATS, and OGO programs
34	1961	6 813	29 073	Assembly, checkout, and launch of Saturn IB launch vehicle
36 (A&B) ^b	1961- 1964	2 785(A) 5 693(B)	13 228 ^g	Atlas-Centaur launch vehicle; supported Surveyor program
37	1963	28 476	44 004	Assembly, checkout, and launch of Saturn IB launch vehicle

^aTotal accumulated cost estimate as of Dec. 31, 1967, including all buildings, structures, and subfacilities.

^eUnder USAF cognizance.

fYear LC-16 was completed for Titan ICBM R&D test program.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 10; "NASA-KSC Quarterly Real Property Inventory, as of December

31, 1967," 1-23.

^bContractor-operated (General Dynamics/Convair).

^CContractor-operated (Douglas Aircraft Co., later McDonnell Douglas Corp.).

d_{Contractor-operated} (North American Rockwell Corp.).

gIncluding both A and B.

Table 6-48. NASA Technical Facilities at Cape Kennedy Air Force Station Other Than Launch Complexes (with costs in thousands)

Functional Name	Facility Name	Year Completed	lnit. Cost	Accum. Cost	Technological Areas Supported
Spin test facility, Delta	Spin Test Building	1955	\$ 250	\$ 261	Balancing and pyro installation for Delta vehicles
vehicle ^a Missile assembly facility	Missile Assembly Building "R&D"	1956 ^b	2572	2723	Saturn-Apollo assembly
(R&D) Missile assembly facility	Missile Assembly Building "M"	1956	1239	1239	Servicing and parts cleaning laboratory
(M) ^C Fuel and test facility ^d	Sterlization and Assembly Building, Explosive Safe	1956 ^e	809	874	Checkout and spacecraft testing
Mission control center	Assembly Complex Mission Control Center	1957	496.4	997	Checkout, launch control, training of astronauts, and tracking during Gemini program; used for Apollo checkout and tracking until adoption of Unified S Band
Missile assembly	Missile Assembly Building "S"	1957- 1958	1088.9	2605	Laboratory, office, and checkout facilities for Lunar Orbiter and Biosatellite programs
facility (S) ^I Missile launch engineering support facility (E&L)	Engineering and Laboratory Building (E&L)	1958	972	1284	Office space
Spacecraft assembly and checkout facility (AE)	Spacecraft Assembly and Checkout Building (AE)	1959	512	1887	Spacecraft prelaunch assembly for unmanned launch operations
Pyrotechnics and H ₂ O ₂ facility	Pyrotechnics/H ₂ O ₂ Building (Passivation Building)	1960 ^g	125.5	185	Recycling of suits, boots, and gloves for astronauts' protection ensemble
Missile launch engineering	E&O Building	1961	525	608	Office space for Apollo program
support facility (E&O) Saturn support facility	Hangar AF	1963	1786	1924	Administrative support offices
(Hangar AF) Spacecraft assembly and checkout facility (Hangar AO) ^d	Spacecraft Building No. 2 (Hangar AO)	. 1963	1128.4	1316	Prelaunch assembly and checkout of lunar and planetary spacecraft
(Hangar AU) ^a Spacecraft test facility, unmanned (No. 1)	Spacecraft Building, No. 1 (Hangar AM)	1963		846	Laboratories, offices, and spacecraft testing facilities; used for Pioneer, ATS, and OSO satellites

Table 6-48. NASA Technical Facilities at Cape Kennedy Air Force Station Other Than Launch Complexes (Continued) (with costs in thousands)

Functional Name	Facility Name	Year Completed	Init. Cost	Accum. Cost	Technological Areas Supported
Fuel transfer and conditioning facility	Propellant Laboratory	1964	\$ 309.8	\$ 394.7	Area 5/6, explosive safe complex; used during Lunar Orbiter program
Leak test facility ^C	Second Stage Leak Test Building	1964	26.1	26.2	Pressure test of helium-sphere and propellant tanks of the Delta vehicle 2nd stage

^aModified in 1967 for a cryogenic test facility.

^bModifications completed in 1962.

^cContractor-operated (Douglas Aircraft Co., later McDonnell Douglas Corp.).

Contractor-operated (Jet Propulsion Laboratory).

eModified in 1964.

Contractor-operated (Boeing Aircraft Co., Inc.; General Electric Co., Inc.).

gModified during 1966; contractor-operated (Bendix Corp.).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 10; "NASA-KSC Quarterly Real Property Inventory as of December 31,

1967," 24 ff.

Table 6-49. Property (as of June 30; money amounts in thousands)^a

Category	1962	1963 ^b	1964	1965	1966	1967	1968
Land in hectares (and acres) Owned Leased	5 407 (13 361) NA	20 064.7 (49 581) NA	32 062.5 (79 228) 0.4 (1)	33 746.9 (83 390.6) 5.1 (12.5) ^c	33 903.5 (83 777.4) 0.5 (1.3)	33 903.5 (83 777.4) 0.6 (1.4)	33 905.8 (83 783.0) 0.7 (1.7)
Buildings Number Owned Area of buildings owned, thousands of sq m (and sq ft) Area of buildings leased, thousands of sq m (and sq ft)	NA 2.1 (23) 0.9 (10)	39 5.8 (62) 4.0 (43)	64 56.6 (609) 4.9 (53)	114 151.4 (1 630) 4.9 (53)	201 274.7 (2 957) 0.9 (10)	524 441.8 (4 756) 0.9 (10)	611 472.8 (5 089) 0.9 (10)
Value Land Buildings Other structures and facilities Real property Capitalized equipment	NA NA NA \$7 000	\$32 670 474 5 004 \$38,148 \$10 294	\$55 653 14 065 36 488 \$106 206 \$16 771	\$60 117 42 742 73 934 \$176 793 \$28 203	\$60 487 110 335 137 201 \$308 023 \$64 307	\$60 487 186 080 285 079 \$531 646 \$94 240	\$60 516 242 915 378 948 \$682 379 \$127 900

^aAlthough Launch Operations Center was not officially established until July 1, 1962, the planned land acquisition began before the end of FY 1962 with funds reprogrammed from research and development. For definition of terms, see Introduction to Chapter Two.

bLaunch Operations Center until Nov. 29, 1963; John F. Kennedy Space Center, NASA, designation announced Dec. 20, 1963.

^CAcreage leased for Taylor Creek and Merritt Island Airport tracking stations.

NA = Data not available.

Source: NASA Office of Facilities. Supplementary information was provided by Francis E. Jarrett, Jr., Charles Hibbard, and Joe Hester.

Table 6-50. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963	1964	1965	1966	1967	1968
Land	85.6%	52.4%	34.0%	19.6%	11.4%	8.9%
Buildings	1.2	13.2	24.2	35.8	35.0	35.6
Other structures and facilities	13.2	34.4	41.8	44.6	53.6	55.5
	100.0	100.0	100.0	100.0	100.0	100.0
Total KSC real property value	\$38 148	\$106 206	\$176 793	\$308 023	\$531 646	\$682 379

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-51. Personnel^a

	1962	19	63	19	64	196	5	196	6 <u> </u>		67	196
Employee Category	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31 ^b	6/30	12/31	6/30
				1200		2205		2045		2750		2720
Requested for FY ending	(04	1101	1269	1625	1880	2464	2486	2669	2618	2867	2782	3044
Total, paid employees	604	1181 1009	1174	1434	1727	2181	2332	2433	2539	2693	2711	2917
Permanent	560		95	191	153	283	154	236	79	174	71	127
Temporary	44	172	93	171	155	203	10.					
Code group (permanent only)	•		24	36	55	51	53	57	47	51	52	54
200	9	15	24		691	966	1032	1059	1065	1148	1147	1263
700 ^d	156	366	429	555		0	0	0	0	0	0	0
900	0	0	0	0	0	1017	1085	1116	1112	1199	1199	1317
Subtotal	165	381	453	591	746	345	365	391	455	537	552	564
600 ^e	137	190	216	266	308	•	•	513	540	539	539	579
500	188	248	299	348	414	452	482	409	429	415	417	454
300	. 39	123	146	172	232	270	387		3	3	4	3
100	31	67	60	57	27	97	13	4	1427	1494	1512	1600
Subtotal	395	628	721	843	981	1164	1247	1317		1494	21	24
Excepted: on duty	2	6	6	14	14	10	13	13	19			24
Accessions: permanent	208	181	164	296	300	121	129	214	218	320		_
Accessions: temporary	79	196	91	188	144	226	141	210	57	138	_	
Military detailees	10	8	. 7	6	6	5	7	7	5	4	5	

^aDesignated Launch Operations Center from July 1, 1962, until redesignation was announced December 20, 1963. Data include figures for Daytona Beach Operation, not functionally part of KSC (see section on Headquarters in this chapter).

bData for this and subsequent periods include Western Test Range Operations Division.

^CBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

d_{Data} before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

^eBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA
Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from
NASA Personnel Management Information System and the NASA
Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-52. Personnel: Western Test Range Operations

	1965	19	966		67	1968
Employee Category	12/31	6/30	12/31	6/30	12/31	6/30
Total, paid employees	44	45	48	49	45	46

Source: KSC, Professional Staffing and Examining Branch.

Table 6-53. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1962	1963	1964	1965	1966	1967	1968
Manned space flight	291	592	770	1413	1409	1518	1938
(% of total)	(87.4)	(57.4)	(48.4)	(58.2)	(54.4)	(55.8)	(66.4)
Space applications	0	0	0	o o	0	0	00.1
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Unmanned investigations in space	32	4	6	19	126	145	145
(% of total)	(9.6)	(0.4)	(0.4)	(0.8)	(4.9)	(5,3)	(4.0
Space research and technology	10	2	3	0	0	0	0.0
(% of total)	(3.0)	(0.2)	(0.2)	(0.0)	(0.0)	(0.0)	(0.0)
Aircraft technology	0	0	0	0	0	0.07	0.0
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Supporting activities b	0	434	813	996	1054	1057	834
(% of total)	(0.0)	(42.0)	(51.0)	(41.0)	(40.7)	(38.9)	(28.6
Total	333	1032	1592	2428	2589	2720	2917

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964; FY 1963 actual figure was reported in NASA, Budget Estimates, FY 1965, etc.

bFY 1963 and later figures include tracking and data ac-

quisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities,

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-54. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	0	0	0	\$ 10.10	\$ 57.10	\$ 59.40	\$134.00	\$217.10	\$359.50	\$ 837.20
Construction of facilities ^a	\$4.00	\$27.77	\$115.83	333.19	275.37	88.52	7.63	35.23	21.63	909.17
Administrative operations ^b	0	0	6.40	18.82	29.83	40.84	81.44	92.81	93.17	363.31
Total	\$4.00	\$27.77	\$122.23	\$362.11	\$362.30	\$188.76	\$223.07	\$345.14	\$474.30	\$2109.68

^aDoes not include facilities planning and design.

^bFY 1962 appropriation was for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-55. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1960	\$ 4.0	\$1.0		0	0 -*	0 \$ 0.1	0 \$ 0.8	0 \$ 0.2	0	0 -*	\$ 4.0 27.8
1961	27.8		8.5	\$18.3	\$ 34.0	\$ 0.1 6.9	4.7	1.7	\$ 0.3	\$ 4.7	117.2
1962	117.8			64.8	170.4	105.7	21.9	20.7	13.0	1.3	333.9 ^t
1963	335.5 ^b				170.4	85.0	124.7	51.3	12.9	2.2	276.2
1964	277.3					00.0	38.7	42.6	6.4	2.3	89.9
1965	89.9 7.9							1.5	3.4	2.6	7.4
1966	7.9 35.6								29.3	6.0	35.4
1967 1968	22.1					*****	#100.0	\$117.9	\$62.9	13.5 \$28.9	13.5 \$898.2
Total	\$917.9	\$1.0	\$11.5	\$83.0	\$204.3	\$197.8	\$190.9	\$117.9	\$02.9	Ψ20.9	4070.2

^aAs of June 30, 1968; includes facilities planning and design.

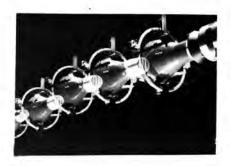
bDoes not include \$839 000 programmed (FY 1963) and obligated for modifications to the Mercury Control Center which was reported under various locations.

^CIncludes \$5.5 million in tracking and data acquisition assigned KSC facilities project numbers.

* = Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-56. Total Procurement Activity by Fiscal Year (money amounts in millions)


	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$36.9	\$232.0	\$261.3	\$287.2	\$292.6	\$375.0	\$414.2	\$1899.2
Percentage of NASA total	2%	7%	6%	5%	6%	8.1%	10.0%	6.4%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

LANGLEY RESEARCH CENTER

An aerial view shows the major facilities at Langley Research Center, Hampton, Virginia, in 1967. LaRC's five Lunar Orbiter probes (scale model at top left) of the moon in 1966 and 1967 provided information for the Apollo lunar landing missions. Problems of an astronaut in one-sixth gravity were studied with a laboratory device (second from top, photographed in 1963), and piloted space flight problems were investigated by use of the Rendezvous Docking Simulator (bottom far left, in a 1964 multiple-exposure action photo). Among aeronautical research projects have been the supercritical wing to improve performance and efficiency of subsonic transports (wind-tunnel test model at near left) and grooved runways to facilitate aircraft takeoffs and landings in wet weather (test photographed at Wallops Station in May 1968).

LANGLEY RESEARCH CENTER

(LaRC)

Location: Hampton, Virginia.

Land: 1692.8 total hectares (4183 acres) as of June 30, 1968.

- 173.6 hectares (429 acres) in West area, NASA-owned.
- 129.5 hectares (320 acres) in West area, USAF use permit.
- 8.9 hectares (22 acres) in East area, USAF use permit.
- -10.1 hectares (25 acres) in Town of Poquoson, Virginia, leased by Town of Poquoson.
- 1326.2 hectares (3277 acres) on Plumtree Island,
 Virginia, USAF use permit.
- 44.5 hectares (110 acres) in City of Newport News, Virginia, NASA-owned.

Director: Edgar M. Cortright (May 1, 1968-).

Floyd L. Thompson (May 23, 1960-May 1, 1968; Special Assistant to the NASA Administrator, May 1968-Nov. 25, 1968; Associate Director, Oct. 1, 1958-May 23, 1960; Associate Director, NACA LAL, Aug. 1, 1952-Oct. 1, 1958).

Henry J. E. Reid (†July 30, 1968; Senior Staff Associate, LaRC, May 23, 1960-June 30, 1961; Director LaRC, Oct. 1, 1958-May 23, 1960; Director, NACA LAL, May 1948-Oct. 1, 1958; Director, NACA LMAL, June 1947-May 1948; Engineer-in-Charge, NACA LMAL, Jan. 1, 1926-June 1947).

Leigh M. Griffith (Engineer-in-Charge, NACA LMAL, Nov. 1, 1922-Dec. 31, 1925).

Deputy Director:

Charles J. Donlan (Nov. 6, 1967-May 1, 1968; Associate Director, March 20, 1961-Nov. 6, 1967).

History

On October 9, 1916, the National Advisory Committee for Aeronautics appointed a subcommittee (consisting of C. D. Walcott, C. F. Marvin, and S. W. Stratton) to consider the need for a site for NACA experimental work.¹ The subcommittee's studies, coordinated with the interests of the War and Navy Departments, led to selection on November 23, 1916, of a site 6.4 kilometers (4 miles) north of Hampton, Virginia.² The same site had been chosen by the Army as an aircraft proving ground, and it was necessary for the NACA to obtain approval from the Secretary of War for the use of a portion of the site for NACA purposes. This approval was granted December 27, 1916.³

In the January 15, 1917, issue of Aviation magazine the announcement appeared that the Government installation near Hampton would be known as Langley Field in honor of Samuel P. Langley (1834-1906), an aviation pioneer, scientist, and astronomer and third Secretary of the Smithsonian Institution. The Langley designation was not formalized by the Department of War until August 7, 1917.4

Langley Field was authorized by the NACA as an experimental air station effective June 28, 1917, with a contract issued for erection of a research

¹J. C. Hunsaker, "Forty Years of Aeronautical Research," Smithsonian Report for 1955 (Washington, D.C.: Smithsonian Institution, 1956), 250; "Important Events in Early History of NASA," prepared for J F. Victory, Dec. 5, 1929; Michael D. Keller, "Fifty Years of Flight Research: A Chronology of the Langley Research Center, 1917-1966," HHN-65 (NASA, Historical Office, comment ed., November 1966), 9; Michael D. Keller, "A History of the NACA Langley Laboratory: 1917-1947" (NASA, Historical Office, comment ed., March 1968). This section on the history of LaRC was prepared for the Data Book by Robert W. Mulac, Langley Research Center.

² NACA, Executive Committee Minutes, Nov. 9, 1916; LaRC Public Information Office Files; *Third Annual Report of the NACA*, 1917 (Washington, D.C.: GPO, 1918), 16, 20.

³ "Important Events," 3.

⁴"Site Recommended for 'Langley Field,' " Aviation, I (Jan. 15, 1917), 397; Langley Air Force Base, 50th Anniversary (Langley AFB, Va.: November 1966).

laboratory building at an estimated cost of \$80 900.5 On July 17, 1917, excavation began on 2.4-hectare (6-acre) site (Plot 16 in what was later called the East Area), and construction of the laboratory building was completed in June 1918 at a cost of \$98 207.6

Plans for construction of the first NACA wind tunnel (1.5-meter [5-foot] throat) at Langley Field were approved April 29, 1918; construction began in the spring of 1919 and was completed a year later. On June 20, 1919, full-scale flight-test research was authorized to facilitate comparison of airplane flight data with wind-tunnel data, and flight research began that summer with two Curtiss JN-4H trainer aircraft.

On April 22, 1920, the NACA passed a resolution, subject to the approval of the Attorney General, that the new NACA installation be named the Langley Memorial Aeronautical Laboratory. During formal dedication of the Laboratory June 11, 1920, marked by the first operation of the 1.5-meter (5-foot) wind tunnel, the Attorney General's permission for the name was quoted. Renamed Langley Aeronautical Laboratory May 26, 1948, by congressional action, the Laboratory became the Langley Research Center with the establishment of NASA October 1, 1958.

Langley's Propeller Research Tunnel—with a 6-meter (20-foot) throat—was authorized June 25, 1926. When completed November 30, 1927, it was the largest wind tunnel in the world.¹³ In 1928 the NACA cowling for radial

air-cooled engines was developed, and its use led to significantly greater flight speeds with no increase in engine power. In the same year the first refrigerated wind tunnel for research into prevention of icing of wings and propellers was placed in operation, and the Atmospheric Wind Tunnel was used to demonstrate high lift by means of airfoil pressure or suction slots for boundary-layer control. In the same year the first refrigerated wind tunnel was used to demonstrate high lift by means of airfoil pressure or suction slots for boundary-layer control.

NACA reported to industry in 1930 results of Langley studies of optimum position of engine nacelles, the first applications of which were in the Boeing 247, Douglas DC-2, and Martin B-10 aircraft.¹⁶ The world's first full-scale wind tunnel was built at Langley in 1930; this tunnel, with a 9- by 18-meter (30- by 60-foot) throat, was still in use for aerospace research in 1967.¹⁷ On March 20, 1936, Langley placed in operation the world's largest high-speed wind tunnel, with a 2.4-meter (8-foot) throat.¹⁸ Developed from use of the 4.6-meter (15-foot) spin tunnel built in 1934, the Langley free-flight wind tunnel was placed in operation April 20, 1939.¹⁹

Early NACA contributions to wing improvement had resulted from the first Langley variable-density tunnel (built in 1923, destroyed by fire and rebuilt in 1927, and improved in 1929). But in the 1930s, the Langley group working on drag characteristics of wings began designs for a tunnel that would reduce turbulence by straightening and straining the airflow with a steep contraction and a series of wire screens. In 1938 the first low-turbulence tunnel was completed, and laminar flow airfoil testing began. A larger version, capable of wing section tests at large Reynolds numbers, became operative in 1941, reducing turbulence to less than 0.015 percent. Turbulence had measured 2.0 percent in the old variable-density tunnel.²⁰

Construction started in 1940 on the NACA combined-loads testing machine, the basic concepts of which had been developed at Langley in 1939.

⁵NACA, Executive Committee Minutes, July 12, 1917; Third Annual Report of the NACA, 1917, 20.

⁶ John F. Victory, "Day Book," Record Group (RG) 255, National Archives; Langley Job Order NAw 987.

⁷NACA, Executive Committee Minutes, April 29, 1918; Fourth Annual Report of the NACA, 1918 (Washington, D.C.: GPO, 1920), 24; George W. Gray, Frontiers of Flight (New York: Alfred A. Knopf, 1948), 14-15, 34-35; Journal of the Society of Automotive Engineers (May 1921).

⁸NACA, Research Authorization No. 10, Langley Files.

⁹ Hartley A. Soule, "Notes on Flight Research," Aug. 4, 1948; Edward P. Warner and F. H. Norton, "Preliminary Report on Free Flight Tests," Technical Report No. 70, Fifth Annual Report of the NACA (Washington, D.C.: GPO, 1920), 571-599.

¹⁰NACA, Executive Committee Minutes, April 22, 1920.

¹¹NACA, Executive Committee Minutes, June 11, 1920; D. W. Taylor speech, copy in RG 255, National Archives; Sixth Annual Report of the NACA (Washington, D.C.: GPO, 1921), 8.

¹² Langley, Memorandum for Staff, June 4, 1948; NACA Release, Sept. 26, 1958.

¹³ Twelfth Annual Report of the NACA, 1926 (Washington, D.C.: GPO, 1927), 6; Gray, Frontiers of Flight, 36-37; Keller, "A Chronology," 31.

¹⁴ Gray, Frontiers of Flight, 37, 113-117.

¹⁵ Ibid., 309; Fourteenth Annual Report of the NACA, 1928 (Washington, D.C.: GPO, 1929), 6, 25.

¹⁶ NACA, Fortieth Anniversary brochure, 1955.

¹⁷Gray, Frontiers of Flight, 37-38; Keller, "A Chronology," 33; Sixteenth Annual Report of the NACA, 1930 (Washington, D.C.: GPO, 1931), 7; see table on technical facilities in this section.

¹⁸Gray, Frontiers of Flight, 42-43.

¹⁹NACA, Fortieth Anniversary brochure; Emme, Aeronautics and Astronautics, 1915-1960, 37; Keller, "A Chronology," 43.

² NACA, Executive Committee Minutes, Sept. 8, 1927; Gray, Frontiers of Flight, 36, 47-48; Keller, "A Chronology," 44.

Completed in 1949, this facility was the first capable of applying positive and negative forces along each of three axes and positive and negative moments about these axes, in any combination of forces, each added independently.²¹

In 1941 a Langley report established requirements for satisfactory aircraft flying qualities and provided a criterion for aircraft development that would be used generally throughout the aircraft industry.²² The rocket aircraft research program for investigation of aircraft flight characteristics beyond the speed of sound was conceived in 1943, and on March 16, 1944, at a seminar at Langley, the NACA proposed that a jet-propelled transonic research airplane be developed.²³ During 1944 the Laboratory developed the wing-flow method (testing small semispan wings or semispan aircraft models in the transonic-airflow field over the wing of a subsonic airplane in high-speed flight). In the same year the radio telemeter was first used for transmission of aerodyanmic research data at transonic speeds from vehicles used in the "bomb drop" technique.²⁴

The swept-back-wing concept for overcoming shockwave effects at critical mach numbers was formulated and experimentally confirmed in 1945.²⁵ During that year a report, which would become a classic reference, summarized NACA data on airfoil sections.²⁶ Also in 1945, Langley conducted the first launching of a two-stage rocket-propelled research model

(the Tiamat) and launched the first successful rocket-boosted drag research vehicle for wing-and-body research. Both launchings were performed at the newly established Pilotless Aircraft Research Division (PARD) station at Wallops Island, Virginia.²

The NACA revealed on May 21, 1947, a nearly noiseless airplane with a five-bladed propeller and muffled exhaust, and on November 26 that year the first successful hypersonic-flow wind tunnel (279-millimeter [11-inch] throat) was put into operation.²⁸ The following year the Laboratory published a report containing the theoretical prediction of roll coupling (or inertial coupling), a problem later to be realized with short-wing, long-fuselage, high-speed aircraft.²⁹ In 1949 continuous transonic flow was established in the 2.4-meter (8-foot) high-speed wind tunnel, which had been altered to incorporate the slotted-throat principle developed at Langley.³⁰

The transonic area rule developed at Langley was experimentally verified in transonic wind tunnels in 1951, and on January 22, 1953, the first flight test of a complete airplane model designed to incorporate the area-rule principle was made at Wallops Island.³¹ An a.c. arc jet using gaseous air was first successfully operated December 19, 1956, and in 1958 the "opposed gun" technique for studying projectile impacts was conceived and placed in operation. Pilotless Aircraft Research Division launched the first successful spherical rocket motor with spin stabilization July 8, 1958. The motor had a 254-millimeter (10-inch) diameter.³²

Space-inflatable spheres, forerunners of the Echo communications satellite, were first launched successfully from Wallops Island in 1958.^{3 3} Echo I was launched August 12, 1960, culminating Langley's development of the inflatable-sphere spacecraft.^{3 4}

²¹ Gray, Frontiers of Flight, 160; Emme, Aeronautics and Astronautics, 1915-1960, 39, 63.

² Robert R. Gilruth, "Requirements for Satisfactory Flying Qualities of Airplanes," Technical Report No. 755, Twenty-ninth Annual Report of the NACA, 1943 (Washington, D.C.: GPO, 1948), 46-57.

²³ Hünsaker, "Forty Years," 268-269; John Stack, "Compressible Flows in Aeronautics," Journal of the Aeronautical Sciences, XII (April 1945), 127-148, Eighth Wright Brothers Lecture presented before the Institute of Aeronautical Sciences, Washington, D.C., Dec. 17, 1944; NASA, Fifty Years of Aeronautical Research, EP-45 (Washington, D.C.: NASA, 1968), 31-33; Gray, Frontiers of Flight, 355 ff.; Emme, Aeronautics and Astronautics, 1915-1960, 47; Fortieth Annual Report of the NACA, 1954 (Washington, D.C.: GPO, 1956), 3-4.

²⁴Robert R. Gilruth, "Resumé and Analysis of NACA Wing-Flow Tests," paper presented at Aeronautical Conference, Sept. 3-5, 1947, London, England; Emme, Aeronautics and Astronautics, 1915-1960, 48.

²⁵Gray, Frontiers of Flight, 341-344; Emme, Aeronautics and Astronautics, 1915-1960, 49.

²⁶ Ira H. Abbott, Albert E. von Doenhoeff, and Louis S. Stivers, Jr., "Summary of Air Foil Data," Technical Report No. 824, *Thirty-first Annual Report of the NACA*, 1945 (Washington, D.C.: GPO, 1949), 259-523.

²⁷Emme, Aeronautics and Astronautics, 1915-1960, 50, 51. See section on NASA Wallops Station in this chapter.

²⁸ Emme, Aeronautics and Astronautics, 1915-1960, 57, 58.

²⁹William H. Phillips, "Appreciation and Prediction of Flying Qualities," Technical Report 927, Thirty-fifth Annual Report of the NACA, 1949 (Washington, D.C.: GPO, 1951), 121-165.

³ Emme, Aeronautics and Astronautics 1915-1960, 63; Hunsaker, "Forty Years," 269; Keller, "A Chronology," 60, 62.

³¹ Emme, Aeronautics and Astronautics, 1915-1960, 63; Hunsaker, "Forty Years," 270; NASA, Fifty Years of Aeronautical Research, 36-37.

³² Emme, Aeronautics and Astronautics, 1915-1960, 84, 96.

³³ NASA, First Semiannual Report (Washington, D.C.: GPO, 1959), 19, 23.

³⁴ NASA, Third Semiannual Report (Washington, D.C.: GPO, 1960), 62-65; Fourth Semiannual Report (1961), 7, 10-16.

On November 5, 1958, 33 Langley Research Center personnel members were officially transferred to form what became the Space Task Group, assigned the implementation of a manned satellite project (designated later that month Project Mercury). Of this group, 14 came from Langley's Pilotless Aircraft Research Division which had earlier in 1958 begun designs of the research booster system that became Little Joe.^{3 5}

In the same year Langley scientists conceived the multipurpose, solid-fuel Scout launch vehicle, and a complete Scout was launched for the first time July 1, 1960.³⁶ On July 11, 1962, NASA announced adoption of the Lunar-Orbit Rendezvous (LOR) plan advocated by Langley for first manned lunar exploration.³⁷ In 1963 the phenomenon of tire hydroplaning was described to the general public as a hazard in driving automobiles on wet pavements.³⁸

The first of two Project Fire spacecraft was launched April 14, 1964, recording the highest speed-1157 meters per second (37 963 fps) during reentry—that had been reached by a man-made object in free flight at that time.^{3 9} During the same year, Project RAM (Radio Attenuation Measurement) experiments showed that ejection of a small amount of liquid into the ionized sheath around a reentering body was a promising method for dealing with radio blackout during reentry.^{4 0}

Launched August 10, 1966, Lunar Orbiter 1 four days later became the first U.S. spacecraft to enter lunar orbit. It was the first in the LaRC-managed series of five spacecraft that obtained high-resolution photographs of various kinds of lunar surface to aid assessment of their suitability as landing sites for Apollo and Surveyor spacecraft and to contribute to knowledge of the moon.⁴¹

Mission

Langley Research Center was assigned responsibility for:

- (1) Basic and applied research to provide the scientific and technical background necessary for (a) manned and unmanned exploration and use of space and (b) improvement in performance, safety, and utility of airborne flight; development of advanced concepts for future NASA programs; research and technical support for projects assigned to other NASA installations and other Government agencies; and support of the NASA technology utilization program.
- (2) Aeronautical research to provide a rational technological base for successful development and use of practicable aircraft, such as supersonic and high-subsonic-speed transports, high-performance military aircraft, advanced hypersonic ramjet-powered vehicles, and improved V/STOL aircraft.
- (3) A broad range of research programs to provide a rational technological base for future space developments, such as studies in atmosphere entry aerothermodynamics, heat shielding, circumvention of communications blackout for space missions, establishment of requirements and advanced design concepts for controlled atmosphere entry and landing spacecraft, and for a manned orbital research laboratory.
- (4) Development, procurement, and operation of the solid-propellant Scout launch vehicle; management of other spacecraft systems and experiments for evaluation of the earth's atmospheric characteristics, the radiation and micrometeoroid hazards of the earth and moon environments, the lunar gravitational field, and the properties of the lunar surface; research and development support for other unmanned spacecraft and launch vehicle projects.
- (5) An extensive research program to provide guidance and technology for the formulation and execution of advanced planetary flight missions.^{4 2}

^{3 5} Memorandum, Floyd L. Thompson to all concerned, Nov. 5, 1958; Swenson, Grimwood, and Alexander, *This New Ocean*, 114, 123 ff., 132.

³⁶ NASA, Fourth Semiannual Report, 75-77.

³⁷ John D. Bird, "A Short History of the Development of the Lunar Orbit Rendezvous Plan at the Langley Research Center," Feb. 17, 1966; NASA Release 62-159.

³⁸ NASA, News Conference Transcript; NASA, TN D-2056.

³⁹ NASA Release 64-69; NASA, Twelfth Semiannual Report (Washington, D.C.: GPO, 1965), 93.

^{4 o}Wallops Station Release 64-34; NASA Release 64-65; NASA, Twelfth Semiannual Report, 94.

⁴¹ NASA Release 66-195; NASA, News Conference Transcript, Oct. 17, 1967.

⁴²NASA, Hq. Management Instruction, NMI 1144.5, July 15, 1964; NASA, Budget Estimates, FY 1969, IV, AO 2-72 through 2-75.

Table 6-57. Technical Facilities: Wind Tunnels (with costs in thousands)

Facility Name	Year Built	Test Section Size in Meters (and Feet)	Mach No. Range	Reynolds No. Range	Init. Cost	Accum. Cost	Research Supported
Full-scale tunnel	1930	9.1H x 18.3W x 17.1L (30H x 60W x 56L)	0.0 to 0.14	0.0 to 1 x 10 ⁶	\$ 1 029	\$ 1 139	Large-scale aircraft, helicopter, spacecraft, and recovery system investigations, and free-flight dynamic model studies
Low-turbulence pressure tunnel	1940	0.9W x 2.3H (3W x 7.5H)	0.1 to 0.4	2 x 10 ⁶ to 15 x 10 ⁶	729	729	Effects of basic variables of shape, camber, and surface condition on complete models, and on airfoil, flap, and control surface characteristics
Spin tunnel	1941 .	12 sided, 6.1 across flats x 7.6H (20 across flats x 25H)	0.0 to 27.4 m per sec (0.0 to 90 fps)	0.0 to 0.62 x 10 ⁶	100	103	Spin characteristics of aircraft and capsules, decelerators, and recovery devices in vertical descent
300-mph 7- by 10-foot tunnel	1945	2.3 x 3.1 (7 x 10)	0.0 to 483 km per hr (0.0 to 300 mph)	0.0 to 2.5 x 10 ⁶	2 052 ^a	2 205 ^a	Full-span and semispan powered and unpowered static model testing; two-dimensional model tests, V/STOL model tests, parawings
4- by 4-foot supersonic pressure tunnel	1948	1.4H x 1.4W x 2.1L (4.5H x 4.5W x 7L)	1.25 to 2.6	1.4 x 10 ⁶ to 6.6 x 10 ⁶	909	3 407	Force, moment, and pressure studies
11-inch hypersonic tunnel	1949	NA	6.8, 9.6 (air) 10.5, 18.0 (helium)	0.3 to 4 x 10 ⁶ (air) 1.2 to 10 x 10 ⁶ (helium)	168	298	Pressure investigation, heat-transfer studies, force testing
26-inch transonic blowdown tunnel	1950	octagonal, slotted 0.6 across flats (slotted 2.2 across flats)	0.6 to 1.45	2 x 10 ⁶ to 27 x 10 ⁶	135	135	Flutter investigations
Unitary plan wind tunnel	1955	1.2H x 1.2W x 2.1L (4H x 4W x 7L)	1.47 to 2.86 (1) 2.29 to 4.63 (2)	(1) 0.56 x 10 ⁶ to 7.83 x 10 ⁶ (2) 0.76 x 10 ⁶ to 7.78 x 10 ⁶	15 427	15 620	Force, moment, pressure-distribution, and heat-transfer studies
8-foot transonic pressure tunnel	1958 ^b	2.1W x 2.1H (7.1W x 7.1H)	0.2 to 1.3 CV ^C	0.3 x 10 ⁶ to 7 x 10 ⁶	5 495	6 793	Force, moment, pressure-distribution, flutter, and buffeting studies
20-inch hypersonic tunnel (mach 6)	1958	0.5 x 0.5 (1.6 x 1.6)	6	3 x 10 ⁶ to 10.5 x 10 ⁶	1 409	1 409	Heat-transfer, pressure, and force testing
11-inch ceramic-heated tunnel	1958	0.3 dia (0.9 dia)	2, 4, 6	NA	212	321	High-temperature materials
Transonic dynamics tunnel	1959 ^b	4.9W x 4.9H x 9.1L (16W x 16H x 30L)	0.0 to 1.2	8.5 to 10 ⁶ (Freon 12) 3.5 to 10 ⁶ (air)	1 100	11 110	Flutter, buffeting, ground wind loads, gust loads, and other dynamic characteristics
9- by 6-foot thermal structures tunnel	1959 ^b	1.8 by 2.7 (6 by 8.75)	3	2.9 x 10 ⁶ to 18.4 x 10 ⁶	4 249	4 254	Aerodynamic heating and loading
Hypersonic flow apparatus	1959	. 0.4 dia (1.25 dia)	10.03	1.3 x 10 ⁶ to 2 x 10 ⁶	280	335	Force, pressure, heat-transfer, and flutter testing
Mach 8 variable-density hypersonic tunnel	1960	0.5 dia (1.5 dia)	7.5 to 8	0.1 x 10 ⁶ to 12 x 10 ⁶	74	74	Fundamental aerodynamic and fluid dynamic investigations over large Reynolds number ranges using pressure and heat-transfer measurements
22-inch hélium tunnel	1960	0.6 dia (22.5 dia)	18, 22, 26	3 x 10 ⁶ to 15 x 10 ⁶	997	1 289	Force, pressure distributions, and heat-transfer tests
High-speed 7- by 10-foot tunnel	1961 ^b	2.0H x 3.1L (6.5H x 10L)	up to 1.2	4 x 10 ⁶ to 4.2 x 10 ⁶	2 052 ^d	3 437 ^d	Static and dynamic studies of aerodynamic characteristics of aircraft and spacecraft

Table 6-57. Technical Facilities: Wind Tunnels (Continued) (with costs in thousands)

Facility Name	Year Built	Test Section Size in Meters (and Feet)	Mach No. Range	Reynolds No. Range	Init. Cost	Accum. Cost	Research Supported
6-foot transonic tunnel	1961 ^b	NA NA	0.2 to 1.3	1.2 x 10 ⁶ to 3.7 x 10 ⁶	1 422	12 867	Force and pressure investigation
0-inch variable supersonic	1961	0.5W x 0.5H (1.6W x 1.6H)	2.0 to 4.5	8.5 x 10 ⁶ to 20.5 x 10 ⁶	354	354	Force, pressure, and flutter testing
0-inch hypersonic tunnel (mach 8.5)	1961	0.5 dia (1.75 dia)	8.5	4.8 x 10 ⁶ to 7.5 x 10 ⁶	507 ^b	507 ^b	Heat-transfer, pressure, and force testing
-foot hypersonic facility	1961	0.6H x 0.6W x 1.4L (2H x 2W x 4.5L)	3, 4, 5, 6	0.1 x 10 ⁶ to 2.4 x 10 ⁶	230	406	Deployable reentry vehicles such as paraglider type and advanced launch vehicles such as winged reusable systems; high-altitude exhaust plume aerodynamic interference
0-inch hypersonic arc-heated tunnel	1962	0.5 dia (1.6 dia)	3, 4, 6, 10	NA	560	767	Tests of reentry materials
lotshot tunnel	1962	0.6 dia (2 dia)	12 to 28 (nitrogen) to 60 with helium	0.01 x 10 ⁶ to 1 x 10 ⁶ (nitrogen)	140	140	Force and moment, pressure distribution, and heat-transfer-rate studies on reentry configura tions; high-energy flows
-foot hypersonic arc tunnel	1963	0.3 dia (1 dia)	12	0.01×10^6 to 0.02×10^6	226	226	High-enthalpy hypersonic fluid mechanics
Continuous-flow hypersonic tunnel	1963	0.8 x 0.8 (2.5 x 2.5)	10,12	0.4 x 10 ⁶ to 2.5 x 10 ⁶	6 396	6 396	Heat-transfer, aerodynamic tests
Pilot model expansion tube	1963	NA	2 to 3 (shock tube) 15 to 30 (expan. tube)	1 x 10 ⁴ to 5 x 10 ⁶ 1 x 10 ⁵ to 1 x 10 ⁶	82	433	Convective heat-transfer investigations; hyper- velocity gas dynamics; development of a radiative heat-transfer expansion tube
0-megawatt arc-powered tunnel	1963	0.9 x 0.9 (2 x 2)	2 to 7	5 x 10 ⁴ to 5 x 10 ⁵	3 715	3 7 3 0	Thermal protection materials and systems
Hypersonic nitrogen tunnel	1964	0.5 dia (1.5 dia)	18	0.155 x 10 ⁶ to 0.785 x 10 ⁶	570	570	Heat-transfer, pressure, and force studies
4-foot hypersonic are tunnel	1964	0.6 and 1.2 dia (2 and 4 dia)	to 18	$0.001 \times 10^6 \text{ to } 0.1 \times 10^6$	3 581	3 581	High-enthalpy hypersonic fluid mechanics
8-foot high-temperature structures tunnel	1964	2.4 dia (8 dia)	6.8, 7.7	0.06×10^6 to 3.7 x 10^6	10 537	10 537	Studies of structures and thermal protection for hypersonic flight
High enthalpy arc tunnel	1965	NA .	2.5, 3.5, 4.0	NA	70	200	Ablation, char-layer effects, ablation sensors, protective coatings, and refractory metals
Hot gas radiation research facility	1966	NA	NA	NA .	4 025	NA	Flow-field phenomena, radiation heating distribution to a flight vehicle; basic radiative properties of the gas in question at a given chemical and thermodynamic state; convective heat transfer

NASA INSTALLATIONS: LANGLEY RESEARCH CENTER

Table 6-57. Technical Facilities: Wind Tunnels (Continued) (with costs in thousands)

Facility Name	Year Built	Test Section Size in Meters (and Feet)	Mach No. Range	Reynolds No. Range	Init. Cost	Accum. Cost	Research Supported
5-megawatt arc-powered tunnel	1966	1.8 dia (6 dia)	2 to 3.4	0.05 x 10 ⁶ to 2 x 10 ⁶	35 ^e ·	35	Material testing for reentry heating
Hypersonic aeroelasticity tunnels	1967	0.9 dia (37 dia) mach 10 1.5 dia (60 dia) mach 20	10, 20	0.6 x 10 ⁶ to 57 x 10 ⁶ (mach 10) 1 x 10 ⁶ to 18 x 10 ⁶ (mach 20)	3 148	NA	Aeroelastic, thermal, and dynamic problem at hypersonic speeds

NA = Data not available.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 4; Append. B.

^{*}Including costs of high-speed 7- by 10-foot tunnel and office building bCompletion of last major modification.

Continuously variable.

dIncluding cost of 300-mph 7- by 10-foot tunnel and office building.

Cless vacuum equipment.

Table 6-58. Technical Facilities: Environmental Test Chambers (with costs in thousands)

Functional Name	Dimensions in Meters (and feet)	Year Built	Pressure	Temperature	Init. Cost	Accum. Cost	Research Supported
Dynamics research	16.8 dia x 16.8 H (55 dia x 55 H)	1964	10 ⁻⁴	-	\$3213	\$3689	Space vehicle systems spacecraft structures, and launch vehicle
Environmental chamber	1.8 dia x 2.4 L (6 dia x 8 L)	1964	10 ⁻⁸ mm Hg	89 K (-300°F)	(included in	d in above figure) structures	
Space vacuum facility	1.2-2.4 dia x 1.8-3.7 L (4-8 dia x 6-12 L)	1965	2 x 10 ⁻¹² torr	5 K (-450°F)	1480	1480	Space environmental effects
Freebody dynamics facility (FBDF)	18.3-dia sphere (60-dia)	1966	0.2 mm Hg	-	1193 ^a	1227	Spacecraft control systems

^aIncludes thermal control housing but excludes cost of laboratory building.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 4, 4-31, 4-57, 4-59.

Table 6-59. Technical Facilities Other Than Wind Tunnels and Environmental Test Facilities (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Research or Technical Areas Supported
Landing impact test facility	Impacting Structures	1942	\$ 448	\$ 621	Vertical-landing impact tests of manned spacecraft, instrument packages and nosecones; horizontal-landing tests of aircraft and spacecraft
Structures research laboratory	Structures Research Laboratory	1942	1 699	2 471	Elevated temperature; static and dynamic testing; materials and environmental tests
Instrument research laboratory	Instrument Research Laboratory	1951	768	1 956	Optics; spectroscopy; vacuum, pressure, velocity, and density measure- ments; digital readout systems; cryogenics; standards; temperature measurements; radiation effects; acoustics
Landing loads track facility	Landing Loads Track	1957	2 500	4 487	Loads and motions measurement during impact; braking tests
Impact and projectile range	Impact and Projectile Range	1958	460	773	Explosive and inflight projectile studies
Whirl tower	Helicopter Apparatus	1959	40	202	Helicopter blade research; tests of rocket payloads, etc., when used as centrifugal g tower
Arc jet facility, atmospheric 2.5 megawatt	2.5 Megawatt Atmos- pheric Arc Jet	1961 ^a	15	37	Materials testing for reentry heating
Rocket propulsion static test facility	Rocket Static Test Facility	1961	276	345	Pressure, force, strain, and temperature data
Materials jet, arc heated	Arc Heated Materials Jet	1961	50	50	Ablation, char-layer effects, ablation sensors, protective coatings, and refractory metals
Propellant mixing facility	Propellant Mixing Facility	1961	105	410	Hybrid-propellant systems; acceleration effects on propellant ballistics; space environmental effects; combustion efficiency in low L/D motors; combustible mandrel feasibility studies
Materials radiation laboratory	Materials Radiation Laboratory	1962 (and 1966)	87	1 008	Space radiation effects on spacecraft materials, components, and systems
Docking simulator (visual)	Visual Docking Simulator	1963	34	59	Docking simulation
Rendezvous docking simulator	Rendezvous Docking Simulator	1963	320	325	Rendezvous-docking studies; Apollo docking studies, separation techniques; aircraft visual landing approaches

Table 6-59. Technical Facilities Other Than Wind Tunnels and Environmental Test Facilities (Continued) (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Research or Technical Areas Supported
Supersonic transport	Fixed-Base Supersonic Transport Simulator	1964	\$ 875 ^a	\$ 875 ^a	Subsonic and supersonic aircraft performance, stability and control, air traffic control, instrumentation
Dynamics research laboratory	Dynamics Research Laboratory	1964	3 213	3 689	Space vehicle systems, spacecraft structures, and launch vehicle structures
Rocket motor test facility (spherical)	Spherical Rocket Motor Test Apparatus	1964	152	152	Investigation of flight rocket combustion phenomena, acceleration effects
Lunar orbit and letdown approach simulator (LOLA)	Lunar Orbit and Letdown Approach Simulator (LOLA)	1965	1 920	1 945	Visual simulator for navigation and control of spacecraft in vicinity of moon
Noise facility (high intensity)	High Intensity Noise Facility	1965	334	455	Noise studies
Noise facility (low frequency)	Low Frequency Noise Facility	1965	550	578	Noise and sonic boom studies; human factors
Space vacuum facility	150 Cubic Foot Space Vacuum Facility	1965	1 480	1 480	Space environmental effects
Projection planetarium	Projection Planetarium	1965	177	363	Studies of manual control using the "out the window" visual information
Solar corona simulator	Magnetic Compression Experiment	1965	500	514	Plasma physics and astrophysics
Lunar landing research facility	Lunar Landing Research Facility	1965	3 500	3 856	Lunar landing studies
Stabilization and control laboratory	Stabilization and Control Laboratory	1965	1 366	1 366	Instrumentation
Radiation effects laboratory ^b	Space Radiation Effects Laboratory (SREL)	1965	12 382	14 568	High-energy corpuscular radiation simulator for measuring effects on material specimens and electronic circuitry
Life support facility	Integrated Life Support System	1966	986	3 500	Life support systems engineering, human factors engineering
Micrometeoroid impact simulator	Particle Accelerator for Simulation of Micro- meteoroid Impact	1966	766	NA	Effect of impact on materials

Table 6-59. Technical Facilities Other Than Wind Tunnels and Environmental Test Facilities (Continued) (with costs in thousands)

Functional Name	Year Init. Accum. Name Facility Name Built Cost Cost		Research or Technical Areas Supported		
Electronic instrument laboratory	Electronic Instrument Laboratory	1966	\$ 2840	NA	Electronic and optical component development; environmental testing of components, subsystems, and systems
Noise research facility	Noise Research Laboratory	1966	270	\$ 710	Noise studies
Rendezvous simulator	Virtual Image Rendez- vous Simulator	1966	60°	60 ^c	Rendezvous and station-keeping simulation
Plasma accelerator (20 megawatt)	20-Megawatt Linear Plasma Accelerator	1966	2 000	2 004	Magnetoplasmadynamic studies and reentry technology
Vehicle antenna test facility	Vehicle Antenna Test Facility	1966	3 472	3 629	Telemetry systems
Fatigue research laboratory	Fatigue Research Laboratory	1967	1 169	NA	Fatigue of aerospace materials and structural components
Life support technology laboratory	Life Support Technology Laboratory	1967	2 656	NA ^d	Life support

^aOf this figure, \$250 000 financed by FAA.

dConstruction contract awarded August 1966.

NA = Data not available.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 4.

^bNewport News, Va.

^cMaterials only; in-house construction.

Table 6-60. Industrial Real Property (as of June 30; money amounts in thousands)

Space Radiation Effects Laboratory ^a	1967	1968
Land in hectares	44.5	44.5
(and acres)	(110)	(110)
Buildings		
Number	1	1
Area in square meters	2 275.2	6 1 3 0 . 7
(and square feet)	(24 490)	(65 990)
Value		
Land	\$ 6	\$ 6
Buildings	10 658	15 17 7
Other structures and facilities	25	. 25
Total industrial real property	\$10 689	\$15 208

^aOperated by Virginia Associated Research Center (College of William and Mary, University of Virginia, and Virginia Polytechnic Institute) under Contract No. NAS 1-4546 F. These figures are included in Table 6-67; data for earlier years not available.

Source: NASA, Office of Facilities.

Table 6-61. Property (as of June 30; money amounts in thousands)

Category ^a		1959		1960		1961		1962		1963		1964		1965		1966		1967		1968
Land in hectares (and acres)			-												-				-	
Owned		174		174		174		174		218.	5	218.5	,	218.5		218.	5	218.5		218.5
		(430))	(430))	(430)		(430)		(540)		(540)		(540)	,	(540)		(540)	1	(540)
Leased								, ,		0		0.1		0.0	14	10.:		10.2	,	10.2
		NA		NA		NA		NA		0		(0.2	2)	(0.1		(26)	,	(25.3		(25.3)
Buildings																				
Number owned		NA		NA		NA		NA		106		82		90		96		06		101
Area of buildings owned, thousands of								186.6		183.3	,	122.6		123.7		96 137.6		96		101
square meters (and square feet)		NA		NA		NA	(2	009)	α	972)	. (1		(1		C			161 733)	(1	177
Area of buildings leased, thousands of							`-	00,,	(2	0	(1	0.1	,	0.7		0.1 0.1	•	733) 0	(1	905) 0
square meters (and square feet)		NA		NA		NA		NA		0		(1)		(7)		(1)		0		0
Value																				
Land	\$	110	\$	110	\$	110	\$	110	s	116	\$	116	¢	116	\$	116	\$	116	e.	116
Buildings		NA		NA	·	NA	•	NA		438	,	2 808		9 474	*	6 316	-	5 050	*	116
Other structures and									1 10	,50	02	. 000	,) 7 / 7	0	0 310	100	030	118	570
facilities		NA		NA		NA		NA	11	704	110	040	11	3 360	11	8 293	129	119	130	902
Real property	\$103	738	\$11	6 336	\$1	39 240	\$199	148	\$157	258	\$172	964	\$19	2 950	\$20	4 725	\$234	5 285	\$249	500
Capitalized equipment		NA		NA		NA			\$ 33											240

^aFor definition of terms, see Introduction to Chapter Two.

NA = Data not available.

Source: NASA, Office of Facilities. Supplementary information was provided by C. R. McMath, Jr.

b44.5 hectares (110 acres) acquired for Space Radiation Effects Laboratory in Newport News, Va.

Table 6-62. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963 ^a	1964	1965	1966	1967	1968
t	0.1	0.1	0.1	*	*	*
Land Buildings	92.5	36.3	41.2	42.2	45.1	47.5
Other structures and facilities	7.4	63.6	58.7	57.8	. 54.9	52.4
and facilities	100.0	100.0	100.0	100.0	100.0	100.0
Total LaRC real property value	\$157 258	\$172 964	\$192 950	\$204 725	\$235 285	\$249 588

^aData for earlier years are not available.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-63. Personnel

	1	958	10	959	196	0	196	1	19	62		63
Employee Category	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
					3333		3220		3330		4000	
Requested for FY ending	2260	3501	3795	3456 ^a	3191 ^b	3208	3338	3460	3894	4007	4220	4234
Total, paid employees	3368	3458	3765	3452	3189	3201	3295	3441	3766	3984	4112	4204
Permanent	3322	43	3703	4	2	7	43	19	128	23	108	30
Temporary	46	43	30	•	2	•						
Code group (permanent only)		200	225	298	285	285	83	81	80	75	91	89
200 ^c	302	300	335		845	842	1106	1112	1285	1347	1445	1489
700 ^d	847	862	1009	857	043	0	0	0	0	0	0	4
900	0	0	0	0	-	1127	1189	1193	1365	1422	1536	1582
Subtotal	1149	1162	1344	1155	1130	85	94	110	124	138	148	165
600 ^e	0	0	0	0	0		299	331	385	432	432	436
500	362	397	463	425	364	275 275	299 291	337	412	414	430	452
300	266	290	302	268	243			1470	1480	1578	1566	1569
100	1545	1609	1656	1604	1452	1439	1422	2248	2401	2562	2576	2622
Subtotal	2173	2296	2421	2297	2059	2074	2106		401	38	38	36
Excepted: on duty	9	31	46	40	36	37	38	37		444	313	277
Accessions: permanent	237	507	445	302	91	164	237	331	513	• • •	134	34
Accessions: temporary	88	13	54	20	2	12	51	25	81	18		32
Military detailees	20	13	11	13	11	12	10	16	19	24	31	

^{* =} Less than 0.1%.

Table 6-63. Personnel (Continued)

	1	964	4278 4238 4371 4263 4485 42 4285 4237 4280 42 86 26 205 84 82 84 1561 1554 1563 15 5 5 5 1650 1641 1652 16 199 194 200 2 428 462 499 4 507 514 965 99 1501 1426 964 9 2635 2596 2628 26	66	196	1968			
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31 4211 4168 43 65 1565 6 1636 215 469 994 854 2532 28 NA NA	6/30
Requested for FY ending	4296		4278		4238		4179		4236
Total, paid employees	4330	4329	4371	4263	4485	4296	4405	4211	4219
Permanent	4255	4298	4285	4237	4280	4235	4227		4037
Temporary	75	31	86	26	205	61	178		182
Code group (permanent only)							2.0		102
200	87	88	84	82	84	84	. 81	65	51
700 ^d	1511	1519	1561	1554	1563	1541	1557		1553
900	5	5	5	5	5	5	5		6
Subtotal	1603	1612	1650	1641	1652	1630	1643	1636	1610
600 ^e	182	198	199	194	200	211	206		207
500	456	454	428	462	499	499	491	-	437
300	468	492	507	514	965	985	1022	994	1022
100	1546	1542	1501	1426	964	910	865	854	761
Subtotal	2652	2686	2635	2596	2628	2605	2584	2532	2427
Excepted: on duty	36	35	28	28	28	28	27	28	26
Accessions: permanent	229	198	205	177	248	187	189	NA	NA
Accessions: temporary	70	124	85	134	238	70	170	NA	NA
Military detailees	31	21	16	14	8	6	5	5	5

^aSpace Task Group, with 480 employees, was transferred from Langley Research Center to Goddard Space Flight Center in November 1959.

bWith establishment of Wallops Station as an independent installation, 225 employees were transferred in January 1960 from Langley to Wallops reports.

^cBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

dData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

^eBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data from Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-64. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manual among Slight			176	24	56	47	24	37	23	46
Manned space flight (% of total)	(5.0)	(10.0)	(5.4)	(0.7)	(1.4)	(1.1)	(0.6)	(0.9)	(0.6)	(1.1)
Space applications	(3.0)	(10.0)	100	34	25	25	17	29	14	17
(% of total)	(2.0)	(5.0)	(3.0)	(0.9)	(0.6)	(0.6)	(0.4)	(0.7)	(0.3)	(0.4
()-	(2.0)	(3.0)	545	140	163	234	228	249	266	230
Unmanned investigations in space	(4.0)	(5.0)	(16.6)	(3.8)	(4.0)	(5.5)	(5.4)	(5.9)	(6.4)	(5.7
(% of total)	(4.0)	(5.0)	636	2516	2203	1660	1741	1756	1637	1632
Space research and technology	(4.0)	(15.0)	(19.3)	(68.4)	(54.0)	(38.8)	(41.0)	(41.5)	(39.3)	(40.4
(% of total)	(4.0)	(13.0)	1350	956	752	650	718	737	811	846
Aircraft technology ^C	(85.0)	(60.0)	(41.1)	(26.0)	(18.4)	(15.2)	(16.9)	(17.4)	(19.5)	(21
(% of total)	(65.0)	(00.0)	480	9	881	1663	1516	1425	1410	1266
Supporting activities ^d	(0.0)	(5.0)	(14.6)	· (0.2)	(21.6)	(38.8)	(35.7)	(33.6)	(33.9)	(31.4
(% of total) Total LaRC	(0.0)	(3.0)	3287	3679	4080	4279	4244	4233	4161	403

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^CFY 1961 figure represents "Aircraft and missile technology." dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities. FY 1961 and FY 1962 figures are for only tracking and data acquisition.

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-65. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	\$ 7.00	\$13.90	\$18.50	\$14.50	\$ 46.00	\$ 78.40	\$106.90	\$124.20	\$ 91.20	\$ 82.30	\$ 582.90
Construction of facilities ^a	10.84	4.51	12.30	6.91	9.84	9.61	3.54	8.25	6.10	0	71.90
Administrative operations ^b	31.38	33.00	39.15	46.59	51.63	52.12	59.01	63.53	64.33	62.20	502.94
Total	\$49.22	\$51.41	\$69.95	\$68.00	\$107.47	\$140.13	\$169.45	\$195.98	\$161.63	\$144.50	\$1157.74

^aDoes not include facilities planning and design.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965), NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-66. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	\$10.8	\$2.4	\$1.7	\$4.5	\$ 1.4	\$0.3	\$0.2	*	*	\$0.1	0	\$10.8
1960	4.5		2.6	0.7	1.1	0.1	*	*	0	0	0	4.5
1961	12.3			1.8	7.9	1.7	0.4	\$0.1	\$0.1	0.3	*	12.3
1962	6.9				5.0	1.5	0.3	*	*	*	*	6.9
1963	10.1					3.0	4.2	1.3	1.0	0.5	*	10.0
1964	9.9						3.9	2.5	1.0	1.8	\$0.4	9.7
1965	4.3							3.1	0.6	0.2	*	4.0
1966	9.2								2.3	5.5	0.5	8.3
1967	6.5									1.4	4.8	6.3
1968	0										0	0
Total	\$74.5	\$2.4	\$4.4	\$7.0	\$15.5	\$6.5	\$9.0	\$7.2	\$5.1	\$9.8	\$6.0	\$72.9

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

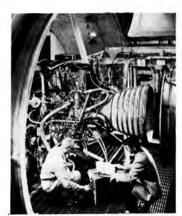
Table 6-67. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards Percentage of NASA total	\$118.5	\$66.9	\$70.8	\$83.4	\$103.9	\$130.8	\$139.6	\$142.7	\$103.6	\$960.2
	35%	9%	5%	2%	· 2%	3%	3%	3.1%	2.5%	3.3%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

Table 6-68. Awards to Personnel Granted under Section 306 of the Space Act of 1958^a

Year	Inventor	Contribution	Amount
1961	William J. O'Sullivan, Jr.	Erectible self-supporting space vehicle	\$ 5000
1962	Emedio M. Bracalente Ferdinand C. Woolson	Ablation rate meter	2 000
1963	Robert L. Trimpi	Expansion tube for hypervelocity	3 000
1703	Charles H. McLellan	Wedge tails for hypersonic aircraft	2 000
	Francis Rogallo with Mrs. F. Rogallo	Flexible wing (kite)	35 000
	William J. Alford, Jr. Edward C. Polhamus	Variable-sweep-wing configuration	2 000
	Thomas A. Toll	Variable-sweep-wing supersonic aircraft	600
	Robert V. Hess	Hall-current plasma accelerator	1 200
1966	John C. McFall, Jr. Ray W. Lovelady	Underwater location system	1 500
1967	Robert A. Jones James L. Hunt	Technique for quantitative measurement of aerodynamic heat transfer to supersonic wind-tunnel models of complicated shapes	2 600


^aFor complete listing of awards under this Act, see Appendix A, Sect. 1.B.

Source: NASA, Inventions and Contributions Board.

LEWIS RESEARCH CENTER

Lewis Research Center, Cleveland, Ohio (left), photographed in 1963. Among the Center's research projects have been the RL-10 high-energy liquid-hydrogen and liquid-oxygen engine for Centaur and Saturn launch vehicle stages (RL-10 at far left below, photographed in 1968 just before a test-firing in the altitude tank), ion engines for satellites and interplanetary spacecraft propulsion (a small-scale version second from left below, being installed in a low-pressure test facility), and reduction of jet aircraft noise (a turbojet engine third from left below, being prepared for a 1968 test run). LeRC's High Vacuum Facility (at right below) was used for testing ion engine research models.

LEWIS RESEARCH CENTER (LeRC)

Location: Cleveland, Cuyahoga County, Ohio.

5368.4 total hectares (13 265.68 acres) as of June 30, 1968:

Cleveland: 141.3 hectares (349.19 acres) NASA-owned.

5.9 hectares (14.60 acres) leased.

147.2 hectares (363.79 acres).

Plum Brook: 2420.4 hectares (5980.79 acres) NASA-owned.

20.2 hectares (50.00 acres) easements.

2440.6 hectares (6030.79 acres).

Industrial: 2780.6 hectares (6871.1 acres) NASA-owned.

Director: Abe Silverstein (Nov. 1, 1961-).

Eugene J. Manganiello (January 1961-October 1961, Acting

Director).

Edward R. Sharp (Director Emeritus, January 1961. † July 24, 1961; Director, NACA Lewis Flight Propulsion Laboratory, September 1948-September 1958; Director, NACA Aircraft Engine Research Laboratory, June 1947-September 1948; Manager, NACA Aircraft Engine Research Laboratory, May 1942-June 1947).

Deputy Director:

Land:

Eugene J. Manganiello (Dec. 13, 1961Director, Oct. 27, 1958-Dec.13, 1961; Assistant Director, 1952-1958; Assistant Chief of Research, Lewis Flight Propulsion Laboratory, 1949-1952; Chief, Thermodynamics Branch, LFPL, 1948-1949, and NACA Engine Research Laboratory 1945-1948).

Abe Silverstein (Associate Director, Lewis Flight Propulsion Laboratory, 1952-Sept. 30, 1958; Chief of Research, LFPL, 1949-1952; Chief, Wind Tunnel and Flight Division, LFPL, 1948-1949, and NACA Aircraft Engine Research Laboratory, 1943-1948).

History

Congress authorized a new flight propulsion laboratory June 26, 1940, and in November, after surveying 72 locations in 62 cities, the National Advisory Committee for Aeronautics announced selection of the Cleveland site. On January 23, 1941, ground was broken for the NACA Aircraft Engine Research Laboratory, on 80.8 hectares (199.7 acres) adjacent to the Cleveland-Hopkins Municipal Airport. The NACA renamed the installation Lewis Flight Propulsion Laboratory September 28, 1948, in honor of Dr. George W. Lewis (1882-1948), NACA Director of Aeronautical Research from 1919 to 1947. When NASA was established October 1, 1958, the laboratory became Lewis Research Center (LeRC).

During World War II, Lewis research improved reciprocating aircraft engines, fuels, and superchargers and other engine components. All facilities were converted after the war from gas-piston to turbojet research, and pioneer work was done on afterburners, combustion efficiency, and turbine and compressor efficiency. Rocket test facilities were added in the 1950s.

¹J. C. Hunsaker, "Forty Years," 262; Twenty-sixth Annual Report of the NACA, 1940 (Washington, D.C.: GPO, 1941), 20-21. This section on history of Lewis Research Center was prepared for the Data Book by Lynn Manley and Hugh W. Harris of LeRC.

² John D. Holmfeld, "The Site Selection for the NACA Engine Research Laboratory: A Meeting of Science and Politics" (Master's essay, Case Institute of Technology, 1967), 108; Keller, "A Chronology," 49.

³LéRC Release 66-1.

^{4&}quot;Official Deed from the City of Cleveland to the United States of America," Nov. 27, 1940.

⁵ Proclamation dated Sept. 25, 1958, signed by Administrator T. Keith Glennan, Federal Register, Sept. 30, 1958 (23 F.R. 7579), reprinted in NASA, First Semiannual Report (Washington, D.C.: GPO, 1959), Append. E, 66-67.

⁶Gray, Frontiers of Flight, Chaps. 11-13.

⁷NASA, Budget Estimates, FY 1969, IV, AO 2-83 through 2-86; Abe Silverstein, "Research on Aircraft Propulsion Systems," Twelfth Annual Wright Brothers Lecture, presented before the Institute of the Aeronautical Sciences, Washington, D.C., Dec. 17, 1948, published in Journal of the Aeronautical Sciences, XVI, No. 4 (April 1949), 197-222; Thirty-eighth Annual Report of the NACA, 1951 (Washington, D.C.: GPO, 1954), 4-6.

⁸NASA, Technical Facilities Catalog (March 1967 ed.), I, Sec. 5, 15-16.

and early Lewis studies demonstrated the feasibility of using high-energy fluorine and hydrogen instead of kerosene as a fuel.9

With the establishment of NASA, theoretical studies on ion propulsion and spacecraft power systems expanded to the hardware testing stage and new facilities were built to develop these systems; for example, by early 1961 Lewis had tested for the first time a laboratory-model mercury bombardment ion engine.¹⁰

NASA announced transfer of Centaur launch vehicle and M-1 engine project management from Marshall Space Flight Center to Lewis September 30, 1962, 11 and the Agena program with its associated Thor and Atlas boosters December 12, 1962. 12 Assignment of the 6.6-meter (260-inch) solid motor project to Lewis was announced September 10, 1964, 13 and management of the RL-10 engine project was transferred from Marshall to Lewis April 1, 1966. 14 In August 1966, NASA designated Lewis as the

Center responsible for development of space vehicle design criteria in the area of chemical propulsion.¹⁵

Mission

Lewis Research Center was assigned responsibility for research and development in the areas of advanced propulsion and space power generation:

- (1) Conducting basic and applied research on materials and metallurgy; cryogenic and liquid-metal heat-transfer fluids; pumps and turbines; combustion processes, propellants, tankage, injectors, chambers, and nozzles; system control dynamics; plasmas and magnetohydrodynamics; space meteoroid damage; and zero gravity effects;
- (2) Maintaining technical management of NASA contracts on chemical and electric propulsion, air-breathing engines, nuclear and solar space power systems; and managing the Centaur and Agena launch vehicle projects.¹⁶

⁹ NASA, Budget Estimates, idem.

¹⁰U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, NASA Scientific and Technical Programs, Hearings, 87th Cong., 1st sess., Feb. 28, March 1, 1961 (Washington, D.C.: GPO, 1961), 385.

¹¹LeRC Release 62-209.

¹² NASA Release 62-261.

¹³NASA Release 64-231.

¹⁴NASA Release 66-74.

¹⁵LeRC Release 66-40.

¹⁶NASA, Budget Estimates, idem.; U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Advanced Research and Technology, 1969 NASA Authorization, Hearings, Pt. 4, 90th Cong., 2d sess., Feb. 19-22, 26-29, 1968 (Washington, D.C.: GPO, 1968), 106 ff.

PLUM BROOK STATION

Location:

Near Sandusky, Erie County, Ohio.

Land:

2420.4 hectares (5981 acres) NASA-owned as of June 30,

1968.

20.2 hectares (50 acres) non-Federal.

Director:

Alan D. Johnson (April 29, 1962-

History

After surveying 18 locations, NACA selected the site and leased 202.3 hectares (500 acres) from the U.S. Army in March 1956. Plum Brook Ordnance Works, named for a small stream running through the property and draining into Lake Erie, had been operated for the Army as a TNT manufacturing facility by Trojan Power Company from January 1942 until August 17, 1945. Ground was broken for the Plum Brook Research Reactor Facility September 26, 1956; NACA planned to use the new facility for research in problems of aircraft nuclear propulsion systems.

After construction was completed in 1961,⁵ AEC issued a provisional operating license March 14⁶ for the 60-megawatt reactor. On June 14, the reactor became operational and began running on low-power calibration⁷ reaching full power for the first time April 21, 1963.⁸ The first six experiments were begun July 17, 1963,⁹ and the 50th cycle was completed August 12, 1966,¹⁰ under a full-term, 10-year operating license granted by AEC April 12, 1965.¹¹ Transfer of the last parcel of U.S. Army land to NASA was completed March 15, 1963.¹² NASA's FY 1968 budget requested funds for purchase of an additional 1214.1 hectares (3000 acres) surrounding the site for establishment of a buffer zone and for a future entrance.¹³

Mission

The Plum Brook Station's mission was conducting (1) studies using the 60-megawatt reactor in experiments associated with development of nuclear rockets and components and systems for space nuclear propulsion and power; and (2) test programs for complete rocket engines and components with high-energy propellants.¹⁴

¹Lewis Flight Propulsion Laboratory Fact Sheet, Sept. 1956; LFPL Release, Sept. 26. 1956.

²LeRC Fact Sheet, Oct. 1, 1963.

³ Plum Brook News, Aug. 18, 1945.

⁴LFPL Fact Sheet, September 1956; LFPL Release, Sept. 26, 1956.

⁵LeRC Fact Sheet, Oct. 1, 1963.

⁶ AEC Release G-46, March 2, 1964.

⁷LeRC Release 61-133.

⁸ LeRC Release 63-20.

⁹ LeRC Release 63-57.

¹⁰LeRC Release 66-45.

^{1 1} LeRC Release 65-27.

¹²LeRC Fact Sheet, Oct. 1, 1963.

¹³ NASA, Budget Estimates, FY 1968, III, CF 6-7-10.

¹⁴NASA, Budget Estimates, FY 1969, IV, AO 2-85, 2-86.

Table 6-69. Technical Facilities: Wind Tunnels (with costs in thousands)

Facility Name	Year Built	Test Section Size in Meters (and feet)	Mach. No. Range	Reynolds No. Range	Init. Cost	Accum. Cost	Research Supported
Icing research	1944	1.8 x 2.7 x 6.1L (6 x 9 x 20L)	(300 mph)	-	\$ 889.7	\$ 956.9	Aerodynamics, operating problems, icing, flight safety, aircraft component design
8- by 6-foot supersonic research tunnel	1948- 1949	2.4 x 1.8 x 11.9L (8 x 6 x 39L)	0.4 to 2.0	-	6 143	8 794	Propulsion, combustion, and aerodynamic studies of rocket boosters, aircraft
10-by 10-foot supersonic wind tunnel	1955	3.1 x 3.1 x 12.2 (10 x 10 x 40)	2 to 3.5 CV ^a	-	32 325	35 105	Propulsion, combustion, and aerodynamic studies of rocket boosters, air craft

^aContinuously variable.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 5; Append. B.

Table 6-70. Technical Facilities Other Than Wind Tunnels (with costs in thousands)

		Year	Init.	Accum.	To developing Asso Supported
Functional Name	Facility Name	Built	Cost	Cost	Research or Technological Area Supported
Engine research facility	Engine Research Building	1942-47	\$ 9 033	\$14 236	Testing compressors, turbines, compressor and turbine components, jet engines, combustion devices, and jon engine components
Environmental test facility	Space Power Chambers	1944	2 597	2 788	Space power systems, altitude control systems, vehicle separation tests, nosecone separation tests
Propulsion research facility, jet engine	Propulsion Systems Laboratory	1952	11 814	23 556	Investigation of full-scale turbojet or ramjet and rocket engines
Rocket propulsion test facility	Rocket Engine Test Facility	1956	2 397	2 438	Rocket cooling and combustion, performance and stability studies
Propulsion laboratory, electric	Electric Propulsion Laboratory	1961	5 014	5 024	Ion and plasma thrusters, spacecraft, and related components
Zero gravity facility	Zero Gravity Facility	1966	3 370	NA	Investigation of behavior of liquids and gases under weightles conditions

NA = Data not available. For definition of terms, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 1, Sect. 5.

Table 6-71. Technical Facilities: Plum Brook Station (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Research or Technological Area Supported
Propellant research facility, cryogenic	Cryogenic Propellant Research Facility	1941	\$ 263.7	\$ 340.3	Pressurization, expulsion, and insulation of cryogenic propellant systems and tankage for space vehicles
Nuclear test reactor facility	Nuclear Test Reactor Facility	1959	14 536	15 867	Radiation effects on basic materials and components; basic physics experimental radiation effects pertinent to NERVA programs
Dynamics research facility	E Site Dynamics Research Facility	1960	1 094	1 094	Launch vehicle tests
Rocket propulsion test facility, altitude (B-1)	Altitude Rocket Test Facility (B-1)	1961	2 201	2 415	Test-firing under low-pressure exhaust conditions of small rockets using high-energy propellants
Nuclear rocket dynamics and control facility (B-3)	Nuclear Rocket Dynamics and Control Facility	1965	1 878	I 878	R&D of cryogenic turbopumps and their incorporation into vehicle propellant systems
Heat transfer facility	Heat Transfer Facility	1966	2 400	NA	Heat transfer
Nuclear propulsion environmental facility	Space Power Facility	1967	28 000	NA	Space nuclear power and propulsion systems; large nonnuclea vehicles, spacecraft, components

NA = Data not available. For definition of terms, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 1, Sect. 5, 29-52.

Table 6-72. Industrial Real Property (as of June 30; money amounts in thousands^a)

		General Dynamics Corporation under Contract NAS 3-3230 F											
Category	Combined Syst San Dieg	ems Test Stand so, Calif.b		na Test Site na, Calif. ^C	Sycamore Cany San Diego	on Test Area , Calif. ^d	Total						
	1967	1968	1967	1968	1967	1968	1967	1968					
Land in hectares (and acres)	1.4 (3.5)	1.4 (3.5)	0	0	2994.6 (7399.65)	2779.2 (6867.6)	2996.0 (7403.15)	2780.6 (6871.1)					
Buildings Number Area in sq m (and sq ft)	1 2 680.3 (28 850)	1 2 680.3 (28 850)	8 550.3 (5 924)	8 550.3 (5 924)	22 6 789.7 (73 084)	14 .5 726.4 (61 638)	31 10 020.3 (107 858)	23 8 957.0 (96 412)					
Value Land Buildings	\$ 21 858	\$ 21 858	0 \$ 81	0 \$ 81	\$ 357 1378	\$ 78 3289	\$ 378 2317	\$ 99 4228					
Other structures and facilities	0	0	357	357	5325	3662	5682	4019					
Total real property	\$879	\$879	\$438	\$438	\$7060	\$7029	\$8377	\$8346					

^aThese figures are included in Table 6-73; data for earlier years are not available. ^bFlight simulation facility was built in 1964 to aid evaluation of Atlas-Centaur Surveyor vehicle systems during the combined vehicle operation test simulating flight from launch to payload separation.

^CCentaur test site land, about 12 hectares (30 acres), at US Navy Electronics Laboratory was made available to NASA by USN use permit NOy(R) 99497, April 8, 1966.

Source: NASA, Office of Facilities.

dThe Centaur stand was activated in 1960 on a USAF missile test site. On June 10, 1964, USAF issued a use permit for 2316.8 hectares (5724.79 acres) of the Sycamore Canyon site; the land was transferred to NASA ownership effective June 24, 1966. NASA requested transfer of 677.9 additional hectares (1674.86 acres) Sept. 9, 1965; the land, in public domain, was placed under NASA control July 26, 1965, by Public Land Order 3749.

Table 6-73. Property
(as of June 30; money amounts in thousands)^a

								•		
Category	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)		•							,	
Owned	130.5	137.1	140.6	141.3	2 561.7	2 563.1	2 563.1	5 557.5	5 557.5	5 342.2
	(322.4)	(338.8) ^t	(347.4) ⁶	(349.2)	i (6 330.0) ^e	(6 333.5) ^f			g (13 733.1)	(13 201.0)
Leased					4 289.9	5 730.7	5 776 8	6.1	6.1	5.9
	0	0	0	0	(10 600.7) ^h	(14 160.7) ⁱ	(14 274.7) ^j	(15.0) ^l		(14.6)
Buildings										
Number owned	34	40	40	40	318	367	131 ¹	168	191	298
Area owned, thousands of	115.4	141.6	141.6	141.6	217.8	259.2	213.8	243.2	264.1	291.4
sq m (and sq ft)	(1242)	(1524)	(1524)	(1524)	(2344)	(2790)	$(2301)^{I}$	(2618)	(2843)	(3137)
Area leased, thousands of				1.5	3.6	(=)	(====)	(2010)	(20.5)	(3137)
sq m (and sq ft)	0	0	0	(16)	(39)	0	0	0	0	0
Value										
Land	\$ 184	\$ 186	\$ 189	\$ 197	\$ 1582	\$ 1597 ^m	\$ 1617	\$ 1618	\$ 1975	\$ 1696
Buildings	57 659	90 077	89 672	89 849	99 102	132 732	111 023 ⁿ			179 834
Other structures								2000.0	101 55 .	177 054
and facilities	6 072	11 462	11 477	11 587	21 227	21 093 ⁿ	84 602 ⁿ	45 043 ⁿ	40 509	59 889
Real property	\$63 915	\$101 725	\$101 338	\$101 633	\$121 911	\$155 422	\$197 242	\$197 234	\$203 878	\$241 419
Capitalized equipment	NA	\$ 12 479	\$ 15 891	\$ 21 691°	-	\$ 30 867	\$ 40 510	\$ 77 361	\$ 80 851	\$ 96 884

^aIncludes Plum Brook and industrial facilities.

NA = Data not available.

Source: NASA, Office of Facilities. Supplementary information was provided by Hugh W. Harris.

b6.7 hectares (16.39 acres) acquired at Cleveland.

^c3.5 hectares (8.61 acres) acquired at Cleveland.

d_{0.7} hectares (1.79 acres) acquired at Cleveland.

^e2420.4 hectares (5980.79 acres) at Plum Brook transferred from U.S. Army to NASA, March 15, 1963. Adjusted figure; 20.2 additional hectares (50 acres) in easements appeared in end-of-fiscal-year reports from FY 1963 through FY 1965.

f1.4 hectares (3.5 acres) acquired for Combined Systems Test Facility (San Diego) in November 1963.

g677.9 hectares (1674.86 acres) under public domain at Sycamore Canyon Test Area (San Diego) transferred to NASA control July 26, 1965; 2316.7 hectares (5724.79 acres) at Sycamore Canyon Test Area transferred from USAF to NASA effective June 24, 1966. Adjusted figure; industrial property was not included in end-of-fiscal-year reports.

hIncludes 6.1 hectares (15 acres) leased from City of Cleveland (Jan. 11, 1963) and 4283.9 hectares (10 585.74 acres) leased from Aerojet-General Corp. at Nimbus, Calif., April 1, 1963.

iAdditional 1440.7 hectares (3560 acres) leased for M-1 engine program at Nimbus, Calif., March 6, 1964.

JAdditional 46.1 hectares (114 acres) leased at Nimbus, Calif., July 1964.

kLeases for land at Nimbus, Calif., terminated August 1965.

¹Sharp decrease in owned buildings due to razing of unsafe pentalite manufacturing facilities left by Army Ordnance at Plum Brook.

mAdjusted figure; \$1 476 000 appeared in end-of-fiscal-year reports.

nAdjustments in value of buildings and other structures and facilities

[&]quot;Adjustments in value of buildings and other structures and facilities due to reclassification.

OAdjusted figure; \$21 000 000 appeared in end-of-fiscal-year reports. PAdjusted figure; \$21 691 000 appeared in end-of-fiscal-year reports.

Table 6-74. Value of Real Property Components as Percentage of Total (as of June 30; real property value in thousands)

Component	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land	0.3	0.2	0.2	0.2	1.3	1.0	0.8	0.8	0.9	0.7
Buildings	90.2	88.5	88.5	88.4	81.3	85.4	56.3	76.3	79.2	7 4 .5
Other structures and facilities	9.5	11.3	11.3	11.4	17.4	13.6	42.9	22.9	19.9	24.8
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total LeRC real property value	\$63 915	\$101 725	\$101 338	\$101 633	\$121 911	\$155 422	\$197 242	\$197 234	\$203 878	\$241 419

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-75. Personnel^a

	. 10	58	10	959	190	50	196	1	196	52	190	
Employee Category	9/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
					2828		2736		2824		4508	
Requested for FY ending	2212	2606	2809	2749	2722	2743	2773	3036	3800	4118	4697	476
Total, paid employees	2713	2696	2809	2741	2703	2723	2751	3001	3721	4025	4577	473
Permanent	2703	2687	2002	8	19	20	22	35	79	93	120	2
Temporary	10	9	,	0	17	20						
Code group (permanent only)		-10	210	211	208	201	46	46	47	64	33	2
200 ⁰	211	213	219		724	720	882	995	1384	1511	1816	190
700 ^c	737	736	755	725	0	0	0	0	0	0	0	
900	0	0	0	0	-	921	928	1041	1431	1575	1849	193
Subtotal	948	949	974	936	932	66	68	87	115	154	197	21
600 ^d	0	0	0	0	0		211	243	313	354	422	44
500	316	312	335	330	320	212	_	287	362	366	399	43
300	265	257	258	247	233	289	308 1236	1343	1500	1576	1710	17
100	1174	1169	1235	1228	1218	1235	1823	1960	2290	2450	2728	279
Subtotal	1755	1738	1828	1805	1771	1802		27	32	35	35	3
Excepted: on duty	7	29	33	32	28	27	26	436	818	546	681	38
Accessions: permanent	211	44	237	87	63	114	90	436 71	218	136	274	
Accessions: temporary	21	1	59	3	33	14	113		_	29	39	2
Military detailees	25	28	30	23	12	11	12	12	15			

Table 6-75. Personnel^a (Continued)

	19	964	1	965	19	66	19	67	196
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	5128		4785		4815		4747		4676
Total, paid employees	4859	4878	4897	4834	5047	4825	4956	4623	4583
Permanent	4805	4806	4815	4778	4819	4756	4704	4583	4452
Тетрогату	54	72	82	56	228	69	252	40	131
Code group (permanent only)									
200 ^D	28	30	30	29	27	25	22	21	19
700 ^c	1929	1914	1924	1868	1892	1853	1868	1831	1791
900	3	3	4	5	5	5	4	4	4
Subtotal	1960	1947	1958	1902	1924	1883	1894	1856	1814
600 ^d	234	241	254	243	245	244	240	230	219
500	448	469	472	467	498	488	470	448	426
300	417	394	390	408	377	370	361	348	358
100	1746	1755	1741	1758	1775	1771	1739	1701	1635
Subtotal	2845	2859	2857	2876	2895	2873	2810	2727	2638
Excepted: on duty	35	35	27	26	24	25	25	27	27
Accessions: permanent	261	198	158	183	269	196	132	NA	NA
Accessions: temporary	126	178	126	206	285	85	292	NA	NA
Military detailees	40	31	23	18	9	11	13	16	20

^aIncludes Plum Brook.

^bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

dBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-76. Personnel: Plum Brook

Category	<u>19</u> 9/30	12/31	19 6/30	12/31	19 6/30	60 · 12/31	196 6/30	12/31	196 6/30	12/31	6/30	12/31
Total, paid employees	25	31	88	106	168	201	214	304	439	471	541	544
Permanent	25	31	88	106	168	201	214	304	424	459	525	543
Temporary	0	0	0	0	0	0	0	0	15	12	16	1

	10	1964		1965		1966		1967		
Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	
Total, paid employees Permanent	564 561	567 559	567 562	561 559	588 567	594 584	633 576 57	560 559	63 63 0	
Temporary	3	8	5	2	21	10	57	1		

Source: LeRC, Personnel Division

Table 6-77. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
			5	0	34	45	24	11	1	0
Manned space flight	(0.0)	(0.0)	(0.2)	(0.0)	(0.8)	(0.9)	(0.5)	(0.2)	(0.1)	(0.0)
(% of total)	(0.0)	(0.0)	0.2)	0	0	0	0	0	25	82
Space applications	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.5)	(1.8)
(% of total)	(0.0)	(0.0)	(0.0)	0.07	404	422	364	377	342	239
Unmanned investigations in space	(0.0)	(2.0)	(0.2)	(0.0)	(8.8)	(8.7)	(7.6)	(7.8)	(7.3)	(5.4)
(% of total)	(0.0)	(3.0)	2391	3519	2254	2025	2642	2423	2078	1854
Space research and technology	(40.0)	(55.0)	(86.7)	(95.5)	(49.3)	(41.8)	(54.8)	(50.3)	(44.4)	(41.6)
(% of total)	(40.0)	(55.0)	355	159	61	69	85	276	541	716
Aircraft technology	((0,0)	(42.0)	(12.9)	(4.3)	(1.3)	(1.4)	(1.8)	(5.7)	(11.6)	(16.1)
(% of total)	(60.0)	(42.0)		8	1819	2290	1700	1732	1689	1561
Supporting activities ^d	(0.0)	(0.0)	0	(0.2)	(39.8)	(47.2)	(35.3)	(36.0)	(36.1)	(35.1)
(% of total)	(0.0)	(0.0)	(0.0)	3686	4572	4851	4815	4819	4676	4452
Total			2756	3080	4312	7031	1013			

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 through 1963 (Washington: NASA, 1965), Sect. 8.

^cFY 1961 figure represents "aircraft and missile technology."

dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities. FY 1962 figure represents technology utilization (reported as "industrial applications").

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-78. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	\$ 3.40	\$ 7.00	\$12.70	\$ 62.00	\$247.30	\$299.90	\$323.20	\$249.90	\$162.60	\$131.30	\$1499.30
Construction of facilities ^a	8.02	6.62	9.59	1.04	44.81	20.41	.77	.87	16.00	2.12	110.25
Administrative operations ^b	27.77	31.23	35.85	45.24	53.59	61.50	69.33	66.39	66.28	66.22	523.40
Total	\$39.19	\$44.85	\$58.14	\$108.28	\$345.70	\$381.81	\$393.30	\$317.16	\$244.88	\$199.64	\$2132.95

^aDoes not include facilities planning and design.

^bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Sources: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-79. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	\$ 8.0	\$3.1	\$3.3	\$ 0.8	\$0.7	*	*	0	0			
1960	6.6		2.7	2.6	0.7	\$ 0.5	\$ 0.2	*	0	0	0	\$ 8.0
1961	9.6			6.7	2.0	0.7	0.2	_*	•	U	0	6.6
1962	1.8			0.7	1.7	*	*	*	*	0	0	9.6
1963	45.8				1.7	9.6				0	0	1.8
1964	20.4					7.0	23.3	\$ 8.3	\$1.7	\$0.3	\$1.1	44.3
1965	1.7						2.7	10.2	4.6	1.7	0.7	20.0
1966	1.3							-	1.4	0.1	0.2	1.8
1967	16.0								0.4	0.5	*	0.9
1968	2.1									4.5	1.6	6.1
Total		00.1		*							0	0
iotai	\$113.3	\$3.1	\$5.9	\$10.0	\$5.1	\$10.9	\$26.5	\$18.6	\$8.2	\$7.1	\$3.7	\$99.2

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Table 6-80. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards Percentage of NASA total	\$17.2	\$24.0	\$34.5	\$214.7	\$347.4	\$324.2	\$262.0	\$214.8	\$152.9	\$1591.7
	5%	3%	2%	7%	8%	6%	5%	4.6%	3.7%	5.4%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA,

September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

Table 6-81. Awards to Personnel Granted under Section 306 of the Space Act of 1958^a

Year	Inventor	Contribution	Amount		
1963 1964	Harold R. Kaufman William R. Cherry, (GSFC) with Joseph Mandelkorn, (Le RC)	Ion rocket Solar cell for radiation environment	\$4000 6000		

 $^{^{}a}$ For complete listing of awards under this Act, see Appendix B, Sect. 1.B.

Source: NASA, Inventions and Contributions Board.

MANNED SPACECRAFT CENTER

A 1968 photo shows the Manned Spacecraft Center's principal buildings (left): the Clear Lake site, Houston, Texas, looking northeast. In the Mission Operations Control Room (below) on the third day of the Apollo 8 mission to the moon, Dec. 23, 1968, the television monitor displayed a picture of the earth telecast from the spacecraft 283 000 kilometers (176 000 miles) away. MSC's centrifuge (bottom left), in the Flight Acceleration Facility, spun astronauts in training, creating g-forces to be met during Apollo spacecraft liftoff and reentry. MSC responsibility also included development of astronaut spacesuits and life-support systems (worn by Apollo 8 astronauts on the way to the launch pad, bottom center) and manned spacecraft (command modules for Mercury, Gemini, and Apollo were compared by an artist, bottom right).

MANNED SPACECRAFT CENTER

(MSC)

Location:

Houston, Harris County, Texas.

Land:

723.4 total hectares (1787.5 acres) as of June 30, 1968:

- 655.6 hectares (1620 acres) NASA-owned.
- 0.7 hectares (1.6 acres) leased.
- 67.1 hectares (165.9 acres) NASA-owned, Downey, California.

Director:

Robert R. Gilruth (November 1961Task Group [STG], January 1961-November 1961; Assistant Director, Manned Satellites, GSFC, and Director, Project Mercury, STG, May 1959-January 1961; Assistant Director, Beltsville Space Center, and Director, Project Mercury, STG, February 1959-May 1959; Assistant Director, Langley Research Center, and Project Manager, Manned Satellite Program [named Project Mercury November 1958], STG, October 1958-February 1959).

Deputy Director:

George S. Trimble (October 1967-). George M. Low (February 1964-April 1967).

James C. Elms (November 1963-February 1964; Deputy Director for Development and Programs, February 1963-November 1963).

Walter C. Williams (Deputy Director for Mission Requirements and Flight Operations, February 1963-November 1963; Associate Director, MSC, November 1961-February 1963; Associate Director, STG, April 1961-November 1961; Associate Director [Operations], STG, January 1961-April 1961; Associate Director [Operations], Project Mercury, STG, GSFC, September 1959-January 1961).

Charles J. Donlan (Associate Director [Development], STG, January 1961-April 1961; Associate Director [Development], STG, GSFC, September 1959-January 1961; Assistant Director, Project Mercury, STG, GSFC, May 1959-September 1959; Assistant Director, Project Mercury, STG, Beltsville Space Center, February 1959-May 1959; Assistant Project Manager, Manned Satellite Program [named Project Mercury November 1958], October 1958-February 1959).

History

In October 1958, NASA Administrator T. Keith Glennan approved a manned satellite plan (later named Project Mercury) to be carried out by a team led by Robert R. Gilruth at the Langley Research Center. A month later Glennan formalized his action and the team of 35 persons became the Space Task Group (STG), reporting directly to NASA Headquarters. This arrangement was only temporary, as NASA already had decided to locate the operational aspects of manned and unmanned space flight programs at a new center to be established in Beltsville, Maryland. In February 1959, before any construction had begun, NASA established the Beltsville Space Center (redesignated Goddard Space Flight Center in May), although most of its assigned activities, such as Space Task Group, were physically elsewhere.

The importance of Project Mercury in the national space program, plus imminent approval of follow-on and more difficult manned space flight efforts such as Project Apollo, caused NASA to establish Space Task Group as a separate field installation in January 1961, although it was still at Langley.³ Approval by Congress of President John F. Kennedy's decision to make Apollo a lunar-landing goal in the 1960s warranted the selection and construction of a new facility to carry out these responsibilities. In August 1961 a NASA survey team visited 20 cities, judging each on 10 criteria. After receiving the team's recommendations, NASA Administrator James E. Webb

¹ Swenson, Grimwood, and Alexander, *This New Ocean*, 109-116. The *Data Book* section on history of MSC was prepared by James M. Grimwood, Manned Spacecraft Center.

² Rösenthal, Venture into Space, Append. D., Exhibits 7-12.

³ Rosholt, Administrative History of NASA; NASA Historical Staff, Historical Sketch of NASA (Washington, D.C.: NASA EP-129, 1965), 31-32.

announced September 19, 1961, that Houston, Texas, had been chosen as the site for a manned spacecraft center.4

Work in progress on Mercury and Apollo, plus the formulation of a third program later named Gemini, changed the character of Space Task Group from that of a single-task effort—Mercury—to a multiple-program effort, causing Space Task Group to be redesignated Manned Spacecraft Center (MSC) in November 1961.5 Design began the following month for the new Center, which was to be in the Clear Lake vicinity, 32 kilometers (20 miles) southeast of Houston. In April 1962 permanent facility construction began on a 656-hectare (1620-acre) plot—413 hectares (1020 acres) donated by Rice University and 243 hectares (600 acres) purchased by NASA.6

Meanwhile, Manned Spacecraft Center personnel, now more than 1100 strong, began relocation from Langley to a number of temporary sites in Houston and into surplus buildings at Ellington Air Force Base. In this same period, Project Mercury achieved its objective—orbital flight of John H. Glenn, Jr.—and to prevent disruption of the operational momentum the Mercury staff remained at Langley through Mercury-Atlas 7 (Aurora 7, M. Scott Carpenter, May 24, 1962). By July 1962, all Manned Spacecraft Center activities had completed relocation.

Contracts covering the development and manufacture of the Apollo and Gemini spacecraft were let in November and December.* To direct and carry out the three manned space flight programs then in progress, personnel strength of the Center grew significantly. By the end of 1962 the complement

reached about 2400° and in June 1963, when Project Mercury came to a successful end, 1° the strength had risen by an additional thousand. 11 Movement from temporary sites to the Clear Lake facility, the first permanent home of the Manned Spacecraft Center and its predecessor, began in September 1963, with the major occupancy of the buildings occurring in February 1964. 12

Flight tests of the Gemini and Apollo programs began in April and May 1964, with the unmanned launches of Gemini-Titan 1 at Cape Kennedy and a Little Joe II-boosted, high-speed-abort test of a model of the Apollo command module at White Sands Missile Range Operations (later designated White Sands Test Facility).¹³ Three other Apollo flight tests occurred within the year—two Saturn I launches at Cape Kennedy and a second Little Joe II launch at White Sands—but it was January 1965 before the second unmanned Gemini flight was accomplished.¹⁴ However, 1965 might be characterized as "the year of the Gemini"; five manned Gemini flights recorded many significant space flight achievements—orbital path modification, long-duration missions, extravehicular activity, and rendezvous, to list a few.¹⁵ Four Apollo test flights, launched from White Sands and Cape Kennedy, also were made in 1965.¹⁶

Project Gemini, the second manned space flight program, came to a successful conclusion with its 12th flight in November 1966. The 10 manned flights of this program had spanned only 20 months.¹⁷ Apollo, too, experienced an active test flight year in 1966. The Little Joe II phase concluded with a successful launch in January, and three Saturn IB flights—AS-201, AS-202, and AS-203—were launched from Cape Kennedy.

⁴ James M. Grimwood, *Project Mercury: A Chronology* (Washington, D.C.: NASA SP-4001, 1963), 141, 147, 149; NASA Release 61-207; Swenson, Grimwood, and Alexander, *This New Ocean*, 390-392.

⁵ Swenson, Grimwood, and Alexander, This New Ocean, 392.

⁶ U.S. Congress, House, Committee on Science and Astronautics, Master Planning of NASA Installations, House Rpt. No. 167, 89th Cong., 1st sess., March 15, 1965 (Washington, D.C.: GPO, 1965), 11; MSC Brochure [Ivan D. Ertel], Manned Spacecraft Center (Houston: MSC, 1964), 10; Swenson, Grimwood, and Alexander, This New Ocean, 390, n. 20; NASA Administrator's Briefing Memorandum, Feb. 7, 1962; Letter, James E. Webb, NASA Administrator, to George E. Brown, Chairman of the Board of Trustees, William Marsh Rice Univ., Feb. 23, 1962.

⁷ Swenson, Grimwood, and Alexander, This New Ocean, 392, 587, 642.

⁸U.S. Congress, House, Committee on Science and Astronautics, Report of the National Aeronautics and Space Administration to the Committee, Aeronautical and Astronautical Events of 1961, 87th Cong., 2d sess., June 7, 1962 (Washington, D.C.: GPO, 1962), 68, 71.

⁹ Swenson, Grimwood, and Alexander, This New Ocean, 642.

¹⁰Grimwood, Project Mercury, 193, 196.

¹¹ Swenson, Grimwood, and Alexander, This New Ocean, 642.

¹²Manned Spacecraft Center, 10.

¹³MSC Fact Sheet No. 291 [Ivan D. Ertel], "Gemini Program," 4; MSC Fact Sheet No. 292 [Ivan D. Ertel], "Apollo Program," 3.

¹⁴ James M. Grimwood, Barton E. Hacker, and Peter J. Vorzimmer, *Project Gemini: Technology and Operations—A Chronology* (Washington, D.C.: NASA SP-4002, 1969), 179.

^{15 [}bid., Append. 1, Table A-D; Append. 2.

¹⁶ Astronautics and Aeronautics, 1965 (Washington, D.C.: NASA SP-4006, 1966), 570.

¹⁷For flight summary data, see: Grimwood, Hacker, and Vorzimmer, *Project Gemini*, Append. 1, Table A.

Because of test results, NASA decided in October to man the Apollo-Saturn 204 mission.¹⁸ On January 27, 1967, the program received a major setback. During a launch-pad test, a fire in the Apollo command module resulted in the deaths of the three flight crew members.¹⁹

After 16 months of investigation and redesign, the Apollo mission was actively resumed with the unmanned test flights of Apollo 4, 5, and 6. Test results verified that the Saturn V vehicle and its payload were ready for manned flight. The October 11, 1968, manned earth orbital flight of Apollo 7 demonstrated the viability of the command and service modules²⁰ and was followed by the December 21, 1968, manned lunar orbital flight of Apollo 8—which made its historic flight beyond earth's gravity to complete 10 orbits of the moon and returned its crew successfully to earth.²¹

Mission

Manned Spacecraft Center was assigned responsibility for design, development, and manufacture of manned spacecraft, selection and training of astronaut crews, and conduct of space flight missions; project management of the Mercury, Gemini, and Apollo programs; and program planning and technical analysis of the Apollo Applications program and other post-Apollo activities. Responsibility in 1968 specifically included:

- (1) Design, development, and fabrication of Apollo spacecraft, including the command, service, and lunar modules; contractor management;
- (2) Overall program management and control of the spacecraft, including module integration, tests, and qualification;
 - (3) Testing and evaluation of flight hardware;
- (4) Selection and training of astronauts and preparation of crews for each mission;
- (5) Operation of Mission Control Center and control of space flight missions (including recovery);
- (6) Development of scientific experiments to be flown on manned space flight missions;
 - (7) Medical research and operation.²

Ellington Air Force Base Buildings

Location: Ellington Air Force Base, Texas.

Area: 44 033 square meters (473 964 square feet) of floor space (use

and occupancy agreement with the Department of the Air Force under AF Permit No. DA-41-443-ENG 7909, Jan. 14, 1965; Permit No. DACA-63-4-68-0087, Aug. 7,

1967).

History

In October 1961 Space Task Group began moving into leased office space in Houston. By the middle of 1962, Manned Spacecraft Center activities were scattered in 11 different locations—in 10 commercial office buildings and at Ellington AFB facilities, which housed Procurement, Financial Management, and Photographic Services and Supply Divisions. In 1968 Manned Spacecraft Center's Aircraft Operations Office, some sections of the Personnel, Resources Management, Technical Services, and other divisions, as well as the NASA Regional Audit Office, still occupied space at Ellington.²³

Berth for Range Operations Ship

Location: Seabrook Shipyard, Seabrook, Texas.

Area: 1394 square meters (15 000 square feet) of dock area (rented at \$260.50 per month under Contract No. NAS 9-6977,

dated March 31, 1967).

History

The NASA Motor Vessel Retriever was built by the Army in 1954 as a

¹⁸ Astronautics and Aeronautics, 1966 (Washington, D.C.: NASA SP-4007, 1967), 332.

¹⁹ U.S. Congress, House, Committee on Science and Astronautics, *Investigation Into Apollo 204 Accident*, Vols. I and II, Hearings 90th Cong., 1st sess., April 10-12, 17, 21, May 10, 1967 (Washington, D.C.: GPO, 1967).

²⁰ Astronautics and Aeronautics, 1968 (Washington, D.C.: NASA SP-4010, 1969), 250-253.

² ¹ *Ibid.*, 318-322.

²²NASA, Budget Estimates, FY 1969, IV, AO 2-12.

²³ Swenson, Grimwood, and Alexander, This New Ocean, Chap, XII, 392, n. 23, 587.

landing craft. NASA modified the *Retriever* in 1963 for use in operational and developmental testing of spacecraft postlanding systems and spacecraft recovery equipment and for development of postlanding procedures and techniques for flight crews and recovery personnel.

The 35-meter (115-foot) vessel, which carried a crew of 4 with space for 16 passengers, could operate at sea for up to a week. It was equipped with a

9000-kg (10-ton) ship's boom crane, a NASA recovery davit crane for recovery of Gemini and Apollo spacecraft, a portable data-acquisition van, and high-frequency, very-high-frequency, and ultrahigh-frequency communications. The Seabrook dock, with refueling capabilities and electrical utility connections, was an all-weather mooring dock with 47.2 meters (155 feet) of waterside-accessible length and an adjacent maneuvering area.²⁴

²⁴ NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11, 175-176.

WHITE SANDS TEST FACILITY (WSTF)

Location: Las Cruces, Dona Ana County, New Mexico.

Land: 5196.5 hectares (55 934 acres) as of June 30, 1968 (under use

agreement with the Department of the Army; arrangement to expire June 30, 1970, unless continued by

agreement of both parties).

Manager: Martin L. Raines (October 1964-

Paul E. Purser (Acting, July 1964-October 1964). Wesley E. Messing (November 1962-July 1964).

History

White Sands Missile Range, activated July 13, 1945, was called White Sands Proving Ground (WSPG) until redesignated by the Army May 1, 1958.1 The New Mexico site entered U.S. rocket history September 26, 1945, with the first development flight of the Army-Jet Propulsion Laboratory WAC-Corporal, the first U.S. liquid-propellant rocket developed with Government funds. On March 22, 1946, a JPL-Army Ordnance WAC launched from White Sands reached an 80.5-kilometer (50-mile) altitude, the first American rocket to escape the earth's atmosphere. In a record flight February 24, 1949, an Army-JPL Bumper WAC (WAC-Corporal with V-2 first stage) launched from White Sands reached 392.7-kilometer (244-mile) altitude and a speed of 8867.5 kilometers (5510 miles) per hour. Flight testing of captured V-2 rockets began at White Sands April 16, 1946. The group of German and Austrian engineers and technicians who had arrived at White Sands in December 1945 worked closely with General Electric Co. and Army Ordnance personnel in a series of 52 V-2 firings. This series, which included the Albert monkey flights, was completed June 28, 1950. The rocket development group was transferred to Redstone Arsenal in November 1950 and eventually formed the nucleus of NASA's Marshall Space Flight Center.2

¹Department of the Army, General Order GO-14, April 29, 1958.

² Emme, Aeronautics and Astronautics, 1915-1960, 53. For additional references on the V-2 and ORDCIT (Army-JPL) programs at White Sands, see David S. Akens, Historical Origins of the George C. Marshall Space Flight Center, MSFC Historical Monograph No. 1 (Huntsville, Ala.: MSFC, December 1960), 28-35.

In June 1962 Manned Spacecraft Center reached an operating agreement with the U.S. Army for establishment of an Apollo propulsion development facility at White Sands Missile Range.³ NASA announced selection of the site in July 1962⁴ and in November 1962 designated the facility MSC Resident Manager's Office at White Sands Missile Range.⁵ On March 10, 1963, the office began using the designation MSC White Sands Missile Range Operations, and on January 18, 1965, MSC announced that the facility would be called White Sands Operations.⁶ On June 25, 1965, it was redesignated White Sands Test Facility.⁷

Mission

White Sands Test Facility was assigned responsibility for conducting or directing developmental and operational tests, primarily propulsion tests, and providing common-purpose laboratories, facilities, instrumentation, and other engineering and support services for these tests, in accord with directives originated by MSC program offices or technical divisions.⁸

³ MSC Weekly Activities Report, June 24-30, 1962; MSC Historian.

⁴MSC Message 7-02, July 2, 1962.

⁵MSC Announcement 102, Nov. 2, 1962.

MSC Announcement 65-6, Jan. 18, 1965.

⁷MSC Announcement 65-86, June 25, 1965.

⁸U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Manned Space Flight, 1967 NASA Authorization, Hearings, Pt. 2, 89th Cong., 2d sess., Feb. 18, 24, March 1-31, 1966 (Washington, D.C.: GPO, 1966), 689.

Table 6-82. Technical Facilities: Crew Systems (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Research or Technological Area Supported
Materials physical test laboratory, nonmetallic	Nonmetallic Materials Physical Testing Laboratory	1962-1964	\$ 100	\$ 150	Development, evaluation, and testing of nonmetallic materials
Life sciences laboratory complex (Bldg. 7)	Laboratory Complex of Building 7	1963	1000	2350	Development of crew support equipment such as portable life support systems, survival equipment, space suits, instrumentation, mechanical systems, materials testing, chemical analysis, etc.
Materials environment laboratory, space suit	Materials Environment Testing Laboratory	1964	75	100	Thermal protection for space suit assembly materials
Impact test facility	Impact Test Facility	1965	314	435	Impact-testing of spacecraft components; test and evaluation of crew support systems, restraint systems, force attenuations and energy-absorption systems; qualification-testing of spacecraft systems for space flight
Life sciences laboratory complex (Bldg. 7A)	Laboratory Complex of Building 7A	1966	1350	2350	Development and support of crew systems functions as related to life sciences

^aExcluding environmental test chambers. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

Table 6-83. Technical Facilities: Environmental Test Chambers (with costs in thousands)

Functional Name	Facility Name	Year Built	Dimensions in Meters (and feet)	Pressure (Altitude), Meters (feet)	Temperature	init. Cost	Accum. Cost	Research Supported
Environmental test facility (8-foot)	Eight Foot Diameter Altitude Chamber	NA	2.4 dia x 6.1 L (8 dia x 20 L)	68 580 (225 000)	-	NA ^a	\$ 100	Development and qualification testing of environmental control systems, portable life support systems, space suits, and design verification of system components during manned and un- manned tests
Environmental test facility (Chamber E)	High to Ultra-High Vacuum Chamber "E"	1964	2.1 dia x 4.0 L (7 dia x 13 L)	10 ⁻⁹ torr	20 K (-423°F)	\$ 250	250	Testing, R&D on spacecraft systems and components in high vacuum, with space environment simulations; thermal vacuum studies
Environmental test facility	Space Chamber Test Facility	1964	4.0-dia sphere (13-dia sphere)	10 ⁻⁵ torr	78 to 422 K (-320° to +300°F)	810.5	1 000	Spacecraft subsystems (primarily power generation and attitude control) design verification and development
Environmental test facility (20-foot)	Twenty-Foot Diameter Altitude Chamber	1964	6.1 dia x 6.7 H (20 dia x 22 H)	68 580 (225 000)	-	600	600	Development and qualification testing of boilerplate, spacecraft, environmenta control systems, space suits, extravehicular activity (EVA) equipment, and system components during manned and unmanned tests; astronaut training for EVA, and rapid decompression testing
Environmental test laboratory, instrument ^b	Environmental Test and Evaluation Laboratory	1964	-	10 ⁻⁸ torr	89 to 533 K (-300° to +500°F)	350	940	Environmental qualification, testing and evaluation of instruments for use on manned spaceflight vehicles
Environmental test facility (Chamber B)	Space Environment Simulation Chamber "B"	1965	10.7 dia x 13.1 H (35 dia x 43 H)	2 x 10 ⁻⁶ torr	80 to 400 K (-316° to +260°F)	16 123	49 868 ^c	Approximation of space environment conditions of temperature, pressure, an solar light for testing spacecraft and equipment

Table 6-83. Technical Facilities: Environmental Test Chambers (Continued) (with costs in thousands)

Functional Name	Facility Name	Year Built	Dimensions in Meters (and feet)	Pressure (Altitude) Meters (feet)	Temperature	Init. Cost	Accum. Cost	Research Supported
Environmental test facility (Chamber A)	Space Environment Simulation Chamber "A"	1965	19.8 dia x 36.6 H (65 dia x 120 H)	6 x 10 ⁻⁷ torr	80 K (-316°F)	\$33 246	NA ^c	Approximation of space environment conditions of temperature, pressure, and solar light for testing spacecraft and equipment
Environmental test facility (Chamber D)	Ultra-High Vacuum Space Simulation Chamber "D"	1966	2.7 dia x 5.5 H (9 dia x 18 H)	5 x 10 ⁻¹² torr	14 K (-434°F)	750	\$ 750	Testing, development, and research in spacecraft systems, components, complete craft, or materials, processes, etc., in ultrahigh vacuum, with space environment simulations

^aUSAF surplus.

 $\mbox{NA}=\mbox{Data}$ not available. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

^bContractor-operated (Lockheed Electronics Co.).

^CSpace Environment Simulation Laboratory cost, including Chambers A and B, laboratory complex, buildings, and two automated checkout equipment (ACE) stations.

Table 6-84. Technical Facilities: Flight Simulation and Training (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Mission Simulation and Training Facility	1963	\$ 2 500	\$ 2 700	Operation, maintenance, and modification of space flight simulators for flight crew and ground crew training
Gemini Mission Simulator No. 2	1963	8 000	9 000	Flight crew and ground crew space flight training
Gemini Mission Simulator No. 1 ^a	1963	8 000	9 000	Flight crew and ground crew space flight training
Gemini/Apollo Translation and Docking Simulator Complex	1964	1 200	1 800	Training of astronauts in manual control and development of docking procedures
Apollo Mission Simulator No. 1	1965	20 000	20 000	Simulation of space flight from earth launch to lunar landing and return
Dynamic Crew Procedures Simulator	1965	1 100	1 200	Simulation of space surroundings; development of procedures through kinesthetic cues and simulated motion
Flight Crew Training Building ^b	1965	1 559	2 834	Operation, maintenance, and modification of space flight simulators for flight crew and ground crew training
Lunar Mission Simulator (LMS) No. 1	1966	12 000	12 000	Simulation of mission operation and of landing and takeoff from lunar surface
Lunar Landing Training Vehicle (LLTV)	1966	900	900	Training of flight crews in flight techniques for final approach to lunar surface; simulation of handling qualities of lunar module (LM)
Apollo Mission Simulator (AMS) No. 2 ^b	1966	20 000	20 000	Simulation of space flight from earth launch to lunar landing and return
Lunar Mission Simulator (LMS) No. 2	1966	12 000	12 000	Simulation of mission operation and of landing and takeoff from Junar surface

Table 6-84. Technical Facilities: Flight Simulation and Training (Continued) (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Space Flight Mission Simulator Complex	1967	\$12 000	NA	Development of operational procedures and training of astronautin spacecraft manual-control procedures
Lunar Mission Simulator (LMS) No. 3 ^b	1967	7 000	NA	Simulation of mission operation and of landing and takeoff from lunar surface
Apollo Mission Simulator No. 3	1967	14 000	NA	Simulation of space flight from earth launch to lunar landing and return

^aFormerly at Kennedy Space Center; transferred to MSC June 1967. ^bAt KSC.

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

Table 6-85. Technical Facilities: Guidance and Control (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Stabilization and control systems laboratory	Systems Dynamics Laboratory	1964	NA	\$ 1700	Closed-loop system testing of spacecraft stabilization and control systems; control system component performance testing
Guidance and control electronics laboratory	Guidance and Control Electronics Laboratory	1964	NA	800	Research design and development of electronic systems for control of spacecraft attitude and translation motions
Guidance and control simulation laboratory	Simulation Laboratory	1964	\$2 000	10 000	Simulation studies of spacecraft guidance and control systems
Guidance and navigation systems laboratory	Guidance and Navigation Systems Laboratory	1965	265	1 050	Optical and inertial guidance system testing
Inertial and optical laboratory	Inertial Optical Laboratories	1965	320	800	Test and evaluation of inertial components and subsystems; analytical and experimental studies of space visibility problems and determination of crew backup guidance capabilities

^aAll contractor operated (Lockheed Electronics Co.).

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 11, Sect. 11

Table 6-86. Instrumentation and Electronics Systems (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Magnetic tape recording laboratory	Magnetic Tape Recording Laboratory	1962	\$ 60	\$ 125	Magnetic tape system development, test and checkout, calibration, and evaluation
Signal conditioning laboratory	Signal Conditioning Laboratory	1962	38	183	Electronic equipment functional evaluation of spacecraft signal conditioning systems
Temperature evaluation laboratory ^b	High Temperature Evaluation Laboratory	1962	250	300	High-temperature thermal sensor evaluation, heat-transfer sensor design and evaluation, development and evaluation of heat-shield instrumentation, high-temperature coating technique evaluation.
Optical laboratory, physical	Physical Optics Laboratory	1964	30	80	Lens test and evaluation, optical detectors, telescopes, filters, infrared-ultraviolet-visible spectrum
Microcircuit techniques laboratory	Microcircuit Laboratory	1964	230	450	Microcircuitry for spacecraft electronic data and communication systems
Telemetry receiving techniques laboratory	Telemetry Receiving Techniques Laboratory	1964	200	850	Demultiplexing equipment development; data format conversion, demultiplexing, digitizing, recording, analysis
Instrumentation development laboratory	Development Flight Instrumentation (DFI) Breadboard Checkout Laboratory	1964	175	175	Design verification and acceptance of (Apollo) spacecraft development flight instrumentation, Government furnished equipment (GFE) systems
Transducer calibration laboratory ^c	Transducer Calibration Laboratory	1964	75	130	Calibration and evaluation of flight transducers used on spacecraft vehicles

Table 6-86. Instrumentation and Electronics Systems (Continued) (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Instrument calibration laboratory ^C	Standards and Calibration Laboratory	1964	\$125	\$ 775	Calibration of all electronics and physical sciences measuring instruments
Television systems laboratory	Television Systems Laboratory	1964	50	800	Spacecraft television, ground facilities processing equipment, image sensor development
Measurements laboratory	Measurements Laboratory	1964	50	50	Onboard (spacecraft) measurements of temperature, acoustics, pressure, vibration, acceleration, and inertia
Electrical power and sequencer laboratory	Electrical Power and Sequencer Laboratory	1964	. 8	44	Checkout, testing, evaluation, and qualification of spacecraft power distribution, batteries, inverters, sequencers, electrical power and control assemblies
Instrumentation calibration laboratory, analytical ^d	Analytical Instrumentation Calibration Laboratory	1964	85 ^e	. 500	Analysis of gases, liquids, and solids used in connection with tests of flight equipment
Digital techniques laboratory	Digital Techniques Laboratory	1964	247	550	Spacecraft data-acquisition systems; flight-qualification-test proce control and data analysis
Communications and instrumentation systems test facility	Spacecraft Systems Test Laboratory	1964	132	132	Testing of (Apollo) spacecraft communications and instrumentation systems
Telemetry systems laboratory	Telemetry Systems Laboratory	1964	282	310	Flight-qualification of spacecraft telemetry systems, GFE hardwar design and development of advanced analog data systems
Audio systems laboratory	Audio Systems Laboratory	1964	32	175	Speech bandwidth compression system development, audio devices development, and audio devices and system testing and evaluation
Anechoic chamber	Anechoic Chamber	1965	822	NA	Electromagnetic interference testing, antenna impedance or radiation pattern testing

Table 6-86. Instrumentation and Electronics Systems (Continued) (with costs in thousands)a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Optical frequency laboratory and range	Optical Frequency Laboratory and Range	1965	\$502	\$ 669	Analysis of laser, infrared radars, high-data-rate laser deep-space communications systems, and infrared detectors and trackers
Antenna test range	Antenna Range	1965	548	NA	Measurements of antenna radiation patterns
Communications laboratory, R.F.	Radio Frequency Communications Laboratory	1965	500	1 000	Communications, tracking, and command systems
Timing systems laboratory, spacecraft	Spacecraft Timing Systems Laboratory	1966	269	NA	Development, evaluation, test, and checkout of spacecraft timin systems
Radar boresight range	Radar Boresight Range Facility	1966	248	423	Development of spacecraft rendezvous and landing radar systems
^a Excluding environm ^b At Ellington AFB. ^c Contractor-operated	nental test chamber.			NA = Data Chapter Tw	not available. For definition of terms, see introduction to

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

dContractor-operated (Lockheed Electronics Co. J.

eEquipment only.

Table 6-87. Technical Facilities: Propulsion and Power, Landing and Recovery, and Information Systems (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Power systems test facility, spacecraft	Power Systems Test Facility	1964	\$ 560	\$1 000	Thermal, transient, life, optimization, and failure mode investigations
Auxiliary propulsion test facility	Auxiliary Propulsion Test Facility	1964	1 695	2 000	Testing of small liquid-propulsion rocket engines under sea level and simulated altitude conditions
Pyrotechnics test facility	Pyrotechnics Test Facility	1964	542.9	700	Environmental and functional testing of spacecraft pyrotechnical devices and other spacecraft systems
Fluid systems test facility	Fluid Systems Test Facility	1965	1 427	1 600	Component and system cold flow, life cycling, proof and pressure, compatibility, leakage, dynamic response, and flight anomaly testing of spacecraft propulsion systems
Water test chamber facility	Water Test Chamber	1963	20	161	Operational and developmental testing of spacecraft postlanding systems and spacecraft recovery equipment; development of preliminary postlanding procedures and techniques for flight crews and recovery personnel; spacecraft postlanding motion anlays
Test article spacecraft assembly facility	Test Article Spacecraft Work Area	1965	30	30	Postlanding test-article spacecraft assembly and checkout
Electronic systems compatibility laboratory ^b	Electronic Systems Compatibility Laboratory	1966	3 200	3 200	Spacecraft-Manned Space Flight Network (MSFN) RF systems and related areas; compatibility and performance evaluation, special investigation, mission-profile simulation

^aExcluding environmental test chambers. For definition of terms in headings, see introduction to Chapter Two.

bContractor-operated (Lockheed Electronics Co.).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

Table 6-88. Technical Facilities: Space Science (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Lunar topographic and geologic simulation area	Lunar Topographic and Geologic Simulation Area	1964	\$ 60	NA	Lunar surface technology
Accelerator facility, Van de Graaf	Van de Graaf Facility	1965	75	\$ 80	Development of radiation detectors and instrumentation for radiation experiments
Solar radio frequency laboratory	Solar Radio Frequency Laboratory	1965	75	75	Solar flare observation
Radio telescope facility	Radio Telescope	1966	14	16	Gathering solar flare data
Cartographic laboratory	Cartographic Laboratory	1966	NA	NA	Lunar surface technology; cartography
Radiation instruments laboratory	Radiation Instruments Laboratory	1966	1 900	1 970	Environment measurement, dosimetry verification of space shielding and lunar surface experiments
Geophysics laboratory	Geophysics Laboratory	1966	NA	NA	Analysis of probable lunar surface conditions and materials
Geology and geochemistry laboratory	Geology and Geochemistry Laboratory	1966	NA	NA	Lunar geological exploration
Planetary atmospheres laboratory	Planetary Atmospheres Laboratory	1966	NA	NA	Study and analysis of interplanetary space weather and atmospheric densities
Lunar receiving laboratory	Lunar Receiving Laboratory	1967 ^a	8 100	8 100	Receiving comprehensive scientific data and samples collected on lunar surface by astronauts on Apollo missions; providing isolation area for crews on return from moon
^a Completed in Decem	ber 1967; not included in Te	echnical Faci	ilities Catalog.	Source:	NASA, Technical Facilities Catalog (March 1967 ed.), II. Sect. 11:

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11; MSC Historian.

Table 6-89. Technical Facilities: Structures and Mechanics (with costs in thousands)^a

	Year			•
Facility Name	Built	Init. Cost	Accum. Cost	Technological Areas Supported
1 Megawatt Arc Jet Facility	1963	\$ 545	\$ 545	Simulation of the heat-transfer rates and gas enthalpies of manned spacecraft reentry into the earth's atmosphere from earth orbital and lunar missions
Components Acoustic Laboratory	1964	300	360	Dynamic structural testing, transmission loss of panels, com- ponent environmental testing, communications system testing
One-sixth Scale Lunar Module Model Drop Facility	1964	6	6	Investigation of lunar module landing dynamics by dropping instrumented models on a landing surface
Spacecraft Acoustic Laboratory	1965	3054	3054	Dynamic structural testing; dynamic systems testing
General Vibration Laboratory	1965	1808	NA	Dynamic structural testing; component environmental testing
Spacecraft Vibration Laboratory	1965	3104	3104	Dynamic structural testing; dynamic systems testing
One-Third Scale Apollo Dock	1965	100	100	Model simulation of vehicle dynamic responses to probe and drogue impact
600 000 Pound Capacity Universal Testing Machine	1966	185	200	General purpose machine for calibration and testing structure and structural components
Atmospheric Reentry Materials and Structures Evaluation Laboratory	1966	2900	NA	Simulation of hyperthermal conditions encountered by space craft structures and materials during entry into the earth's atmosphere and entry into planetary atmospheres
1.5 Megawatt Arc Tunnel Facility	1966	278	NA	Simulation of heating rates, pressures, and gas enthalpies of manned spacecraft reentry into the earth's atmosphere from orbital, lunar, and planetary missions
	Components Acoustic Laboratory One-sixth Scale Lunar Module Model Drop Facility Spacecraft Acoustic Laboratory General Vibration Laboratory Spacecraft Vibration Laboratory One-Third Scale Apollo Dock 600 000 Pound Capacity Universal Testing Machine Atmospheric Reentry Materials and Structures Evaluation Laboratory 1.5 Megawatt Arc Tunnel	Components Acoustic Laboratory One-sixth Scale Lunar Module Model Drop Facility Spacecraft Acoustic Laboratory General Vibration Laboratory One-Third Scale Apollo Dock 1965 600 000 Pound Capacity Universal Testing Machine Atmospheric Reentry Materials and Structures Evaluation Laboratory 1.5 Megawatt Arc Tunnel 1964 1964 1965 1965 1966	Components Acoustic Laboratory One-sixth Scale Lunar Module Model Drop Facility Spacecraft Acoustic Laboratory General Vibration Laboratory One-Third Scale Apollo Dock 1965 1808 Spacecraft Vibration Laboratory One-Third Scale Apollo Dock 1965 100 600 000 Pound Capacity Universal Testing Machine Atmospheric Reentry Materials and Structures Evaluation Laboratory 1.5 Megawatt Arc Tunnel 1966 278	Components Acoustic Laboratory One-sixth Scale Lunar Module Model Drop Facility Spacecraft Acoustic Laboratory General Vibration Laboratory One-Third Scale Apollo Dock Atmospheric Reentry Materials and Structures Evaluation Laboratory 1964 300 360 66 66 66 67 87 8054 8054 8054 8054 8054 8054 8054 8054

Table 6-89. Technical Facilities: Structures and Mechanics (Continued) (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Docking test facility, full-scale Apollo spacecraft (ADTD)	Apollo Docking Test Device (ADTD)	1966	\$ 875	\$2100	Dynamic simulation of all Apollo docking maneuvers by servo-actuation of the command-service module and lunar module docking interfaces
Impact test facility, water-land landing simulator	Water-Land Impact Test Facility	1966	NA	51	Spacecraft landing impacts in water and on land

^aExcluding environmental test chambers.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11.

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Table 6-90. Technical Facilities: White Sands Test Facility (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum.a Cost	Technological Areas Supported
Missile launch complex (Little Joe II) ^b	Little Joe II Launch Facility	1958	\$1400	\$2204.35	Launch facilities for testing pad abort, launch escape system, earth landing system, and structural system of (Apollo) spacecraft
Spacecraft checkout and test facility (CSM) ^C	Command and Service Module Preparation Building	1963	1390	NA	Prefire testing and functional checking of components of spacecraft modules and associated ground support equipment
Spacecraft assembly facility (LC-36) b,d	Vehicle Assembly Building	1963	366.5	NA	Assembly of spacecraft vehicles; prefire testing and functional checking of launch vehicles and associated ground support equipment
Rocket propulsion test stand (CSM 301) ^{b,c}	CSM Test Stand 301	1963	1492	NA	Static test-firing of multipropellant, gimbaled, rocket engines
Rocket propulsion control center (CSM) ^C	CSM Test Control Center	1963	3300	NA	Controlling operation and test-firing of atmospheric test stands
Radar flight test facility ^d	Apollo Rendezvous and Landing Radar Flight Test Facility	1964	42	335	Flight-testing of spacecraft rendezvous and landing radars
Laser field communications facility d	Laser Field Communications Facility	1964	40	200	Analysis of laser radars, high-data-rate laser communication systems, and infrared detectors and trackers
Rocket propulsion test stand (LEM) ^f	LEM Atmospheric Test Stand	1964	1312	NA	Static test-firing of multipropellant, gimbaled, rocket engines
Rocket propulsion test stand, (CSM 302) ^c	CSM Test Stand 302	1964	1492	NA	Static test-firing of vertical, multipropellant, gimbaled, rocket engines
Rocket propulsion control center (LEM) ^f	LEM Control Center	1964	2950	NA	Controlling operation and test-firing of atmospheric test stand and altitude test chambers with associated altitude simulation system
Chemistry laboratory	Chemistry Laboratory	1964	179	NA	Analysis of liquids and gases, determination of chemical properties, performance of systems cleanliness tests, and performance of chemical compatibility studies

Table 6-90. Technical Facilities: White Sands Test Facility (Continued) (with costs in thousands)

Function Name	Facility Name	Year Built	Init. Cost	Accum. ^a Cost	Technological Areas Supported
Spacecraft checkout and test facility (LEM) ^f	Lunar Excursion Module Preparation Building	1965	\$1189	NA	Prefire testing and functional checking of spacecraft components and associated ground support equipment
Rocket propulsion altitude test chamber f	LEM Altitude Test Chamber	1965	4100	NA	Static test-firing of multipropellant gimbaled rocket engines at simulated altitude of up to 32 000 m (105 000 ft), or other tests up to simulated altitude of 76 200 m (250 000 ft)
Shock and vibration laboratory	Shock and Vibration Laboratory	1965	257 ^e	NA	General vibration and shock investigation
Flowmeter calibration laboratory	Flowmeter Calibration Laboratory	1965	104 ^e	NA	Measuring liquid flow; calibrating liquid flowmeters
Metallurgy-radiography łaboratory	Metallurgy-Radiography Laboratory	1965	128 ^e	NA	Determination of mechanical properties of materials, spectro- graphic analysis, radiographic inspection of metals, determina- tion of carbon and sulfur present in metals, and of failure analysis
Environmental test facility	Chamber Laboratory	1965	216 ^e	NA	Capabilities for temperature, humidity, and altitude-simulation (vacuum) environments

^aMany accumulated cost figures were not available because single contracts represented construction and modification of more than one facility.

^fContractor-operated (Grumman Aircraft Engineering Corp.).

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 11, 177-210.

bOn standby basis.

^cContractor-operated (North American Rockwell Corp.).

dOn White Sands Missile Range.

eEquipment only.

Table 6-91. Industrial Real Property (as of June 30; money amounts in thousands)^a

Category	McDonnell D (Contract NA St. Louis,	AS 9-2539 F)		t. of Technology AS 9-182 F) Massachusetts	(Contracts NAS	nn Rockwell Corp. 7–90 F, NAS 7–300 F) lant–Downey, California ^b	Т	otal
•	1967	1968	1967	1968	1967	1968	1967	1968
Land in hectares (and acres)	0	0	0	0		67.1 (165.9)	0	67.1 (165.9)
Buildings						22	1	83
Number	1	1	0	0		82	8.9	160 537.6
Area, square meters	8.9	8.9	•	0		160 528.7	(96)	(1 728 013)
(and square feet)	(96)	(96)	0	.0		(1 727 917)	()0)	(1 /20 010)
Value						# 2.570	0	\$ 3 570
Land	0	0	. 0	0		\$ 3 570	\$ 6	23 941
Buildings	\$6	\$6	0	0		23 935	3 U	23 741
Other structures and		_	***	004		4 998	93	5 092
facilities	0		\$93	<u>\$94</u>		4 770		
Real property	\$6	\$6	\$93	\$94		\$32 503	\$99	\$32 603

Source: NASA, Office of Facilities.

^aThese figures are included in Table 6-92; data for earlier years were not available. ^bResponsibility for NASA Industrial Plant-Downey was transferred from Western Support Office to Manned Spacecraft Center March 1, 1968, when Western Support Office was disestablished.

Table 6-92. Property^a
(as of June 30; money amounts in thousands)

Category	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)							
Owned	0	0	655.6 (1 620)	655.6 (1 620)	655.6 (1 620)	655.6 (1 620)	722.8 (1 785.9) ^b
Leased	8.1 (20)	8.1 (20)	194.3 (480)	0.8 (2)	0.8 (2)	0.7 (1.6)	_
Buildings							
Number owned	0	2	15	60	83	161	251
Area owned, thousands of sq m	0	0.6	39.5	154.6	200.4	244.5	415.0
(and sq ft)		(6)	(425)	(1 664)	(2 157)	(2 632)	(4 467)
Area leased, thousands of sq m	29.0	33.8	4.9	2.4	2.4	2.4	0
(and sq ft)	(312)	(364)	(53)	(26)	(26)	(26)	
Value							
Land ^C .	0	0	\$ 3810	\$ 4157	\$ 5 446	\$ 5418	\$ 9015
Buildings	0	\$ 74	11 754	39 974	103 072	119 748	158 788
Other structures and facilities	NA	757	6 626	16 691	23 422	41 857	49 424
Real property	NA	\$ 831	\$22 190	\$60 822	\$131 940	\$167 023	\$217 227
Capitalized equipment	\$3 800	\$11 104	\$19 312	\$35 623	\$ 96 599	\$124 958	\$154 973

^aIncluding White Sands Test Facility, property at Ellington AFB and Seabrook Dock, and industrial property. For definition of terms, see introduction to Chapter Two.

^CIncluding cost of erosion control and landscaping.

NA = Data not available.

Source: NASA, Office of Facilities. Supplementary information was provided by Leo T. Zbanek.

bWith the disestablishment of Western Support Office March 1, 1968, 67.2 hectares (165.9 acres) in Downey, California, were transferred to MSC. Most of the figure increases in the FY 1968 column may be attributed to this transfer (see Table 6-91).

Table 6-93. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963	1964	1965	1966	1967	1968
Land	0	17.1	6.8	4.1	3.3	4.2
Buildings	8.9	53.0	65.7	78.1	71.7	73.1
Other structures and facilities	91.1	29.9	27.5	17.8	25.0	22.7
Other structures and facilities	100.0	100.0	100.0	100.0	100.0	100.0
Total MSC real property value	\$831	\$22 190	\$60 822	\$131 940	\$167 023	\$217 227

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-94. Personnel

	19.	59	1	960	190	61 ^c	196	2	19	63
Employee Category	6/30	12/31 ^a	6/30 ^b	12/31 ^a	6/30	12/31	6/30	12/31 ^d	6/30	12/3
Requested for FY ending									2700	
Cotal, paid employees		498		668	794	1146	1786	2392	3345	336
7		489		641	720	1035	1588	2239	3059	329
Permanent		9		27	74	111	198	153	286	6
Temporary Code group (permanent only)		,								
200°		65		66	3	11	20	58	73	7
		201		260	351	458	755	1058	1398	154
700 ¹		0		0	0	0	0	0	0	
900		266		326	354	469	785	1116	1471	162
Subtotal 600 ^g		0		24	35	115	173	265	358	39
		121		134	151	219	314	439	630	65
500		47		45	57	84	149	207	333	38
300		55		112	123	148	167	212	267	24
100 Subtatal		223		315	366	566	803	1123	1588	167
Subtotal		7		8	10	16	28	34	35	
Excepted: on duty		NA		NA	93	304	597	746	948	4
Accessions: permanent		NA NA		NA	78	139	302	287	298	9
Accessions: temporary Military detailees		10		11	11	17	21	23	46	4

Table 6-94. Personnel (Continued)

	19	64	19	965	196	66	196	7	196
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	3980		4661		4686		4747		4634
Total, paid employees	4277	4721	4413	4391	4889	4688	5066	4728	4956
Permanent	4034	4605	4274	4325	4548	4649	4718	4606	4588
Temporary	243	116	139	66	341	39	348	122	368
Code group (permanent only)									
200 e	73	72	67	69	68	54	50	54	52
700 ¹	1929	2275	2108	2146	2301	2334	2440	2446	2436
900	0	10	9	11	14	16	15	15	16
Subtotal	2002	2357	2184	2226	2383	2404	2505	2515	2504
600 ^g	446	531	521	551	563	560	631	660	650
500	800	875	850	835	890	943	905	790	789
300	476	516	480	484	504	537	465	451	497
100	310	326	239	229	208	205	212	190	148
Subtotal	2032	2248	2090	2099	2165	2245	2213	2091	2084
Excepted: on duty	36	35	29	29	29	30	28	33	34
Accessions: permanent	928	784	446	370	622	394	549	NA	NA
Accessions: temporary	273	176	137	237	328	73	313	NA	NA
Military detailees	60	69	69	148	202	214	203	192	188

^aFigures for Space Task Group were included in Goddard Space Flight Center reports; they are presented in this table for information only and are not added in NASA total.

fData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

gBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

^bData for Space Task Group are not available; figures were included in Goddard Space Flight Center reports.

^CSpace Task Group was established as an independent installation in January 1961, and personnel were transferred to STG from GSFC. In November 1961, Space Task Group was redesignated Manned Spacecraft Center.

^dData for period ending Dec. 31, 1962, and subsequent periods include White Sands Test Facility.

^eBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

Table 6-95. Personnel: White Sands Test Facility

	1962	19	63	19	64	196	55	1960	5	196		1968
Employee Category	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Total, paid employees	10	60	91	143	167	158	151	138	128	119	109	90
Permanent	10	60	85	138	154	154	147	133	126	115	108	89
Temporary	0	0	6	5	13	4	4	5	2	4	1	1

Source: MSC, Manpower Management Branch.

Table 6-96. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight	805	1618	1960	2796	2982	3498	3345	3257
(% of total)	(100.0)	(99.9)	(65.5)	(67.0)	(70.4)	(73.8)	(71.1)	(70.8)
Space applications	0	0	0	0	0	0	26	48
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.6)	(1.0)
Unmanned investigations in space	0	0	0	3	11	5	0	20
(% of total)	(0.0)	(0.0)	(0.0)	(0.1)	(0.3)	(0.1)	(0.0)	(0.4)
Space research and technology	0	0	44	47	2	7	21	20
(% of total)	(0.0)	(0.0)	(1.5)	(1.1)	*	(0.2)	(0.4)	(0.4)
Aircraft technology	0	0	0	0	0	0	0	0
(% of total)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Supporting activities ^b	0	2	990	1325	1242	1227	1312	1259
(% of total)	(0.0)	(0.1)	(33.0)	(31.8)	(29.3)	(25.9)	(27.9)	(27.4)
Total	805	1620	2994	4171	4237	4737	4704	4604

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963, support positions were reported with the five other budget

activities. FY 1962 figure is for technology utilization (reported as "industrial applications").

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

^{*} = Less than 0.05%.

Table 6-97. Funding by Fiscal Year (program plan as of May 31, 1968; in millions)

Appropriation Title	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development Construction of facilities Administrative operations ^a	0 0 \$9.18	\$165.40 73.10 24.06	\$689.10 24.52 50.38	\$1363.70 34.08 64.65	\$1431.40 19.79 88.68	\$1515.70 4.18 86.66	\$1445.80 10.20 94.98	\$1177.30 0.75 95.78	\$7788.40 166.62 514.37
Total	\$9.18	\$262.56	\$764.00	\$1462.43	\$1539.87	\$1606.54	\$1550.98	\$1273.83	\$8469.39

^aFY 1961-1964 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-98. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	· Total
1962	\$ 73.9	\$8.7	\$32.0	\$16.6	\$10.4	\$ 5.3	\$ 0.5	*	\$ 73.6
1963	25.9 ^b		10.8	11.3	1.7	1.5	0.8	_*	25.9 ^b
1964	34.8			11.9	19.4	2.3	0.8	\$0.1	34.5
1965	21.1				8.8	7.4	0.6	0.2	17.0
1966	4.3					3.1	0.5	0.4	3.9
1967	10.4					7.1	8.0	1.3	9.3
1968	0.9						0.0	0.1	0.1
Total	\$171.3	\$8.7	\$42.8	\$39.8	\$40.2	\$19.5	\$1 1.2	\$2.1	\$164.4

As of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

^bDoes not include \$21.7 million programmed (FY 1963) and obligated for Mission Control Center which was reported with "Various Locations."

^{*=}Less than $100\ 000$. Because of rounding, columns and rows may not add to totals.

Table 6-99. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1961 ^a	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$82.1	\$204.8	\$737.2	\$1436.0	\$1487.4	\$1546.7	\$1487.0	\$1233.1	\$8214.3
Percentage of NASA total	11%	13%	23%	31%	29%	31%	31.9%	29.9%	27.9%

^aSpace Task Group.

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1959 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

Table 6-100. Awards to Personnel Granted under Section 306 of the Space Act of 1958^a

Year	Inventor	Contribution	Amount
1962	Andre J. Meyer, Jr.	Vehicle parachute and equipment jettison system	\$1000
	Maxime A. Faget Andre J. Meyer, Jr.	Emergency ejection device	1500
	Maxime A. Faget William M. Bland, Jr. Jack C. Heberlig	Survival couch	2100
	Maxime A. Faget Andre J. Meyer, Jr. R. G. Chilton W. S. Blanchard, Jr. A. B. Kehlet J. B. Hammack C. C. Johnson, Jr.	Space capsule	4200

^aFor complete listing of awards under this Act, see Appendix B, Sect. 1.B.

Source: NASA Inventions and Contributions Board.

GEORGE C. MARSHALL SPACE FLIGHT CENTER

Three new office buildings housed some 2200 Government workers at Marshall Space Flight Center, Rideout Road, Huntsville, Alabama, in October 1965. The newest building was at the left; the middle building, containing the Director's office, was finished in 1963; and MSFC moved into the building on the right in mid-1964. The S-IC stage of the first Saturn V launch vehicle (right) was test-fired on MSFC's static test stand in October 1967 for the Nov. 9 Apollo 4 launch.

GEORGE C. MARSHALL SPACE FLIGHT CENTER (MSFC)

Location: Huntsville, Madison County, Alabama.

Land: 1394.8 total hectares (3446.7 acres) as of June 30, 1968:

- 727.2 hectares (1797 acres) under 99-year irrevocable use permit from U.S. Army.

- 25.9 hectares (64 acres) leased on Green Mountain, Huntsville, Alabama.
- 641.7 hectares (1585.7 acres) leased for contractor at Sacramento, California.

Director: Wernher von Braun (July 1, 1960-).

Deputy Director:

Eberhard F. M. Rees (July 1, 1960-).

Deputy Director Management:

Harry H. Gorman (Sept. 9, 1961-). Delmar M. Morris (July 1, 1960-Sept. 9, 1961).

History

In 1941, the United States Army activated two facilities at Huntsville, Alabama—the Huntsville Arsenal, which manufactured and loaded chemical mortar and howitzer shells, and the Redstone Ordnance Plant, which assembled explosives for the chemical shells and produced complete rounds. Redstone Ordnance Plant, named for the color of the local rock and soil, was redesignated Redstone Arsenal February 26, 1943.

In a search for better facilities for an expanding U.S. Army rocket program, Army Ordnance officials from Fort Bliss, Texas, inspected the Huntsville Arsenal in September 1949. They proposed transfer to Huntsville of rocket scientists and technicians working on missile development for the Army at Fort Bliss, and the Secretary of the Army approved this recommendation October 28, 1949. In addition to military, civil service, and contractor personnel, the transfer included 130 Germans and Austrians led by Dr. Wernher von Braun, who had launched the first successful V-2 from Peenemunde October 3, 1942, and who had participated in the Army's missile development program at White Sands Proving Ground since January 1946. In April 1950, with the arrival of the von Braun team, Huntsville Arsenal became part of Redstone Arsenal, and the Army established the Ordnance Guided Missile Center there April 15, 1950.2 During the 10 years between the move to Huntsville and the transfer to NASA, the Army group at Redstone developed the Redstone, Jupiter, and Juno missiles-each contributing to the U.S. space program.

Work on the Redstone missile began in 1950, and the Guided Missile Development Division's Missile Firing Laboratory (MFL) launched the first Redstone successfully August 20, 1953, from Cape Canaveral. During the five-year Redstone research and development test-flight program, the Army flew 37 Redstones to test missile structures, guidance and control equipment (basis for later guidance on space vehicles), tracking and telemetry, and other missile systems.³

From Redstone technology came the Jupiter intermediate range ballistic missile (IRBM), authorized by the Secretary of Defense November 8, 1955. Experiments conducted and discoveries made in the course of Jupiter IRBM development during the late 1950s proved useful in the Nation's space effort. The first Jupiter C (composite reentry test vehicle), a modified Redstone with two additional stages, was launched September 20, 1956, and the Jupiter C

¹ David S. Akens, Historical Origins of the George C. Marshall Space Flight Center, MSFC Historical Monograph No. 1 (Huntsville, Ala.: MSFC, December 1960), 3, 36; Wernher von Braun, "The Redstone, Jupiter, and Juno," in Eugene M. Emme, ed., The History of Rocket Technology: Essays on Research, Development and Utility (Detroit: Wayne State University Press, 1964), 107-121; MSFC, Historical Office, "Historical Sketch of MSFC," mimeo (June 16, 1966), 6. The section on history of MSFC was prepared for the Data Book by David S. Akens and Rowene S. Dunlap of MSFC.

² MSFC, Historical Office, "Historical Sketch," 5, 6; Memorandum, Asst. Chief of Ordnance (Army) to Commanding Officer, R&D Service Sub-Office, Fort Bliss, KCRC, Kansas City, Mo.; Akens, *Historical Origins*, 36; Jarrett and Lindemann, "Historical Origins of NASA's Launch Operations Center," 17.

³von Braun, "The Redstone, Jupiter, and Juno," 109-110.

nosecone reentry tests the following year verified the ablation principle of heat protection later used in the manned space flight program. On May 31, 1957, the Jupiter, a single-stage, surface-to-surface, liquid-fueled missile, became the first successfully fired U.S. IRBM. Developed at the same time was a four-stage Jupiter C, the Juno I, which launched the first U.S. earth satellite, Explorer I on January 31, 1958. A significant Jupiter flight May 28, 1959, launched the primates Able and Baker into space and returned them in good health.⁴

The Army Ballistic Missile Agency (ABMA), officially established at Redstone in December 1955, became active February 1, 1956, and the Guided Missile Development Division (von Braun's group) became ABMA's Development Operations Division. Shortly after its establishment October 1, 1958, NASA requested eight Redstones from ABMA for the Mercury program suborbital missions. After a series of test flights, the Mercury-Redstone 3 (MR-3) mission was launched May 5, 1961, with Astronaut Alan B. Shepard, Jr., as pilot in *Freedom* 7. MR-4, the last flight in the Mercury-Redstone program, was launched with Astronaut Virgil I. Grissom as pilot in *Liberty Bell* 7 July 21, 1961.

On August 15, 1958, the Department of Defense's Advanced Research Projects Agency (ARPA) approved ABMA's proposal for development of the Juno V, a large space vehicle booster with a 6672-kilonewton (1.5-million-pound) thrust. An Advanced Research Projects Agency memorandum February 3, 1959, officially renamed the project Saturn. President Eisenhower announced October 21, 1959, his decision to transfer the ABMA's Development Operations Division to NASA, and transfer of the Saturn program to NASA became effective March 14, 1960. On that day NASA

established the NASA Huntsville Facility and announced that personnel would be transferred from ABMA July 1.10

President Eisenhower signed Executive Order 10870 March 15, 1960, formally naming the Huntsville installation the George C. Marshall Space Flight Center in honor of George Catlett Marshall (1880-1959), the only professional soldier to win the Nobel Peace Prize. Officially, the George C. Marshall Space Flight Center (MSFC) began operations July 1, 1960, in the same facilities it occupied under the Army, and President Eisenhower dedicated the new Center September 8, 1960.¹¹

Assembly of SA-1, the first Saturn I flight vehicle, was completed at Marshall January 16, 1961, and the vehicle was launched October 27. By July 30, 1965, when the Saturn I program ended, a total of 10 Saturn Is had flown successfully.¹²

On July 11, 1962, NASA announced the intermediate-size Saturn C-IB program; the vehicle was redesignated Saturn IB in early February 1963.¹³ The first Saturn IB (SA-201) was launched February 26, 1966.¹⁴ The second flight (SA-203) was on July 5, 1966, and the third (SA-202), on August 25, 1966. SA-204, the fourth Saturn IB, launch vehicle was launched January 22, 1968, for the Apollo 5 mission—the first unmanned orbital test of the Apollo lunar module.¹⁵ SA-205 successfully launched Apollo 7 October 11, 1968, on the first manned mission in the Apollo lunar landing program.¹⁶

⁴ Ibid., 116-117; Jarrett and Lindemann, "Historical Origins of NASA's Launch Operations Center," Append. B, 8-21.

⁵ Dept. of the Army, GO-68, Dec. 22, 1955; Jarrett and Lindemann, "Historical Origins of NASA's Launch Operations Center," 41.

⁶von Braun, "The Redstone, Jupiter, and Juno," 116. For a detailed account of the Mercury-Redstone program, see Swenson, Grimwood, and Alexander, *This New Ocean*, especially 293-301, 310-318, 328-330, and 341-377.

⁷MSFC Historical Office, Saturn Illustrated Chronology, MHR-4 (Huntsville, Ala.: MSFC, May 15, 1965), 1.

^{*} Ibid. 5.

⁹ President Eisenhower, Statement, Oct. 21, 1959; Akens, Historical Origins, 69 ff.; Rosholt, Administrative History of NASA, 109, n. 145.

¹⁰ Akens, Historical Origins, 76; Rosholt, Administrative History of NASA, 119-120; NASA Circular No. 57, March 14, 1960.

¹¹President Eisenhower, Executive Order 10780, Federal Register, XXV (March 17, 1960), 2197; Rosholt, Administrative History of NASA, 120; Akens, Historical Origins, 81, 89-90.

¹²MSFC, Saturn Illustrated Chronology, 16, 45.

¹³ Ibid., 56, 69; NASA Release 62-159. From June 1966 until January 1968, the designation "Uprated Saturn I" was in use; see Memorandum, Julian Scheer, NASA Assistant Administrator for Public Affairs, June 9, 1966, and Memorandum, Scheer, Jan. 15, 1968.

¹⁴MSFC, Saturn Flight Evaluation Working Group, Results of the First Saturn IB Launch Vehicle Test Flight AS-201, Abstract (Huntsville, Ala.: MSFC, May 6, 1966).

¹⁵Ibid., Results of the Second Saturn IB Launch Vehicle Test Flight AS-203, Abstract (Huntsville, Ala.: MSFC, Sept. 22, 1966); Ibid., Results of the Third Saturn IB Launch Vehicle Test Flight AS-202, Abstract (Huntsville, Ala.: MSFC, Oct. 25, 1966); NASA Release 68-6.

¹⁶ Astronautics and Aeronautics, 1968 (Washington, D.C.: NASA SP-4010, 1969), 250-253.

NASA approved development of the Saturn C-5 vehicle January 25, 1962; in February 1963 the vehicle was redesignated Saturn V. Development and production of this launch vehicle for the Apollo program remained Marshall's chief mission. The first Saturn V was launched from John F. Kennedy Space Center, NASA, November 9, 1967. This initial test, the Apollo 4 mission, was the first launch from Launch Complex 39.17 The Apollo 6 mission, the Saturn V's second flight, was launched April 4, 1968.18 And on December 21, 1968, the Saturn V launched the most ambitious flight up to that date, the highly successful Apollo 8 whose three-man crew orbited the moon 10 times. All subsequent Apollo flights were to be launched by the Saturn V.19

Mission

Marshall Space Flight Center was assigned responsibility for design, development, and test of launch vehicles and space transportation systems for manned space flight:

- (1) Managing the Saturn IB program to provide a launch vehicle for Apollo spacecraft orbital development tests; the Saturn V program to provide the launch vehicle for manned lunar landing missions, planetary missions, and future very large scientific satellite payloads; and selected payloads for Apollo Applications missions;
- (2) Designing, developing, and manufacturing large launch vehicle systems, including vehicle system test and integration; conducting test programs, such as dynamic and static testing programs; designing, developing, and testing large launch vehicle engines, such as the H-1, J-2, and F-1 systems; developing and integrating scientific experiment payload packages to be flown on Saturn-Apollo vehicles or subsequent post-Apollo missions.²⁰

Defunct Names

Army Ballistic Missile Agency—activated February 1, 1956; discontinued July 22, 1960.

Army Ordnance Missile Command-established July 1, 1958; discontinued

- August 1, 1962; replaced by U.S. Army Missile Command under U.S. Army Materiel Command.
- Development Operations Division (ABMA)—established February 1, 1956; became part of George C. Marshall Space Flight Center when it was established March 1960, effective July 1, 1960.
- Experimental Missiles Firing Branch—established December 1, 1951; became Missile Firing Laboratory of Redstone Arsenal's Guided Missile Development Division, January 1953.
- Guided Missile Development Branch—established August 1951; became Guided Missile Development Group, January 21, 1952.
- Guided Missile Development Division—established January 1953; became Development Operations Division (ABMA), February 1, 1956.
- Guided Missile Development Group—established January 21, 1952; became Guided Missile Development Laboratory, November 1952.
- Guided Missile Development Laboratory—established November 1952; became Guided Missile Development Division, January 1953.
- Huntsville Arsenal—activated August 4, 1941; merged with Redstone Arsenal, April 1950.
- Juno V-redesignated Saturn February 3, 1959.
- Launch Operations Directorate (MSFC)—established March 14, 1960, effective July 1, 1960; became NASA Launch Operations Center (LOC), March 7, 1962.
- Launch Vehicle Operations Division (MSFC)—established March 7, 1962; gradually phased out.
- Michoud Operations—established December 18, 1961; redesignated Michoud Assembly Facility, July 1, 1965.
- Missile Firing Laboratory (Development Operations Division)—established January 1953; became MSFC's Launch Operations Directorate, July 1, 1960.
- Mississippi Test Operations—established December 18, 1961; redesignated Mississippi Test Facility, July 1, 1965.
- Ordnance Guided Missile Center—established April 15, 1950; became Guided Missile Development Branch of the Technical and Engineering Division, August 1951.
- Ordnance Missile Laboratories—established September 18, 1952, with Technical and Engineering Division as part of it; disestablished February 1, 1956, with activation of ABMA.
- Ordnance Rocket Center-established December 1950 with the separation of

¹⁷MSFC, Saturn Illustrated Chronology, 50, 69; MSFC Release 67-226; NASA Release 67-274, 275, 294.

¹⁸NASA Release 68-54; U.S. Congress, Senate, Committee on Aeronautical and Space Sciences, *Apollo 6 Mission*, *Hearing*, 90th Cong., 2d sess., April 22, 1968 (Washington, D.C.: GPO, 1968).

¹⁹ Astronautics and Aeronautics, 1968, 318-322.

²⁰NASA, Budget Estimates, FY 1969, IV, AO 2-19.

the Army Ordnance rocket program from the missile development program; became Rocket Development Branch of the Technical and Engineering Division, August 1951.

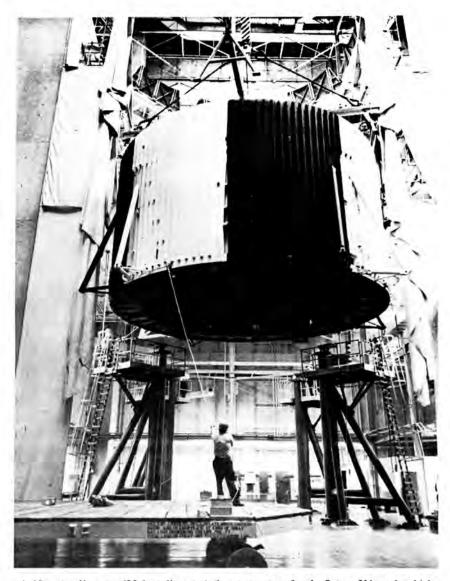
Pearl River Test Site—sometimes used for Mississippi Test Facility in November 1961; name discontinued by NASA, December 1, 1961.

Redstone Ordnance Plant—activated October 6, 1941; redesignated Redstone Arsenal, February 26, 1943.

Rocket Development Branch—established August 1951; became Rocket Development Group, January 21, 1952.

Rocket Development Group-established January 21, 1952; became Rocket

Development Laboratory, November 1952.


Rocket Development Laboratory—established November 1952; became Rocket Development Division, January 1953.

Saturn C-1—redesignated Saturn I, February 1963.

Saturn C-IB-redesignated Saturn IB, February 1963.

Saturn C-5-redesignated Saturn V, February 1963.

Technical and Engineering Division (Redstone Arsenal)—established August 1951; became part of Ordnance Missile Laboratories, September 18, 1952. Uprated Saturn I—designation for Saturn IB from June 1966 until January 1968.

A 10-meter-diameter (33-foot-diameter) thrust structure for the Saturn V launch vehicle was lowered into vertical assembly position in March 1965 as assembly of the first S-IC stage began at Michoud Assembly Facility (then called Michoud Operations) in New Orleans. The assembled ground-test stage-42 meters (138 feet) tall with fuel tank, intertank structure, liquid oxygen tank, and forward skirt assembly added on top the thrust structure-would be shipped to MSFC later in the year.

MICHOUD ASSEMBLY FACILITY (MAF)

Location:

New Orleans, Orleans Parish, Louisiana.

Land:

362.9 hectares (896.8 acres) total as of June 30, 1968:

360.5 hectares (890.8 acres) NASA-owned.

- 2.4 hectares (6.0 acres) under use permit from Dept.

of Army XIX Corps.

Manager:

George N. Constan (Jan. 14, 1962-Sept. 20, 1961-Jan. 14, 1962).

; Acting Manager,

History

The historical background of Michoud Assembly Facility spans two centuries of Louisiana history. The original land grant was made March 10. 1763, to Gilbert Antoine de St. Maxent, a New Orleans merchant. The property passed through several hands before it was sold to Antoine Michoud in 1827, and the Michoud family held the land until 1910.1

With the outbreak of World War II, the Government bought a 404.7-hectare (1000-acre) tract as a site for building ocean-going ships. After dredging the Michoud Canal, which connected the plant site with the Gulf Intracoastal Waterway, the project was changed, and in October 1942 a contract was issued to Higgins Industries of New Orleans for manufacturing large plywood cargo aircraft. The plant was dedicated October 4, 1943, but the Army Air Corps abandoned the project and closed the plant November 10, 1945. In 1951 the U.S. Army Ordnance Corps selected Michoud as the site for manufacturing engines for Sherman and Patton tanks, and awarded Chrysler Corporation a \$30-million contract to reopen the facility. Officially opened on November 28, 1951, the plant was again deactivated in 1954.2

On September 7, 1961, NASA announced selection of the Government-

¹The section on Michoud history was prepared for the Data Book by David S. Akens, MSFC, with additional information supplied by James M. Funkhouser and Lorraine Marthet, Michoud Assembly Facility.

² Michoud Operations Programs Office, "Michoud Operations: A Facility of the George C. Marshall Space Flight Center," updated Sept. 17, 1963, 2a-2c.

owned Michoud Ordnance Plant as the site for industrial production of the S-I, S-IB, and later Saturn stages³ and in October awarded a contract for rehabilitation and modification, to be completed before the end of the year.⁴ The facility was officially designated NASA Michoud Operations December 18, 1961.⁵

Assembly of the first industry-produced booster was begun October 4, 1962, when Chrysler began fabrication of S-I-8.6 On December 13, 1963, NASA accepted the first of two industry-built Saturn I first stages.7 On October 22, 1962, Boeing activated the S-IC portion of the Michoud plant

and began tooling and components manufacture.* Boeing completed assembly of its first complete Saturn V booster S-IC-D (dynamic test stage) in June 1965.* On July 1, 1965, MSFC announced that Michoud Operations had been redesignated Michoud Assembly Facility.* •

Mission

Michoud Assembly Facility was assigned responsibility for assembly of Saturn IB and Saturn V launch vehicle first stages.¹

^{3&#}x27; SA Release 61-201.

⁴M. .oud Historical Report, Aug. 23, 1962.

⁵Letter, Dr. Robert C. Seamans, Jr., NASA Associate Administrator, to Harry H. Gorman MSFC, Deputy Director for Administration, Dec. 18, 1961, cited in MSFC, "History of the George C. Marshall Space Flight Center: July 1-December 31, 1961," MHM-4 (Huntsville, Ala.: MSFC, 1962), I, 38.

⁶MSFC, Saturn Illustrated Chronology, 64.

⁷MSFC, "History of the George C. Marshall Space Flight Center: July 1-December 31, 1963," MHM-8 (Huntsville, Ala.: MSFC, 1964), I, 30, 228.

⁸ MSFC, "History of the George C. Marshall Space Flight Center: July 1-December 31, 1962," MHM-6 (Huntsville, Ala.: MSFC, 1963), I, 127, 217.

⁹ MSFC, Saturn V Quarterly Progress Report, March-June 1965.

¹⁰ Letter, David Newby, MSFC Office of the Director, to Dr. George E. Mueller, NASA Associate Administrator for Manned Space Flight, Sept. 18, 1964; MSFC Release 65-167.

¹¹NASA, Budget Estimates, FY 1969, IV, AO 2-20.

COMPUTER OPERATIONS OFFICE

Location:

Slidell, St. Tammany Parish, Louisiana.

Land:

5.7 hectares (14 acres) NASA-owned as of June 30, 1968.

Manager:

Robert L. Reeves (Sept. 15, 1962-

).

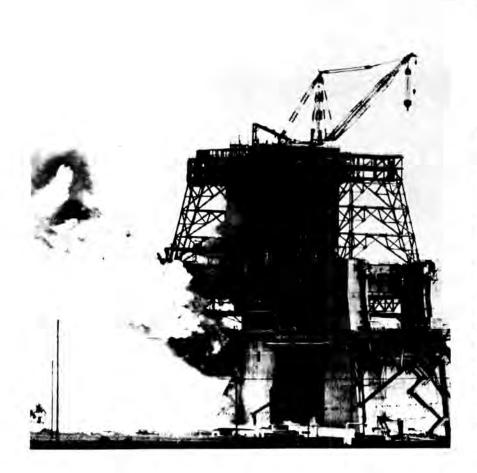
History

On March 23, 1962, Michoud Operations set up a Michoud Computer Steering Committee to direct the establishment of a Central Computer Facility. This committee selected as site a surplus building which had been constructed by the Federal Aviation Agency as an aircraft control center. On June 16, 1962, the MSFC Director ordered MSFC's Computation Division to begin interim operation of the facility until a contractor computer specialist could be selected. The first computer in the new facility became operational August 1, 1962.¹

By November 12, 1962, the first phase of modifications to the building was complete, and all computers selected by the Steering Committee were operational by November 26. The second phase of construction, begun December 10, 1962, was completed in 1963.² At the end of FY 1968, Michoud was responsible for 22 general- and special-purpose computers.³

Mission

The Computer Operations Office was assigned responsibility for maintenance and management of a centralized data processing facility to meet the needs of MSFC and associated contractors in support of Michoud Assembly Facility and Mississippi Test Facility:


- (1) Serving as official point of contact for contractors' data-processing activity in the MAF and MTF areas;
- (2) Directing, developing, and implementing improved methods for furnishing the required data-processing services:
- (3) Providing contract administration for a computer services contractor who would operate, schedule, and maintain data-processing equipment and provide specialized computer-programming technical capability as directed.

¹MSFC, "History . . . July 1-December 31, 1962," II, 10-12.

²Ibid., 13; NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 179-181.

³NASA, Budget Estimates, FY 1969, I, SA 15.

⁴NASA, Technical Facilities Catalog, II, Sect. 12, 180-181.

The S-IC-T test model of the Saturn V first stage was test-fired March 3, 1967, at the Mississippi Test Facility, Bay St. Louis, Mississippi. The static-firing proved the compatibility of stage, mechanical support equipment, and 124-meter (407-foot) test stand.

MISSISSIPPI TEST FACILITY (MTF)

Location: Hancock County, Mississippi.

Land: 56 198.7 hectares (138 870 acres) total as of June 30, 1968:

- 5434 hectares (13 428 acres) in test area, NASA-

owned.

 3058.6 hectares (7558 acres) in buffer zone, NASAowned.

- 47 701.9 hectares (117 874 acres) in buffer zone, under restrictive easement.

Manager:

Jackson M. Balch (May 9, 1965-).

William C. Fortune (Oct. 1, 1962-May 9, 1965).

History

In 1961 NASA decided to establish a national testing site for large launch vehicle stages. Preliminary studies began in May, and on August 4, 1961, a Site Evaluation Committee was established. The Committee's criteria for the test site area included isolation from populated communities, accessibility by water and highway, availability of utilities, supporting communities within 80 kilometers (50 miles), and a climate permitting year-round operation.

A site on the Pearl River in southwestern Mississippi met all these requirements and was also close to NASA's Michoud Assembly Facility, where Saturn boosters were to be built.² On October 25, 1961, NASA announced its decision to establish the test facility in Hancock County as an activity of Marshall Space Flight Center.³ NASA announced December 1, that the site was to be called Mississippi Test Facility, not "Pearl River Test Site," until an official title was chosen. Even after December 18, 1961, when NASA officially designated the facility Mississippi Test Operations (MTO),

¹Rosholt, Administrative History of NASA, 215; MSFC, "History...July 1-December 31, 1962," II, Chap. VIII.

David S. Akens of MSFC prepared the MTF history section for the Data Book.

²MSFC, "History...July 1-December 31, 1962," II, Chap. VIII, 1-3; NASA, "Launch Vehicle Test Site Evaluation by Ad Hoc Site Selection Committee," Aug. 26, 1961, 8, 11-12.

³ NASA Release 61-236.

the name Mississippi Test Facility was frequently used, and in June 1963 Marshall Space Flight Center officially redesignated the facility Mississippi Test Operations.⁴

By October 1962 Mobile District Engineers Office had acquired all except 6 of the 163 tracts of land lying in the construction area, and the first tree was felled May 17, 1963.⁵ In July 1964, after court actions, acquisition of all land in the construction site was complete, and by December 31, 1964, the entire buffer zone had been acquired by the Government.⁶ As of June 30, 1963, Marshall Space Flight Center had stationed 24 personnel members at the site, and by the end of 1964 this number had nearly doubled.⁷ On July 1, 1965, Marshall announced that Mississippi Test Operations was officially redesignated Mississippi Test Facility (MTF).⁸

The first rocket stage to reach Mississippi Test Facility was the Saturn V second stage. S-II-T, an all-systems test model, arrived on October 17, 1965, after a 17-day trip from North American Aviation, Inc., Space and Information Systems Division at Seal Beach, California. Transported on the USNS *Point Barrow* through the Panama Canal to a Michoud Assembly

Facility dock in New Orleans, the stage was transferred to the barge Little Lake for the last 72 kilometers (45 miles) up the Gulf Intracoastal Waterway and the East Pearl River to MTF. The S-II-T was unloaded to await installation in Test Stand A-2,° and on April 23, 1966, the stage was successfully static-fired for 15 seconds, marking the first operational use of Mississippi Test Facility. 1°

The first Saturn V first stage, S-IC-T, arrived on the barge *Poseidon* on October 23, 1966, from Michoud Assembly Facility, where it had been manufactured by Boeing. On December 17 workmen erected the stage in Stand B-2, activating the stand. The first systems demonstration test-firing, for 15 seconds, was successfully completed March 3, 1967.

Mission

Mississippi Test Facility was assigned responsibility for acceptance test-firing of the 33 360-kilonewton-thrust (7.5-million-pound-thrust) Saturn V first stage (S-IC) and the 4448-kilonewton-thrust (1-million-pound-thrust) Saturn V second stage (S-II).¹²

⁴NASA Circular No. 188, Dec. 1, 1961; Letter, NASA Associate Administrator Dr. Robert C. Seamans, Jr., to Harry H. Gorman, MSFC Deputy Director for Administration, Dec. 18, 1961, cited in MSFC, "History...July 1-December 31, 1961," I, 38; Memorandum, Joseph H. Reed, Chief, MSFC Management Analysis Office, to Distribution, June 11, 1963, Subject: Change 50, MSFC Organization Manual.

⁵MSFC, "Mississippi Test Facility Weekly Status Reports," Oct. 15, 1962, and Oct. 22, 1962; MTO Release, Aug. 24, 1964.

⁶MSFC, "History of the George C. Marshall Space Flight Center: July 1-December 31, 1964," MHM-10 (Huntsville, Ala.: MSFC, 1965), II, 87; Business Week, April 2, 1966, 5-7.

⁷MSFC, "History of the George C. Marshall Space Flight Center: January 1-June 30, 1963," MHM-7 (Huntsville, Ala.: MSFC, 1963), II, Chap. VIII, 3: "History...July 1-December 31, 1964," II, 108.

⁸ Letter, David Newby, MSFC Office of the Director, to Dr. George E. Mueller, NASA Associate Administrator for Manned Space Flight, Sept. 18, 1964: MSFC Release 65-167; MSFC Circular No. 7-65, Subject: "Redesignation of MSFC Organizational Elements," July 6, 1965.

⁹ Marshall Star, Oct. 20, 1965, 1,4; MSFC Release 65-246.

¹⁰MSFC, Saturn V Program Office, "Saturn V Quarterly Progress Report, April-June 1966," 19; MSFC Release 66-84.

¹¹MSFC, Saturn V Program Office, "Saturn V Semi-Annual Progress Report, July-December 1966," and "Saturn V Semi-Annual Progress Report, January-June 1967"; Marshall Star, March 8, 1967, 1; Kurt Voss, "S-1C Test to Mark Progress in Mississippi," Technology Week, Feb. 6, 1967, 28-29; James C. Tanner, Wall Street Journal, Jan. 10, 1968, 8.

¹²NASA, Budget Estimates, FY 1969, IV, AO 2-20.

Table 6-101. Technical Facilities: Aero-Astrodynamics^a

Functional Name	Year Built	Technological Area Supported		
Wind Tunnel, Long Duration Aerodynamic	1943	Continuum flow investigations in a trisonic tunnel, a supersonic tunnel, and a jet flow facility		
Shock Tunnel, Hypersonic	1943	Pressure investigation, heat transfer, and force testing with helium as the test medium		
Gas Dynamics Laboratory, Rarefied	1943	Transitional and free-molecule-flow investigations; extreme-altitude jet pluming investigations		
Vacuum Technology Laboratory	1943	High vacuum to 10^{-7} torr		
Flow Research Facility, Astrodynamic	1953	Impulse-base-flow and heat-transfer studies		

^aAlso called Gas Dynamics Research Facility (Aero-Astrodynamics); estimated initial cost, \$4 143 000.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 1-16.

Table 6-102. Technical Facilities: Astrionics^a

Functional Name	Year Built		Technological Area Supported
Inertial Sensor and Stabilizer Development Laboratory	1957		Missile technology, space technology, guidance, navigation
Guidance Technology Laboratory	1957		Applied missile technology, space technology, guidance
Instrumentation and Communication Development Laboratory	1957		Missile and space technology, guidance and control
Guidance and Control Systems and Components Laboratory	1957		Missile and space technology, guidance and control
^a Estimated accumulated cost, \$26 609 000.		Source:	NASA, Technical Facilities Catalog (March 1967 ed. II, Sect. 12, 41-54.

Table 6-103. Technical Facilities: Manufacturing and Engineering^a

Functional Name	Year Built	Technological Area Supported
Fabrication and Assembly Engineering Facility	1955	Launch vehicle and large component fabrication and assembly
Machine Shop Engineering Facility	1955	Precision machining and large component machining
Tube Cleaning Facility	1955	Tube cleaning up to 76-mm (3-in.) diameter and 18.3 m (60 ft) long
Valve Clinic Facility, Propellant	1955	Propellant-valve disassembly, cleaning, and assembly
Surface Treatment Facility	1960	Chemical and mechanical cleaning, electropolishing, painting, anodizing, chemical milling, pickling, passivatin and metal plating
Metal Forming and Fabrication Facility	1955	Metal forming and joining of large vehicle sections
Composite Structure Fabrication Facility	1956	Fabrication of large composite-structure panels in steel, steel alloys, or aluminum
Welding Development Facility	1956	Precision and specialty welding
Manufacturing Methods Development Facility	1955	Development of mechanical manufacturing processes and methods
Manufacturing Techniques Development Facility Electronics	1943	Adaptation of advanced scientific discoveries to manufacturing techniques
^a Estimated accumulated cost, \$23 238 000.	Source	: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 75-98.

Table 6-104. Technical Facilities: Propulsion and Vehicle Engineering^a

Functional Name	Year Built		Technological Area Supported
Structural Static Test Facility	1959		Stage and component structural checkout
Vibration Test Facility	1959		Vibration testing of stages and components with various vibration exciters
Shock and Acceleration Test Facility	1959		Shock testing in stage and component structural checkout
Acoustic Test Facility	1959		Acoustic testing in reverberation room and anechoic room
Heat Transfer Test Facility	1959		Heat transfer in propellant systems, two-phase flow systems (liquid vapor), insulation schemes for cryogenic tanks, and calorimeter development for heat radiation measurements
Hydraulics Research Facility	1959		Hydraulics testing of stages and components with 4 hydrauli fluid and RPI flow stands, 1 impulse test stand, 1 pump test stand, and engine gimbal test stands
Pneumatic & Cryogenic Test Facility	1959		Studies of vortex, terminal drainage, surge pressure, stratification, bubble dynamics, and geysering in turbulent fluid flow
Materials Laboratory	1959		Evaluation and development of materials and components; determination of effects of vacuum, temperature, radiation, hypervelocity impact, and other environmental conditions.
^a Estimated accumulated cost, \$25 125 000.		Source:	NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 55-74.

Table 6-105. Technical Facilities: Quality and Reliability Assurance^a

Functional Name	Year Built		Technological Area Supported
Dimensional Laboratory	1961		Length, threads, optics, angles, roundness, hardness, and flatness tests
Physical Laboratory, Quality Assurance	1961		Pressure, mass, torque, and force acceleration tests
Electrical/Electronics Laboratory, Quality Assurance	1961		Voltage, resistance, current, and frequency tests
Environmental Test Laboratory, Quality Assurance	1955		Force application and environmental qualification testing of flight components
^a Estimated accumulated cost, \$16 051 000.		Source:	NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 99-110.

Table 6-106. Technical Facilities: Research Projects^a

Functional Name	Year Built	Technological Area Supported
Radiative and Conductive Physics Laboratory	1962	Thermal conductivity of solid particles
Meteoroid Physics Laboratory	1962	Production of high-velocity, high-density plasmas, and calibration of meteoroid detectors
Geology and Geophysics Laboratory	1961	Secondary impact effects in vacuum upon nonmetallic "rock" materials
Magnetic Field Measurement Physics Laboratory	1962	Electric and magnetic field meter evaluation
Radiation Physics Laboratory	1962	Space vehicle radiation shielding
Optical Physics Laboratory	1962	Rocket combustion products research in simulated planetary atmosphere
Thermal Environment Physics Laboratory	1962	Space environmental effects on radiometric characteristics
Reaction Kinetics Laboratory	1962	Launch vehicle gases and vapors analysis
Plasma Physics Laboratory	1966	Space plasma studies
Surface Physics Laboratory, Space Vehicle	1962	Space environment interactions with space vehicle surfaces
Computer Techniques Laboratory	1964	Development of advanced methods of data anlaysis and translation

^aEstimated accumulated cost, \$2 683 000.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 11, Sect. 12, 15-40.

Table 6-107. Technical Facilities: Rocket Propulsion Test Complex^a

	·	·	·
Functional Name	Facility Name	Year Built	Technological Area Supported
Rocket propulsion test stands:			
(S-IC 4670)	S-IC Static Test Stand (4670)	1965	Saturn V 1st stage (S-IC) checkout and acceptance firing propulsion system development
(F-1 4696)	F-1 Engine Test Stand (4696)	. 1963	Engine propulsion and functional testing
(S-IVB 4514)	S-IVB Test Stand (4514)	1965	Saturn V 3rd stage integration testing, R&D propulsion systems testing
(4572)	Static Test Stand (4572)	1957	Stage and engine functional and acceptance testing
(H-1 4564)	H-1 Power Plant Test Stand	1957	Stage integration, R&D propulsion system testing
(Redstone 4665)	Interim (Redstone) Test Stand (4665 Area)	1953	Rocket propulsion
Rocket exhaust effects test stand (4665 area)	Sound Suppressor Test Stand (4665 Area)	1953	Sound suppression
Rocket propulsion altitude test stand (4710)	Liquid Hydrogen Familiarization Facility (4710)	1957	Hydrogen-fueled engines
Rocket propulsion altitude test cell (4753)	Storable Propellant Test Facility (4753)	1951	Storable-propellant engines, altitude firing
Propellant systems test stand, cold flow (4588)	Cold Calibration Test Stand (4588)	1957	Propellant systems
Propellant systems test stand, cold flow (4548)	F-1 Turbopump Facility (4548)	1964	Propellant feed systems
Vibration effects test stand, rocket (4557)	S-IB Dynamic Test Stand (4557)	1962	Saturn IB structural dynamics and propellant tankage
Vibration effects test stand, rocket (4550)	S-V Dynamic Test Stand (4550)	1964	Saturn V structural dynamics

Table 6-107. Technical Facilities: Rocket Propulsion Test Complex^a (Continued)

Functional Name	Facility Name	Year Built	Technological Area Supported
Drop tower, reduced gravity effects (4550)	Low Gravity Test Facility (4550)	1964	Low-gravity physical phenomena
Environmental test facility (4748)	Ultra High Vacuum Facility (at 4748)	1951	Space environment effects, propellant systems
Environmental test facility, rocket systems (4750)	Test Facility Building (4750)	1955	Rocket system altitude ignition and launch methods
Rocket component hazardous test cells (4583)	Test Positions 100 through 108 (4583)	1957	Propellant flow and combustion, nozzles and component hardware
Altitude test cell (4583)	Test Position 112 (4583)	1957	Altitude studies, such as materials tests, ignition problem studies, scaled vehicle studies
Rocket propulsion test stand, model and component (4583)	Test Positions 113, 114, and 117 (at 4583)	1957	Rocket combustion and component hardware
Rocket propulsion test stand (4583)	Test Position 115 (at 4583)	1957	Rocket combustion, He and LH ₂
Rocket acoustic effects test stand (4540)	Test Position 116 (at 4540)	1964	Dynamic pressure effects, low-frequency noise
Rocket component test stand (4530)	Test Positions 301 and 302 (4530)	1964	Rocket hardware
Rocket component test stand, LOX/H cold flow (4522)	Test Position 500 (dual 501 and 502) (4522)	1964	Propellant systems
Launch simulation facility, Saturn V (4646)	Saturn V GSE Test Facility (at 4646)	1964	Launch pad equipment
Missile liftoff simulator facility (4583)	Swing Arm Test Facility (at 4583)	1957	Launch

Table 6-107. Technical Facilities: Rocket Propulsion Test Complex^a (Continued)

Functional Name	Facility Name	Year Built	Technological Area Supported
Fluid flow and pressure test facility (4648)	High Pressure Fluid Test Facility	1965	Rocket fluid systems, ground support equipment
Instrument laboratory (4650)	Instrument Laboratory	1958	Ground support and test instrumentation
Acoustic investigation facility (4565)	Noise Source for the Far Field Noise Propagation and Measurement System (4565)	1952	Rocket noise measurements

^aEstimated accumulated cost, \$107 408 000.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 111-172.

Table 6-108. Technical Facilities: Michoud Assembly Facility (with costs in thousands)^a

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Flow test facility, high- pressure gas	High Pressure Test	1964	\$ 140.5	\$ 377.5	Dynamic and steady-state gas flow testing under extreme pressure, temperature, and flow conditions
Stage test position facility	Stage Test Position Facility	1965	\$1809.7	\$1889.5	System checkout of Saturn V 1st stage before and after static test-firing

^aFor definition of terms in headings, see introduction to Chapter Two.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 175-178.

Table 6-109. Technical Facilities: Mississippi Test Facility (with costs in thousands)

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Acoustic laboratory, all purpose ^a	Acoustics Laboratory	1965	NA	NA	Far-field, mid-field, near-field, and special-purpose acoustics data collection; calibration, maintenance, and repair of acoustic devices
Measurement standards laboratory ^a	Measurement Standards Laboratory	1965	NA	NA	Primary standards in support of Electronics, Instrumentation and Materials Laboratory functions and secondary standards for site-wide support
Pressure and strain calibration laboratory ^a	Pressure and Strain Calibration Laboratory	1965	NA	NA	Site-wide pressure and strain calibration support
Atmospheric laboratory	Meteorology Building	1965	NA	NA	Atmospheric observations and predictions in support of acoustic propagation predictions; severe weather warning service
Electronics, instrumentation and materials laboratory ^a	Electronics, Instrumentation and Materials Laboratory	1965	\$2027	\$2047	Materials analysis, measurement standards, photographic, pressure and strain, temperature and flow, and field support
Rocket propulsion test complex, Saturn IC (B-1, B-2)	S-IC Test Stand	1965	1993	2091	Static firing of Saturn V 1st stage
S-II A-2 test stand ^b (A-1, A-2)	S-II A-2 Test Stand (A-1, A-2)	1965	1195	1571	Static firing of Saturn V 2nd stage
Data handling facility ^a	Data Handling Center	1965	653	2879	On-site data reduction (digital and analog) for the Data Acquisition Facility and other test elements at MTF
Rocket components service facility ^C	Component Service Facility	1966	NA	NA	On-site repair, servicing, and test operations on Saturn V 2nd stage J-2 engines

Table 6-109.	Technical Facilities:	Mississippi Test	Facility (Continued)
	(with costs	s in thousands)	

Functional Name	Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Areas Supported
Cryogenic component test facility ^a	Component Service Facility (CSF)	1966	NA	NA	Cryogenic testing of components
Data acquisition facility (DAF)	Data Acquisition Facility	1966	\$9320	\$9490	Acquistion and recording of data signals transmitted via land lines from test vehicles, flight vehicles, and static-test support facilities within Saturn V complex

^aContractor-operated (General Electric Co.). ^bContractor-operated (Space and Information Systems Div., North American Rockwell Corp.).

NA = Data not available. For definition of terms in headings, see introduction to Chapter Two.

Table 6-110. Industrial Real Property (as of June 30; money amounts in thousands)^a

	McDonnell	Douglas Corp	p.	North American Rockwell Corp.												
Category	NAS	ontract 5 7-180 ento, Calif.	NAS	ntract 8 8-5609 rds, Calif.	NAS 8-14	ntracts 006, NAS 7-90 each, Calif.	NAS 8-140	tracts 06, NAS 7-90 Isana, Calif.	Con NAS	ntract 8-5609 Park, Calif.	NAS	ontract S 8-5609 Isana, Calif.	NAS 8	tract 3-5609 1, Calif.	To	otal
	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968	1967	1968
Land	0	0	0	0	0	0	0		0	0	0	0	0	•	0	0
Buildings																
Number	14	15	11	12	6	6	1		0	0	0	1	0		32	34
Area, thousands of sq m	9 262.9	10 049.1	10 289.4	10 334.0	23 123.3	23 606.4	413.9		0	0	0	413.9	0		43 089.5	44 403.5
(and sq ft)	(99 705)	$(108\ 168)$	(110755)	$(111\ 235)$	(248 897)	(254 097)	(4455)				•	(4455)			(463 812)	(477 955)
Value																
Land ^D	0	0	\$ 2467	\$ 2720	\$ 364	\$ 384	\$1148		0	0	0	\$ 603			\$ 3979	\$ 3 707
Buildings	\$ 6 607	\$ 6 576	3 347	2 866	10 969	10 933	56		0	0	0	117	0		20 979	20 492
Other structures and																
facilities	11 374	20 469	13 510	14 044	1 815	2 1 7 2	3271		\$2754	\$2415	\$464	3678	\$87		33 275	42 778
Total industrial real property value	\$17 981	\$27 045	\$19 324	\$19 630	\$13 148	\$13 489	\$4475		\$2754	\$2415	\$464	\$4398	\$87	,	\$58 233	\$66 977

^cCombined figures for FY 1968.

Source: NASA, Office of Facilities.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), II, Sect. 12, 183-219.

^cContractor-operated (Rocketdyne).

^aThese figures are included in Table 6-111. ^bNASA-funded capital improvements to contractor-owned land.

Table 6-111. Property (as of June 30; money amounts in thousands)^a

		(45 51 1 -11 1						
Category	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)								
Owned	654.4 (1617) ^b	654.4 (1617) ^b	722.8 (1786)	722.8 (1786)	727.2 (1797)	727.2 (1797)	727.2 (1797)	727.2 (1797)
Leased	25.9 (64)	25.9 (64)	25.9 (64)	25.9 (64)	25.9 (64)	25.9 (64)	25.9 (64)	667.6 (1649.7)
Buildings								100
Number owned	161	158	142	122 ^c	192	161	176	182
Area owned, thousands of sq m	145.2	159.6	208.1	231.3	319.8	339.7	369.6	386.7
(and sq ft)	(1563)	(1718)	(2240)	(2490)	(3442)	(3655)	(3978)	(4163)
Area leased, thousands of sq m	0	22.2	24.7 .	24.7	14.8	2.4	2.2	2.2
(and sq ft) ^d		(239)	(266)	(266)	(159)	(26)	(24) .	(24)
Value								4 4 000
Land ^e	\$ 86	\$ 86	\$ 95	\$ 95	\$ 406	\$ 2106	\$ 4 074	\$ 3802
Buildings	36 160	39 233	50 136	55 517	77 546	95 431	110 744	123 089
Other structures and facilities	572	718	6 015	9 628	56 769	54 121	68 755	81 970
Real property	\$36 818	\$40 037	\$56 246	\$65 240	\$134 721	\$151 658	\$183 573	\$208 861
Capitalized equipment	\$45,000	\$51 000	\$64 676	\$84 149	\$103 240	\$244 962	\$256 297	\$302 575

^aDoes not include Michoud Assembly Facility, Computer Operations Office, or Mississippi Test Facility, except in Line 10 ("Capitalized equipment value"); includes industrial property. For breakdown of 1967 and 1968 figures on industrial facilities, see Table 6-110. For definition of terms, see introduction to Chapter Two.

bAcreage acquired from Department of the Army July 1, 1960 (under 99-year irrevocable agreement, considered by GSA as equal to ownership). Not included in NASA total for FY 1962 in Table 2-5, Chapter Two.

^CAlthough number of buildings decreased between FY 1961 and FY 1964, square footage and value of buildings increased because of replacement of older buildings and consolidation.

dDoes not include GSA-leased buildings.

^eFigures for 1965-67 include NASA-funded capital improvements to contractorowned land.

Source: NASA, Office of Facilities. Supplementary information was provided by S. R. Stewart.

Table 6-112. Property: Michoud Assembly Facility (as of June 30; money amounts in thousands of dollars)^a

Category	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)							
Owned	· 333.9 (825) ^b	333.9 (82 5)	333.9 (825)	360.5 (890.8) ^c	360.5 (890.8)	360.5 (890.8)	360.5 (8 9 0.8)
Leased	0	0	0	0	0	0	0
Buildings							
Number owned	0	21	19	23	31	32	33
Area owned, thousands of sq m	226.5	235.4	237.2	238.7	323.7	330.6	330.6
(and sq ft)	(2438)	(2534)	(2553) ^d	(2569)	(3484)	(3559)	(3559)
Area leased, thousands of sq m	0	35.4	28.0	0	o o	0	0
(and sq ft)		(381)	(301)				-
Value							
Land	NA	\$ 6 598	\$ 6 598	\$ 7 137	\$ 7380 ^e	\$ 7481 ^e	\$ 7 502 ⁶
Buildings	0	21 290	23 044	27 391	52 352	62 140	63 212
Other structures and facilities	0	13 084	9 314 ^f	15 122	20 253	22 987	24 251
Real property	NA	\$40 972	\$38 956	\$49 650	\$79 985	\$92 608	\$94 965
Capitalized equipment ^g	NA	NA	NA	NA	NA	NA	\$41 338

^aUntil July 1, 1965, this component field installation was designated Michoud Operations. For definition of terms, see introduction to Chapter Two.

 $^{\rm f}$ Value of other structures and facilities dropped \$3 770 000 during FY 1964 because of redefinition.

gIntegral equipment value is included with that of the building or facility where it is physically located; collateral equipment is included in MSFC figures.

NA = Data not available.

Source: NASA, Office of Facilities. Supplementary information was provided by T. M. Cobb.

⁶Originally reported as 341.6 hectares (844 acres) until resurveyed in 1963.

^c26.6 hectares (65.8 acres) acquired during FY 1965 through transfer from U.S. Army.

^dAlthough number of buildings dropped, square footage increased because of redefinition of buildings.

^eClearing, grubbing, landscaping, grading, seeding, and additions of trees and shrubbery added to land value.

Table 6-113. Property: Computer Operations Office (as of June 30; money amounts in thousands)

	(as c	n June 30, money ar	nounts in thousands,			
Category ^a	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)				•		
Owned	5.7 (14)	5.7 (14)	5.7 (14)	5.7 (14)	5.7 (14)	5.7 (14)
Leased	0	0	0	0	0	0
Buildings				_	_	•
Number owned	3	4	5	5	5	3
Area owned, thousands of sq m	6.0	5.8	6.3	6.3	10.2	10.2
(and sq ft)	(65)	(62)	(68)	(68)	(110)	(110)
Area leased	0	0	0	0	0	0
Value			h	h	a cab	6 (2
Land	\$ 52	\$ 52	\$ 61 ^b	\$ 61 ^b	\$ 63 ^b	\$ 63
Buildings	2251	2849	2844	2907	4380	4406
Other structures and facilities	617	434 ^c	702	703	814	824
Real property	\$2920	\$3335	\$3607	\$3671	\$5257	\$5293
Capitalized equipment d	NA NA	NA	NA	NA	NA	\$ 311

^aFor definition of terms, see introduction to Chapter Two.

^dIntegral equipment value is included with that of the building or facility where it is physically located; collateral equipment is included in MSFC figures.

NA = Data not available.

Source: NASA, Office of Facilities.

bClearing, grubbing, landscaping, grading, seeding, and additions of trees and shrubbery added to land value.

 $^{^{}C}Value\ of\ other\ structures\ and\ facilities\ dropped\ \$183\ 000\ during\ FY\ 1964\ because\ of\ redefinition.$

Table 6-114. Property: Mississippi Test Facility (as of June 30; money amounts in thousands)^a

		· · · · · · · · · · · · · · · · · · ·				
Category	1963 ^b	1964	1965	1966	1967	1968
Land in hectares (and acres)						
Owned	6 001.5 (14 830)	8 061.3 (19 920)	8 492.7 (20 986)	8 492.7 (20 986)	8 492.7 (20 986)	8 492.7 (20 986)
Leased	, 0	0	0	0	0	0
Buildings	•					
Number owned	NA	22	NA	17	41	106 ^d
Area owned, thousands of sq m	0	4.6	2.8	43.1	50.8	85.4
(and sq ft)		(49)	(30)	(464)	(547)	(919)
Area leased	0	0	0	0	0	0
Value						
Land	\$4472	\$15 370	\$ 9 726 ^d	\$ 9 774	\$ 10144	\$ 15 224
Buildings	0	617	687	11 337	48 795	61 394
Other structures and facilities	0	5 545	12 189	30 151	69 345	152 625
Real property	\$4472	\$21 532	\$22 602	\$51 262	\$128 284	229 243
Capitalized equipment	NA	NA	. NA	NA	NA	\$ 24 846

^aUntil July 1, 1965, facility was designated Mississippi Test Operations. For definition of terms, see introduction to Chapter Two.

dLarge increase because trailers were included in buildings category in FY 1968.

NA = Data not available.

Source: NASA, Office of Facilities.

^bThe land acquisition program began FY 1963. After gradual completion of court actions, by the end of FY 1965, 13 428 acres in the test area and 3058.6 hectares (7558 acres) in the buffer zone had been acquired by the Government.

^cAdjusted figure; 98.7 additional hectares (244 acres) in rights-of-way appeared in end-of-fiscal-year reports.

Table 6-115. Value of Real Property Components as Percentage of Total Including Huntsville,

Component Installations, and Industrial Property

(as of June 30; total real property value in thousands)

	1961	1962	1963	1964	1965	1966	1967	1968
Component Land Buildings Other structures and facilities	0.2 98.2 1.6 100.0	0.2 98.0 1.8 100.0	10.7 70.4 18.9 100.0	17.1 63.6 19.3 100.0	8.2 51.5 40.3 100.0	6.8 56.5 36.7 100.0	5.3 55.2 39.5 100.0	4.9 46.9 48.2 100.0
Total MSFC real property value	\$36 818	\$40 037	\$104 610	\$129 063	\$210 580	\$286 576	\$409 722	\$538 362

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-116. Value of Real Property Components as Percentage of Total Including Huntsville and Industrial Property (as of June 30; total real property value in thousands)^a

					_			
Component	1961	1962	1963	1964	1965	1966	1967	1968
Land Buildings Other structures and facilities	0.2 98.2 1.6 100.0	0.2 98.0 1.8 100.0	0.2 89.1 10.7 100.0	0.1 85.1 14.8 100.0	0.3 57.6 42.1 100.0	1.4 63.0 35.6 100.0	2.2 60.3 37.5 100.0	1.8 58.9 39.3 100.0
Total Huntsville and industrial real property value	\$36 818	\$40 037	\$56 246	\$65 240	\$134 721	\$151 658	\$183 573	\$208 861

^aDoes not include component installations.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-117. Value of Real Property Components as Percentage of Total: Michoud Assembly Facility (as of June 30; total real property value in thousands)

Component	1963	1964	1965	1966	1967	1968
Land Buildings Other structures and facilities Total Michoud real property	16.1 52.0 31.9 100.0	16.9 59.2 23.9 100.0	14.4 55.2 30.4 100.0	9.2 65.5 25.3 100.0	8.1 67.1 24.8 100.0	7.9 66.6 25.5 100.0
value	\$40 972	\$38 956	\$49 650	\$79 985	\$92 608	\$94 965

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-118. Value of Real Property Components as Percentage of Total: Computer Operations Office (as of June 30; total real property value in thousands)

Component	1963	1964	1965	1966	1967	1968
Land	1.8	1.6	1.7	1.7	1.2	1.0
Buildings	77.1	85.4	78.8	79.2		1.2
Other structures and facilities	21.1	13.0	19.5	-	83.3	83.3
	100.0	100.0		19.1	15.5	15.5
Total Computer Operations	100.0	100.0	100.0	100.0	100.0	100.0

real property value	\$2920	\$3335	\$3607	\$3671	\$5257	\$5293

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-119. Value of Real Property Components as Percentage of Total: Mississippi Test Facility (as of June 30; total real property value in thousands)

Component	1963	1964	1965	1966	1967	1968
Land Buildings Other structures and facilities Total MTF real property	100.0 0 0 100.0	71.4 2.9 25.7 100.0	43.0 3.1 53.9 100.0	19.1 22.1 58.8 100.0	7.9 38.1 54.0 100.0	6.6 26.9 66.5 100.0
value	\$4472	\$21 532	\$22 602	\$51 262	\$128 284	\$229 243

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-120. Personnel^a

	1	960	19	061	19	62		63
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
D 1.5 EV anding			5500		5960		7200	
Requested for FY ending	370	5367	5948	6034	7182	6844	7332	7227
Total paid employees	320	5248	5521	5911	6669	6658	7243	7145
Permanent	50	119	427	123	513	186	89	82
Temporary	30	117						
Code group (permanent only)	15	535	51	12	35	52	63	74
200 ^b	-	951	1663	1843	2159	2282	2423	2516
700 ^c	0	0	0	0	0	0	0	0
900	0	=	1714	1855	2194	2334	2486	2590
Subtotal	15	1486	316	422	579	595	706	728
600 ^d	0	273	=	968	1126	1081	1203	1175
500	224	816	870	932	1077	1033	1283	1122
300	74	748	857	-	1693	1615	1565	1530
100	7	1925	1764	1734		4324	4757	4555
Subtotal	305	3762	3807	4056	4475		53	54
Excepted: on duty	3	43	48	47	54	55	_	649
Accessions: permanent	321	965	628	634	1091	762	1260	
Accessions: temporary	53	181	446	81	534	292	267	217
Military detailees	0	11	16	20	25	22	31	43

Table 6-120. Personnel^a (Continued)

		964	1:	965	19	966	11	967	1968
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	7492		7464		7489		7221		7020
Total paid employees	7679	7639	7719	7503	7740	7434	7602	7288	7030
Permanent	7467	7517	7485	7409	7416	7342	7153		6935
Temporary	212	122	234	94	324	92	449	7026	6400
Code group (permanent only)				,	324	72	449	262	535
200 ^b	63	59	55	47	48	47	43	44	26
700 ^c	2672	2729	2696	2649	2692	2726	2731		36
900	0	0	0	0	0	0	0	2747 0	2570
Subtotal	2735	2788	2751	2696	2740	2773	2774	2791	0
600 ^d	827	846	874	896	1055	1132	1147		2606
500	1297	1295	1310	1331	1290	1224	1211	1166	1000
300	1131	1138	1126	1140	1092	1067	956	1101	1051
100	1477	1450	1424	1346	1239	1146		1000	908
Subtotal	4732	4729	4734	4713	4676	4569	1065	968	835
Excepted: on duty	56	52	40	38	38		4379	4235	3794
Accessions: permanent	836	799	473	683	704	39	40	40	40
Accessions: temporary	741	167	193	487		444	443	NA	NA
Military detailees	46	50	44		294	165	348	NA	NA
		30	44	37	32	27	26	21	23

^aNASA Huntsville Facility was officially established as a field installation March 14, 1960, and was designated George C. Marshall Space Flight Center the following day. Transfer of personnel to NASA from ABMA's Development Operations Division was effective July 1, 1960. Figures in this table include personnel at component installations.

bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical research scientists."

Beginning June 30, 1961, the data reflect conversion of these personnel to the 700 Code group (aerospace technologists).

 $^{
m d}$ Before Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Office. Data through Dec. 31, 1966, from NASA
Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from
NASA Personnel Management Information System and the NASA
Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

NASA HISTORICAL DATA BOOK

Table 6-121. Personnel: Michoud Assembly Facility^a

Employee Category	1961 12/31	6/30	962 12/31	6/30	9 <u>63</u> 12/31	6/30	964 12/31	6/30	9 <u>65</u> 12/31	6/30	9 <u>66</u> 12/31	6/30	967 12/31	1968 6/30
Total, paid employees Permanent Temporary	16	64	121	207	251	285	282	283	278	284	257	251	232	166
	16	64	118	206	251	280	281	281	278	280	256	248	231	163
	0	0	3	1	0	5	1	2	0	4	1	3	1	3

^aIncludes personnel at Computer Operations Office, Slidell, La.

Source: MSFC, Manpower Utilization and Administration Office.

Table 6-122. Personnel: Mississippi Test Facility

	19	963	19	964	19	965	19	066	19	967	1968
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Total, paid employees	24	35	44	47	87	115	105	105	105	97	103
Permanent Temporary	22 2	34 1	43 1	44 3	68 19	98 17	97 8	102 3	97 8	94	88 15

Source: MSFC, Manpower Utilization and Administration Office.

Table 6-123. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

					-				
Program	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight		4625	5137	4709	5453	5544	5329	5168	4790
(% of total)	(90.0)	(86.4)	(83.7)	(69.0)	(72.7)	(73.8)	(73.3)	(72.9)	(74.4)
Space applications		8	0	1	0	0	2	3	6
(% of total)	(0.0)	(0.1)	(0.0)	(*)	(0.0)	(0.0)	(*)	(*)	(0.1)
Unmanned investigations in space		429	651	3	31	15	18	77	32
(% of total)	(0.0)	(8.0)	(10.6)	(*)	(0.4)	(0.2)	(0.3)	(1.1)	(0.5)
Space research and technology		293	330	495	351	287	316	331	283
(% of total)	(10.0)	(5.5)	(5.4)	(7.3)	(4.7)	(3.8)	(4.3)	(4.7)	(4.4)
Aircraft technology		0	0	2	0	0	0	0	0
(% of total)	(0.0)	(0.0)	(0.0)	(*)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Supporting activities ^C		0	17	1611	1667	1664	1606	1507	1329
(% of total)	(0.0)	(0.0)	(0.3)	(23.6)	(22.2)	(22.2)	(22.1)	(21.3)	(20.6)
Total		5355	6135	6821	7502	7510	7271	7086	6440

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1960. Percentages in this column are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^CFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities. FY 1962 figure represents tracking and data acquisiton plus technology utilization (reported as "industrial applications").

* = Less than 0.05%

Source: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-124. Funding by Fiscal Year (program plan as of May 31, 1968; in millions)

Appropriation Title	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	\$4.50	\$295.20	\$505.50	\$ 804.50	\$1301.40	\$1474.00	\$1549.90	\$1342.10	\$1092.60	\$8369.70
Construction of facilities ^a Marshall Michoud Assembly Facility Mississippi Test Facility Administrative operations ^b Total	0 0 0 5.07 \$9.57	26.18 0 0 68.58 \$389.96	30.03 10.12 23.36 89.18 \$658.19	40.61 28.55 76.25 112.23 \$1062.14	28.24 7.58 103.38 124.31 \$1564.91	12.30 .6.45 58.51 138.68 \$1689.94	1.96 0.30 0 128.51 \$1680.67	0 0.70 0 128.23 \$1471.03	0.74 0.42 0 123.22 \$1216.98	140.06 54.12 261.50 918.01 \$9743.39

^aDoes not include facilities planning and design.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-125. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1961	\$ 26.2	\$11.7	\$13.9	\$ 0.3	*	\$ 0.1	*	0	0	\$ 26.2
	31.2	Ф11.7	12.9	17.1	\$ 0.6	0.6	*	_*	_*	31.2
1962	42:0b		12.7	28.9	9.8	2.7	\$0.5	*	*	41.9
1963	29.1			20.5	13.3	14.0	1.3	\$0.3	*	28.9
1964					10.0	9.6	1.9	0.9	*	12.4
1965	12.6					7.0	1.6	0.2	*	1.9
1966	2.0							0	*	*
1967	0.1							Ü	0	0
1968	0.7			0.4.6.0	622.0	¢27 1	\$5.3	\$1.4	\$0.1	\$142.5
T	otal \$143.9	\$11.7	\$26.9	\$46.2	\$23.8	\$27.1	43.3	Φ1.4	Ψ0.1	Ψ1 1 2 .0

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

bFY 1960-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

bDoes not include \$3.8 million programmed (PY 1963) and obligated for Advanced Saturn Dynamic Test Facility which was reported with "various locations."

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Table 6-126. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Michoud Assembly Facility Including Computer Operations Office (in millions)

Program Year	Program Plan ^a	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1962	\$11.1 ^b	\$5.0	\$ 4.9	\$ 1.1	_*	*	0	_*	\$11.0 ^b
1963	29.0		19.8	8.8	\$ 0.4	*	*	_*	29.0
1964	7.9		23.0	2.0	5.5	\$0.2	_*		
1965	6.6			2.0	4.8	1.5	*	0	7.6
1966	0.3				4.0		*	0	6.3
1967	0.8					0.3		0	0.3
							\$0.5	\$0.1	0.6
1968	0.5							0.5	0.5
To	tal \$56.2	\$5.0	\$24.7	\$11.8	\$10.7	\$2.1	\$0.5	\$0.5	\$55.3

As of June 30, 1968; includes facilities planning and design. bIncludes \$367 000 programmed (PY 1962) and obligated for Slidell facility which was reported under "various locations."

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-127. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Mississippi Test Facility (in millions)

Program Year	Program Plan ^a	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1962	\$ 23.5	\$5.0	\$13.9	\$ 3.5	0	0	0	\$0.6	\$ 23.1
1963	80.8		58.1	19.0	\$ 1.0	\$ 2.6	_*	-0.2	80.4
1964	105.2			79.5	11.9	12.2	\$1.0	-0.1	104.5
1965	58.6				54.1	4.1	0.3	_*	58.4
1966	0					0	0	0	0
1967	0					-	0	0	ő
1968	0							ŏ	0
To	tal \$268.1	\$5.0	\$72.0	\$101.9	\$67.1	\$18.9	\$1.3	\$0.0	\$266.2

^aAs of June 30, 1968; includes facilities planning and design.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

NASA HISTORICAL DATA BOOK

Table 6-128. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$257.8	\$595.6	\$949.8	\$1378.1	\$1689.9	\$1587.3	\$1304.9	\$1088.3	\$8851.7
Percentage of NASA total	34%	39%	29%	30 %	32%	31%	28.1%	26.3%	30.0%

Source: NASA, Procurement and Supply Division, NASA Procurement:

October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA,

September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

Table 6-129. Awards to Personnel Granted under Section 306 of the Space Act of 1958a

Year	Inventor	Contribution	Amount
1963	Curt P. Herold	Multiple quick disconnector	\$1000
1966	Manfred E. Kuebler	Nutation damper for satellites	\$1500
1968	Clayton Loyd John R. Rasquin Hubert E. Smith Charles D. Stocks	Precision electronic control for orbital tube flaring machines	\$ 500
	Helmut G. L. Krause	Theory of a refined earth figure model and theory of a refined earth figure model with applications	\$ 500
	Daniel W. Gates with Gene A. Zerlaut and Frederick O. Rogers, IIT Research Inst.	Synthesis of zinc titanate pigment and coatings containing the same	\$ 300

^aFor complete listing of awards under this Act, see Appendix B, Section 1.B.

Source: NASA, Inventions and Contributions Board.

AEC-NASA SPACE NUCLEAR PROPULSION OFFICE

AEC-NASA SPACE NUCLEAR PROPULSION OFFICE (SNPO)

Location: Germantown, Montgomery County, Maryland.

Manager: Milton Klein (March 15, 1967-).

Harold B. Finger (Aug. 31, 1960-March 15, 1967).

Deputy Manager:

David S. Gabriel (May 15, 1967-). Milton Klein (August 1960-March 1967).

History

On August 29, 1960, NASA and the Atomic Energy Commission signed an agreement establishing a single project office combining NASA and AEC personnel who would be responsible for all aspects of the nuclear rocket program. Coresponsibility with AEC for this program, Project Rover, had been transferred from the Air Force to NASA by President Eisenhower's Executive Order 10783 establishing NASA October 1, 1958.

Under the terms of this agreement, AEC had primary responsibility for "research and development of nuclear reactors and reactor components including those required for aeronautical or space missions specified by NASA." NASA had primary responsibility for conducting research and development on "components and subsystems of nuclear systems other than the reactor, reactor components and isotope power units, and for integration of the reactor into nuclear propulsion systems and nuclear electric power generation systems." AEC and NASA announced these terms and the establishment of the joint AEC-NASA Nuclear Propulsion Office (NPO) August 31, 1960. On February 1, 1961, a second agreement outlined contract administration responsibilities of the Nuclear Propulsion Office and

called for establishment of jointly staffed field extensions in Cleveland and Albuquerque.4

President Kennedy, in his address to Congress May 25, 1961, asked for a \$23-million supplement to the FY 1962 budget for acceleration of the Rover program, saying it gave "promise of some day providing a means for even more exciting and ambitious exploration of space [than the manned lunar landing program], perhaps beyond the moon, perhaps to the very ends of the solar system itself." The May budget amendment as approved by Congress made \$22 million in new obligational authority available for the NASA nuclear systems program—\$8 million for research and development and \$15 million for construction of facilities. On July 28, 1961, a third AEC-NASA agreement defined more specifically the responsibilities of AEC, NASA, and the joint office, which was renamed the AEC-NASA Space Nuclear Propulsion Office.

Studies of requirements for a national nuclear rocket engine development facility had been initiated in October 1960, and a contract was issued for design of an engine maintenance and disassembly building in August 1961.⁸ On February 19, 1962, NASA and AEC announced that the Jackass Flats area of the AEC's Nevada Test Site, about 144.8 kilometers (90 miles) north of Las Vegas, was designated Nuclear Rocket Development Station (NRDS) under the overall management of the Space Nuclear Propulsion Office. Test facilities of the AEC's Los Alamos Scientific Laboratory (LASL), where Kiwi-A reactors had been tested since July 1959, were on the site.⁹

¹Memorandum of Understanding, signed by John A. McCone, Chairman, U.S. Atomic Energy Commission, and T. Keith Glennan, NASA Administrator, Aug. 29, 1960: NASA-AEC Release 60-252.

²Memorandum of Understanding, Aug. 29, 1960.

³NASA-AEC Release 60-252.

⁴ "Agreement Between NASA and AEC on Management of Nuclear Rocket Engine Contracts," signed by NASA Associate Administrator Robert C. Seamans, Jr., and AEC General Manager Alvin R, Luedecke, Feb. 1, 1961.

⁵Public Papers of the Presidents of the United States: John F. Kennedy, 1961 (Washington, D.C.: GPO, 1962), 404.

⁶ Rosholt, Administrative History of NASA, Table 6.1, 195.

⁷ "Inter-Agency Agreement Between the Atomic Energy Commission and the National Aeronautics and Space Administration for the Rover Program 1961," signed by NASA Associate Administrator Robert C. Seamans, Jr., and AEC General Manager A. R. Luedecke, July 28, 1961; NASA General Management Instruction No. 2-3-17, July 28, 1961.

⁸ NASA-AEC Release 60-319; NASA Release 61-193.

⁹NASA-AEC Release 62-37.

The third and final test in the Kiwi-A series was conducted October 19, 1960. The first test of the Kiwi-B reactor, intended to lead to designs for the NERVA engine (Nuclear Engine for Rocket Vehicle Application), was performed in December 1961. On November 30, 1962, a power test of the first flight reactor, Kiwi-B4A, was terminated when bright flashes appeared in the exhaust. Investigation showed that flow-induced vibrations had damaged the reactor. After a year and a half of redesign, analysis, and component and cold-flow testing, the Kiwi-B4D was tested successfully May 13, 1964, at power and temperature conditions exceeding planned test conditions, a major milestone in the development program.¹⁰

On September 10, 1964, in the final Kiwi test, the Kiwi-B4E, which had operated for eight minutes August 28, was restarted and run for 2.5 minutes at near design power, the first demonstration of restart capability. Two weeks later, on September 24, the NERVA NRX-A2 reactor was operated for six minutes in its first power test, showing an equivalent vacuum specific impulse of approximately 760 seconds. The NRX-A2 was restarted and run for 20 minutes October 15, 1964, to investigate the margin of control in low-flow, low-power operation.¹¹

Between April 23 and May 28, 1965, the NRX-A3 reactor accumulated 23.5 minutes of full-power operation in three tests. The initial Phoebus 1-A test, in a series of small graphite reactor ground tests to obtain data for design of the large-diameter Phoebus-2 series, was conducted June 25, 1965. The reactor operated successfully at full power for 10.5 minutes but was damaged by overheating during shutdown when the facility liquid-hydrogen supply was unexpectedly exhausted.¹²

In a series of engine-system power tests of a breadboard version of NERVA between February 3 and March 25, 1966, the engine system was

started 10 times and accumulated 29 minutes at nominal full power. The NRX-A5 reactor was operated and restarted in June 1966 for a total of 30 minutes of full-power operation.¹³

A Phoebus-1B reactor test February 23, 1967, accumulated 30 minutes at above 1250 megawatts, and Phoebus-2 cold-flow tests were conducted between July 12 and July 19, 1967. In the final system test in the reactor portion of the NERVA technology program, the NRX-A6 reactor was operated for 60 minutes at design power December 15, 1967. This duration at full power was twice as long as that of any previous reactor, and the test achieved one of the basic technological goals of the graphite reactor and engine system development program—exploration of the corrosion behavior of reactor components for 60 minutes at full power. By early 1968, the nine consecutive reactors had accumulated a total test time of seven hours of power operation, with more than three hours at or near design power. Ground experimental engine tests were scheduled for mid-1968.¹⁴

Mission

The Space Nuclear Propulsion Office was assigned responsibility for providing necessary research, design, and engineering data; test hardware; and general technology to develop nuclear rocket systems with power levels, operating times, restart conditions, and specific impulse values suitable for advanced space-exploration missions; management of Nuclear Rocket Development Station (NRDS), Jackass Flats, Nevada, for ground static-testing of reactors, engines, and, eventually, vehicles associated with nuclear rocket development.¹⁵

¹⁰ SNPO Release 61-33; Speech, Harold B. Finger before 26th Annual Meeting and News Conference of the Aviation/Space Writers' Association, Miami, Fla., May 29, 1964.

Harold B. Finger, "Space Nuclear Propulsion Mid-Decade," Astronautics and Aeronautics (January 1965), 30-35.

¹² AEC, Major Activities in the Atomic Energy Programs, 1965 (Washington, D.C.: AEC, 1966), 145; SNPO-N Release 65-9.

¹³ AEC, Major Activities in the Atomic Energy Programs, 1966 (Washington, D.C.: AEC, 1967), 186; U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Advanced Research and Technology, 1968 NASA Authorization, Hearings, Pt. 4, 90th Cong., 1st sess., March 14-22, April 4-20, 1967 (Washington, D.C.: GPO, 1967), 958 ff.

¹⁴ Ibid., 963; AEC, Major Activities in the Atomic Energy Programs, 1967 (Washington, D.C.: AEC, 1968), 161 ff.; U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Advanced Research and Technology, 1969 NASA Authorization, Hearings, Pt. 4, 90th Cong., 2d sess., Feb. 19-22, 26-29, 1968 (Washington, D.C.: GPO, 1968), 271 ff.

¹⁵NASA, Budget Estimates, FY 1969, IV, AO 2-94.

SPACE NUCLEAR PROPULSION OFFICE-ALBUQUERQUE (SNPO-A)

Location: Albuquerque, Bernalillo County, New Mexico (on grounds of

Sandia Base, New Mexico).

Chief: Jack F. Cully (Oct. 27, 1961-).

History

On February 1, 1961, NASA and AEC agreed to establish a field extension of the Nuclear Propulsion Office at AEC facilities at Albuquerque. The Albuquerque Extension was to serve as liaison with the AEC's Los Alamos Scientific Laboratory, which had begun development work on nuclear rockets in April 1955 and initiated testing of the Kiwi-A reactor series in July 1959. The office was also responsible for directing the work of contractors as assigned by the SNPO, using the technical advice and assistance of Los Alamos Scientific Laboratory and Lewis Research Center.

SPACE NUCLEAR PROPULSION OFFICE-CLEVELAND (SNPO-C)

Location: Cleveland, Cuyahoga County, Ohio (on grounds of Lewis

Research Center).

Chief: Robert W. Schroeder (March 1962-).

Lester C. Corrington (Acting Chief, October 1961-March 1962).

History

The NASA-AEC agreement of February 1, 1961, provided for establishment of a field extension of the Nuclear Propulsion Office at Cleveland. On

SPACE NUCLEAR PROPULSION OFFICE-NEVADA (SNPO-N)

Location: Jackass Flats, Nye County, Nevada.

Land: Nuclear Rocket Development Station, 36 421.7 hectares

(90 000 acres), AEC-owned.

Chief: John P. Jewett (July 2, 1967-).

Bob P. Helgeson (Aug. 1, 1962-April 22, 1967).

History

NASA and AEC announced February 19, 1962, that the Jackass Flats area of the AEC's Nevada Test Site had been designated the Nuclear Rocket Development Station.¹⁸ In June NASA announced establishment of the Nevada Extension of the SNPO.¹⁹ The new office, in Las Vegas, was responsible for managing construction and operation of the Nuclear Rocket Development Station. The Nevada Extension became operational October 5, 1962.²⁰ Work on the cold area of the Engine Maintenance, Assembly, and Disassembly (E-MAD) Building was completed in September 1967, and the hot-cell area was completed in December 1967 and used in post-test operations on the NRX-A6. The entire E-MAD disassembly area was used for the first time in disassembling the XE-1.²¹

¹⁷Seamans-Luedecke Agreements Feb. 1, 1961, and July 28, 1961; NASA Announce-

ment No. 384, Oct. 23, 1961.

October 23, 1961, NASA announced activation of the Cleveland Extension to maintain technical liaison with Lewis Research Center, which conducted research and development in support of the nuclear rocket program. The Cleveland Extension was to direct the work of contractors as assigned by the SNPO Headquarters.¹⁷

¹⁸ NASA-AEC Release 62-37.

¹⁹ NASA Announcement No. 513, June 5, 1962; NASA Release, June 15, 1962.

² NASA Release 62-215.

² House, Committee..., 1969 NASA Authorization, Hearings, Pt. 4, 283.

¹⁶ Ibid.; NASA-AEC Release S-5-63.

Table 6-130. Industrial Real Property: SNPO-Cleveland (as of June 30; in thousands)

Air Force Industrial Plant #4 Fort Worth, Texas	1967	1968
Other structures and facilities		
value ^a	\$125	\$125
Total real property value	\$125	\$125

^aNo land or buildings. These figures are included in Table 6-131. Data for earlier years are not available.

Source: NASA, Office of Facilities.

Table 6-131. Property (as of June 30; money amounts in thousands)

Category ^a	1965 ^b	1966	1967	1968
Land in hectares (and acres)				
Owned	0	0	0	0
Leased	0	0	0	0
Buildings				
Number owned	2	8	9	9
Area owned, thousands of sq m	0.5	17.0	17.2	17.2
(and sq ft)	(5)	(182)	(185)	(185)
Area leased	0	0	0	0
Value			_	
Land	0	0	0	0
Buildings	\$ 71	\$14 207	\$14 525	\$19 680
Other structures and				
facilities	21	1 809	8 586	5 235
Real property	\$ 92	\$16 016	\$23 111	\$24 915
Capitalized equipment	\$434	\$ 7728	\$24 075	\$24 408

^aFor definition of terms, see introduction to Chapter Two. ^bData for earlier years are not available.

Source: NASA, Office of Facilities.

Table 6-132. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1965 ^a	1966	1967	1968
Land	0	0	0	0
Buildings	77.2	88.7	62.8	79.0
Other structures and facilities	22.8	11.3	37.2	21.0
	100.0	100.0	100.0	100.0
Total SNPO real property value	\$92	\$16 016	\$23 111	\$24 91

^aData for earlier years are not available.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-133. Personnel^a

	1961		962		963		964	19	965	. 19	966	19	967	1968
Employee Category	12/31	6/30	12/31	6 /30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending		23		50		160		103		116		115		117
Total paid employees	15	39	67	96	102	112	111	116	112	115	114	113	117	108
Permanent	15	39	66	94	101	107	110	115	112	114	114	112	115	108
Temporar y	0	0	1	2	1.	5	1	1	0	1	0	1	2	0
Code group (permanent only)									•	-	·	•	_	U
200 ^a	0	1	2	2	2	2	1	1	1	1	1	1	1	0
700	12 ·	26	34	49	53	57	58	58	57	58	58	57	63	59
900	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
Subtotal	12	27	36	51	55	59	59	59	58	59	59	58	64	59
600	1	3	10	15	17	17	17	19	18	18	19	20	21	19
500	2	9	20	28	29	31	34	37	36	37	36	34	30	
300	0	0	0	0	0	0	0	0	0	0	0	34 0	30 0	30
100	0	Õ	Õ	o	Õ	ő	Õ	0	0	0	0	0	-	0
Subtotal	3	12	30	43	46	48	51	5 6	54	55	55		0	0
Excepted: on duty	Ô	2	2	2	3	3	3	2	2			54	51	49
Accessions: permanent	3	14	24	32	13	12	-	_		2	2	2	3	3
Accessions: temporary	0	0	2	2			8	11	6	9	8	5	NA	NA
Military detailees	0	1	2		0	4	0	I	0	2	0	0	NA	NA
vinitary detances	U	1	1	0	0	0	0	0	0	0	0	0	0	0

^aBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

NA = Data not available.

NASA HISTORICAL DATA BOOK

Table 6-134. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

140.00							
Program	1962	1963	1964	1965	1966	1967	1968
Space research and technology (% of total) Supporting activities (% of total) Total	40 (100.0) 0 (0.0) 40	91 (94.8) 5 (5.2) 96	106 (94.6) 6 (5.4) 112	110 (94.0) 7 (6.0) 117	110 (94.0) 7 (6.0) 117	110 (94.0) 7 (6.0) 117	103 (95.4) 5 (4.6) 108

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities.

Source: NASA, Budget Estimates, FY 1963-FY 1969;

NASA, Budget Operations Division.

Table 6-135. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

Appropriation Title	1962	1963	1964	1965	1966	1967	1968	Total
Research and development	\$19.30	\$53.20	\$60.30	\$45.80	\$50.10	\$47.80	\$42.00	\$318.50
Construction of facilities ^a	8.48	11.53	4.22	0	0	0	0	24.23
Administrative operations ^b	0.28	0.97	1.50	1.68	1.84	2.01	2.07	10.35
Total	\$28.06	\$65.70	\$66.02	\$47.48	\$51.94	\$49.81	\$44.07	\$353.08

^aNuclear Rocket Development Station; does not include facilities planning and design.

bFY 1962 appropriation was for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-136. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1962 ^b	\$ 8.9	\$0.7	\$ 7.4	\$0.4	*	\$0.4	_*	_*	\$ 8.9
1963	11.8		5.8	5.9	*	_*	\$0.3	_*	11.9
1964	4.2			1.7	\$2.5	_*	0	\$0.1	4.2
1965	0.6				0	0.6	*	0	0.6
1966	0.1					0	0.1	0	0.1
1967	2.6						1.9	0.5	2.4
1968	0							0	0
Tot	al \$28.2	\$0.7	\$13.2	\$8.0	\$2.5	\$0.9	\$2.1	\$0.6	\$28.2

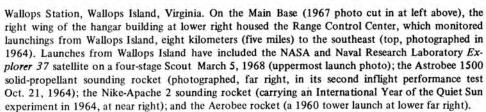
 ^aAs of June 30, 1968; includes facilities planning and design.
 ^b\$1.5 million was programmed and obligated for Project Rover and Nuclear Rocket Development Station facilities in PY 1960

under "various locations."

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-137. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$36.4	\$84.3	\$91.7	\$79.7	\$85.8	\$85.2	\$65.7	\$528.8
Percentage of NASA total	2%	3%	2%	2%	2%	1.8%	1.6%	1.8%


Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA,

September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

WALLOPS STATION

WALLOPS STATION

(WS)

Location: Wallops Island, Accomack County, Virginia.

Land: 2680.4 total hectares (6623.5 acres) as of June 30, 1968:

- 2676.5 hectares (6613.7 acres) NASA-owned.

- 3.9 hectares (9.8 acres) leased.

Director: Robert L. Krieger (June 30, 1948-).

Associate Director:

Abraham D. Spinak (August 1966-).

History

In late 1944, recognizing the urgent military requirement for increased high-speed-missile research, Langley Memorial Aeronautical Laboratory organized a "Special Flying Weapons Team." At its first meeting, December 9, the need for "flight operation work" was mentioned. Three members of the team were asked at the second meeting January 2, 1945, to draw up a formal proposal for an experimental station. This document, submitted to NACA Headquarters February 1, 1945, served as an operational and budget plan; a Langley-operated auxiliary flight research station had already been approved by the NACA, with two other facilities, on January 25.2 These facilities were part of a request for supplemental appropriations and, after hearings March 16, Congress appropriated \$4 100 000 April 25, 1945, for Langley facilities.

The plan as approved had recommended Cherry Point, North Carolina, as a convenient location for the new facility. The site was under consideration by the Navy Bureau of Aeronautics for its main guided missile station, and the Bureau had promised the NACA full cooperation on high-speed research. During March, however, a Langley-USN group visited Cherry Point, and the declared opposition of the Marines to establishing the NACA station there led Langley representatives to look for a site in the Chincoteague area. A survey party selected Wallops Island, a narrow, 9.7-kilometer (6-mile) coastal strip off the eastern shore of Virginia.⁴

Named for John Wallop, a surveyor who had received a Crown Patent for the property from King Charles II of England in 1672, the 1295-hectare (3200-acre) island had been acquired in 1889 by the Wallops Island Association. The group, whose clubhouse on the beach was the only building on the island except for a Coast Guard Station, leased 1000 acres to the Government May 11, 1945. Although land acquisition was delayed by the Navy Bureau of Ordnance's intention to purchase the entire island, the NACA requested a land allotment at the southern end August 6, 1945. The Government took possession of 34.4 hectares (84.87 acres) September 18, and construction of permanent facilities began on the owned land. The facilities were not completed until early 1947.

On May 7, 1945, the Auxiliary Flight Research Station was established as a unit of the Langley Memorial Aeronautical Laboratory (LMAL) Research Department. Temporary facilities on Wallops were completed to launch eight 83-mm (3.25-inch) rockets in range checkout operations June 27, 1945. The Tiamat missile series began July 4 and continued through mid-1948. On October 17, 1945, a dummy RM-1 (Research Missile-1) was launched, beginning a series of 10 flights in which the first instrumented version was launched the following May. The first RM-2-launched October 18, 1945-

¹ Joseph A. Shortal, "History of Wallops Station: Part One, Origin and Activities Through 1949," comment edition (NASA Wallops Station, 1967), 25, 30. The *Data Book* section on history of Wallops Station was prepared by Charles S. James, WS.

²NACA Executive Committee Minutes, Jan. 25, 1945; Memorandum, Langley Laboratory to NACA Headquarters, Request for Approval for Construction of an Auxiliary Flight Test Station, Feb. 1, 1945; Shortal, "History of Wallops," 25-26, 30.

³ U.S. Congress, Senate Appropriations Subcommittee, NACA First Deficiency Appropriations Bill, Hearings, 79th Cong., 1st sess., March 16, 1945 (Washington, D.C.: GPO, 1945); U.S. Statute 58-374; Shortal, "History of Wallops," 32. This appropriation included \$700 000 for a supersonic tunnel.

⁴Shortal, "History of Wallops," 25, 35-36; Memorandum, Ray W. Hooker to Engineer-in-Charge, Langley Memorial Aeronautical Laboratory (LMAL), April 26, 1945

⁵Shortal, "History of Wallops," 43-44, 81.

⁶ Ibid., 39, 47; Memorandum, John W. Crowley, Chief of Research Dept. LMAL, May 7, 1945.

initiated an extensive program to determine drag characteristics with simple models. In May 1946 an aerodynamic control program began, using RM-5 models, and a program studying drag of supersonic bodies was conducted in 1947 under the RM-6 and RM-10 projects.

Auxiliary Flight Research Station became a division of the Langley Research Department June 10, 1946, and was redesignated Pilotless Aircraft Research Division (PARD). With the formal organization of PARD August 11, the Wallops facility was placed under its operations section and named Pilotless Aircraft Research Station (PARS); its employees called the station "Wallops."

On April 25, 1947, a program of testing complete airplane configurations with the rocket-propelled model technique was initiated with launch of an AAF XF-91 model. Later configurations tested included practically all specific Air Force and Navy airplanes under development. Between April and August 1947 flight tests of the Deacon proved it to be a high-performance rocket motor, and it became the major rocket used in Wallops launchings. By early 1949 the Wallops Preflight Jet Wind Tunnel was in use for development of ramjet engines.¹⁰

A conflict with the Naval Aviation Ordnance Test Station (NAOTS) over interference with NACA activities on Wallops was resolved March 11, 1949, by an agreement establishing the NACA's primary interest in the area. This agreement made it possible for the NACA to request authority of the Bureau of the Budget for purchase of the island; previous requests had been turned down because of the Navy's intention to purchase the property, The request became part of the FY 1950 NACA appropriation bill, approved August 24, 1949. The Government took legal possession of the island November 7, and on December 4, 1949, the Attorney General officially notified the NACA of this action.¹

In the summer of 1952, the NACA began moving formally toward space

research. At a Wallops Island meeting in June, the NACA Committee on Aerodynamics approved a resolution that the NACA should intensify research on flight at 20- to 80-kilometer (12- to 50-mile) altitudes and speeds at mach 4 through mach 10 and "devote a modest effort to problems associated with unmanned and manned flight at altitudes from 50 miles [80 kilometers] to infinity" and speeds from mach 10 to earth escape velocity. This resolution was approved with slight revisions by the NACA Executive Committee July 14, 1952, and the laboratories were directed to begin studies on problems of space flight. Langley authorized research on a suitable manned vehicle. 12

The same summer, the blunt-body concept had been developed at Ames Aeronautical Laboratory, and during the next few years the Pilotless Aircraft Research Division worked on multistage, solid-propellant rockets for studying heat transfer on variations of the blunt heatshield configuration. At Wallops August 20, 1953, PARD launched the first successful hypersonic research vehicle for heat transfer studies; it consisted of a cluster of three Deacons as first stage and an HPAG rocket second stage. The first launch of a three-stage rocket vehicle was performed at Wallops April 29, 1954, and on August 24, 1956, PARD launched the world's first five-stage solid-fuel rocket to a speed exceeding mach 15.13

The announcement that NASA would absorb the NACA as of October 1, 1958, stated that no change of name was contemplated for the Pilotless Aircraft Research Station. Although the station had appeared as Pilotless Aircraft Research Station on a preliminary organization chart dated August 11, 1958, it was already entered as Wallops Station on the chart dated August 23, 1958, and all subsequent charts. On these early charts Wallops Station was under the proposed Space Flight Research Center; it first appeared as an independent installation on the chart dated May 1, 1959. 15

⁷Shortal, "History of Wallops," 55-56, 60-66, 69-71, 97-98, 101-103.

⁸ Ibid., 49; Memorandum, Floyd L. Thompson, Acting Chief of Research Dept., LMAL, July 10, 1946. Shortal notes that all guided missiles were then called "pilotless aircraft" by the Navy Bureau of Aeronautics and the Army Air Forces.

⁹ Memorandum, Robert R. Gilruth, Chief, PARD, Aug. 15, 1946; Shortal, "History of Wallops," 50.

¹ Emme, Aeronautics and Astronautics, 1915-1960, 56; Shortal, "History of Wallops," 89-92, 100, 136-140, 164.

¹¹U.S. Public Law 81-266, 63 Stat. 646, Aug. 24, 1949; Shortal, "History of Wallops," 118, 131.

¹²Minutes, NACA Committee on Aerodynamics, June 24, 1952, 19-21; NACA Executive Committee Minutes, July 14, 1952; Swenson, Grimwood, and Alexander, *This New Ocean*, 56-57.

¹³ Swenson, Grimwood, and Alexander, This New Ocean, 65; Emme, Aeronautics and Astronautics. 1915-1960, 72, 74, 82.

¹⁴ NACA Release, Sept. 26, 1958 (NASA Release No. 1).

¹⁵Rosholt, Administrative History of NASA, 48, 81, Fig. 3-1, and Append. B. The facility appeared as Pilotless Aircraft Research Station in NASA, First Semiannual Report (Washington, D.C.: GPO, 1959), 40, but the renaming was announced in NASA, Second Semiannual Report (Washington, D.C.: GPO, 1960), 94. Effective July 1, 1959, the official address was changed to NASA Wallops Station; see Memorandum, Joseph E. Robbins to distribution, June 22, 1959. NASA General Management Instruction 2-2-12, Sept. 17, 1959, established the functions of Wallops Station.

On November 5, 1958, 14 personnel members from Langley's PARD were transferred to what later became the Space Task Group and continued their work on implementing a manned satellite project. Hardware for the project—designated Project Mercury November 26, 1958—included the PARD-designed Little Joe test booster, one of the earliest launch vehicles based on the rocket cluster principle. Little Joe was designed specifically for manned-capsule qualification tests. The first successful test in the series, conducted at Wallops Station, was October 4, 1959.16

In January 1959 NASA and the Navy signed an agreement transferring the Chincoteague Naval Air Station to NASA when deactivated by the Navy on July 1, 1959. This transfer added to Wallops Station property several thousand acres on the mainland, an area known as the Wallops Main Base.¹⁷

As part of a reentry physics program, Langley on March 3, 1959, launched the first in a series of six-stage, solid-fuel rockets to a speed of mach 26. Also from Wallops Station, the first complete Scout solid-propellant launch vehicle was launched July 1, 1960.¹⁸ Between the launch of Explorer 9 on February 16, 1961, and July 1968, 12 satellites were launched from Wallops by Scout vehicles, including 7 Explorers, 2 international satellites, and 3 for the Department of Defense.¹⁹

During the 1960s Wallops Station launched some 300 experiments every year to obtain information on the atmosphere and the space environment. In

the period from 1945 through mid-1968, more than 6000 research vehicles were launched from Wallops Station.²⁰

Mission

Wallops Station was assigned responsibility for preparation, assembly, and launch of scientific experimental payloads; correct positioning of the payloads in space at the proper velocity; tracking and data acquisition; including:

- (1) Preparation for flight of payloads designed and built by scientists and engineers in other NASA Centers, other Government agencies, U.S. colleges and universities, and the international scientific community:
- (2) Testing and developing components and instrumentation for later experiments;
- (3) Project management responsibility for the Owl series of University Explorers and for a Gravity Preference project;
- (4) Management of the Experimental Inter-American Meteorological Rocket Network (EXAMETNET) and support for NASA's international cooperation program; conducting a Bio-Space Technology Training Program;
- (5) Maintenance of offsite launch and tracking facilities—the Mobile Launch Facility, Mobile Sounding Rocket Facilities (for loan to other countries), Coquina Downrange Tracking Station, and the NASA Launch Facility at Point Barrow, Alaska.²

¹⁶NASA Release 59-235. For the role of Little Joe in Project Mercury, see Swenson, Grimwood, and Alexander, *This New Ocean*, especially 105, 124-125, and 208 ff.

¹⁷NASA Release, Jan. 24, 1959.

¹⁸Emme, Aeronautics and Astronautics, 1915-1960, 107, 124.

¹⁹NASA, "General Information, Wallops Station, Wallops Island, Virginia" (n.d.), 10.

²⁰ fbid., 2, 10; Astronautics and Aeronautics, 1968, NASA SP4010.

²¹ NASA, Budget Estimates, FY 1969, IV, AO 241, 242.

Table 6-138. Technical Facilities: Launch (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Capability				
Launch Area No. 2	1950	\$ 213	\$ 243	Hasp, Arcas, Universal, Nike-Ajax, Tubular, and I-beam launchers				
Launch Area No. 4	1959	112	217	Nike-Ajax rail launcher and tubular launcher				
aunch Area No. 1	1960	614	805	Aerobee launch tower; rocket and payload checkout				
Launch Area No. 5	1960	163	210	Tubular launcher				
Blockhouse No. 3	1960	784	788	Electrical ground support for Launch Areas 3, 4, and 5				
aunch Area No. 3	1961	1135	1135	Scout assembly and launch				
Sounding Rocket Facilities (Mobile)	1963	_a	113	Sounding rocket launching, tracking, and data acquisition b				
Mobile Range Facility	1964	2500 .	3500	Instrumentation vans and semitrailers for launch of Nike-Cajun and Nike-Apache vehicles anywhere in the world				
NASA Launch Facility (Point Barrow, Alaska) ^C	1965	345	34 5	Meteorological rocket grenade experiments with Nike-Cajun vehicles				

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 9.

^aSurplus. ^bOn loan to India, Pakistan, Argentina, Brazil, and Spain.

^CBuildings and grounds maintained by Arctic Research Laboratory of Univ. of Alaska.

NASA INSTALLATIONS: WALLOPS STATION

Table 6-139. Technical Facilities: Radar and Tracking (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Area Supported
MPS-19 Radar	. 1954	\$ 200	\$ 300	Wind weighting and initial acquisition for slaving purposes in support of ionospheric sounding rockets, probes, reentries, and orbital missions
FPS-16 Radar	1958	1200	2000	Precision analog and digital trajectory data for real-time and postflight analysis
JAFNA Facility	1959 -	1500	2000	Target analysis at L-band, S-band, and X-band in support of USAF Clear Air Turbulence Program and NASA reentry programs
SPANDAR Radar	1961	2000	3000	Precision analog and digital trajectory data for real-time and post-flight analysis
136 MHz Tracking Antenna	1961	150	20	Reception of horizontal or vertical linear or circular polarized signals; transmittal of up to 250 watts of radio frequency power in the 148- to 150-MHz range
Coquina Downrange Tracking Station ^a	1961	320	444	Telemetry, communications, optical, and photographic systems for downrange support
FPQ-6 Radar	1964	3700	4500	Precision analog and digital trajectory data for real-time and post-flight analysis

^aCoquina Beach, N.C.; contractor-operated (Philco).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 9.

NASA HISTORICAL DATA BOOK

Table 6-140. Technical Facilities: Telemetry (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Area Supported
FM/AM Telemetry Facility	1958	\$ 50	\$ 20	Ground reception, conversion, and recording of FM/AM telemetry signals
High and Medium Gain Telemetry Facility	1961	500	700	Data acquisition in the 215 to 260 mc range
FM/FM Telemetry Facility	1961	400	1000	Reception, detection, demodulation, and display and recording of FM/FM telemetry data
X-Band Telemetry System ^a	1962	150	200	Tracking and reception of X-band telemetry, primarily for spacecraft reentry experiments
Digital Telemetry Facility	1967	800	_b	Input of PCM, PAM/PDM, and analog telemetry data
Advanced Data Acquisition System	1967	1810	_c	Reception of telemetry RF signals in the 220-260 mc-band, L-band, S-band, and X-band
High Power Telemetry Command System	1967	135	_b	Commands for vehicles and satellites in the 147-157 mc bane

 $^{^{\}mathbf{a}}\mathbf{At}$ Wallops Island, Coquina Beach, N.C., and Bermuda Tracking Station. $^{\mathbf{b}}\mathbf{Authorized}.$

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 9

^CUnder construction.

NASA INSTALLATIONS: WALLOPS STATION

Table 6-141. Technical Facilities Other Than Launch, Radar and Tracking, Telemetry (with costs in thousands)

Facility Name	Year Built	Init. Cost	Accum. Cost	Technological Area Supported
Command/Destruct System	1959	\$ 47	\$ 282	Radio command of space and rocket vehicles
Research Telescope #2 (RT-2)	1960	197	451	Obtaining spectra of artificial meteors
Ballistic Camera Range	1960	720	NA	Trajectory determination of reentering bodies
NASA 670 and 671 ^a (Range Surveillance Aircraft)	1960	4180	4180	Radar surveillance of rocket impact areas; calibration and exercise of tracking and data-acquisition systems; frequencinterference detection
USNS Range Recovererb	NA	350 ^c	450 ^c	Range surveillance radar, telemetry, and communications
Ionosphere Sounding Station	1961	50	70	Vertical incidence sounding to determine ionospheric characteristics
Meteorological Facility ^d	1962	260	300	Meteorological support of launchings

Systems).

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 9.

^CSystems cost. ^dU.S. Weather Bureau-operated.

NASA HISTORICAL DATA BOOK

Table 6-142. Industrial Real Property (as of June 30; money amounts in thousands)^a

Fort Churchill, Manitoba, Canada	1967	1968
Land	0	0
Buildings		
Number	68	68
Area, thousands of sq m	8 402.5	8 402.5
(and sq ft)	(90 443)	(90 443)
Value		
Land	0	0
Buildings	\$2558	\$2557
Other structures and facilities		271
Total real property	\$2828	\$2828

^aThese figures are included in Table 6-143; data for earlier years are not available.

Source: NASA, Office of Facilities.

Table 6-143. Property (as of June 30; money amounts in thousands)^a

Category	1 9 59	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)		. <u>. </u>								
Owned	1248.7 (3085.6) ^b	2657.8 (6567.6) ^c	2657.8 (6567.6)	2656.8 (6565)	2655.1 (6561)	2655.1 (6561)	2655.1 (6561)	2655.1 (6561)	2676.5 (6613.7) ^d	2676.5 (6613.7)
Leased	NA	NA	NA	4.5 (11)	3.6 (9)	3.6 (9)	4.1 (10)	4.1 (10)	3.8 (9.6)	3.9 (9.8)
Buildings										
Number owned	NA	NA	NA	NA	258	278	270	356	358	385
Area owned, thousands of sq m	NA	NA	NA	72.7	86.7	167.3	93.5	103.3	103.8	105.9
(and sq ft)				(783)	(933)	(1801)	(1006)	(1112)	(1117)	(1140)
Area leased	NA	NA	NA	0	0	0	0	0	0	0
Value										
Land	NA	NA	NA	NA	\$ 592	\$ 592	\$ 592	\$ 592	\$ 611	\$ 611
Buildings	NA	NA	NA	NA	13 397	20 602	22 517	22 241 ¹	23 159	23 665
Other structures and										
facilities	NA	NA	NA	NA	17 037	21 784	27 640	32 822	35 360	39 516
Real property	NA.	NA	NA	NA	\$31 026	\$42 978	\$50 749	\$55 655	\$59 130	\$63 927
Capitalized equipment	NA	NA	NA	\$6000	\$ 9 177	\$12 965	\$18 100	\$26 908	\$34 235	\$35 241

^aIncluding facilities at Fort Churchill, Manitoba, Canada. Data for FY 1959-FY 1961 were reported by Langley Research Center, without separate figures for Wallops Station. For definition of terms, see introduction to Chapter Two.

NA = Data not available.

Source: NASA, Office of Facilities.

bWallops Island only, and 1.1 hectares (2.6 acres) of mainland for boat dock area, which was sold in 1961 (FY 1962).

^CWallops Main Base (Chincoteague Naval Air Station), acquired July 1, 1959. dAcquisition of Eastville (Va.) tracking site.

eLand for offsite camera tracking stations.

fAlthough number of buildings and total square feet increased during FY 1966, value of buildings dropped because of reclassification of some buildings as structures.

NASA HISTORICAL DATA BOOK

Table 6-144. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1963 ^a	1964	1965	1966	1967	1968
Land	1.9	1.4	1.1	1.0	1.0	1.0
Buildings	43.2	47.9	44.4	40.0	39.2	37.0
Other structures and facilities	54.9	50.7	54.5	59.0	59.8	62.0
Other structures and racinties	100.0	100.0	100.0	100.0	100.0	100.0
Total Wallops real property value	\$31 026	\$42 978	\$50 749	\$55 655	\$59 129	\$63 927

^aData for earlier years are not available.

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-145. Personnel

		960		961	1	962	1	963	19	964	19	965	1	966	1	967	1968
Employee Category ^a	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31	6/30
Requested for FY ending	250		300		299		440		518		518		518		518		518
Total, paid employees	229	297	302	371	421	430	493	502	530	523	554	526	563	538	576	509	565
Permanent	228	277	292	359	383	409	473	483	519	513	520	509	512	506	499	496	497
Temporary	1	20	10	12	38	21	20	19	11	10	34	17	51	32	77	13	68
Code group (permanent only)											•		• •	72	• •	13	00
200 ^b	11	11	4	4	5	5	6	7	8	8	8	6	5	6	5	4	3
700 ^c	17	34	42	45	52	53	64	68	73	74	76	79	80	75	77	77	83
900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Subtotal	28	45	46	49	57	58	70	75	81	82	84	85	85	81	82	81	90
600 ^d	0	7	9	14	16	21	24	24	27	26	28	26	32	36	40	42	39
500	50	43	46	61	65	61	76	76	86	80	79	81	80	80	81	72 79	79
300	17	35	31	43	44	51	75	65	71	63	161	175	175	185	176	188	186
100	133	147	160	192	201	218	228	243	254	262	168	142	140	124	120	106	103
Subtotal	200	232	246	310	326	351	403	408	438	431	436	424	427	425	417	415	407
Excepted: on duty	1	1	2	2	2	2	2	1	1	1	1	1	1	2	2	713	2
Accessions: permanent	8	51	16	62	25	34	80	51	68	30	42	22	29	27	21	NA.	NA.
Accessions: temporary	4	33	52	37	47	14	18	17	12	12	27	30	45	48	64	NA NA	NA NA
Military detailees	0	2	3	3	4	4	2	2	2	2	2	1	1	2	1	1477	1NA 2

^aWallops Station began reporting as an independent installation in January 1960, with 225 employees transferred from Langley Research Center.

dBefore Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA
Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from
NASA Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical research scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

Table 6-146. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity^a

Program	1959 ^b	1960 ^b	1961	1962	1963	1964	1965	1966	1967	1968
Manned space flight (% of total)	(0.0)	(10.0)	36 (11.8)	0 (0.0) 60	0 (0.0) 14	0 (0.0) 19	0 (0.0) 6	0 (0.0) 5	0 (0.0) 5	0 (0.0) 11
Space applications (% of total)	(2.0)	(5.0)	(1.0) 153	(14.7) 145	(3.1)	(3.7) 60	(1.2) 74	(0.9) 81	(0.9) 81	(2.2) 67
Unmanned investigations in space (% of total) Space research and technology	(3.0)	(10.0)	(50.2)	(35.6) 93	(10.7) 41	(11.6) 55	(14.3)	(15.6)	(15.6)	(13.6) 39 (7.9)
(% of total) Aircraft technology ^C	(10.0)	(20.0)	(0.0) 113	(22.9) 0	(9.2) 13	(10.7) 17	(9.8) 15	(6.6) 20 (3.9)	(6.6) 20 (3.9)	(7.9) 8 (1.6)
(% of total) Supporting activities	(75.0)	(45.0)	(37.0) 0	(0.0) 109	(2.9)	(3.3)	(2.9) 372 (71.8)	378 (73.0)	378 (73.0)	369 (74.7)
(% of total) Total	(10.0)	(10.0)	(0.0) 305	(26.8) 407	(74.1) 447	(70.7) 516	518	518	518	494

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported, in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1959 and FY 1960. Percentages in these two columns are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA 1965), Sect. 8.

CFY 1961 figure represents "aircraft and missile technology."

^dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general support positions. Until FY 1963 support positions were reported with the five other budget activities. FY 1962 figure represents only tracking and data acquisition.

Sources: NASA, Budget Estimates, FY 1963-FY 1969; NASA, Budget Operations Division.

Table 6-147. Funding by Fiscal Year (program plan as of May 31, 1968, in millions)

				-			_				
Appropriation Title	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development Construction of facilities ^a Administrative operations ^b Total	\$16.14 1.36 \$17.50	\$1.00 0 2.65 \$3.65	\$2.60 2.03 4.99 \$9.62	\$ 0.60 11.32 7.14 \$19.06	\$ 2.70 4.16 8.90 \$15.76	\$ 4.30 0.51 8.78 \$13.59	\$ 6.20 1.70 11.13 \$19.03	\$ 7.50 1.05 9.35 \$17.90	\$ 6.50 0.21 9.74 \$16.45	\$ 7.20 0.74 8.86 \$16.80	\$ 38.60 37.86 72.90 \$149.36

^aDoes not include facilities planning and design.

bFY 1959-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959
Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-148. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1959	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1959	\$16.1	\$6.4	\$5.1	\$2.3	\$1.3	\$0.4	\$0.3	\$0.1	*	*	0	\$16.1
1960	0		0	0	0	0	0	0	0	0	0	
1961	2.0			0.2	0.7	0.9	0.1	*	*	0	0	0
1962	11.4				5.1	3.6	0.7	1.7	\$0.3	*	_*	2.0
1963	4.2				5.1	0.4	2.6	0. 5			*	11.4
1964	0.6					0.4	0.6	v.j *	0.1	\$0.3	•	4.1
1965	1.8						0.0		0.1	0	0	0.6
1966	1.1							0.8	0.1	0.2	\$0.3	1.5
1967	0.2								•		1.0	1.1
1968	0.7									0.2	0	0.2
Total	\$38.1	\$6.4	\$5.1	\$2.6	\$7.1	\$5.3	\$4.2	\$3.4	\$0.6	\$0.9	0.2 \$1.6	0.2 \$37.2 ^b

^aAs of June 30, 1968; includes facilities planning and design. bIncludes \$16.1 million for tracking and data-acquisition facilities.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

Table 6-149. Total Procurement Activity by Fiscal Year (money amounts in millions)

	1961	1962	1963	1964	1965	1966	1967	1968	Total
Net value of contract awards	\$1.5	\$11.0	\$11.9	\$13.0	\$15.4	\$12.1	\$12.7	\$12.5	\$90.1
Percentage of NASA total	0.2%	1.0%	0.4%	0.3%	0.3%	0.2%	0.3%	0.3%	0.3%

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA,

September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

FORMER FIELD ACTIVITIES

FORMER FIELD ACTIVITIES

NASA LIAISON OFFICE

Location:

Wright-Patterson Air Force Base, Dayton, Ohio.

History

The NACA-established office was closed on April 1, 1959, six months after the creation of NASA!

NASA OFFICE-DOWNEY (NASA-O-Downey)

Location:

Downey, Los Angeles County, California.

Director:

John R. Biggs (May 13, 1962-May 5, 1967).

History

NASA established a contract management unit at North American Aviation, Inc., Space and Information Systems Division plant in Downey, California, May 11, 1962, as a component of the Western Operations Office (WOO). The decision to establish a NASA organization at Downey was a departure from the policy of using Department of Defense capability. NASA-O was formed to represent NASA in dealing with the company on plant-wide matters and to provide day-to-day contract management support for the Apollo command and service module and Saturn V second-stage contracts. Technical management of the contracts was provided by the

resident offices from Manned Spacecraft Center and Marshall Space Flight Center, also established at Downey in May 1962.

The Space and Information Systems Division was under Air Force contract in May 1962, and the 8000 company employees were working on the GAM-77 (Hound Dog) project. The Air Force accepted the NASA decision to establish an office at Downey and began a phasedown of the Air Force staff. The Air Force was phased out of the Downey location in October in 1964, at which time full responsibility for quality assurance, contract administration, facilities administration, and system review and approval was placed on NASA-O.

The personnel complement for Space and Information Systems Division reached 35 500 at peak employment on the NASA contracts. The NASA-O complement reached a high of 198 in 1966 before reductions to follow a decreasing workload.

On June 16, 1966, the reporting relationship of NASA-O was changed; NASA-O thenceforth reported directly to the NASA Headquarters Assistant Administrator for Industry Affairs instead of to the Director of the Western Operations Office.²

The Office was disestablished April 9, 1967, and its functions were transferred to Manned Spacecraft Center and Marshall Space Flight Center.³

Table 6-150. Personnel: NASA Office-Downey

Employee Category	12/31/66
Total paid employees	127
Permanent	125
Temporary	2

Source: NASA, Personnel Division.

¹NASA General Management Instruction 2-2-16.1, May 11, 1962; NASA Release 62-115; Rosholt, An Administrative History, 253-254; "NASA-O/Downey Development Plan 1967," 1-6. The Data Book section on history of the Downey Office was prepared by John R. Biggs, NASA Executive Secretary.

²NASA Management Instruction 1136.28, June 16, 1966.

³ NASA Notice 1136, April 9, 1967.

¹NASA Release, Feb. 9, 1959.

NORTH EASTERN OFFICE (NEO)

Location:

Cambridge, Middlesex County, Massachusetts.

Director:

Franklyn W. Phillips (Aug. 14, 1962-Sept. 1, 1964).

History

On July 3, 1962, NASA announced that it would establish an office to serve as technical and administrative liaison with contractors, research institutions, and other Government agencies in the Northeast area of the United States. The NASA North Eastern Office was established August 14, 1962, and along with liaison functions, it was assigned responsibility for providing technical, scientific, and administrative support as requested by other NASA components in the execution of their operations in the Northeast.¹

With the establishment of the Electronics Research Center September 1, 1964, the Director of the North Eastern Office was appointed Assistant Director for Administration of Electronics Research Center. Personnel of the NASA North Eastern Office, with personnel from the Electronics Research Task Group, NASA Headquarters Office of Advanced Research and Technology, formed the initial complement of the new Center.²

The North Eastern Office was formally disestablished September 1, 1965.3

PACIFIC LAUNCH OPERATIONS OFFICE (PLOO)

Location:

Lompoc, Santa Barbara County, California.

Director:

William H. Evans (May 21, 1962-Oct. 1, 1965).

Cdr. Simon J. Burttschell (USN) (Acting Director, March 7, 1962-May 21, 1962; Chief, NASA Test Support Office, Naval Missile Facility, Point Arguello, Feb. 28, 1961-May 21, 1962; Director, NASA Test Support Office, PMR, Point

Mugu, Nov. 17, 1960-Feb. 28, 1961).

History

Early launch operations on the California coast centered on two geographical locations—Point Mugu, near Oxnard, California, and Point Arguello, near Lompoc, about 200 kilometers (125 miles) north. In January 1946 the first missile was launched at the Point Mugu Naval Air Facility, and on October 1, 1946, the Naval Air Missile Test Center (NAMTC) was established at Point Mugu to provide an instrumented range for testing air-launched and small surface-launched missiles.

The Department of Defense announced January 29, 1958, plans to establish the Pacific Missile Range (PMR) with headquarters at the Naval Missile Center (formerly NAMTC), Point Mugu, and PMR was officially established on June 16, 1958, under Navy management to provide range support for Department of Defense and other Government space programs. The Naval Missile Facility, Point Arguello, was set up April 15, 1958, as the ballistic missile testing portion of PMR, and the first missile—a Nike-Asp—was launched there July 29, 1959.

Point Arguello was on the 7689-hectare (19 000-acre) southern portion of 34 803-hectare (86 000-acre) tract that had been Camp Cooke, an Army base opened by the Department of War October 5, 1941, closed early in 1946, reopened August 3, 1950, for training of the 40th Infantry Division and other units for Korea, and then closed again February 1, 1953. The

¹NASA Circular 250 (Ref. 2-2-17), Aug. 14, 1962; NASA Releases 62-155, 62-175. The *Data Book* section on history of the North Eastern Office was prepared by Patricia Shea. Electronics Research Center.

²NASA Circular 320 (Ref. 2-2-17), Sept. 1, 1964; NASA Releases 64-218, 64-219.

³ NASA Notice 1148, Sept. 1, 1965.

¹Emme, Aeronautics and Astronautics, 1915-1960, 53, 55. The Data Book section on history of PLOO was prepared from information provided by Simon J. Burttschell and William H. Evans of Pacific Launch Operations Center, with additional material provided by Roll D. Ginter, NASA Special Programs Office Director.

²Emme, Aeronautics and Astronautics, 1915-1960, 99, 11.

northern, 25 900-hectare (64 000-acre) segment of Camp Cooke was transferred to the Air Force November 16, 1956, for an ICBM crew training base. Cooke Air Force Base was opened June 7, 1957, by the USAF Air Research and Development Command's (ARDC) Air Force Ballistic Missile Division. The Strategic Air Command (SAC) acquired the base January 1, 1958, and renamed it in honor of the late Gen. Hoyt S. Vandenberg October 4, 1958. On December 16 that year the first successful missile, a USAF Thor, was fired from Vandenberg Air Force Base, inaugurating the IRBM portion of the Pacific Missile Range.³

In the early 1960s the Pacific Missile Range consisted of (1) a Sea Test Range off the central California coast for testing relatively small air- and surface-launched missiles, (2) an IRBM range extending from Vandenberg to an impact area halfway between California and Hawaii, (3) an ICBM range from Vandenberg and Point Arguello to impact areas in the Marshall Islands, (4) an anti-ICBM range based on Kwajalein Atoll, and (5) a Polar Orbit Range, straight south from Vandenberg and Arguello. Land installations under PMR command included—in addition to the Naval Missile and Astronautics Center, Point Mugu, and Naval Missile Facility, Point Arguello—Kwajalein and Eniwetok Atolls in the Marshall Islands; San Nicolas Island, California; five Hawaii locations; Wake, Midway, and Canton Islands; and small coastal stations at Point Sur and Point Pillar and on San Clemente, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands. California.

From NASA's establishment October 1, 1958, through mid-1960, its launch operations were conducted at Cape Canaveral, Florida. NASA maintained a small liaison office there—the Atlantic Missile Range Operations Office (AMROO)—which was terminated June 30, 1960, with the establishment of the Launch Operations Directorate (LOD) as part of the Marshall Space Flight Center (MSFC). Effective July 1, 1960, field responsibilities for NASA launchings at both the Atlantic Missile Range and the Pacific Missile Range were assigned to the Launch Operations Directorate.

The first NASA launch at the Pacific Missile Range—a NERV (nuclear emulsion recovery vehicle) experiment—was September 19, 1960,7 and shortly afterward, on October 27, NASA established the NASA Test Support Office at PMR under Launch Operations Directorate jurisdiction. On February 28, 1961, the NASA Test Support Office was transferred to the Naval Missile Facility, Point Arguello. Pacific Missile Range launches were expected to be conducted by contractors, and the six-man NASA office was to act as liaison with PMR. To carry out his assignment, the Director of the NASA Test Support Office, Point Mugu (later Chief, NASA Test Support Office, Point Arguello), traveled back and forth, spending two days a week in his liaison role at PMR Headquarters on Point Mugu and then three days supervising operations at Naval Missile Facility, Point Arguello.

NASA launch activity on the West Coast included principally satellites requiring polar orbit; the first launched from PMR was the Canadian satellite Alouette 1 September 28, 1962. Alouette 1 was NASA's first satellite in polar orbit, and its launch marked the first NASA use of the Thor-Agena B launch vehicle used by the U.S. Air Force at Vandenberg in the Discoverer satellite series. Personnel members from Goddard Space Flight Center were stationed at the Pacific Missile Range in February 1962 to supervise Goddard's Agena-launched missions, and in January 1963, responsibility for Thor-Agena launch operations was transferred from Marshall Space Flight Center to Goddard.9

In 1961 NASA began construction of a Scout launch facility on Naval Missile Facility property at Point Arguello. The facility became operational in April 1962 with the attempted launch of a Department of Defense satellite. The first NASA satellite launched by a Scout vehicle from the Pacific Missile Range was Explorer 19 December 19, 1963. NASA's first dual payload was launched from the facility November 21, 1964, when a Scout vehicle orbited Explorer 24 and 25. Through 1968, the U.S. Air Force had successfully

³ Ibid., 83, 104; Vandenberg Air Force Base, Fact Sheet, n.d. A Federal correctional institution occupied 1200 hectares (3000 acres) of former Camp Cooke.

⁴ Russel Hawkes, "Missile Defense Dominates PMR Efforts," Aviation Week (April 17, 1961), 69-85.

⁵ Jarrett and Lindemann, "Historical Origins of NASA's Launch Operations Center," 54.

⁶ NASA Announcement No. 156, June 13, 1960, Subject: Organizational Changes at AMR and PMR; NASA, Fourth Semiannual Report (Washington, D.C.: GPO, 1961), 84-85.

⁷NASA, Fourth Semiannual Report, 37-40.

⁸ Memorandum, Chief, MSFC Liaison Branch, to Cdr. Simon J. Burttschell (USN), Oct. 26, 1960; NASA Release 60-300; NASA, *Fifth Semiannual Report* (Washington, D.C.: NASA, 1962), 153; Memorandum, Commander, PMR, to Cdr. Simon J. Burttschell, Jr. (USNR), Subject: Change of Duty; telephone interview with Simon J. Burtschell, Dec. 21, 1967.

⁹ NASA Release 62-40; NASA, *Eighth Semiannual Report* (Washington, D.C.: NASA, 1963), 142; Memorandum, John J. Neilon, Deputy Director, KSC Unmanned Launch Operations, to Alfred Rosenthal, GSFC Historian, Jan. 23, 1968, Subject: Goddard Launch Team at PMR/WTR.

launched 11 satellites for NASA from this facility, which was later designated Western Test Range Launch Complex 5 (SLC-5). These launches included seven Explorer-class satellites and the international satellites FR 1A, Ariel 3, ESRO 2B (IRIS), and Aurorae. Launch vehicles for these missions were under the technical direction of a Langley Research Center Mission Support Office.

NASA acquired a USAF Thor-Agena launch pad (SLC-2E) in late 1961. This pad was modified in 1966 to accommodate the NASA Delta vehicle. The NASA satellites launched from this facility by mid-1968 were Alouette 1 and 2; Echo 2; Nimbus 1 and 2; OGO 2 and 4; Pageos 1; GEOS 2; ESSA 3, 4, 5, and 6; and Explorer 34 (IMP-F) and 38 (RAE-A).

On March 7, 1962, the Launch Operations Directorate was reorganized, with Marshall Space Flight Center retaining one segment designated the "Launch Vehicle Operations Division." The other two segments became independent NASA field installations; the Cape Canaveral facility was designated NASA Launch Operations Center (LOC), and the NASA Test Support Office at Point Arguello was redesignated Pacific Launch Operations Office (PLOO). The Director of Pacific Launch Operations Office reported to the Director of NASA Headquarters Office of Space Sciences, and was responsible for representing NASA in its relations with the Pacific Missile Range, negotiating and coordinating use of range services and facilities, providing administrative logistic and technical support for NASA programs and projects at PMR, coordinating requirements of other field installations at PMR, and executing various support functions.¹⁰

Major changes in U.S. range command initiated in 1963 affected NASA's relations with the West Coast ranges. In November 1963 Secretary of Defense Robert S. McNamara directed consolidation of Department of Defense ICBM and satellite test range facilities under one authority in the U.S. Air Force. The directive included transfer of Naval Missile Facility, Point Arguello, to Vandenberg AFB; assignment to the Air Force of responsibility for on-orbit control of spacecraft, except for Navy navigation satellites and military communications satellites; transfer from the U.S. Navy to the U.S. Army of the antimissile test support facilities at Kwajalein Atoll; and transfer from the Navy to the Air Force of Pacific space tracking stations.¹¹

In compliance with this order, on January 2, 1964, the Air Force Systems

Command (AFSC)—which had replaced the Air Research and Development Command April 1, 1961—established the National Range Division (NRD) Provisional Headquarters at Patrick AFB (Florida). At the same time the Air Force Space Test Center, Provisional, was established at Vandenberg AFB.¹² On May 4, Air Force Systems Command organized the National Range Division as the central command for all Department of Defense range facilities, with headquarters at Andrews AFB (Maryland). Headquarters of Air Force Missile Test Center (AFMTC) became Headquarters of Air Force Eastern Test Range (AFETR), and Air Force Space Test Center, Provisional, at Vandenberg was redesignated Air Force Western Test Range (AFWTR).¹³

The Eastern and Western Test Ranges were established May 15, 1964, with the understanding that Air Force Western Test Range would gradually assume responsibilities of the Pacific Missile Range for providing range support. Although the transition was scheduled for completion by July 1, 1965, Naval Missile Facility, Point Arguello, became part of Vandenberg July 1, 1964, and by February 1, 1965, the complete transfer was accomplished. PMR continued to operate as a national range under Navy management, but consisted of the Sea Test Range off Point Mugu with stations at San Nicolas and San Clemente Islands, missile impact location stations (MILS) at Wake and Midway Islands, tracking stations at the Barking Sands missile tracking facility on Kauai, Hawaii, and a facility on Johnston Island.¹⁴

After a White House announcement, NASA Launch Operations Center was renamed John F. Kennedy Space Center (KSC) one week after the assassination of the late President. ¹⁵ On October 1, 1965, NASA consolidated under KSC its unmanned launch activities at the Eastern and Western Test Ranges, and both Goddard Space Flight Center's Launch Operations Division and the 22-member Pacific Launch Operations Office were placed under KSC. ¹⁶ John F. Kennedy Space Center, NASA, established and maintained a Western Test Range Operations Division at the California launch base.

¹⁰NASA Circular No. 208, March 7, 1962; NASA Release 62-53; NASA General Management Instruction 2-2-15, Nov. 26, 1962.

¹¹DOD Release 1494-63.

¹² AFSC Release 41-5-1.

¹³ AFSC Release 45-R-50.

¹⁴ AFSC Release 45-R-61; NASA Announcement 61-161; Zylstra, Missiles and Rockets (March 8, 1965), 33-34; Miles, Los Angeles Times, July 1, 1964.

¹⁵Executive Order 11129; NASA Announcement 63-283, Dec. 20, 1963; NASA, Tenth Semiannual Report (Washington, D.C.: NASA, 1964), 21; Marshall Star, Dec. 11, 1963. 2.

¹⁶ NASA Release 65-313.

Table 6-151. Property: Pacific Launch Operations Office (as of June 30; money amounts in thousands)

Category ^a	1963	1964	1965
Land in hectares (and acres)			
Owned	0	0	0
Leased	0	0	0
Buildings			
Number owned	11	11	14
Area owned, thousands of sq m	4.5	4.5	6.8
(and sq ft)	(48)	(48)	(73)
Area leased	0	0	0
Value			
Land	0	0	0
Buildings	\$ 888	\$ 888	\$1547
Other structures and facilities	2117	2217	2300
Real property	\$3005	\$3105	\$3847
Capitalized equipment	\$ 25	\$ 642	\$ 246

^aFor definition of terms, see introduction to Chapter Two.

Source: NASA, Office of Facilities.

Table 6-152. Value of Real Property Components as Percentage of Total: Pacific Launch Operations Office (as of June 30; total real property value in thousands)

Component	1963	1964	1965
Land	0	0	0
Buildings	29.6	28.6	40.2
Other structures and facilities	70.4	71.4	59.8
	100.0	100.0	100.0
Total real property value	\$3005	\$3105	\$3847

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-153. Personnel: Pacific Launch Operations Office

	1962	19	63	19	64	1965	
Employee Category ^a	12/31	6/30	12/31	6/30	12/31	6/30	
Requested for FY ending				22		19	
Total paid employees	14	17	19	22	21	21	
Permanent	12	13	16	17	18	17	
Тетрогату	2	4	3	5	3	4	
Code group (permanent	e .						
only)			_		0	0	
200	0	0	0	Ü	0		
700	5	5	5	5	6	0	
900	0	0	0	0	0	Ų	
Subtotal	5	5	5	5	6	6	
600	3	4	. 5	. 4	4	3	
500	3	3	4	6	6	4	
300	1	1	2	2	2	2	
100	0	0	0	0	0	(
Subtotal	7	8	11	12	12	11	
Excepted: on duty	0	0	0	0	0	(
Accessions: permanent	3	1	1	2	1	1	
Accessions: temporary	2	5	8	8	4	4	
Military detailees	0	0	0	0	0	(

^aFor key to Code group numbers and definition of terms, Source: NASA, Personnel Division. see introduction to Chapter Three.

Table 6-154. Funding by Fiscal Year: Pacific Launch Operations Office (program plan as of May 31, 1968, in millions)

Appropriation Title	1960	1961	1962	1963	1964	1965	1966	Total
Research and development	_	_	0	\$0.20	0	\$0.10	0	\$0.30
Construction of facilities ^a ,	\$1.11	\$0.45	\$0.61	0	0	0.28	0	2.45
Administrative operations ^b	_	_	0.12	0.64	0.90	0.85	0.56	3.07
Total	\$1.11	\$0.45	\$0.73	\$0.84	\$0.90	\$1.23	\$0.56	\$5.82

^aDoes not include facilities planning and design. Appropriation for FY 1962 was for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, Feb. 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-155. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year: Pacific Launch Operations Office (in millions)

Program Year	Program Plan ^a	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1960	\$1.1	\$0.8	\$0.3	*	-*	0	*	-*	_*	0	\$1.1
1961	0.4		0	\$0.5	-*	0	0	0	0	0	0.4
1962	0.6			0.3	*	-*	0	0	\$0.3	0	0.6
1963	0				0	0	0	0	0	Õ	0.0
1964	*					0	*	0	Õ	ő	*
1965	0.4						*	\$0.3	*	ő	0.3
1966	*							0	*	0	*
1967	$0_{\mathbf{p}}$							o o	0.7	-\$0.7	1.0 ^t
Total	\$2.6	\$0.8	\$0.5	\$0.9	-*	-*	*	\$0.3	\$0.8	\$0.7	\$2.6

^aAs of June 30, 1968; includes facilities planning and design. bObligations were made under a previous plan of \$1.3 million for launch facilities now reported under Kennedy Space Center.

Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

WESTERN OPERATIONS OFFICE (WOO)

See Western Support Office (WSO).

WESTERN SUPPORT OFFICE (WSO)

Location:

Santa Monica, Los Angeles County, California.

Director:

Robert W. Kamm (Sept. 1, 1959-March 1, 1968).

Edwin P. Hartman (Director, NASA Western Coordination Office (WCO), Oct. 1, 1958-Sept. 1, 1959; Director, NACA WCO, 1939-Oct. 1, 1958).

Deputy Director:

E. M. James, Jr. (April 9, 1967-March 1, 1968). D. R. Mulholland (June 24, 1969-Sept. 1, 1966).

History

In 1939 the NACA established a Western Coordination Office (WCO) in Los Angeles to maintain liaison with the aircraft industry concentrated in the area. Up to 1957, the office had only two employees, and only six in 1959, when a NASA management study recommended a substantial expansion of the installation to meet the increasing workload brought by contracts with the California aerospace industry.¹

On August 5, 1959, NASA announced that the Office had been reorganized and redesignated Western Operations Office (WOO).² In addition

to providing liaison with industry, scientific institutions, and universities in the West, the Office was made responsible for administrative and management support of NASA activities west of Denver, Colorado. In its contract administration function, the Western Operations Office dealt with some of NASA's largest contractors, including California Institute of Technology for operation of the Jet Propulsion Laboratory; Rocketdyne Division of North American Aviation, Inc., for the F-1, J-2, and H-1 engines; North American Inc., for the Saturn V second stage and the Apollo spacecraft, and Douglas Aircraft Co. for the Saturn V third stage. The Western Operations Office also participated in development of Delta, Centaur, Atlas-Agena, and Thor-Agena launch vehicles, while furnishing legal and patent counsel, security checks, audits, accounting, disbursement, budgeting, and public information services for NASA field activities in the West.³

Following the 1961 decision to attempt a lunar landing in the 1960s, the growing NASA program, as implemented through large contracts with the West Coast aerospace industry, was reflected in the expansion of the Western Operations Office; it grew more than 350 percent between the beginning of 1962 and mid-1963. On May 11, 1962, NASA announced establishment of the NASA Office-Downey (NASA-O-Downey) as a new element of the Western Operations Office to expedite effective direction of the major development contracts at North American Aviation, Inc., Space and Information Systems Division plant at Downey, California.

On June 15, 1966, as major development projects neared completion and flight tests began, the Western Operations Office was disestablished as a NASA field installation. Its functions were realigned in two component field activities reporting to the NASA Headquarters Office of Industry Affairs—the NASA Office-Downey and the Western Support Office (WSO), established by the June 15 directive.

The Western Support Office was required to provide intermittent technical and safety engineering support to NASA project and program managers, furnish administrative support to NASA-O-Downey, as well as to NASA Resident Office-JPL (redesignated NASA Pasadena Office August 17, 1966), Western Test Range Operations Division of Kennedy Space Center, and Space

¹ Rosholt, Administrative History of NASA, 95. The Data Book section on history of the Western Support Office was prepared from information provided by Stanley A. Miller, NASA Pasadena Office.

² NASA Release 59-206.

³ NASA, *Third Semiannual Report* (Washington, D.C.: GPO, 1960), 124; MSC, *Space News Roundup*, Feb. 6, 1963, 5.

⁴ Rosholt, Administrative History of NASA, 243.

⁵NASA Release 62-115.

Nuclear Propulsion Office-Nevada. The Western Support Office also provided legal and security services, handled certain disbursements, and supported the NASA technology utilization and public information programs.

NASA announced November 28, 1967, that, because of FY 1968 budget reductions, the Western Support Office would close.⁷ The decision was effective as of March 31, 1968.⁸

Table 6-156. Industrial Real Property: Western Support Office (as of June 30; money amounts in thousands)^a

Category	North American Rockwell Corp. ^b (Contract NAS 7-90 F) NASA Industrial Plant-Downey, Calif.	TRW-Redondo Beach ^c (Contract NAS 7-223 F) Redondo Beach, Calif.	New Mexico State Univ. ^C (Contract NAS 7-424 F) White Sands Missile Range, N. Mex.	Total
	1967	1967	1967	
Land in hectares (and acres)	67.2 (165.9)	0	1128.7 (2789)	1195.9 (29 54 .9)
Buildings				
Number	82	3	0	85
Area, square meters (and square feet)	161 230.4 (1 735 470)	218.5 (2352)	0	161 448.9 (1 737 822)
Value				
Land	\$ 3617	0	$0^{\mathbf{d}}$	\$ 3617
Buildings	23 681	\$88	0	23 769
Other structures and facilities	4 981	0	\$45	5 026
Total industrial real property	\$32 279	\$88	\$45	\$32 412

^aWSO property was placed under other Centers after March 1, 1968. These 1967 figures are included in Table 6-157; data for earlier years are not available.

^dPublic Land Order 3685 withdrew this land from the public domain for NASA use. However, its value is not carried on NASA books.

Source: NASA, Office of Facilities.

^bReported by Manned Spacecraft Center in FY 1968.

^cReported by Goddard Space Flight Center in FY 1968.

⁶ NASA Hq. Weekly Bulletin, No. 29, July 19, 1966; NASA Management Manual Instruction 1136.27.

⁷ NASA Release 67-292.

⁸ Phone conversation with J. W. Hughes, Manpower Analysis and Plans Branch, NASA Headquarters, June 16, 1970.

Table 6-157. Property: Western Support Office (as of June 30; money amounts in thousands)^a

Category	1963 ^b	1964	1965	1966	1967
Land in hectares (and acres)				1105.0	1195.9
Owned	NA	NA	67.1 (165.9)	1195.9 (2954.9) ^c	(2954.9)
Leased	NA	611.5 (1511)	657.6 (1625)	659.3 (1629)	0
Buildings			200	83	85
Number owned	NA	NA	280	162.2	161.5
Area owned, thousands of sq m	NA	NA	165.7 (1784)	(1746)	(1738)
(and sq ft)	2.2	2.1	4.4	4.2	3.4
Area leased, thousands of sq m	3.2	3.1		(45)	(37)
(and sq ft)	(34)	(33)	(47)	(43)	(31)
Value		27.4	\$ 5 158	\$ 3 540	\$ 3 617
Land	NA	NA	•	25 845	23 769
Buildings	NA	NA	26 077	5 006	5 026
Other structures and facilities	NA	NA ——	5 055	3 006	
Paul proporty	NA	NA.	\$36 290	\$34 391	\$32 412
Real property Captialized equipment	\$194	\$155	\$ 201	\$22 465	\$22 943

^aWestern Coordination Office was redesignated Western Operations Office, Aug. 5, 1959. Western Operations Office was disestablished June 15, 1966, and its functions realigned in Western Support Office and NASA Office-Downey. Western Support Office was disestablished effective March 1, 1968. For definition of terms, see introduction to Chapter Two.

bData for earlier years are not available.

^cPart of antenna test range at White Sands operated by New Mexico State University. Reported by Goddard Space Flight Center in FY 1968.

NA = Data not available.

Source: NASA, Office of Facilities.

Table 6-158. Value of Real Property Components as Percentage of Total: Western Support Office (as of June 30; real property amount in thousands)

Component	1965 ^a	1966	1967
Land	14.2	10.2	11.2
Buildings	71.9	75.2	73.3
Other structures and facilities	13.9	14.6	15.5
	100.0	100.0	100.0
Total WSO real property value	\$36 290	\$34 391	\$32 412

^aData for earlier years are not available.

Source: Derived from Tables 2-10 through

2-13 in Chapter Two.

Table 6-159. Personnel: Western Support Office²

		060	19	961	19	962	19	963
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Requested for FY ending	8		46		85		125	
Total, paid employees	37	50	60	84	136	247	308	318
Permanent	36	49	57	80	130	241	301	310
Temporary	1	1	3	4	6	6	7	8
Code group (permanent only)					•	Ü	,	· ·
200 ^b	1	1	1	2	2	2	2	2
700 ^c	10	12	14	17	27	30	35	38
900	0	0	0	0	0	0	0	0
Subtotal	11	13	15	19	29	32	37	40
600 ^d	0	17	20	27	41	66	85	89
500	25	19	22	33	55	92	103	104
300	0	0	0	1	5	51	76	77
100	0	0	0	0	. 0	0	0	0
Subtotal	25	36	42	61	101	209	264	270
Excepted: on duty	1	1	1	1	3	3	3	3
Accessions: permanent	12	16	13	26	61	120	77	21
Accessions: temporary	1	0	4	1	3	4	7	11
Military detailees	0	0	0	0	0	0	ó	0

Table 6-159. Personnel: Western Support Office^a (Continued)

	10	964	19	965	1	966	19	967
Employee Category	6/30	12/31	6/30	12/31	6/30	12/31	6/30	12/31
Requested for FY ending	500		385		401		381	
	376	370	377	343	294	105	119	103
Total, paid employees	369	355	352	339	268	97	97	95
Permanent	7	15	25	4	26	8	20	8
Temporary Code group (permanent only)	•							
	3	3	3	3	0	0	1	1
200 ^b	50	51	50	49	45	17	14	14
700 ^c	0	0	0	0	0	0	0	0
900	53	54	53	52	45	17	15	15
Subtotal		94	95	90	55	24	25	27
600 d .	100	119	117	113	86	55	56	51
500	128		87	84	81	0	0	1
300	88	88		0	1	1	1	1
100	0	0	0	287	223	80	82	80
Subtotal	316	301	299		3	1	1	1
Excepted: on duty	3	3	4	4	-	1 6	6	NA
Accessions: permanent	69	21	10	13	34	6	18	NA NA
Accessions: temporary	9	17	17	13	26	3		0
Military detailees	0	0	0	0	0	0	0	

aNASA Western Coordination Office was redesignated Western Operations Office Aug. 5, 1959. Personnel figures for 1958-1959 were included in Flight Research Center reports. Western Operations Office was disestablished June 15, 1966, and its functions were realigned in the NASA Office-Downey and the Western Support Office (WSO) established effective June 15, 1966. WSO was disestablished effective March 1, 1968.

bBeginning June 30, 1961, the data reflect conversion of some professionals from the 200 Code group (engineers) to the 700 Code group (aerospace technologists). For key to Code group numbers and definition of terms, see Chapter Three.

^cData before June 30, 1961, are for "aeronautical re-

search scientists." Beginning June 30, 1961, the data reflect conversion of these personnel members to the 700 Code group (aerospace technologists).

d_{Before} Dec. 31, 1960, the data reflect inclusion of Code group 600 personnel in the 500 Code group.

NA = Data not available.

Source: NASA, Personnel Division. Data through Dec. 31, 1966, from NASA Quarterly Personnel Statistical Report; data after Dec. 31, 1966, from Personnel Management Information System and the NASA Supplement to SF 113-A, "Monthly Report of Federal Civilian Employment Short Form."

Table 6-160. Distribution of Permanent Personnel Positions by Fiscal Year and Budget Activity: Western Support Office^a

Program	1960 ^b	1961	1962	1963	1964	1965 ^e
Manned space flight		14	23	129	151	173
(% of total)	(16.0)	(23.4)	(16.9)	(42.5)	(40.3)	(44.8)
Space applications		2	8	3	19	7
(% of total)	(3.1)	(3.3)	(5.9)	(1.0)	(5.1)	(1.8)
Unmanned investigations in space		20	82	19	15	35
(% of total)	(6.9)	(33.3)	(60.3)	(6.3)	(4.0)	(9.1)
Space research and technology		16	6	22	35	32
(% of total)	(23.9)	(26.7)	(4.4)	(7.3)	(9.3)	(8.3)
Aircraft technology ^C		6	0	0	0	o o
(% of total)	(46.1)	(10.0)	(0.0)	(0.0)	(0.0)	(0.0)
Supporting activities ^d		2	17	130	155	139
(% of total)	(4.0)	(3.3)	(12.5)	(42.9)	(41.3)	(36.0)
Total WSO		60	136	303	375	386

^aBased on number of actual positions reported in annual NASA Budget Estimates. FY 1961 actual figure was reported in NASA, Budget Estimates, FY 1963; FY 1962 actual figure was reported in NASA, Budget Estimates, FY 1964, etc.

bActual positions data are not available for FY 1960. Percentages in this column are based on distribution used by NASA Office of Programming, Budget Operations Division, in preparing History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, 1965), Sect. 8.

^cFY 1961 figure represents "aircraft and missile technology."

^dFY 1963 and later figures include tracking and data acquisition, technology utilization, and general-support positions. Until FY 1963 general-support positions were reported with the five other budget activities. FY 1961 and FY 1962 figures represent only tracking and data acquisition.

^eData for later years are not available.

Source: NASA, Budget Estimates, FY 1963-FY 1969.

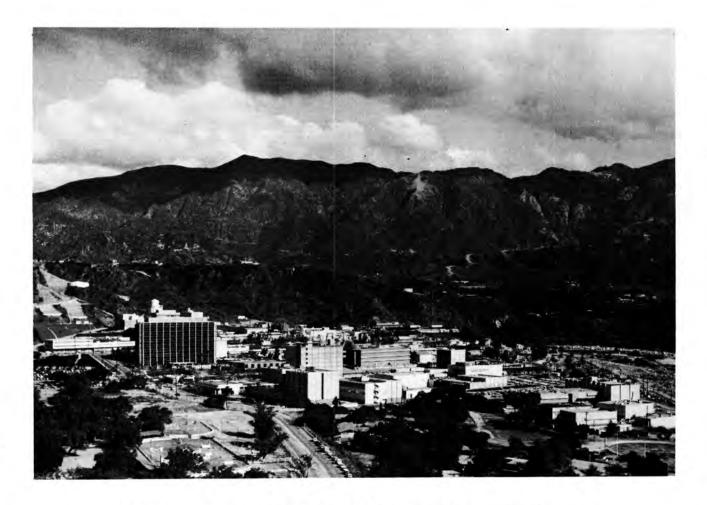
Table 6-161. Funding By Fiscal Year: Western Support Office (program plan as of May 31, 1968, in millions)

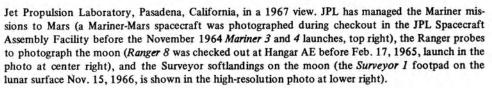
Appropriation Title	1960	1961	1962	1963	1964	1965	1966	1967	1968	Total
Research and development ^a Administrative operations ^b Total	\$0.40 0.47 \$0.87	\$72.70 5.72 \$78.42	\$149.30 1.38 \$150.68	3.45	4.40	5.04	\$18.20 4.90 \$23.10	\$13.00 3.17 \$16.17	\$2.20 1.25 \$3.45	\$534.30 29.78 \$564.08

^aFY 1961-1963 includes contract with Jet Propulsion Laboratory. bFY 1960-1962 appropriations were for salaries and expenses; FY 1963 appropriation was for research, development, and operation.

Source: NASA, Office of Programming, Budget Operations Division, History of Budget Plans, Actual Obligations, and Actual Expenditures for Fiscal Years 1959 Through 1963 (Washington, D.C.: NASA, February 1965); NASA, Budget Operations Division, "Status of Approved Programs," FY 1959-FY 1968, May 1968.

Table 6-162. Total Procurement Activity by Fiscal Year: Western Support Office^a (money amounts in millions)


	1960	1961	1962	1963	1964	1965	Total
Net value of contract awards Percentage of NASA total	-\$.9 ^b	\$130.6 17%	\$266.7 17%	\$412.3 13%	\$329.1 7%	\$346.5 7%	\$1484.3 9.5%


^aFigures include Jet Propulsion Laboratory.

Source: NASA, Procurement and Supply Division, NASA Procurement: October 1, 1958 to June 30, 1960 (Washington, D.C.: NASA, September 1960); NASA, Annual Procurement Report, Fiscal Years 1961-1968 (Washington, D.C.: NASA, 1962-1968).

bIncludes 109 debit items totaling \$6.9 million and 1 credit item (JPL contract) totaling \$7.8 million.

JET PROPULSION LABORATORY

JET PROPULSION LABORATORY (JPL)

(Not a NASA installation; operated by California Institute of Technology under contract to NASA.)

1.

Location: Pasadena, Los Angeles County, California.

71.3 total hectares (176 acres) as of June 30, 1968:

- 59.1 hectares (145.9 acres) NASA-owned.

- 12.2 hectares (30.1 acres) leases and easements.

Director: W. H. Pickering (November 1954-

L. G. Dunn (1947-1954). F. J. Malina (1944-1946).

Deputy Director:

Rear Adm. John E. Clark (USN, Ret.) (Feb. 19, 1968-

A. R. Luedecke (August 1964-August 1967).

B. O. Sparks (February 1960-July 1964).

History

Land:

Astronomy was a leading discipline at the California Institute of Technology since the institute's origin as the Throop Polytechnic Institute, with astronomer George Ellery Hale (1868-1938) on the Board of Trustees from 1907 until his death. In June 1918 Hale, as Director of Mount Wilson Observatory, offered laboratory space to Robert H. Goddard for rocket experiments. Goddard tested a small solid-fuel rocket for the Signal Corps in August 1918 in a canyon near the present site of the Jet Propulsion Laboratory.¹

After its founding in 1926, the Guggenheim Aeronautical Laboratory,

California Institute of Technology (GALCIT), rapidly developed into one of the Nation's leading schools of aeronautics under the guidance of Dr. Theodore von Karman. Beginning in 1936, theoretical and empirical experiments on the performance of various jet propulsion engines were conducted by several of von Karman's graduate students who hoped eventually to construct a high-altitude sounding rocket; formal Government support of this research followed in 1939-1940.²

On June 25, 1940, the Army Air Corps awarded Caltech a contract to continue design and development of solid- and liquid-propellant rocket motors for application to "super-performance" of aircraft.³ Construction of facilities at what is now the site of the Jet Propulsion Laboratory began shortly thereafter, in August 1940. During World War II the GALCIT Rocket Research Project developed the first restricted-burning, "castable," solid-propellant rocket motors and hypergolic red-fuming nitric-acid-aniline liquid-propellant rocket motors, which were employed for jet-assisted takeoff (JATO) of aircraft. Production of these rocket units for the armed services was undertaken by the Aerojet-Engineering Corporation (now Aerojet-General Corporation), formed in 1942.⁴

News of the imminent appearance of the German V-2 rocket in the European theater of operations caused the GALCIT Rocket Research Project to examine the military potential of long-range missiles, and, after analysis, development of long-range missiles was recommended to the U.S. military

¹ Helen Wright, Explorer of the Universe: A Biography of George Ellery Hale (New York: Dutton, 1966), 299. The Data Book section on history of JPL was prepared by R. Cargill Hall, Jet Propulsion Laboratory.

² "The Daniel Guggenheim Graduate School of Aeronautics of the California Institute of Technology: A History of the First Ten Years," Bulletin of the California Institute of Technology, XLIX, No. 2 (May 1940), 3-5; Frank J. Malina, "Origins and First Decade of the Jet Propulsion Laboratory," in Emme, ed., History of Rocket Technology, 52 ff.

³ Theodore von Kármán, review of "Assisted Take-Off of Aircraft," James Jackson Cabot Fund lecture by Rear Adm. Calvin M. Bolster, Norwich Univ., Northfield, Vt., Publication No. 9, 1950, in ARS Journal, No. 85 (June, 1951), 92-93.

⁴ Malina, "Origins," 58-59.

services.⁵ Army Ordnance awarded Caltech a contract June 22, 1944, to design and develop long-range missiles and suitable launching equipment; a few months later—on November 1, 1944—the GALCIT Rocket Research Project was reorganized and renamed the Jet Propulsion Laboratory (JPL), GALCIT. At that time the word "rocket" was still in such bad repute, even in academic circles, that Caltech decided against employing that term: "It is for this reason that the Laboratory at Caltech is called the Jet Propulsion Laboratory rather than the Rocket Propulsion Laboratory." 6

Under the new mandate JPL designed and developed the liquid-propellant WAC Corporal sounding rocket,7 the Corporal tactical missile (first U.S. large liquid-fuel rocket), and the solid-propellant Loki antiaircraft rocket and Sergeant missile system during the late 1940s and 1950s. The Laboratory also pioneered in the development of FM-FM radio telemetry and various radio and inertial guidance systems for Army Ordnance which were used in the Corporal and Sergeant missiles and refined for use in the Jupiter IRBM.

In 1954-55 JPL collaborated with the Army Ballistic Missile Agency in a proposal to construct and launch an artificial earth satellite. The satellite proposal was submitted to the Department of Defense in 1955 and, when the Army was authorized in November 1957 to launch this vehicle, JPL provided the solid-propellant upper stages and the satellite instrumentation. This first American satellite, Explorer 1, was successfully launched January 31, 1958. Several months later—December 3, 1958—all contract functions and the Government-owned facilities of JPL were transferred from the Army to the newly created National Aeronautics and Space Administration for the support of NASA's space mission. For the second time California Institute of Technology-Jet Propulsion Laboratory redirected its research and development efforts, this time from missile systems to lunar and planetary exploration. The first joint NASA, JPL, and Army Ordnance Missile

Command lunar probes, *Pioneer 3* and 4 were launched in December 1958 and March 1959.

Under contract with NASA in the 1960s California Institute of Technology-Jet Propulsion Laboratory was assigned responsibility for planning, developing, and managing the Ranger (lunar impact), Surveyor (lunar softlander), and Mariner and Voyager (planetary probe) projects for the NASA Office of Space Science and Applications. In addition, under the NASA Office of Tracking and Data Acquisition, JPL developed and operated the NASA Deep Space Network (DSN), a worldwide system of facilities which track, command, control, and receive data from lunar and planetary spacecraft. JPL continued to pursue basic and applied research in support of these space programs.¹⁰

Mission

Jet Propulsion Laboratory, a nonprofit research and development facility operated under provisions of Contract NAS 7-100 (previously NASw-6) between California Institute of Technology and NASA, was assigned responsibility for conducting lunar, planetary, and deep-space unmanned scientific missions.¹¹ In carrying out the three basic objectives in this task (space flight projects, Deep Space Network, and research and advanced development in support of current and proposed space missions), the Laboratory maintained a balance in which approximately one half the staff was concerned with flight projects and one quarter with each of the remaining two objectives.¹² Other major support functions included:

(1) Tracking, data acquisition, data reduction and analysis for lunar and deep space flights.

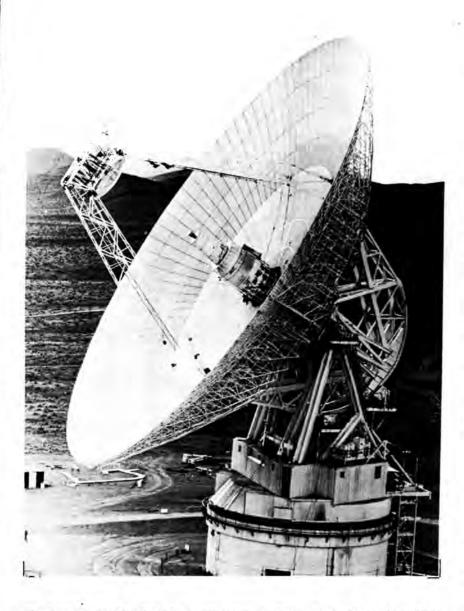
(2) Space science: analysis of information obtained from ground-based and space flight observations.¹³

⁵Theodore von Kármán, Memorandum on the Possibility of Long-Range Rocket Projectile, and H. S. Tsien and F. J. Malina, A Review and Preliminary Analysis of Long-Range Rocket Projectiles, Memo JPL-1 (Nov. 20, 1943).

⁶F. J. Malina, The Jet Propulsion Laboratory, GALCIT, Memo JPL-3, June 25, 1945, 10; F. L. Wattendorf and F. J. Malina, "Theodore von Kármán, 1881-1963," Astronautica Acta, X (1964), 85.

⁷A WAC Corporal mounted on a V-2 first stage (Bumper-WAC) was launched to a record 392.7-km (244-mı) altitude from White Sands, N. Mex., Feb. 24, 1949.

⁸ R. Cargill Hall, "Origins and Development of the Vanguard and Explorer Satellite Programs," *The Airpower Historian*, XI, No. 4 (October 1964), 101-112.


⁹ Executive Order 10793, 23 F.R. 9405, cited in Rosholt, Administrative History of NASA, 47.

¹⁰U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Manned Space Flight, 1967 NASA Authorization, Hearings, Pt. 2, 89th Cong., 2d sess., Feb. 18, 24, March 1-31, 1966 (Washington, D.C.: GPO, 1966), 719.

¹¹U.S. Congress, House, Committee on Appropriations, *Independent Offices Appropriations for 1966, Hearings*, Pt. 2, 89th Cong., 2d sess., Feb. 1-April 20, 1966 (Washington, D.C.: GPO, 1965), 1235.

¹² JPL Interoffice Memorandum 42-67, W. H. Pickering to Distribution, Subject: "Review of Aims and Objectives," Aug. 23, 1967.

¹³ U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on NASA Oversight, *Project Ranger*, House Rpt. 1487, 88th Cong., 2d sess., June 16, 1964 (Washington, D.C.: GPO, 1964), 10.

The 64-meter (210-foot) tracking and communications antenna of the Deep Space Network-directed by JPL for NASA-was photographed in the high desert near Goldstone, California, in 1967. The big dish was officially dedicated April 29, 1966, as the largest fully steerable antenna in the United States.

GOLDSTONE SPACE COMMUNICATIONS STATION

Location:

Mohave Desert, about 72 kilometers (45 miles) north of

Barstow, San Bernardino County, California.

Land:

About 16 370 hectares (40 450 acres) belonging to Fort Irwin military reservation, leased by NASA from the U.S. Army

History

Goldstone, first deep space facility constructed after the establishment of NASA, became the primary station in the worldwide Deep Space Network (DSN),1 and in 1968 consisted of four tracking and command sites. Construction of the first facility began in June 1958, when Jet Propulsion Laboratory was still under contract to the Army Ordnance Missile Command, and the Pioneer station and its steerable, paraboloidal reflector antenna with 25.9-meter (85-foot) diameter was completed in time to track the third U.S.-IGY space probe, Pioneer 3, launched December 6, 1958-three days after JPL functions and facilities were transferred to NASA jurisdiction. Construction of a second facility, the Goldstone Echo station, also equipped with a 25.9-meter (85-foot) antenna, began July 1959. The Echo station reached operational status in April 1960, in time for the attempted launch of the passive communications satellite Echo A-10.2 The 25.9-meter antenna at the Echo station was moved to a new site, called the Venus site, in April-May 1962 to create the third Goldstone facility. A new polar-mount, 25.9 meter replacement antenna was completed at the Echo site in June 1962.3 The Venus station was first used in a radar experiment with the planet Venus in October 1962.

Feasibility studies for a very large advanced antenna system (AAS) began

¹ NASA Release 66-88. Other stations in the Deep Space Network were at Woomera and Tidbinbilla, Australia (operational November 1960 and March 1965); Johannesburg, South Africa (July 1961); and two sites near Madrid, Spain (Robledo and Cebreros, July 1965 and January 1967). Control center for the network, the Space Flight Operations Facility (SFOF), was at JPL, Pasadena.

The section on history of Goldstone was prepared for the Data Book by R. Cargill Hall, Jet Propulsion Laboratory.

²NASA Release 66-88. See also JPL, Ranger 1964-65 (Pasadena: JPL, July 1964), 23.

³ JPL, Space Programs Summary No. 37-16, III, DSIF (Pasadena: JPL, July 31, 1962), 10.

at JPL in December 1960⁴ and, following establishment of feasibility, design, and selection of a contractor, excavation of the Mars site—the fourth Goldstone facility—began in October 1963. All structural components for an antenna dish with 64-meter (210-foot) diameter were installed by August

1965 and on April 29, 1966, the largest fully steerable antenna in the United States was officially dedicated.⁵ With the new dish, telemetry data reception resumed from the *Mariner 4* spacecraft, which had been launched on a Mars flyby trajectory November 28, 1964.⁶

⁴ JPL Release, Dec. 26, 1960.

⁵ JPL Lab-Oratory (November 1965), 8-9; NASA Release 66-88.

⁶U.S. Congress, House, Committee on Science and Astronautics, Subcommittee on Space Science and Applications, 1968 NASA Authorization, Hearings, Pt. 3, 90th Cong., 1st sess., March 3-22, April 4-19, 1967 (Washington, D.C.: GPO, 1967), 414.

EDWARDS TEST STATION

Location: Edwards Air Force Base (Mohave Desert), Edwards, Kern

County, California.

Land: 230.7 hectares (570 acres) under letter use permit from the

USAF.

History

Edwards Test Station was originally known as the ORDCIT Test Station at Muroc, California. Jet Propulsion Laboratory occupied the leased site and several newly constructed buildings at the edge of Muroc Dry Lake April 2, 1945, and began installation of rocket motor testing equipment. A WAC

Corporal prototype liquid-propellant motor was first fired September 19, 1945, followed by the first Corporal scale-motor run December 10, 1945.

In the years following 1945 the Muroc Test Center became Edwards Air Force Base and Muroc Dry Lake became known as Rogers Dry Lake. ORDCIT Test Station was rechristened Edwards Test Station in 1954, and the Station came into use as a test facility for chemical propulsion supporting research and advanced development (for example, long-term storage of propellants at a controlled temperature) and for flight-project propulsion tests too hazardous or area-consuming to be conducted at JPL-Pasadena. After 1963, hazardous environmental tests of fueled spacecraft were also made at the Station. Facilities at Edwards consisted of seven rocket stands, magazines and propellant-storage facilities, a test-monitoring-and-recording control center, a spacecraft vibration test building, offices, supporting shops, a photolab, and storage buildings.²

¹ JPL, "Edwards Test Station Marks 10th Birthday," *Lab-Oratory*, IV (April 1955), 3. The *Data Book* section on history of Edwards was prepared by R. Cargill Hall, Jet Propulsion Laboratory.

[&]quot;Welcome to Edwards Test Station," Visitor's Guide, 1967.

TABLE MOUNTAIN OBSERVATORY

Location:

Table Mountain, Near Wrightwood, California.

Land:

4.3 hectares (10.5 acres) under letter use permit from the U.S.

Department of Agriculture, Forestry Division.

History

The Table Mountain site was operated by the Smithsonian Astrophysical Observatory from its construction in 1920 until 1962, when Jet Propulsion Laboratory purchased existing structures and began a construction and rebuilding program. Existing structures were two concrete bunkers, used for taking spectrograms of the sun and the earth's atmosphere, and several wood-frame buildings.

Construction of an observatory—for a 40-centimeter (16-inch) reflecting telescope—and a darkroom began in May 1962; work was completed and the observatory began operations in October of that year. In the following year, 1963, work began on a high-precision radioastronomy antenna with 5.5-meter (18-foot) diameter, for very short wavelengths. This construction was completed and the antenna placed in operation in 1964.

A second, larger observatory and requisite darkrooms were built in two sections during 1965-1966. Work on the first section—to accommodate a 61-centimeter (24-inch) reflecting telescope—began in October 1965 and was completed in February 1966. Construction of the addition to the observatory was completed in December 1966; it housed a spectrometer for studying planetary atmospheres. The spectrometer used the 61-centimeter telescope as its source of light. An additional large spectrograph was under construction in 1968.²

¹NASA, *Technical Facilities Catalog* (March 1967 ed.), I, 8-114. The *Data Book* section on history of Table Mountain Observatory was prepared by R. Cargill Hall, Jet Propulsion Laboratory.

²Interview with Ray Newburn, JPL Technical Manager of Table Mountain Observatory 1962-1967, Jan. 11, 1968.

Table 6-163. Technical Facilities: Wind Tunnels (with costs in thousands)

Facility Name	Year	Test Section Size	Mach No. Range	Reynolds No. Range	lnit. Cost	Accum. Cost	Research Supported
20-inch supersonic wind tunnel	1950	NA	1.3 to 5.6	Varies with mach. no.	\$2800	\$3800	Force, pressure, heat-transfer, static and dynamic stability measurements
21-inch hypersonic wind tunnel	1959	NA	4 to 11	Varies with mach. no.	6500	9500	Force, pressure, heat-transfer, static and dynamic stability measurements
Low-density gas-dynamics facility (LDGDF)	1959	NA	NA	NA	50	150	Fluid physics
Liquid sodium tunnel	1961- 1962	50-mm dia (2-in dia)	0.9 to 12.2 m per sec (3 to 40 fps)	NA	100	150	Magneto-fluid dynamics
6-inch arc-heated shock tube	1962	NA	10 058 m per sec (33 000 fps)	NA	75	240	Aerothermodynamics studies for suppor of planetary missions; radiative and convective heat transfer
12-inch free-piston shock tube	1963	NA	30	NA	75	225	Aerothermodynamics studies for suppor of planetary missions; radiative and convective heat transfer
43-inch shock tunnel	1964	NA	12	NA	50	100	Pressure distribution, distributed heat- transfer measurements, flow studies
Low-turbulence wind tunnel .	1966	0.6 x 0.6 x 2.7 m L (2 x 2 x 9 ft L)	0 to 24.4 m per sec (8 to 80 fps)	NA	12	12	Fluid mechanics, turbulence, viscous flow

NA = Data not available.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I,

Sect. 8; Append. B.

Table 6-164. Technical Facilities: Environmental Test Chambers (with costs in thousands)

Functional Name	Facility Name	Year Built	Dimensions Meters (feet)	Pressure	Temperature	Init. Cost	Accum. Cost	Research Supported
Climatic environments test laboratory	Environmental and Dynamic Testing Laboratory, Natural Environments	1961	0.3 x 0.3 x 0.3 (1 x 1 x 1) 0.6 x 0.3 x 0.3 (2 x 1 x 1) 0.9 x 0.9 x 0.9 (3 x 3 x 3) 0.9 x 0.9 x 0.9 (3 x 3 x 3) 1.8 x 0.9 x 0.9	- - - - -	200 to 589 K (-100° to +600°F) 200 to 589 K (-100° to +600°F) 200 to 450 K (-100° to +350°F) 200 to 394 K (-100° to +250°F) 200 to 422 K (-100° to +250°F) 89 to 394 K (-300° to +250°F) 200 to 422 K (-100° to +300°F)	\$ 70	\$ 147	Component and spacecraft subassembly temperature and humidity testing
Environmental test facility	Environmental and Dynamic Testing Laboratory, Natural Environments	1961	(6 x 3 x 3) 2.1 dia x 4.3 L (7 dia x 14 L)	8 x 10 ⁻⁸ torr	89 to 367 K (-300° to +200°F)	180	260	Testing of spacecraft and spacecraft subsystems
Environmental test facility	Environmental and Dynamic Testing Laboratory, Natural Environments	1961	0.6 dia x 1.0 L (2 dia x 3 L)	$2 \times 10^{-7} \text{ torr}$	89 to 408 K (-300° to +275°F)	122	253	Spacecraft subsystems and small components launch and space vacuum simulation
·	Environment and Dynamic Testing Laboratory, Natural Environments		0.6 dia x 1.1 L (2.1 dia x 3.3 L)	2 x 10 ⁻⁷ torr	89 to 408 K (-300° to +275°F)			
	Environmental and Dynamic Testing Laboratory Natural Environments		0.8 dia x 1.4 L (2.5 dia x 4.5 L)	2 x 10 ⁻⁷ torr	89 to 408 K (-300° to +275°F)			
Environmental test facility	25-Foot Space Simulator	1962	7.6 dia x 27.4 H (25 dia x 90 H)	5 x 10 ⁻⁶ torr	94 K (-290°F)	4266	6766	Extreme-cold, high-vacuum, and intense-solar-radiation testing of spacecraft
Environmental test facility	10-Foot Space Simulator	1965	3.1 dia x 13.7 H (10 dia x 45 H)	5 x 10 ⁻⁶ torr	94 K (-290°F)	1577	1577	Extreme-cold, high-vacuum, and intense-solar-radiation testing of spacecraft

NA = Data not available

Source: NASA, Technical Facilities Catalog (March 1967 ed.), 1, Sect. 8; Append. A.

Table 6-165. Technical Facilities Other Than Wind Tunnels and Environmental Test Chambers (with costs in thousands)

Functional Name	Facility	Year Built	Init. Cost	Accum. Cost	Research or Technological Areas Supported
Energy sources facility	Energy Sources Facility	1943	\$ 2.	\$ 7	Liquid metals
Liquid metals laboratory	Energy Sources Facility	1944	19	408	Liquid metals
Materials laboratory	Energy Sources Facility	1944	3	82	Liquid metals
Heat transfer laboratory	Heat Transfer Laboratory	1945	37	85	Subsonic, supersonic, accelerating and and decelerating air flows, and ionized gas flows
Plasma research facility, low pressure	Plasma Flow Research Laboratory	1947	88	636	Interaction of electric and magnetic fields with plasmas
Hydraulic test laboratory	Hydraulic Test Laboratory	1947	85	100	Simulated testing of propulsion components, subsystems, and related R&D
Gas metering laboratory	Gas Metering Laboratory	1951	125	150	Simulated testing of propulsion components, subsystems, and related R&D
Polymer chemistry laboratory	Polymer Chemistry Laboratory	1951	73	122	Polymers; spacecraft materials
Energy sources facility	Energy Sources Facility	1954	22	33	Liquid metals
Propulsion application laboratory, electric	Electric Propulsion Application Laboratory	1955	16	216	Ion thruster systems (R&D)
Power conversion laboratory	Power Conversion Laboratory	1956	63	259	Liquid MHD power conversion

Table 6-165. Technical Facilities Other Than Wind Tunnels and Environmental Test Chambers (Continued) (with costs in thousands)

Functional Name	Facility	Year Built	lnit. Cost	Accum. Cost	Research or Technological Areas Supported
Centrifuge laboratory	Environmental and Dynamic Testing Laboratory, Induced Environments	1960	\$ 15	\$ 15	Spacecraft components and sub-assemblies
Vibration test facility	Environmental and Dynamic Testing Laboratory, Induced Environments	1961	362	460	Spacecraft and component vibration- environment simulation
Radiation facility, high-energy ionizing	10 Kilocurie – Co ⁶⁰ Source	1961	5	15	Radiation chemistry
Celestarium-sun and star simulator	Celestarium—Sun and Star Simulator	1961	102	116	Spacecraft reflection test and Canopus- sensor stray-light test
Star planet simulator laboratory	Star Planet Simulator Laboratory	1963	50	50	Star and planet tracker development testing
Optical performance testing laboratory	Optical Laboratory Tunnel	1963	500 ^a	600	Optical modulation transfer function, resolving power, aberrations, distortion, photometric response, etc., of optical equipment
Accelerator facility, positive ion	Dynamitron	1963	250	310	Electrophysics, nuclear fission, atomic stopping, secondary electron production
Shock test facility	Shock Machine, Environmental and Dynamic Testing Laboratory	1963	35	35	Component and spacecraft subassembly shock testing
Magnetic facility, high field	High Field Magnet Facility	1964	200	245	Low-temperature physics and magnetic resonance

Table 6-165. Technical Facilities Other Than Wind Tunnels and Environmental Test Chambers (Continued) (with costs in thousands)

Functional Name	Facility	Year Built	Init. Cost	Accum. Cost	Research or Technological Areas Supported
Acoustic environments laboratory	Environmental and Dynamics Testing Laboratory, Induced Environments	1964	\$190	\$190	Spacecraft and component acoustic- environment simulation; equipment R&D
Control systems simulation laboratory	Control Systems Simulation Laboratory	1964- 65	40	40	Simulations and feasibility demonstrations
Sterlization and experimental assembly laboratory	Experimental Assembly and Sterilization Laboratory (EASL)	1965	122	122	Electromechanical assembly under biologically clean conditions
Spectroscopy laboratory, long path absorption	Spectrosopy Laboratory and Absorption Tube	1965	153	800	Atmospheric physics, planetary astronomy
Magnetic field facility	Low Magnetic Field Facility	1965	88	130	Low-field magnetometer evaluation and calibration, assembly magnetic mapping, and superconductivity studies
Inertial sensor laboratory	Inertial Sensor Laboratory	1965	100	103	Determination of operating parameters of gyros and accelerometers for space-craft systems
Sterilization assembly development laboratory	Sterilization Assembly Development Laboratory (SADL)	1967	999	999	Design requirements of capsule systems and for facilities to satisfy planetary quarantine requirements
Geomagnetic Observatory ^b	Extremely-Low-Fre- quency Magnetic Field Observatory	1964	30	35	Geomagnetic field monitoring and correla- tion with magnetic data taken from OGO spacecraft

^aEquipment, not building. ^bAt Morris Dam, Azusa Canyon, Calif.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 8.

NA = Data not available.

Table 6-166. Technical Facilities: Edwards Test Station (with costs in thousands)

ropellant processing facility	Solid Propellant		Cost	Cost	Supported
	Processing Area	1962- 1965	\$583	\$651	Solid-propellant motor development, rocket materials and components development, and sterilizable rocket moto development
Propellant casting facility	Casting Building	1963	42	242	Solid-propellant motor development, rocket materials and components development, and sterilizable rocket moto development
Propellant mixing facility	Mixer Building	1963	26	54	Solid-propellant motor development, rocket materials and components development, and sterilizable rocket motodevelopment
Vibration test facility	Environmental and Dynamic Testing Laboratory, Induced Environments	1964	330	500	Hazardous spacecraft and subassembly vibration testing
Propellant compatibility test facility	Propellant Compatibil- ity Test	1966	66	92	Elevated temperature tests
Rocket propulsion test stands:	"A" Stand	1947	75	200	Flow meter calibrations, bladder and diaphragm expulsion pumping tests
	"Baker" Stand	1952	50	200	Combustion; engine and injector development
	"C" Stand	1957	100	400	R&D static firings of cryogenic or eart storable propellants
	"D" Vertical	1959	276	295	System and coinponent tests, injector and thrust chamber development using earth-storable propellants

Table 6-166. Technical Facilities: Edwards Test Station (Continued) (with costs in thousands)

Functional Name	Facility	Year Built	Init. Cost	Accum. Cost	Research or Technological Areas Supported
Rocket propulsion test stands (continued):	"D _j "a	1960	\$ 42	\$102	Injector and chamber development tests using earth-storable propellants
	"D _y & D _d " Altitude Test Positions ^a	1960	104	325	Injector and fully expanded chamber develop ment tests using earth-storable propellants; miscellaneous component vacuum tests
	Solid	1962	42	59	Solid-fuel-rocket ballistic investigation, ignition studies, materials and component development
	"F"	1964	100	200	Materials, components, and system evalua- tion under hazardous conditions

^aPart of D stand complex.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I, Sect. 8, 83-110.

Table 6-167. Technical Facilities: Table Mountain Observatory (with costs in thousands)^a

Functional Name	Facility	Year Built	Init. Cost	Accum. Cost	Research or Technological Areas Supported	
Astronomical observatory, optical and radio ^b	Table Mountain Observatory	1962	_	\$600	Studies of bodies in the solar system of furnish possible descriptions of their atmospheres and surfaces	
Solar panel test facility	Solar Test Facility	1963	25	47	Photovoltaics	
Solar tracker	Solar Tracker	1965- 1966	70	70	Thermionic converter and generator development	

^aThe Table Mountain site was occupied under a special use permit granted by the U.S. Dept. of Agriculture, Forestry Division. The site was developed by the Smithsonian Institution in the 1920s and used for solar observations until acquisition by JPL in 1962. The \$12 000 "initial cost" is the payment for several old wood-frame buildings left by the Smithsonian.

^b61-cm (24-in) and 40-cm (16-in) reflecting telescopes and 5.5-m (18-ft) radiotelescope.

Source: NASA, Technical Facilities Catalog (March 1967 ed.), I,

Sect. 8, 113-118.

Table 6-168. Property
(as of June 30; money amounts in thousands)^a

Category	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land in hectares (and acres)										
Owned Leased	30.5 (75.2) 30.6 (75.5)	30.5 (75.2) 32.3 (79.8)	34.7 (85.8) 29.3 (72.6)	59.5 (146.9) 4.7 (11.5)	59.5 (146.9) 4.7 (11.5)	59.1 (145.9) 5.8 (14.3)	59.1 (145.9) 5.9 (14.4)	59.1 (145.9) 5.9 (14.4)	59.1 (145.9) 5.8 (14.3)	59.1 (145.9) 5.8
Buildings					, -,	(=)	(11.1)	(17.7)	(14.3)	(14.3)
Number owned Area owned, thousands of sq m (and sq ft) Area leased Value	102 40.7 (438) 0	114 43.9 (473) 0	122 54.4 (586) 0	142 62.3 (670) 0	164 69.3 (746) 0	180 98.2 (1057) 0	187 116.7 (1256) 0	151 122.3 (1316) 0	189 129.5 (1394)	343 159.5 (1717) 0
Land Buildings Other structures and facilities ^b	\$ 117 6 709 3 693	\$ 117 7 239 4 725	\$ 267 10 631 5 345	\$ 807 14 658 6 457	\$ 802 16 736 7 275	\$ 802 25 799 6 793	\$ 802 31 872 8 473	\$ 802 34 695 11 678	\$ 799 38 543 9 278	\$ 799 50 456 27 516
Real property Capitalized equipment	\$10 519 \$10 322	\$12 081 \$12 335	\$16 243 \$18 220	\$21 922 \$26 028	\$24 813 \$34 300	\$33 394 \$46 894	\$41 147 \$62 873	\$47 175 \$79 252	\$48 620 \$92 093	\$ 78 771 \$103 796

^aAll NASA industrial real property under Contract No. NAS 7-270 F between California Institute of Technology and NASA; for 1967 breakdown of JPL facilities, see section on NASA Pasadena Office-JPL in this chapter.

^bDefinition of "other structures and facilities" was refined in 1968 to include electrical, water, sewage, gas, communication system, road, and other improvements to real property.

Source: NASA, Office of Facilities. Supplementary information was provided by P. E. Mayer, Property Administration Section, JPL.

Table 6-169. Value of Real Property Components as Percentage of Total (as of June 30; total real property value in thousands)

Component	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
Land	1.1	1.0	1.6	3.7	3.3	2.4	1.9	1.7	1.6	1.0
Buildings	63.8	59.9	65.5	66.9	67.4	77.3	77.5	73.5	79.3	64.1
Other structures and facilities	35.1	39.1	32.9	29.4	29.3	20.3	20.6	24.8	19.1	34.9
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Total JPL real property										
value	\$10 519	\$12 081	\$16 243	\$21 922	\$24 813	\$33 394	\$41 147	\$47 175	\$48 620	\$78 771

Source: Derived from Tables 2-10 through 2-13 in Chapter Two.

Table 6-170. Personnel: Jet Propulsion Laboratory

Employee Category ^a	9/30	958 12/31	6/30	1959 12/31	$\frac{1}{6/30}$	960 12/31	6/30	96 <u>1</u> 12/31	6/30	962 12/31	6/30	1963 12/3
Manpower quota Permanent employees Accessions Military detailees	2266	2328 58 0	2662	2609 ^a 2626 36 0	2743	3010 2655 88 9b	2817	3495 3091 274 13	3497 17	3878 3821 324 23	4004 17	418 413 130

Table 6-170. Personnel: Jet Propulsion Laboratory (Continued)

	6/30	964 12/31	$\frac{1}{6/30}$	965 12/31	$\frac{1}{6/30}$	966 12/31	$\frac{1}{6/30}$	967 12/31	1968 6/30 1
Employee Category Manpower quota Permanent employees	4291	4275 4268	4027	4150 4016 11	4069	4400 4333 264	4565	4650 4377 188	4150 4102 194
Accessions Military detailees	17	23 17	17	16	16	16	19	19	13

^aQuotas not assigned until Dec. 31, 1959. ^bProgram began in FY 1961.

Source: JPL, Personnel Office.

Table 6-171. Actual Obligations for Construction of Facilities by Fiscal Year and Program Year (in millions)

Program Year	Program Plan ^a	FY 1960	FY 1961	FY 1962	FY 1963	FY 1964	FY 1965	FY 1966	FY 1967	FY 1968	Total
1960	\$7.7	\$7.4	*	. \$0.3	0	0	*	0	0		
1961	8.6		\$6.9	1.7	*	0			0	0	\$ 7.7
1962	4.1		Ψ0.>			0	0	0	*	0	8.6
1963				4.0		U	0	0	-*	*	4.1
	11.6				\$10.3	\$1.4	0	*	-*	0	11.6
1964	3.2					3.2	*	0	*	*	3.2
1965	4.0						\$3.8	\$0.1	*	0	
1966	1.1						Ψ3.0			0	4.0
1967	0.8							1.1	-*	*	1.1
1968									\$0.6	\$1.0	0.7
	1.9									0.9	0.9
Total	\$43.0	\$7.4	\$6.9	\$5.9	\$10.3	\$4.6	\$3.9	\$1.2	\$0.6	\$1.0	\$41.9

 ^aAs of June 30, 1968; includes facilities planning and design.
 ^bIncludes \$1.2 million for tracking and data-acquisition facilities.

Source: NASA, Budget Operations Division, "Status of Approved Programs, Construction of Facilities," FY 1959-FY 1968, June 1968; NASA, Financial Management Division, "Summary Financial Status of Programs," June 30, 1968.

^{* =} Less than \$100 000. Because of rounding, columns and rows may not add to totals.

Table 6-172. Awards to Personnel Granted under Section 306 of the Space Act of 1958a

Year	Inventor	Contribution	Amoun
	Conrad Josias	Bipolar logarithmic current-to-voltage transducer	\$1000
1963	James D. Acord Howard C. Vivian	Space vehicle attitude control	1000
	Walter K. Victor Eberhardt Rechtin	Space communication system	5000
1964	William W. Smith Bruce W. Schmitz	Trajectory-correction propulsion system	1000
	John F. Meyer	Low-speed time multiplexing	1300
	Gerald W. Meisenholder James D. Acord Howard C. Vivian Louis F. Schmidt	Sensing devices	1600
1966	Robert K. Yasui	Solar-cell submodule	1000
1967	Richard C. Turner	A thermo couple assembly	1000
1,0,	Richard A. McKay	Temperature control system for circulating fluids	1000
1968 ^b	David W. Passell	Decorder/actuator device	50
1700	Charles T. Stelzried Donald L. Mullen	Broadband microwave waveguide window	100
	Robin A. Winkelstein	Noninterruptable digital counting system	700
	Alan R. Johnston	Polarimeter for transient measurement	1400
	Franklin L. Murphy	Bimetallic power-controlled actuator	50 0
	James M. Kendall, Sr. Joseph A. Plamondon, Jr.	Absolute cavity radiometer	1100

^aFor complete listing of awards under this Act, see Appendix A, Sect. I.B. bAs of June 30.

Source: NASA, Inventions and Contributions Board.

Appendix A SELECTED AEROSPACE AWARDS

Appendix A

SELECTED AEROSPACE AWARDS

Contents

			Page
	Nationa	al Aeronautics and Space Administration	483
	A. Ho	nor Awards	483
		Certificate of Appreciation	483
		Distinguished Service Medal	484
		Distinguished Public Service Medal	484
		Exceptional Bravery Medal	485
		Exceptional Scientific Achievement Medal	485
		Exceptional Service Medal	486
		Group Achievement Award	488
		Outstanding Leadership Medal	489
		Public Service Award	490
		Superior Achievement Award	490
	B. Aw	ards Granted Under Section 306 of the National Aeronautics and Space Administration Act of 1958	491
		cellaneous Awards to NASA Personnel	495
		ASME Man of the Year Award	495
		Federal Woman's Award	495
		Arthur S. Flemming Award	495
		National Civil Service League Award	496
		National Medal of Science	496

2.	Pro	fessional Associations and Societies	497
-		Aerospace Medical Association	497
		Louis H. Bauer Founder's Award	497
		Walter M. Boothby Award	497
		Howard K. Edwards Award	497
		Eric Liljencrantz Award	498
		Raymond F. Longacre Award	498
		Theodore C. Lyster Award	498
		Harry G. Moseley Award	499
		Arnold D. Tuttle Award	499
	В.		499
		H. H. Arnold Trophy	499
		Theodore von Kármán Trophy	500
		David C. Schilling Trophy	500
		Hoyt S. Vandenberg Trophy	500
		Gill Robb Wilson Trophy	501
	C.		501
		Flight Achievement Award	501
		Melbourne W. Boynton Award	502
		Space Flight Award	502
		Victor A. Prather Award	502
		W. Randolph Lovelace II Award	503
		Lloyd V. Berkner Space Utilization Award	503
	D.	American Geophysical Union	503
		John Adam Fleming Award	503
		Towns D. Manalusana Assard	503

	William Bowie Medal	504
E.	American Helicopter Society	504
	Grover E. Bell Award	
	Frederick L. Feinberg Award	505
	Paul E. Haueter Memorial Award	505
	Alexander Klemin Award	505
	Captain William J. Kossler Award	506
	Igor I. Sikorsky International Trophy	506
F.	American Institute of Aeronautics and Astronautics	507
•	AIAA Aerospace Communications Award	507
	Octave Chanute Award	507
	De Florez Training Award	507
	Goddard Award	508
	Haley Astronautics Award	
	Louis W. Hill Space Transportation Award	509
	John Jeffries Award	509
	Robert M. Losey Award	509
	Mechanics and Control of Flight Award	510
	G. Edward Pendray Award	510
	Sylvanus A. Reed Award	510
	Dryden Research Lecture	511
	Space Science Award	511
	Lawrence B. Sperry Award	511
	von Kármán Lecture	
	Wright Brothers Lecture	512
	James H. Wyld Propulsion Award	512

G.	American Institute of Aeronautics and Astronautics (Alabama Section)	513
	Hermann Oberth Medal	513
Н.	American Meteorological Society	513
	Cleveland Abbe Award	513
	Applied Meteorology Award	513
	Bioclimatology Outstanding Achievement Award	514
	Meisinger Award	514
	Carl-Gustaf Rossby Award	514
	Sverdrup Gold Medal	515
I.	American Society of Mechanical Engineers	515
	John Fritz Medal	515
	Elmer A. Sperry Award	516
	Spirit of St. Louis Medal	
	ASME Medal	516
J.	Army Aviation Association of America	517
	Army Aviator of the Year Award	
	James H. McClellan Aviation Safety Award	517
K.	Arnold Air Society	517
	General H. H. Arnold Trophy	517
	General Muir S. Fairchild Trophy	518
	Paul T. Johns Trophy	518
	John Fitzgerald Kennedy Trophy	
	General Hoyt S. Vandenberg Trophy	
	Eugene M. Zuckert Trophy	
L.		
L.	Colorine Award	519

M.	Fédération Aéronautique Internationale	519
	FAI Gold Air Medal	519
	FAI Gold Space Medal	520
N.	Flight Safety Foundation	520
	Laura Taber Barbour Award	520
	Burroughs International Test Pilot Award	520
0.	International Academy of Astronautics of the International Astronautical Federation	521
	Daniel and Florence Guggenheim International Astronautics Award	521
P.	International Astronautical Federation	521
	Andrew G. Haley Award	521
Q.	National Aeronautic Association	522
	Frank G. Brewer Trophy	522
	Robert J. Collier Trophy	522
	Wright Brothers Memorial Trophy	523
R.	National Geographic Society	523
	Hubbard Medal	523
S.	National Space Club	524
	Astronautics Engineer Achievement Award	524
	Robert H. Goddard Historical Essay Award	524
	Robert H. Goddard Memorial Lecture	524
	Robert H. Goddard Memorial Trophy	525
	Nelson P. Jackson Aerospace Award	525
	National Space Club Press Award	
T.	Society of Automotive Engineers, Inc.	526
	Arch T. Colwell Merit Award	526

NASA HISTORICAL DATA BOOK

		Charles Matthews Manly Memorial Award	527
		Charles Matthews Mainly Memorial Award	527
		Wright Brothers Medal	529
	U.	Society of Experimental Test Pilots	520
		Iven C. Kincheloe Memorial Award	
	V.	United Engineering Trustees	
		Daniel Guggenheim Medal	528
3.	Go	vernment Awards	
	A.	Atomic Energy Commission	529
		Enrico Fermi Award	529
		E. O. Lawrence Memorial Award	529
	В.	National Academy of Engineering	530
		Founders' Medal	
	C.	National Academy of Sciences	530
		John J. Carty Medal	530
		Henry Draper Medal	530
		J. Lawrence Smith Medal	530
		James Craig Watson Medal	531
	D.	Smithsonian Astrophysical Observatory	531
		Thomas Hodgkins Prize	531
	E.		531
		Langley Medal	531
	F.	U.S. Air Force	532
		Mackay Trophy	
		General Thomas D. White Space Trophy	532

4.	Mis	scellaneous Awards	533
		Galabert International Prize for Astronautics	
	B.	Clifford B. Harmon Trust	533
		Harmon International Trophies	33
C.	C.	University of California Institute of Navigation	34
		Hays Award 5	34
		Thurlow Award	34

Appendix A SELECTED AEROSPACE AWARDS

1. National Aeronautics and Space Administration

A. NASA Honor Awards

Certificate of Appreciation

The NASA Certificate of Appreciation is usually granted to an individual upon separation from Headquarters to mark dedicated and significant service, or a substantial contribution, to his organization.

1962	Hiden Cox		Philip T. Drotning
	Robert S. Boyd		Edwin P. Hartman
	William C. Howe		Robert E. Warren
	Eugene W. Lovelace	1965	Ricardo Monges Lopez
1963	Don D. Cadle		Ernest L. Struttman
	Robert H. Charles		Albert' A. Vollmecke
	Abraham Hyatt	1966	James A. Hootman
	Addison M. Rothrock	1967	Edward Z. Gray
	Carroll A. Towne		George D. McCauley
1964	James C. Elms		David H. Stoddard, M.D.
	James E. Love		Herbert L. Brewer
	Mervin Kelly		Robert W. Kamm
	Joseph R. Vensel	1968	Max A. Heaslet
	Brig. Gen. Thomas J. Hayes III (USA)		Bernhardt L. Dorman
	George M. Knauf, M.D.		

Distinguished Service Medal

The NASA Distinguished Service Medal, NASA's highest award, is given to any person in Federal service, who, "by distinguished service, ability, or courage, has personally made a contribution representing substantial progress to aeronautical or space exploration in the interests of the United States." Recommendations for this award are reviewed by the NASA Incentive Awards Board.

1959 1961	John W. Crowley Lt. Cdr. Alan B. Shepard, Jr. (USN) Capt. Virgil I. Grissom (USAF)	1966	Hugh L. Dryden (posthumously) T. Keith Glennan
1962	Lt. Col. John H. Glenn, Jr. (USMC)		Gen. Bernard A. Schriever (USAF, Ret.) George E. Mueller
	Robert R. Gilruth		Charles W. Mathews
	Joseph A. Walker	1967	Walter D. Sohier
	Lt. Cdr. M. Scott Carpenter (USN) Walter C. Williams	1707	Homer E. Newell
	Cdr. Forrest S. Petersen (USN)		Edgar M. Cortright
	Maj. Robert M. White (USAF)		Floyd L. Thompson
	Lt. Cdr. Walter M. Schirra, Jr. (USN)		Raymond L. Bisplinghoff
1963	Maj. L. Gordon Cooper, Jr. (USAF)	1968	Edmond S. Buckley
1965	Maj. Virgil I. Grissom (USAF)		Paul G. Dembling
	William H. Pickering		Alexander H. Flax
	Capt. Walter M. Schirra, Jr. (USN)		Abe Silverstein
	Maj. Donald K. Slayton (USAF, Ret.)		James E. Webb
	Robert C. Seamans, Jr.		

Distinguished Public Service Medal

The NASA Distinguished Public Service Medal is granted only to individuals whose meritorious contributions produced results which measurably improved, expedited, or clarified administrative procedures, scientific progress, work methods, manufacturing techniques, personnel practices, public information services, and other efforts related to the accomplishment of the mission of NASA. It is granted to any United States citizen who is not an employee of the Federal Government or was not an employee during the period in which the service was performed.

1966	Lloyd V. Berkner
1967	Charles Stark Draper

1968 No award given

Exceptional Bravery Medal

The NASA Medal for Exceptional Bravery is given for exemplary and courageous handling of an emergency in NASA program activities by an individual who, independent of personal danger, has acted to prevent the loss of human life or Government property. This medal was first awarded in 1963.

1963 Capt. Paul J. Balfe (USAF)
John A. Gordon
A3/c Larry J. Hough (USAF)
Curtis C. Lyon
T/Sgt. Charles L. Manes (USAF)

Capt. Lynn B. Rowe (USAF)

1967 Donald O. Babbitt
Stephen B. Clemmons
James D. Gleaves
Jerry W. Hawkins
L. D. Reece
Henry H. Rogers

Exceptional Scientific Achievement Medal

The NASA Exceptional Scientific Achievement Medal is an award given for unusually significant scientific accomplishments which contribute to the programs of the National Aeronautics and Space Administration, the Department of Defense, and other Government agencies.

1961	William J. O'Sullivan	1967	Richard V. Rhode
1962	Robert E. Bourdeau		Michel Bader
	John C. Lindsay		Donald E. Gault
1963	Ernst D. Geissler		Walter B. Horne
	Dean R. Chapman		Samuel S. Manson
	John C. Houbolt		William H. Phillips
1964	William R. Lucas		Eugene M. Shoemaker
	Frank B. McDonald		Israel Taback
	Ernst Stuhlinger		Maurice D. White
	Daniel G. Mazur	1968	Mervin G. Ault
1965	Harris M. Schurmeier		Edmond E. Bisson
	Jack N. James		John C. Evvard
	Dan Schneiderman		Richard M. Goldstein
	Eberhardt Rechtin		Otto A. Hoberg
	Leslie H. Meredith		Hans H. Hosenthien
	William Nordberg		Robert D. Jastrow
	H. Julian Allen		Lewis D. Kaplan
1966	Richard F. Arenstorf		Mark R. Nichols
	Helmut J. Horn		William A. Page
	Norman F. Ness		John A. Parker
	George F. Pezdirtz		Alan Rembaum
	James A. Chamberlin		Conway W. Snyder
	James A. Chambenin		Conway W. Snyder

Exceptional Service Medal

The NASA Exceptional Service Medal is the second highest award in the NASA Incentive Awards Program. It is granted for significant achievement or service characterized by unusual initiative or creative ability that clearly demonstrates substantial improvement in engineering, administrative, space flight, or space-related endeavors which contribute to NASA programs.

1964 I. Edward Garrick Hans F. Greune Wesley L. Hjornevik Leonard Jaffe Oran W. Nicks Cdr. John W. Young (USN) 1965 Maj. Virgil I. Grissom (USAF) Lt. Col. Edward H. White II (USAF) Lt. Col. James A. McDivitt (USAF) George L. Simpson, Jr., M.D. Gerald D. O'Brien Charles A. Berry, M.D. Lt. Cdr. Charles Conrad, Jr. (USN) Maj. L. Gordon Cooper, Jr. (USAF) William E. Lilly Seymour C. Himmel John R. Casani Maj. Gen. O. J. Ritland (USAF) Capt. Walter M. Schirra, Jr. (USN) 1965 Maj. Thomas P. Stafford (USAF) Lt. Col. Frank Borman (USAF) Cdr. James A. Lovell, Jr. (USN) William C. Schneider John T. Mengel 1966 Neil A. Armstrong Lt. Col. David R. Scott (USAF) Morris Tepper, M.D. Herbert I. Butler David S. Johnson Lt. Cdr. Eugene A. Cernan (USN) Maj. Thomas P. Stafford (USAF) Cdr. John W. Young (USN) Maj. Michael Collins (USAF)

Lt. Cdr. Charles Conrad, Jr. (USN) M. Helen Davies Herbert A. Wilson Lt. Col. Robert A. Rushworth (USAF) Roll D. Ginter David S. Gabriel Edmund R. Jonash J. Cary Nettles Wilfred E. Scull Col. Richard E. Dineen (USAF) Lt. Cdr. Richard F. Gordon, Jr. (USN) Harry Press Leland F. Belew Lee B. James Col. William G. Johnson (USMC) Peter A. Minderman Capt. James A. Lovell, Jr. (USN) Lt. Col. Edwin E. Aldrin, Jr. (USAF) Col. John G. Albert (USAF) Ozro M. Covington John D. Hodge William B. Rieke 1967 Robert F. Garbarini Albert J. Kellev Maj. Gen. David M. Jones (USAF) Lt. Cdr. Roger B. Chaffee (USN) (posthumously) Donald R. Bellman William J. Boyer William Cohen George C. Deutsch Robert H. Gray Howard H. Haglund

Exceptional Service Medal (Continued)

Charles F. Hall

Arthur F. Hood James J. Kramer

Laurence K. Loftin, Jr.

Joseph B. Mahon

Paul G. Marcotte

James S. Martin, Jr.

Benjamin Milwitsky

Clifford H. Nelson

Robert J. Parks

H. Warren Plohr

Robert D. Reed

Lee R. Scherer

William M. Shea

Mac C. Adams

1968

Walter F. Boone

Donald D. Buchanan

Richard L. Callaghan

R. Walter Cunningham

Robert J. Darcey

Philip Donely

Robert C. Duncan

Maj. Donn F. Eisele (USAF)

Fred H. Felberg

Arnold W. Frutkin

Paul F. Fuhrmeister

Harry H. Hamilton

Herman E. Lagow

Alvin R. Luedecke

Glynn S. Lunney

Robert J. McCaffery

Mildred V. Morris

Boyd C. Myers

Rocco A. Petrone

Isom A. Rigell

Arthur L. H. Rudolph

William R. Schindler

Capt. Walter M. Schirra, Jr. (USN)

Albert F. Siepert

Hubert R. Stanley

Michael J. Vaccaro

Group Achievement Award

The NASA Group Achievement Award is presented in recognition of a meritorious achievement which does not fall within the scope of other NASA awards. It is granted to a group for an outstanding contribution or achievement which is sufficiently above normal work standards to warrant special recognition or which has resulted in specifically identifiable or monetary benefits to the Government.

1962	Preflight Operations Division, MSC		Flight Services Group, Wallops Station Scout Project Office, LaRC
	Assistant Directorate for Engineering		MSC-Florida Operations Team, KSC
	and Development, MSC		Launch Support, Equipment Engineerin
	Mercury Project Office, MSC		Agena Project Group, LeRC
	Flight Operations Division, MSC		Launch Operations Team, Gemini VII/V
	Directorate for Tracking and Data	1966	Department of Defense Recovery Force
	Systems, GSFC	1900	Advanced Antenna Project Team, JPL
	Staff of Wallops Station		
1963	Delta Project Group, GSFC		Centaur Project Personnel, LeRC
	Tiros Project Group, GSFC		Project Fire, LaRC
	Recruiting and Examining Branch,		Pegasus Program, LaRC, Headquarters, a
	Personnel Division—Office of Administration, NASA Hq.		Space Nuclear Propulsion Office, NASA
	Department of Defense Recovery Forces		Gemini Astronaut Team, MSC
	Air Force Space Systems Division		Manned Space Flight Network Team, G
1964	X-15 Research Airplane Flight		Gemini Spacecraft Launch Team, KSC
	Test Organization, FRC		Gemini Launch Operations and Range S
	Automatic Data Processing Branch,		Gemini Program Office, MSC
	Administrative Services Division—		Gemini Program Office, NASA Hq.
	Office of Administration, NASA Hq.		Gemini Support Team, MSC
	Centaur "E" Stand Project Personnel, LeRC	1967	Apollo 204 Review Board, KSC
	Saturn I Launch Team, KSC		Supersonic Transport NASA Evaluation
	Saturn Booster Team, MSFC		Lunar Orbiter Spacecraft and Operation
1965	Syncom Group—NASA Hq. and GSFC		260-inch Solid Motor Project Team
	OGO Experiment Qualification Group, GSFC	1968	Apollo 7 Flight Operations Team
	Radar Tracking Group, Wallops Station		Instrumentation Ships Team
	Management and Operational Group, Wallops Station		Mariner Occultation Experiment Team
	Meteorological Group, U.S. Weather Bureau Personnel,		OGO Project Team
	Wallops Station		Sonic Boom Investigating Team
	Vehicle Assembly and Launch Crew, Wallops Station		Surveyor Team

it Project Office, LaRC -Florida Operations Team, KSC nch Support, Equipment Engineering Division, KSC na Project Group, LeRC nch Operations Team, Gemini VII/VI, MSC artment of Defense Recovery Forces inced Antenna Project Team, JPL aur Project Personnel, LeRC ect Fire, LaRC sus Program, LaRC, Headquarters, and MSFC e Nuclear Propulsion Office, NASA Hq. ini Astronaut Team, MSC ned Space Flight Network Team, GSFC nini Spacecraft Launch Team, KSC nini Launch Operations and Range Support Team, USAF nini Program Office, MSC nini Program Office, NASA Hq. nini Support Team, MSC llo 204 Review Board, KSC ersonic Transport NASA Evaluation Team ar Orbiter Spacecraft and Operations Team inch Solid Motor Project Team llo 7 Flight Operations Team rumentation Ships Team iner Occultation Experiment Team O Project Team

Outstanding Leadership Medal

The NASA Outstanding Leadership Medal is awarded for notably outstanding leadership which has had a pronounced effect upon the aerospace technological or administrative programs of NASA.

1961	Edward R. Sharp
	Henry J. E. Reid
	Abe Silverstein
1962	Paul F. Bikle
	Hartley A. Soulé
	George B. Graves, Jr.
	Maxime A. Faget
	George M. Low
	John W. Townsend, Jr.
1963	Morton J. Stoller
	Maj. Gen. Leighton I. Davis (USAF)
	Kenneth S. Kleinknecht
	Christopher C. Kraft, Jr.
	G. Merritt Preston
	Floyd L. Thompson
	D. Brainerd Holmes
	Charles J. Donlan
	Walter Haeussermann
	William A. Mrazek
	John A. Johnson
1964	De E. Beeler
	Col. Robert P. Young (USA)
	Walter L. Lingle
	-

Wernher von Braun Kurt Debus Harry J. Goett Lt. Gen. Walter K. Wilson, Jr. (USA) 1965 Charles W. Mathews Oran W. Nicks Bruce T. Lundin Smith J. DeFrance 1966 Earl D. Hilburn John D. Young Oscar W. Schey John F. Clark Edgar M. Cortright Robert L. Krieger George J. Vecchietti Harold B. Finger Harry H. Gorman Edmund F. O'Connor Eberhard F. M. Rees Hermann K. Weidner Robert F. Thompson John J. Williams Maj. Gen. Vincent G. Huston (USAF)

Public Service Award

1963 1964 1965 1966	Jack N. James Robert J. Parks John F. Yardley Bernie P. Miller Harris M. Schurmeier Allen E. Wolfe Daniel Klute (posthumously) Grant L. Hansen John F. Yardley Bastian Hello Bernhard A. Hohmann	1966 1967	Jack L. Bowers George M. Bunker Brig. Gen. Paul T. Cooper (USAF) Daniel J. Haughton Roger Lewis James S. McDonnell, Jr. R. I. McKenzie L. Eugene Root David S. Lewis Richard Cottrell Paul P. Datner William Feldman
	Walter D. Smith Walter F. Burke Louis D. Wilson Lawrence A. Smith William B. Bergen	1968	William Feldman Robert J. Helberg Robert L. Roderick Mark Sasso No award given

Superior Achievement Award

The NASA Superior Achievement Award is presented in recognition of a meritorious achievement which does not fall within the scope of other NASA awards. It is granted to an individual for an outstanding contribution or achievement which is sufficiently above normal work standards to warrant special recognition or which has resulted in specifically identifiable or monetary benefits to the Government.

1966	Arthur W. Vogeley	Eldon W. Hall
1700	Richard J. Allen	Vearl N. Huff
		Anthony L. Liccardi
	LeRoy E. Day	William A. Summerfelt
	John A. Edwards	• • • • • • • • • • • • • • • • • • • •

B. Awards Granted Under Section 306 of the National Aeronautics and Space Administration Act of 1958

Section 306 of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2458) authorized the Administrator of NASA, upon recommendation of the NASA Inventions and Contributions Board, to make monetary awards not exceeding \$100 000 for any scientific or technical contribution which has significant value in the conduct of aeronautical and space activities. Awards exceeding \$100 000 must be reported to the appropriate committees of the Congress and if the Congress takes no action or does not veto the proposed award, it may be made.

	Inventor	Contribution	Employer	Amount
1960	Frank T. McClure	Satellite Doppler navigation system	Applied Physics Laboratory, Johns Hopkins University	\$3 000
1961	William J. O'Sullivan, Jr.	Erectible self-supporting space vehicle	Langley Research Center	5 000
1962	Emedio M. Bracalente Ferdinand C. Woolson	Ablation rate meter	Langley Research Center	2 000
	Andre J. Meyer, Jr.	Vehicle parachute and equipment jettison system	Manned Spacecraft Center	1 000
	Maxime A. Faget Andre J. Meyer, Jr	Emergency ejection device	Manned Spacecraft Center	1 500
	Maxime A. Faget William M. Bland, Jr. Jack C. Heberlig	Survival couch	Manned Spacecraft Center	2 100
	Maxime A. Faget Andre J. Meyer, Jr. R. G. Chilton W. S. Blanchard, Jr. A. B. Kehlet J. B. Hammack	Space capsule	Manned Spacecraft Center	4 200
10.60	C. C. Johnson, Jr.			
1963	Robert L. Trimpi	Expansion tube for hypervelocity	Langley Research Center	3 000
	Charles H. McLellan	Wedge tails for hypersonic aircraft	Langley Research Center	2 000
	Harold R. Kaufman	Ion rocket	Lewis Research Center	4 000
	Conrad Josias	Bipolar logarithmic current-to-voltage transducer	Jet Propulsion Laboratory	1 000
	James D. Acord Howard C. Vivian	Space vehicle attitude control	Jet Propulsion Laboratory	1 000
•	Francis Rogallo Mrs. F. Rogallo	Flexible wing (kite)	Langley Research Center	35 000
	William J. Alford, Jr. Edward C. Polhamus	Variable-sweep-wing configuration	Langley Research Center	2 000

NASA HISTORICAL DATA BOOK

492			Employer	Amount
	Inventor	Contribution	Employer	. 2
	The same A. Toll	Variable-sweep-wing supersonic aircraft	Langley Research Center	600
	Thomas A. Toll	Hall-current plasma accelerator	Langley Research Center	1 200
	Robert V. Hess	Multiple quick disconnector	Marshall Space Flight Center	1 000
	Curt P. Herold	Space communication system	Jet Propulsion Laboratory	5 000
	Walter K. Victor	Space communication system	,	
	Eberhardt Rechtin	December 14 ion unit	Food Machinery and Chemical Corp.	1 500
	Andrew J. Kubica	Decomposition unit	, , ,	
	Noah S. Davis	C. t. It will be used beginning	Goddard Space Flight Center	2 000
1964	Robert C. Baumann	Spin adjusting mechanism	Goddard Space Light Comme	
	Leopold Winkler	en e e e e e e e e e e e e e e e e e e	Jet Propulsion Laboratory	1 000
	William W. Smith	Trajectory-correction propulsion system	Jet Hopaision Laboratory	
	Bruce W. Schmitz	0.4 11.0 11.11	Goddard Space Flight Center/Lewis Research	6 000
	William R. Cherry Solar cell for radiation environment		Center	
	Joseph Mandelkorn		Jet Propulsion Laboratory	1 300
	John F. Meyer	Low-speed time multiplexing	Jet Propulsion Laboratory	1 600
	Gerald W. Meisenholder	Sensing devices	Jet 1 topulsion Laboratory	
	James D. Acord			
	Howard C. Vivian			
	Louis F. Schmidt		Ames Research Center	1 000
	Adrien E. Anderson	Commercial air transport	Ames Research Center	
	Woodrow L. Cook			
	James C. Daugherty		•	
	J. Lloyd Jones, Jr.			
	David G. Koenig		Ames Research Center	1 000
	Alfred J. Eggers, Jr.	Flight craft	Ames Research Center	1 000
	Clarence A. Syvertson			
	George G. Edwards			
	George C. Kenyon		ar of A Autobian Inc.	1 000
1965	Casimir F. Kubik	Heat insulator	North American Aviation, Inc.	2 500
	Howard A. Stine	Electric arc apparatus	Ames Research Center	2 300
	Charles E. Shepard			
	Velvin R. Watson		A Committee	1 000
1966	Howard J. Robbins	Attitude-control system for sounding rockets	Aerojet-General Corp.	1 000
	Zbiggie E. Zebrowski		No. 1 NO. Philadelphia	1 500
	Manfred E. Kuebler	Nutation damper for satellites	Marshall Space Flight Center	1 200
	Paul A. Jensen	Low-noise, single-aperture, multi-mode	Hughes Aircraft Co.	1 200
		monopulse antenna feed system		

	Inventor	Contribution	Employer	Amount
	John M. Thole Wallace S. Kreisman Robert M. Chapman	Inflation system for balloon satellites	Goddard Space Flight Center/Geophysics Corp.	1 000
	G. Richard Blair	Inorganic thermal control pigment	Hughes Aircraft Co.	1 000
	John C. McFall, Jr. Ray W. Lovelady	Underwater location system	Langley Research Center	1 500
	Kenneth A. Ruddock Robert C. Rempel	Three-component optically pumped magnetometer	Spectra Physics Inc.	1 000
	Charles R. Peek Lewis E. Boodley	Connector strips-positive, negative end and "T" tabs	Astro-Electronics Div., Radio Corp. of America	1 000
	Robert K. Yasui	Solar cell submodule	Jet Propulsion Laboratory	1 000
	Warren E. Armstrong Donald S. LaFrance Carroll Z. Morgan Lloyd B. Ryland	Catalyst for monopropellant decomposition of hydrazine	Shell Development Co.	3 000
	Hervey H. Voge			
1967	Joseph A. Goodrich Kenneth T. Ingham	Locking device for turbine rotor blades	North American Aviation, Inc.	1 200
	Richard C. Turner	Thermo couple assembly	Jet Propulsion Laboratory	1 000
	Richard A. McKay	Temperature control system for circulating fluids	Jet Propulsion Laboratory	1 000
	John B. Schutt Charles M. Shai	Alkali-metal silicate protective coating	Goddard Space Flight Center/Electro Mechanical Research, Inc.	1 500
	Robert A. Jones James L. Hunt	Technique for quantitative measurement of aero- dynamic heat transfer to supersonic wind tunnel models of complicated shapes	Langley Research Center	2 600
	Thomas E. Cowell Ira B. Madison	Aerodynamic nozzle spikes	Rocket Dynamics Div., North American Rockwell	800
_	Irwin Baker	Constant life device	Hughes Aircraft Corp.	1.400
1968 ^a	Clayton Loyd John R. Rasquin Hubert E. Smith Charles D. Stocks	Precision electronic control for orbital tube flaring machines	Marshall Space Flight Center	500
	Helmut G. L. Krause	Theory of a refined earth figure model and theory of a refined earth figure model with applications	Marshall Space Flight Center	500

NASA HISTORICAL DATA BOOK

Inventor	Contribution	Employer	Amount
Daniel W. Gates Gene A. Zerlaut	Synthesis of zinc titanate pigment and coatings containing the same	Marshall Space Flight Center/IIT Research Institute	300
Frederick O. Rogers Wade McGee	Sprayable birefringent coating	Lockheed-Georgia Co.	100
Fred T. Humphrey Leon P. Stone	Articulated multiple couch assembly	Weber Aircraft	100
David L. Johansen David Cohen	Fluid-handling system	Whirlpool Corp.	100
Samuel E. Stone Joseph C. Heindl	Fluid lubricant system	TRW Systems Inc.	250
Robert J. Belanger George J. Zellner Walter P. Poschenrieder James A. R. Samson	Gas-cooled high-temperature thermocouple Analytical photoionization mass spectrometer	Westinghouse Electric Co. GCA Corp.	50 150
Peter Warneck David J. McHaffie Charles J. Taylor	Extensible cable support High-resolution developing of photosensitive	North American Rockwell Corp. Westinghouse Electric Co.	50 500
George J. Gilbert	resists Method and apparatus for ballasting high- frequency transistors	Radio Corp. of America	400
Billy D. Babb David W. Passell Charles T. Stelzreid Donald L. Mullen	Method and apparatus for cryogenic wire Decoder/actuator device Broadband microwave waveguide window	Hayes International Corp. Jet Propulsion Laboratory Jet Propulsion Laboratory	400 50 100
Robin A. Winkelstein Alan R. Johnston Franklin L. Murphy James M. Kendall, Sr. Joseph A. Plamondon, Jr.	Noninterruptable digital counting system Polarimeter for transient measurement Bimetallic power-controlled actuator Absolute cavity radiometer	Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory	700 1 400 500 1 100

^aThrough June 30.

C. Miscellaneous Awards to NASA Personnel

American Society of Mechanical Engineers Man of the Year Award

Not an official award, the ASME Man of the Year Award was given for the first time in 1967. It is administered by the Metropolitan Section of the American Society of Mechanical Engineers and is presented for "outstanding achievement in mechanical engineering."

1967 Wernher von Braun, MSFC

Federal Woman's Award

The Federal Woman's Award is presented annually to six women for "outstanding ability and achievement in an executive, professional, scientific, or technical position in Government."

	Nancy Grace Roman, NASA Hq. Eleanor C. Pressly, GSFC	_	Evelyn Anderson, ARC Jocelyn R. Gill, MSC
--	---	---	--

Arthur S. Flemming Award

Administered by the District of Columbia Junior Chamber of Commerce in cooperation with the Chesapeake and Potomac Telephone Company, the Potomac Electric Power Company, and the Washington Gas Light Conpany, the Arthur S. Flemming Award is given annually "to outstanding young men in Federal Government in scientific or technical administrative or executive fields."

1959	Maxime A. Faget, LaRC		Leonard Jaffe, NASA Hq.
1960	Wolfgang E. Moekel, LeRC		Robert Jastrow, GSFC
	Joseph W. Siry, GSFC		Joseph F. Shea, MSC
1961	Bernard Lubarsky, LeRC	1965	Wilmot N. Hess, GSFC
1962	Geroge M. Low, NASA Hq.	1967	John D. Hodge, MSC
	Edgar M. Cortright, Jr., NASA Hq.		George F. Pezdirtz, ARC
1963	John W. Townsend, Jr., GSFC	1968	James J. Kramer, LeRC
	Christopher C. Kraft, Jr., MSC		Norman F. Ness, GSFC
1964	Wesley J. Hjornevik, MSC		

The National Civil Service League Career Service Award

This award is given for exceptional competence and sustained superior performance of career employees with 10 or more years of Federal service. It is given to strengthen public service by bringing national recognition to significant careers in the Federal service.

1958	Hugh L. Dryden, NASA Hq.		Smith J. DeFrance, ARC
	Eugene S. Love, LaRC		Homer E. Newell, NASA Hq.
1962	Abe Silverstein, LeRC	1967	Floyd L. Thompson, LaRC

National Medal of Science

Established in 1959 by Congress, this award was first presented in 1963. Its purpose is to honor individuals who, in the judgment of the President, "are deserving of special recognition by reason of their outstanding contributions to knowledge in the physical, biological, mathematical, or engineering sciences." The medal is presented annually and is the Federal Government's highest award in these fields of endeavor.

1965 Hugh L. Dryden (posthumously)

2. Professional Associations and Societies

A. Aerospace Medical Association

Louis H. Bauer Founder's Award

Established in 1960 to honor the founder of the Aerospace Medical Association, this award is given annually for the most significant contribution to space medicine. The honorarium is \$500.

1961	Lt. Col. Stanley C. White (USAF, MC)	1965	Hubertus Strughold, M.D.
1962	Brig. Gen. Don D. Flickinger (USAF, MC)		Charles A. Berry, M.D.
1963	Col. Paul A. Campbell (USAF, MC)		R/Adm Frank B. Voris (USN, MC)
1964	Col. William K. Douglas (USAF, MC)	1968	James N. Waggoner, M.D.

Walter M. Boothby Award

Established in 1961 in memory of Dr. Walter M. Boothby, this award is given annually for outstanding research directed toward the promotion of health and prevention of disease in professional airline pilots. The honorarium is \$1000.

1961	John E. Smith, M.D.	1965	Earl T. Carter, M.D.
1962	Ross A. McFarland	1966	Stanley R. Mohler, M.D.
1963	Jan H. Tillisch, M.D.		G. Earle Wight, M.D.
1964	Louis R. Krasno, M.D.	1968	Charles R. Harper, M.D.

Howard K. Edwards Award

Established in 1961 in memory of Dr. Howard K. Edwards, this award is presented annually for the outstanding practice of clinical aviation medicine pertaining to professional airline pilots. The honorarium is \$1000.

1962 1963	George J. Kidera, M.D. Otis B. Schreuder, M.D. Ludwig G. Lederer, M.D. Andre Allard, M.D.	1966 1967	John E. Smith, M.D. Charles C. Gullett, M.D. George F. Catlett, M.D.
1904	Affore Affard, M.D.	1968	Peter B. Siegel, M.D.

Eric Liljencrantz Award

The award was established in 1957 in memory of Cdr. Eric Liljencrantz (USN, MC), who worked in aviation medicine until his death in an airplane accident in 1942. It is given for the best paper on basic research in the problems of acceleration and altitude. The honorarium is \$500.

1958	Brig. Gen Victor A. Byrnes (USAF, MC, Ret.)	1964	Capt. Ralph L. Christy (USN, MC)
	Capt. Edward L. Beckman (USN, MC)	1965	David M. Clark
	James D. Hardy	1966	Henning von Gierke
	Capt. Ashton Graybiel (USN, MC)	1967	Charles F. Gell, M.D.
	Wilbur R. Franks, M.D.	1968	Edward J. Baldes
	Earl W. Wood, M.D.		

Raymond F. Longacre Award

Established in 1947 to honor the memory of Maj. Raymond F. Longacre (USA), this award is given annually for outstanding achievement in the psychological and psychiatric aspects of aerospace medicine. The honorarium is \$500.

1958 1959 1960 1961 1962	Col. Harry G. Moseley (USAF, MC) Capt. George E. Russ (USAF, MC) Brant Clark Capt. Philip B. Phillips (USN, MC) George T. Hauty	1964 1965 1966 1967 1968	Frederick H. Hohles, M.D. Anchard F. Zeller Richard Trumbull Col. Don E. Flinn (USAF, MC) Frederick E. Guedry
1962	Henry A. Imus	1700	Trodonox D. Guoday

Theodore C. Lyster Award

This award was established in 1947 to honor the memory of Brig. Gen. Theodore C. Lyster, first Chief Surgeon, Aviation Section, U.S. Army Signal Corps. It is given for outstanding achievement in the general field of aerospace medicine. The honorarium is \$500.

1959 1960 1961 1962	Hubertus Strughold, M.D. Capt. Clifford P. Phoebus (USN, MC) Air Commodore A. A. G. Corbet (RCAF) Air Commodore William K. Stewart (RAF) Robert J. Benford, M.D. Maj. Gen. M. Samuel White (USAF, MC)	1967	William Randolph Lovelace II, M.D. William J. Kennard, M.D. Brig. Gen. Eugene G. Reinartz (USAF, Ret.) Brig. Gen. John M. Talbot (USAF, MC) Jan H. Tillishch, M.D.
------------------------------	---	------	--

Harry G. Moseley Award

Established in 1961 to honor the memory of Col. Harry G. Moseley, this award is given annually for the most outstanding contribution to flight safety. The honorarium is \$500.

1961	Capt. Carl E. Wilbur (USN, MC)	1965	Capt. Richard E. Leuhrs (USN, MC)
1962	Col. F. M. Townsend (USAF, MC)	1966	Capt. Roland A. Bosee (USN, MC)
1963	Brig. Gen. Kenneth E. Pletcher (USAF, MC)	1967	Maj. Richard M. Chubb (USAF, MC)
1964	Capt. W. Harley Davidson (USAF, MC)	1968	John J. Swearingen

Arnold D. Tuttle Award

Established in 1952, this award is given annually for original research that has made the most significant contribution toward the solution of a challenging problem in aerospace medicine. The honorarium is \$500.

1958	Siegfried J. Gerathewohl	1964	Vincent M. Downey, M.D.
1959	Lawrence E. Lamb, M.D.	1965	Capt. Ashton Graybiel (USN, MC)
1960	Hermann J. Schaefer	1966	Lt. Col. James F. Culver (USAF, MC)
1961	Lt. Col. Charles A. Berry (USAF, MC)	1967	Billy E. Welch
1962	Clayton S. White, M.D.	1968	Dietrich E. Beischer, M.D.
1963	Charles I. Barron, M.D.		

B. Air Force Association

H. H. Arnold Trophy

This trophy is awarded to aerospace's "Man of the Year" for the most outstanding contribution to the field of aerospace activity.

1958 1959 1960 1961 1962 1963	Maj. Gen. Bernard A. Schriever (USAF) Gen. Thomas S. Power (USAF) Gen. Thomas D. White (USAF) Lyle S. Garlock A. C. Dickieson John R. Pierce 363rd Tactical Reconnaissance Wing, TAC 4080th Strategic Wing, SAC	1964 1965 1966 1967 1968	Gen. Curtis E. LeMay (USAF) 2nd Air Division, PACAF, USAF 8th, 12th, 355th, 366th, and 388th Tactical Fighter Wing 432d and 460th Tactical Reconnaissance Wing William W. Momyer Col. Frank Borman (USAF) Capt. James A. Lovell, Jr. (USN) Lt. Col. William A. Anders (USAF)
--	---	--------------------------------------	--

Theodore von Kármán Trophy

Established in 1948, this trophy was originally named the "Science Trophy," but was renamed in honor of the late Theodore von Kármán. It is awarded for distinguished service in the field of aerospace science.

1958 1959	H. Julian Allen, ARC W. Randolph Lovelace II, M.D. Brig. Gen. Don D. Flickinger (USAF)	1964	Maj. Clarence L. "Kelly" Johnson (USAF) Maj. Clarence L. "Kelly" Johnson (USAF) Capt. Robert M. Silva (USAF)
1960	Louis N. Ridenour, Jr. (posthumously) Allen F. Donovan		6555th Aerospace Test Wing, AFSC Alterio Gallerani
1961 1962	Charles H. Townes	1968	Lt. Col. Harry F. Rizzo (USAF)

David C. Schilling Trophy

Founded in 1948 as the "Flight Trophy," this award was renamed in 1957 in honor of the late Col. David C. Schilling. It is awarded for distinguished service in the field of flight.

1959	Capt. Iven C. Kincheloe, Jr. (USAF) (posthumously) Tactical Air Command, USAF Lt. Gen. Elwood R. Quesada (USAF, Ret.) Maj. Robert M. White (USAF)	1963 1964 1965 1966	Maj. L. Gordon Cooper, Jr. (USAF) Maj. Sidney J. Kubesch (USAF) Lt. Col. Frank Borman (USAF) Maj. Hallett P. Marston (USAF)
1962	A. Scott Crossfield Joseph A. Walker Maj. Robert M. White (USAF)	1967 1968	Col. Robin Olds (USAF) Capt. Albert R. Kaiser (USAF)

Hoyt S. Vandenberg Trophy

Established in 1948, this trophy was originally named the "Air Education Trophy," but was renamed in 1954 in honor of the late Gen. Hoyt S. Vandenberg. It is awarded for distinguished service in the field of aerospace education.

Gill Robb Wilson Trophy

This trophy is awarded for distinguished service to aerospace in the field of arts and letters.

1958	Air Photographic and Charting Service, MATS	1964	Mark S. Watson
1959	James F. Sunderman	1965	Elton C. Fay
1960	Walter Lippman	1966	Society of Illustrators of New York City,
1961	Orvil A. Anderson		Los Angeles, and San Francisco
	Albert Simpson	1967	Robert F. Engel
1962	Bob Considine	1968	Edward C. Welsh
1963	Ceorge C Rales		

C. American Astronautical Society

Flight Achievement Award

Established in 1958, this award is given annually to persons who have contributed most to the advancement of manned space flight.

1958	Capt. Iven C. Kincheloe, Jr. (USAF)		Capt. Walter M. Schirra, Jr. (USN)
	(posthumously)		Maj. Thomas P. Stafford (USAF)
1959	A. Scott Crossfield	1966	Lt. Cdr. Charles Conrad, Jr. (USN)
1960	No award given		Lt. Cdr. Richard F. Gordon, Jr. (USN)
1961	Lt. Cdr. Alan B. Shepard, Jr. (USN)	1967	Lt. Col. Virgil I. Grissom (USAF) (posthumously)
	Capt. Virgil I. Grissom (USAF)		Lt. Col. Edward H. White II (USAF) (posthumously)
1962	Lt. Col. John H. Glenn, Jr. (USMC)		Lt. Cdr. Roger B. Chaffee (USN) (posthumously)
1963	Maj. L. Gordon Cooper, Jr. (USAF)	1968	Col. Frank Borman (USAF)
1964	Charles A. Lindbergh		Capt. James A. Lovell, Jr. (USN)
1965	Lt. Col. Frank Borman (USAF)	•	Lt. Col. William A. Anders (USAF)
	Cdr. James A. Lovell, Jr. (USN)		

Melbourne W. Boynton Award

This award, established in 1957, is presented annually for outstanding contributions to "a physician who has performed research contributing with distinction to the safety of space flight."

1958	Capt. Charles F. Gell (USN, MC)	1964	No award given
1959	Lt. Col. Stanley C. White (USAF)	1965	Charles A. Berry, M.D.
1960	Brig. Gen. Don D. Flickinger (USAF, MC)	1966	Col. William K. Douglas (USAF, MC)
1961	Capt. Ashton Graybiel (USN, MC)	1967	Paul A. Campbell
1962	William Randolph Lovelace II, M.D.	1968	William M. Helvey, M.D.
1963	Hubertus Strughold, M.D.		

Space Flight Award

Established in 1955, this award is given annually as an acknowledgment of outstanding efforts and achievements in the advancement of space flight and space science.

1958	James A. Van Allen	1965	Hugh L. Dryden (posthumously)
1959	No award given	1966	Robert R. Gilruth
196 0	Homer E. Newell	1967	Kurt Debus
1961	Fred L. Whipple		William H. Pickering
1962	Charles Stark Draper	1968	George M. Low
1963	No award given		George E. Mueller
1964	No award given		

Victor A. Prather Award

This award was established in 1962 to honor Lt. Cdr. Victor A. Prather (USN), who lost his life during a strato-lab balloon flight in 1961. The award is given to researchers and engineers in the field of extravehicular protection in space.

1962	Cdr. Malcolm Davis Ross (USNR)	1966	No award given
1963	Col. Charles Yeager (USAF)	1967	No award given
1964	No award given	1968	Edward L. Hays
1965	Richard S. Johnston		James V. Correale

W. Randolph Lovelace II Award

This award, honoring the late NASA Director of Space Medicine, is not presented annually, but "on a timely basis when it is felt that a particular individual merits recognition for sustained contributions to space technology."

1965	Jeannette Ridlon Piccard	1967	Robert Truax
1966	Robert Morris Page	1968	Arthur L. H. Roudolph

Lloyd V. Berkner Space Utilization Award

This award is presented for outstanding contributions to the commercial utilization of space technology.

1967	Austin N. Stanton	1968	Joseph Charyk, Comsat Corp.
			Alfred M. Mayo

D. American Geophysical Union

John Adam Fleming Award

This award was presented for the first time in 1962; it commemorates Dr. Fleming (1877-1956), a pioneer in the development of the broad field of geophysics and director of much of the magnetic and electric survey work of the earth in the first half of the twentieth century. The award is given primarily "for original research illuminating fundamental aspects of aeronomy, and other closely related branches of science."

1962	Lloyd V. Berkner	1966	Scott E. Forbush
1963	James A. Van Allen	1967	Ernest Harry Vestine
1964	Edward O. Hulburt		Eugene N. Parker
1965	Norman F Ness	1,00	Edgene IV. I dikei

James B. Macelwane Award

This award is presented in recognition of significant contributions to the geophysical sciences by a young scientist of outstanding ability.

1962	James N. Brune	1966	Don L. Anderson
1963	Alexander J. Dessler	1967	Manik Talwani Michael B. McElrov
1964	Klaus F. Hasselmann	1968	
1965	Gordon J. F. MacDonald		

William Bowie Medal

This award is presented for outstanding contributions to fundamental geophysics and for unselfish cooperation in research.

1958	Johannes Theodoor Thijsse	1964	Julius Bartels
1959	Walter Maurice Elsasser	1965	Hugo Benioff
1960	Francis Birch	1966	Louis B. Slichter
1961	Keith Edward Bullen	1967	Lloyd V. Berkner
1962	Sidney Chapman	1968	Roger Revelle
1963	Merle Anthony Tuve		

E. American Helicopter Society

STUT NOW:

Grover E. Bell Award

Established to honor an aviation pioneer, this award is presented "for the purpose of fostering and encouraging research and experimentation in the important and relatively new field of helicopter development to the person or persons making an outstanding contribution to helicopter developments during the preceding calendar year in the United States."

1958	Lee L. Douglas	1964	No award given
1959	Igor I. Sikorsky	1965	Paul J. Carpenter
1960	Combat Development Office, U.S. Army Aviation School,	1966	Air Rescue and Recovery Service,
1071	Fort Rucker, Alabama	107	Military Airlift Command, USAF
1961	Engineering Organization, Sikorsky Aircraft Div.,	1967	Edwin J. Ducayet and the Huey Cobra Team
10.60	United Aircraft Corp.	1968	Sikorsky Aircraft and the flying crane concept
1962	Army Aviation Center, Fort Rucker, Alabama		
1963	11th Air Assault Div., U.S. Army,		
	Fort Benning, Georgia		

Frederick L. Feinberg Award

Established in 1959, this award honors Frederick L. Feinberg (1922-1958), an outstanding helicopter test pilot. It is given annually "to the helicopter pilot who accomplished the outstanding achievement"—rescue, flight and test development of new aircraft, or general high level of performance in operational flying—in the preceding calendar year. The honorarium is \$200.

1960	Maj. William G. Davis (USAF)	1964	Winford Alan Newton (posthumously)
	Capt. Walter J. Hodgson (USAF)	1965	Col. George P. Seneff (USAF)
1961	Link Luckett	1966	Delford M. Smith
1962	Lt. Col. Fran. '1. Carney (USAF)	1967	Maj. Robert G. Ferry (USAF)
1963	Lt. Robert W. Ifton (USN)	1968	Capt. Jerome R. Daly (USA)
	Capt Louis K ck (USMC)		- , ,

Paul E. Haueter Memorial Award

This award is presented "for significant contributions to the development of Vertical-Takeoff-and-Landing aircraft other than helicopters." The award was established by friends of Paul E. Haueter (1923-1964), an aeronautical engineer.

1966	The XC-142A Tri-Service V/STOL Aircraft Program	1967	Hawker Siddeley Aviation, Hawker Siddeley Group Ltd.
	LTV Aerospace Corporation, Prime Contractor		John P. Campbell

Alexander Klemin Award

Established in 1951 in honor of the memory of the late Dr. Alexander Klemin—eminent aeronautical engineer, educator, author, and pioneer of rotary-wing aeronautics—the award is given each year for "engineering, design, and invention in the field of rotary-wing aircraft."

1958	Frederich L. von Doblhoff	1964	Kurt H. Hohenemser
1959	Robert L. Lichten	1965	Elliot Daland
1960	V Keith Putnam	1966	Iven H. Culver
1961	Leon L. Douglas	1967	Anselm Franz
1962	Brig. Gen. Robert R. Williams (USA)	1968	Rene H. Miller
1963	Frederick B. Gustafson		

Captain William J. Kossler Award

Established to honor the memory of Capt. William J. Kossler (1896-1945)—U.S. Coast Guard aviator, aeronautical engineer, and early advocate of helicopters for Coast Guard operations—this award is given "for greatest achievement in practical application or operation of rotary-wing aircraft, the value of which has been demonstrated by actual service during the preceding year."

1958 1959 1960 1961 1962	Transportation Aircraft Test and Supply Activity (USA) New York Airways, Inc. Col. Victor A. Armstrong (USMC) Col. William A. Howell (USA) 56th Medical Platoon 57th Medical Platoon Air Rescue Service, Military Air Transport Service, Scott AFB, Illinois U.S. Army Tactical Mobility Requirements Review Board	1965 1966 1967 1968	To individuals and organizations, military and civilian, who participated in the numerous rescues and supply and resupply missions during the disastrous floods in the Northwestern United States in December 1964. Maj. Gen. Harry W. O. Kinnard (USA) Maj. Gen. Keith B. McCutcheon (USMC) The individuals in the Armed Services in Southeast Asia, who, by innovation and imaginative operational techniques, have made significant contributions to
1964	Brig. Gen. John J. Tolson (USA)		the effectiveness of the helicopter.

Igor I. Sikorsky International Trophy

This award is offered "in recognition of outstanding achievement in the advancement of the helicopter art by the establishment of an official world record."

1961	Mihil L. Mil Design Team, U.S.S.R.	1965	Sikorsky Aircraft Division, United Aircraft Corporation
1962	Sikorsky Aircraft Division, United Aircraft Corporation	1 96 6	Hughes Tool Company, Aircraft Division
1963	Sud Aviation, France	1967	No award given
1964	No award given	1968	No award given

F. American Institute of Aeronautics and Astronautics

On February 1, 1963, the American Rocket Society and the Institute of Aerospace Sciences (changed October 27, 1960, from the Institute of Aeronautical Sciences) merged to become the American Institute of Aeronautics and Astronautics (AIAA).

AIAA Aerospace Communications Award

Established in 1968, this award honors the late Don Williams, a pioneer in the development and design of synchronous communications satellites. It was presented for the first time in 1968.

1968 Donald D. Williams

Harold A. Rosen

Octave Chanute Award

Established by the Institute of Aeronautical Sciences in 1939 in honor of Octave Chanute, American aeronautical pioneer, this award is given "for a notable contribution made by a pilot to the aerospace sciences." It carries a \$500 honorarium.

1958	A. Scott Crossfield	1964	Fred J. Drinkwater III
1959	John P. Reeder		Robert C. Innis
1960	Joseph T. Tymczyszyn	1965	Alvin S. White
1961	Joseph A. Walker	1966	Donald F. McKusker
1962	Neil A. Armstrong		John L. Swigert, Jr.
1963	Col. E. J. Bechtold (USA, Ret.)	1967	Milton O. Thompson
	·	1968	Maj. William J. Knight (USAF)

De Florez Training Award

The De Florez Training Award was presented for the first time in 1965 and is given to an individual responsible for an outstanding improvement in aerospace training. The award is named for the late Adm. Luis de Florez (USN), who did much to advance the use of simulators in the training of pilots. The honorarium is \$500.

1965	Lloyd L. Kelly	1967	Edwin A. Link
1966	Warren J. North	1968	Joseph LaRussa

Goddard Award

Established in 1963, this award succeeds the Robert H. Goddard Memorial Award established by the American Rocket Society in 1947 in honor of the rocket pioneer. It is presented for outstanding contributions "in the engineering science of propulsion or energy conversion." The award carries a \$10 000 honorarium.

			01 1
1958	Richard B. Canright	1966	Hans J. P. von Ohain
1959	Samuel K. Hoffman		A. W. Blackman
1960	Theodore von Kármán		George D. Lewis
1961	Wernher von Braun	1967	Robert O. Bullock
1962	Robert R. Gilruth		Irving A. Johnsen
1963	No award given		Seymour Lieblein
1964	Hugh L. Dryden	1968	Donald C. Berkey
1965	Sir Frank Whittle		Ernest C. Simpson
			James E. Worsham

Haley Astronautics Award

The Astronautics Award was established by the American Rocket Society in 1954 and renamed in 1966 to honor the late Andrew G. Haley. It is presented annually for outstanding contributions to the advancement of space flight and carries a \$500 honorarium.

1958 1959 1960 1961 1962	Capt. Iven C. Kincheloe, Jr. (USAF) Walter R. Dornberger A. Scott Crossfield Lt. Cdr. Alan B. Shepard, Jr. (USN) Lt. Col. John H. Glenn, Jr. (USMC)	1964 1965 1966 1967	Walter C. Williams Brig. Gen. Joseph S. Bleymaier (USAF) Neil A. Armstrong Lt. Col. David R. Scott (USAF) Lt. Col. Edward H. White II (USAF) (posthumously)
		1967	
1963	Lt. Cdr. Walter M. Schirra, Jr. (USN)	1968	Lt. Col. Virgil I. Grissom (USAF) (posthumously)
	Maj. L. Gordon Cooper, Jr. (USAF)		

Louis W. Hill Space Transportation Award

The Louis W. Hill Space Transportation Award, named for a transportation pioneer, is given for "significant contributions indicative of American enterprise and ingenuity in the art and science of space flights." The honorarium is \$5000, or up to \$10 000 for joint awards.

1958	Robert H. Goddard (posthumously)		
1959	James A. Van Allen	1964	Hugh L. Dryden
1960	S. K. Hoffman	1965	Wernher von Braun
	Thomas E. Dixon	. 1966	W. Randolph Lovelace II, M.D. (posthumously)
1961	Robert R. Gilruth	1967	Abe Silverstein
1962	Charles Stark Draper	1968	W. H. Pickering
1963	Robert J. Parks		•
	Jack N. James		

John Jeffries Award

Established in 1940 by the Institute of Aeronautical Sciences, the John Jeffries Award is given for "outstanding contributions to the advancement of aeronautics through medical research." The award honors Dr. Jeffries (1744-1819), an American physician and balloonist who made the earliest recorded scientific observations from the air and participated in the first aerial crossing of the English Channel in 1785. The honorarium is \$500.

1958	Hubertus Strughold, M.D.	1964	Eugene Konecci
1959	Brig. Gen. Don D. Flickinger (USAF)	1965	Col. William K. Douglas (USAF, MC)
1960	Capt. Joseph W. Kittinger, Jr. (USAF)	1966	Charles A. Berry, M.D.
1961	Capt. Ashton Graybiel (USN, MC)	1967	Charles I. Barron, M.D.
1962	James L. Goddard, M.D.	1968	Loren D. Carlson
1963	No award given	•	

Robert M. Losey Award

Established in 1940 by the Institute of the Aeronautical Sciences, this award honors Capt. Losey, a meteorological officer with the U.S. Army and the first officer in the service of the U.S. to die in World War II. It is given annually "in recognition of outstanding contributions to the science of meteorology as applied to aeronautics" and carries a \$500 honorarium.

1958	Patrick D. McTaggart-Cowan	1964	Col. Robert C. Miller (USAF)
1959	Herbert Riehl		, ,
		1965	George P. Cressman
1960	Thomas F. Malone	1966	David Atlas
1961	Arthur F. Merewether	1967	Elmar R. Reiter
1962	Jacob A. B. Bjerknes	1968	No award given
1963	No award given		D

Mechanics and Control of Flight Award

The Mechanics and Control of Flight Award, given for the first time in 1967, is presented for "an outstanding recent technical or scientific contribution by an individual in the mechanics, guidance or control of flight in space or in the atmosphere." The honorarium is \$500.

1967 Derek F. Lawden

1968 Robert V. Knox

G. Edward Pendray Award

Established in 1950 by the American Rocket Society in honor of one of its founders, the G. Edward Pendray Award is given annually for an outstanding contribution to aeronautics and astronautical literature. It carries a \$500 honorarium.

1958 1959 1960 1961	Homer E. Newell, Jr. Ali B. Cambel Luigi Crocco Krafft Ehricke	1964 1965 1966 1967 1968	Andrew G. Haley Dinsmore Alter A. K. Oppenheim Robert A. Gross Arthur E. Bryson, Jr.
1962	Howard S. Seifert	1968	Arthur E. Bryson, Jr.
1963	No award given		

Sylvanus Albert Reed Award

Established in 1933 by the Institute of Aeronautical Sciences, the Sylvanus Albert Reed Award is named for the aircraft designer, who was a founder-member of IAS. It is presented annually "for a notable contribution to aeronautical engineering design for the aeronautical sciences, the beneficial influence of which is apparent on the development of practical aeronautics." The honorarium is \$500.

1958	Victor E. Carbonara	1964 Abe Silverstein	
1959	Karel J. Bossart	1965 Arthur E. Raymond	
	John W. Becker	1966 Maj. Clarence L. Johnson (USAF)	ı
1960		1967 Adolph Busemann	
1961	Alfred J. Eggers, Jr.	1968 William H. Cook	
1962	Walter C. Williams	1908 WILLIAM II. COOK	
1963	No award given		

Dryden Research Lecture

Established in 1960 by the American Rocket Society, the Research Award was renamed the Dryden Research Lecture in 1967 in honor of the late Hugh L. Dryden. This traveling lecture award is "intended to emphasize the great importance of basic research to the Nation's program in aeronautics and astronautics, a salute to research scientists and engineers in American laboratories." The lecture carries a \$1000 honorarium.

1961	James A. Van Allen	1965	Wallace D. Hayes
1962	A. Theodore Forrester	1966	Shao-chi Lin
1963	No award given	1967	Edward W. Price
1964	Henry M. Shuey	1968	Hans W. Liepmann

Space Science Award

Established in 1961 by the American Rocket Society and Bell Aerosystems Co., the Space Science Award is given "to a scientist who has distinguished himself through his achievements in investigation of the physics of atmospheres of celestial bodies and of the matter and fields existing in space." The honorarium in \$500.

1962	John R. Winkler	1966	Francis S. Johnson
1963	No award given	1967	Robert B. Leighton
1964	Maj. Herbert Friedman (USA, Ret.)	1968	Kinsey A. Anderson
1965	Eugene N. Parker		

Lawrence B. Sperry Award

Established in 1936 by the Institute of Aeronautical Sciences, the award is named for a pioneer aviator and inventor who died in 1923 while attempting a flight across the English channel. It is given "for a notable contribution made by a young man to the advancement of aeronautics." The honorarium is \$500.

1050	D.I O. T		
1958	Robert G. Loewy	1964	Daniel M. Tellep
1959	James E. McCune	1965	Rodney C. Wingrove
1960	Robert B. Howell	1966	Capt. Joe H. Engle (USAF)
1961	Douglas G. Harvey	1967	Eugene F. Kranz
1962	Robert O. Piland	1968	Roy V. Harris, Jr.
1963	No award given	·	,

von Kármán Lecture

Established in 1962 by the American Rocket Society, the von Kármán Lecture is given in honor of Theodore von Kármán, world famous authority on aerodynamics. The award carries a \$1000 honorarium.

1962	Hugh L. Dryden	1067	Nicholas J. Hoff
1963	No award given		Lester Lees
1964 1965	Arthur Kantrowitz Raymond L. Bisplinghoff	1968	William B. Sears

Wright Brothers Lecture

The Wright Brothers Lecture commemorates the first powered flights made by Orville and Wilbur Wright at Kitty Hawk in 1903 and is presented for "great distinction in the aerospace sciences." The honorarium is \$1000.

1958 1959 1960 1961 1962	Maurice Roy Alexander H. Flax A. W. Quick Robert Jastrow M. James Lighthill	1964 1965 1966 1967 1968	George S. Schairer Gordon N. Patterson Charles Stark Draper Philippe Poisson-Quinton Charles W. Harper
1963	No award given		•

James H. Wyld Propulsion Award

Established in 1948 by the American Rocket Society, the C. N. Hickman Award was renamed the Propulsion Award in 1952. The James H. Wyld Memorial Award, established in 1953 by the American Rocket Society, was merged in 1964 with the Propulsion Award to become the James H. Wyld Propulsion Award, given "for outstanding achievement in the development or application of rocket propulsion systems." The award, named for the developer of the regeneratively cooled rocket engine, carries a \$500 honorarium.

G. American Institute of Aeronautics and Astronautics (Alabama Section)

Hermann Oberth Medal

Established in 1959 by the American Rocket Society, the Hermann Oberth Medal is now administered by the AIAA (Alabama Section) and is given to "commemorate major accomplishments in the fields of science and engineering." This award, honoring rocket pioneer Herman Oberth (1894to members or former members of the Alabama Section.

1959	Gen. John B. Medaris (USA)	1963	Carl Hiemburg
1960	Gen. John A. Barclay (USA)	1964	Hugh Taylor (posthumously)
1961	Gen. H. W. Toftoy	1965	W. R. Lucas
	Wernher von Braun	1966	Hermann H. Koelle
1962	Ernst Stuhlinger	1967	Maj. William C. Snoddy (USA, Ret.)

H. American Meteorological Society

Cleveland Abbe Award

This award, presented occasionally, is given for outstanding contributions to the progress of atmospheric science. The award honors Cleveland Abbe (1838-1916), the first American to make successful day-to-day predictions for a Government weather service.

1963	Lloyd V. Berkner	1966	Alan T. Waterman
1964	Francis W. Reichelderfer	1967	Thomas F. Malone
1965	Sverre Petterssen	1968	Robert M. White

Applied Meteorology Award

The award for Applied Meteorology is made to an individual for outstanding contributions to advance applied meteorology.

1959	Joseph J. George	1963	Herbert C. S. Thom
	Carl-Gustaf Arvid Rossby (posthumously)	1965	Loren W. Crow
1960	Henry T. Harrison	1966	Eugene Bollay
1961	Robert D. Elliott	1967	Wallace E. Howell
1962	Alfred H. Glenn	1968	E. Wendell Hewson

Bioclimatology Outstanding Achievement Award

Established in 1959, this award is given to an individual who has made outstanding contributions in the field of bioclimatology.

1960	Frederick Sargent II	1966	Frederick A. Brooks
1963	Konrad J. K. Buettner	1967	Paul E. Waggoner
1964	Helmut E. Landsberg	1968	No award given

Meisinger Award

This award honoring Clarence Leroy Meisinger, an aerologist acclaimed for his fundamental work in upper-air pressure computation, is given from time to time for outstanding research contributions by meteorologists under 35 years of age.

1959	Robert C. Fleagle	1963	Edward N. Lorenz
1960	Philip D. Thompson	1964	Richard J. Reed
	Norman A. Phillips	1965	Hans A. Panofsky
1961	Verner E. Suomi	1966	George W. Platzman
1962	Louis J. Battan	1967	Katsuyuki Ooyama
	Joanne Starr Malkus	1968	Richard S. Lindzen

Carl-Gustaf Rossby Research Medal

This award is presented "on the basis of outstanding contributions to man's understanding of the structure or behavior of the atmosphere." Until 1958 this award was called the Award for Extraordinary Scientific Achievement, but was renamed for Carl-Gustaf Rossby, whose contributions to the dynamic meteorology led to a better understanding of atmospheric motions and thermodynamics. It represents the highest honor the AMS can bestow upon an atmospheric scientist.

1960	J. Bjerknes	1964	Jule G. Charney
	Erik Palmen	1965	Arnt H. Eliassen
1961	Victor P. Starr	1966	Zdenek Sekera
1962	Bernhard Haurwitz	1967	Verner E. Suomi
1963	Harry Wexler (posthumously)	1968	Edward N. Lorenz

Sverdrup Gold Medal

This award, established in 1964 to honor the late Harald Ulrik Sverdrup, is granted to "researchers who make outstanding contributions to the scientific knowledge of interactions between the oceans and the atmosphere."

1964 Henry Stommel

1966 Walter H. Munk

I. American Society of Mechanical Engineers

John Fritz Medal

Established in 1902, in honor of a pioneer in the U.S. iron and steel industry, the John Fritz Medal is awarded annually "for notable scientific or industrial achievement without restriction on account of nationality or sex." The award is made jointly with four other national engineering societies.

1958	John R. Suman	1964	Gen. Lucius D. Clay (USA, Ret.)
1959	Mervin J. Kelly	1965	Frederick R. Kappel
1960	Gwilym A. Price	1966	Warren K. Lewis
1961	Stephen D. Bechtel	1967	Walker L. Cisler
1962	Crawford H. Greenewalt	1968	Igor I. Sikorsky
1963	Hugh L. Dryden		-go- 1. Datoracy

Elmer A. Sperry Award

Established in 1955, the award commemorates "contributions to advancement of the art of transportation" by Elmer Ambrose Sperry (1860-1930). It is given in recognition of "a distinguished engineering contribution, which, through application, proved in actual service, has advanced the art of transportation whether by land, sea, or air." The award is sponsored jointly by ASME, three other engineering societies, and the American Institute of Aeronautics and Astronautics.

1958	Ferdinand Porsche (posthumously)		Richard L. Rouzie
	Heinz Nordhoff		John E. Steiner
1959	Sir Geoffrey de Havilland		William H. Cook
	Frank B. Halford		Richard L. Loesch, Jr.
	Charles C. Walker	1966	Hideo Shima
1960	Frederick Darcy Braddon		Matsutaro Fujii
1961	Robert Gilmore Letourneau		Shigenari Oishi
1962	Lloyd J. Hibbard	1967	Edward R. Dye (posthumously)
1963	Earl A. Thompson		Hugh DeHaven
1964	Igor I. Sikorsky		Robert A. Wolf
	Michael E. Gluhareff	1968	Christopher S. Cockerell
1965	Maynard L. Pennell		Richard Stanton-Jones

Spirit of St. Louis Medal

Established in 1929, this award is given "for meritorious service in the advancement of aeronautics."

1958	George S. Schairer	1965	William H. Pickering
1961	Samuel K. Hoffman	1966	Christopher C. Kraft, Jr.
1962	Robert H. Widmer	1967	Ira G. Hedrick
1963	Frederick C. Crawford	1968	George S. Moore
1964	Robert R. Gilruth		

American Society of Mechanical Engineers Medal

Established in 1920, the ASME Medal is awarded annually for "eminently distinguished engineering achievement."

1958	Wilbur H. Armacost	1964	Alan Howard
1959	Martin Frisch	1965	Johannes M. Burgers
1960	C. Richard Soderberg	1967	Mayo D. Hersey
1962	Philip Sporn	1968	Samuel C. Collins
1963	Igor I. Sikorsky		

J. Army Aviation Association of America

Army Aviator of the Year Award

Established in 1959, this award is given for outstanding individual accomplishment in Army aviation.

1959	Capt. James T. Kerr	1964	Maj. Marquis D. Hilbert
1960	CWO Clifford V. Turvey	1965	Maj. Paul A. Bloomquist
1961	CWO Michael J. Madden	1966	Capt. James A. Scott III
1962	Capt. Leyburn W. Brockwell, Jr.	1967	CWO Jerome R. Daly
1963	Capt. Emmett F. Knight	. 1968	Capt. Robin K. Miller

James H. McClellan Aviation Safety Award

This award is given to officers, soldiers, or civilians who have made outstanding contributions to Army aviation safety.

1959	Maj. Arne H. Eliassen	1964	Col. Conrad L. Stansberry
1960	Col. John L. Inskeep	1965	Ralph B. Greenway
1961	No award given	1966	Gerard M. Bruggink
	Col. Spurgeon H. Neel, Jr.	1967	Capt. Gary F. Ramage
1963	Col. James F. Wells	1968	Francis P. McCourt

K. Arnold Air Society

General H. H. Arnold Trophy

Established in 1958, this trophy honors the late General Arnold (USAF), the first honorary national commander of the Arnold Air Society. It is awarded to a member of the USAF for "outstanding contributions to military aviation and aerospace progress."

1958 1959 1960 1961	Lt. Col. David Simon (USAF) Maj. Gen. Donald Yates (USAF) Lt. Gen. Bernard A. Schriever (USAF) Gen. Thomas D. White (USAF)	1964 1965 1966 1967	Gen. Curtis E. LeMay (USAF) Gen. Thomas S. Power (USAF) Maj. Gen. Robert R. Rowland (USAF) Gen. Howell M. Estes, Jr. (USAF)
1962	Maj. Robert White (USAF)	1967 1968	Gen. Howell M. Estes, Jr. (USAF) Gen. John P. McConnell (USAF)
1963	Gen. Osmond J. Ritland (USAF)		

General Muir S. Fairchild Trophy

Established in 1963, this trophy is awarded to an educator for outstanding contributions to aerospace education.

1964	Clifford C. Furnas Lindley J. Stiles Wayne O. Reed	1966 W. Randolph Lovelace II (posthumously) 1967 Howard W. Johnson 1968 Maj. Gen. Leo F. Dusard, Jr. (USAF)
1965	Wayne O. Reed	1700 1744. 3511. 250 1 1 2 2 2 2 2

Paul T. Johns Trophy

Established in 1958 by the Arnold Air Society, this trophy honors the late Paul T. Johns, the first National Commander of the Arnold Air Society. It is awarded to a civilian for "outstanding contributions to aeronautics and astronautics."

1958 Krafft Ehricke 1959 Walter Cronkite 1960 James H. Straubel 1961 Simon Ramo 1962 Edward C. Welsh 1963 D. Brainerd Holmes	1964 Trevor Gardner (posthumously) 1965 John F. Loosbrock 1966 George Edward Haddaway 1967 Edwin A. Link 1968 Mike Monroney
---	---

John Fitzgerald Kennedy Trophy

Established in 1964, this trophy honors the late President Kennedy, an honorary member of the Arnold Air Society. It is awarded for "outstanding contributions to aerospace flight."

1964	Maj. L. Gordon Cooper, Jr. (USAF)		Lt. Col. James A. McDivitt (USAF)
	Brig. Gen. Joseph S. Bleymaier (USAF)	1967	Lt. Gen. Leighton I. Davis (USAF)
	Lt. Col. Edward H. White II (USAF)	1968	Edward C. Welsh

General Hoyt S. Vandenberg Trophy

Established in 1963 by the Arnold Air Society, this trophy is awarded to a scientist for "outstanding scientific contributions to aerospace technology."

1963	John R. Pierce		Billy E. Welch
1903	Alton C. Dickieson	1966	Charles A. Berry, M.D.
	•—	1967	Lee V. Gossick
1964	Allen F. Donovan	1,0,	George C. Mohr
1965	Hans Georg Clamann	1968	George C. Morn

Eugene M. Zuckert Trophy

Established in 1966, the Zuckert Trophy is awarded to USAF personnel, civilian or military, male or female, "for outstanding professionalism." Groups of USAF personnel, as well as individuals, are eligible for this award.

1966 Gen. Bernard A. Schriever (USAF)

1968 Maj. Gen. Victor Haugen (USAF)

1967 Maj. Gen. Jewell C. Maxwell (USAF)

L. British Interplanetary Society

Golovine Award

The first presentation of the Golovine Award was in 1967. It is given in recognition of the most outstanding contribution from an individual author in astronautics, space research, technology, or any associated subject such as space law, astronautics education, etc., published during the preceding two years.

1967 Gordon Sohl Robert C. Speiser

1968 Philip Bono

M. Fédération Aéronautique Internationale

Founded in 1905, the FAI authenticates official world air and space records and sponsors world and international sports aviation championships. The U.S. representative to FAI is the National Aeronautic Association.

Fédération Aéronautique Internationale Gold Air Medal

The FAI Gold Air Medal is awarded to persons who have contributed highly to the development of aeronautics.

1958	Andrey M. Tupolev Pierre Satre Yuri Gagarin Sir Geoffrey de Havilland No award given	1964	Vladimir Kokkinake
1959		1965	Col. Robert L. Stephens (USAF)
1960		1966	Alexander S. Yakovlev
1961		1967	Joe Walker
1962		1968	Maynard L. Pennell
1963	Jacqueline Auriol		

Fédération Aéronautique Internationale Gold Space Medal

Established in 1962, the FAI Gold Space Medal is awarded to astronauts "who, alone or in groups, realize an outstanding performance in space."

1962	Andrian G. Nikolayev	1965	Aleksey Leonov
1702	Pavel R. Popovich	1966	Capt. James A. Lovell, Jr. (USN)
1963	Valentina Nikolayeva-Tereshkova	1967	No award given
1964	Vladimir Komarov	1968	Col. Frank Borman (USAF)
1,0,	Boris B. Yegorov		Capt. James A. Lovell, Jr. (USN)
	Konstantin P. Feoktistov		Lt. Col. William A. Anders (USAF)

N. Flight Safety Foundation

Laura Taber Barbour Award

The Laura Taber Barbour Award was established in 1956 and is given annually "for notable achievement which shall tend to advance safety in aeronautics and which contributes toward a method of avoiding . . . suffering or loss of life in air travel."

1.54

1958 1959 1960 1961	James Martin Alan L. Morse Melvin N. Gough E. S. Calvert J. W. Sparke	Jerome Lederer 1965 Arthur E. Jenks 1966 Francis P. McCourt 1967 W. M. Kauffman W. F. Milliken	
1962	Otto E. Kirchner, Sr.	W. U. Breuhauf	
1963	David D. Thomas	1968 Walter Pye	
1964	Philip Donely		

Richard Hansford Burroughs International Test Pilot Award

Established in 1963, this award is given to "recognize contributions by a test pilot or group of test pilots to safe and efficient flight testing in the realm of atmospheric or space flight."

1963	Joseph J. Tymczyszn	1966	William M. Magruder
	Brian Trubshaw	1967	John P. Reeder
	Fred J. Drinkwater !II	1968	Alvin S. White
1703	ried 3. Dillikwater in		

O. International Academy of Astronautics of the International Astronautical Federation

David and Florence Guggenheim International Astronautics Award

This award, established in 1961, is given annually "to an individual who has made outstanding contributions to the progress of astronautics during the preceding five years." The honorarium is \$1000.

1961	Sir Bernard Lovell	1965	Mstislav V. Keldysh
1962	James A. Van Allen	1966	Robert R. Gilruth
1963	Marcel Nicolet	1967	Jacques-Emile Blamont
1964	Wallace Osgoc Penn	1968	Zdenek Svestka

P. International Astronautical Federation

Andrew G. Haley Award

Established in 1961, t¹ is award is given in recognition of contributions to the development of space law and international cooperation in the peaceful uses of space. It is named for A¹ rew G. Haley (1905-1966), an early advocate of outer space rule of law. The honorarium is \$500.

1961	John Cobb Cooper Vladimir Kopal Michael Smirnoff	1964	Eugene Korovine Cyril Horsford Aldo Armando Cocca
1962	Alex Meyer Manfred Lachs	1965	Aldo Armando Cocca Myres McDougal
1963	Antonio Ambrosini Eugene Pépin Ernst Fasan	1966 1967 1968	Manfred Lacins No award given Eilene Galloway

Q. National Aeronautic Association

Formed in 1922, the NAA is the U.S. representative to the Fédération Aéronautique Internationale.

Frank G. Brewer Trophy

Established in 1943, the Frank G. Brewer Trophy is awarded annually for the greatest achievement in the field of air youth education and training, "accomplished by any individual, group of individuals, or organization."

1958	Evan Evans	1964	Gill Robb Wilson
1959	Paul E. Garber	1965	Jane N. Marshall
1960	George N. Gardner	1966	Mervin K. Strickler, Jr.
1961	James V. Bernardo	1967	Roland H. Spaulding
1962	Merlyn McLaughlin	1968	Joseph T. Geuting, Jr.
1963	Marrilyn Link		

Robert J. Collier Trophy

This award was established in 1911 as the "Aero Club of America Trophy." In 1922, the Aero Club of America was incorporated into the National Aeronautic Association, and NAA renamed the award the Robert J. Collier Trophy in 1944 honoring its donor. The trophy is presented annually "for the greatest achievement in aeronautics or astronautics in America, with respect to improving the performance, efficiency or safety of air or space vehicles, the value of which has been thoroughly demonstrated by actual use during the preceding year." This award is usually presented by the President of the United States.

1958	U.S. Air Force and Industry		Lt. Col. John H. Glenn, Jr. (USMC)
	Team responsible for the F-104 Interceptor		Maj. Virgil I. Grissom (USAF)
	Maj. Clarence L. Johnson (USAF)		Lt. Cdr. Walter M. Schirra, Jr. (USN)
	Neil Burgess		Cdr. Alan B. Shepard, Jr. (USN)
	Gerhard Neumann		Maj. Team. K. Slayton (USAF)
	Maj. Howard C. Johnson (USAF)		Lt. Cdr. M. Scott Carpenter (USN)
	Capt. Walter W. Irwin (USAF)	1963	Maj. Clarence L. Johnson (USAF)
1959	U.S. Air Force, Corvair, and	1964	Gen. Curtis E. LeMay (USAF)
	Space Technology Laboratories	1965	James E. Webb
1960	Vice Adm. William Rayborn (USN)		Hugh L. Dryden
1961	Maj. Robert M. White (USAF)	1966	James S. McDonnell, Jr.
	Joseph A. Walker	1967	Lawrence A. Hyland
	A. Scott Crossfield	1968	Col. Frank Borman (USAF)
	Cdr. Forrest S. Petersen (USN)		Capt. James A. Lovell, Jr. (USN)
1962	Maj. L. Gordon Cooper, Jr. (USAF)		Lt. Col. William A. Anders (USAF)

Wright Brothers Memorial Trophy

The Wright Brothers Memorial Trophy, established in 1948, is awarded each year to a living individual for "significant public service as a civilian of enduring value to aviation in the United States."

1958	John Francis Victory	1964	Harry F. Guggenheim
1959	William P. MacCracken, Jr.	1965	Jerome Lederer
1960	Frederick C. Crawford	1966	Juan T. Trippe
1961	A. S. "Mike" Monroney	1967	Igor I. Sikorsky
1962	John Stack	1968	Warren G. Magnuson
1963	Donald W Douglas Sr		3

R. National Geographic Society

Hubbard Medal

This medal is conferred by the National Geographic Society's Board of Trustees for outstanding discovery and exploration. It is named in honor of one of the founders of the Society and its first president, Gardiner Greene Hubbard.

1958	Paul A. Siple	1963	American Mount Everest Expedition
1959	Sir Vivian Fuchs	1967	Juan Trippe
	U.S. Navy Antarctic Expeditions	1968	Col. Frank Borman (USAF)
1962	Dr. and Mrs. Louis S. B. Leakey		Capt. James A. Lovell, Jr. (USN)
	John H. Glenn, Jr.		Lt. Col. William A. Anders (USAF)

S. National Space Club

Founded as the National Rocket Club in 1957, the name was changed to the National Space Club in late 1963.

Astronautics Engineer Achievement Award

Established in 1959, the Astronautics Engineer Achievement Award is "given annually to an accredited engineer who has made an outstanding contribution to the advancement of space technology, an award based on personal accomplishment."

1959	Rudolf F. Hoelker		Donald D. Williams
1960	Richard C. Canright	1965	Harris M. Schurmeier
1961	William J. O'Sullivan, Jr.	1966	Charles W. Mathews
1962	William G. Stroud	1967	Robert J. Helberg
1963	Jack N. James	1968	Howard H. Haglund
1964	Harold A. Rosen		

Robert H. Goddard Historical Essay Award

Established in 1962, this award is made annually to the winner of a national competition in historical essays on rocketry and astronautics. The honorarium is \$500.

1962 1963 1964	No award given R. Cargill Hall R. Cargill Hall	1966 Airman 2/C Frank H. Winter (USAF) 1967 Ensign Richard A. Hobbs (USN) 1968 No award given
1965	John M. Tascher	

Robert H. Goddard Memorial Lecture

Established in 1966 by the National Space Club, this award stresses the importance of contributions made by Robert H. Goddard (1882-1945) to the development of the space program. Selection of the lecturer is made by a panel from men of high stature who have made outstanding contributions to the aerospace field. The honorarium is \$1000.

1966	Robert C. Seamans, Jr.	1968	Gen. Bernard A. Schriever (USAF, Ret.)
1967	Joseph F. Shea		•

Robert H. Goddard Memorial Trophy

Established in 1958, this award is given annually for outstanding achievement to advance space flight programs contributing to U.S. leadership in astronautics.

1958	Wernher von Braun	1964	Hugh L. Dryden
1959	S. K. Hoffman	1965	William H. Pickering
1960	Karel J. Bossart	1966	Lyndon B. Johnson
1961	Lockheed Missiles & Space Co.	1967	George P. Miller
1962	Robert R. Gilruth	1968	Robert C. Seamans, Jr.
1963	Lt. Col. John H. Glenn, Jr. (USMC)		

Nelson P. Jackson Aerospace Award

Established in 1960 in honor of a founder of the National Rocket Club, the Nelson P. Jackson Aerospace Award, now administered by the National Space Club, is awarded annually to a recipient in the aerospace industry "for an outstanding contribution of the missile, aircraft, and space field."

1961	U.S. Air Force and the Discoverer	1964	General Dynamics Astronautics
	satellite industrial team:		Div. and McDonnell Aircraft Corp.
	Bell Aerosystems Co., Douglas Aircraft Co.,	1965	Florida Research and Development
	General Electric Co., Lockheed Aircraft Corp.,		Center, Pratt & Whitney Aircraft
	and Rocketdyne Div. of North American Aviation, Inc.		Div. of United Aircraft Corp.
1962	Astro-Electronics Div.,	1966	NASA-Air Force-Industry Team
	Radio Corp. of America	1967	Boeing Co.
1963	American Telephone & Telegraph Co.	1968	Hughes Aircraft Co.

National Space Club Press Award

Established 1960 as the National Rocket Club Award and later renamed the National Space Club Press Award, the honor is presented annually "in recognition of contributions which added to public understanding and appreciation of astronautics."

1961	Edward R. Murrow	1965	Aviation Week & Space Technology Magazine
1962	The New York Times	1966	William P. Taub
1963	Radio-Television Industry	1967	William J. Coughlin
1964	Editors and Staff of Fortune Magazine	1968	Edward C. Welsh

T. Society of Automotive Engineers, Inc.

Arch T. Colwell Merit Award

Established in 1965 by the Society of Automotive Engineers, Inc., the Arch T. Colwell Merit Award is given in recognition of outstanding technical papers in the field of automotive engineering. There is no restriction in this award as to the number of authors who may be honored.

1965	A. E. W. Austen		W. M. Magruder
	T. Priede		J. F. McDonald
	Kenneth C. Bachman		W. J. Mayer
	R. Thomas Bundorf		C. P. Moore
	Walter Cornelius		D. P. Krause
	L. William Huellmantel		W. H. Lange
	Harry R. Mitchell		C. B. Murphy
	Paul H. Denke		J. J. Klepaczyk
	Clayton W. Bentley		Noel Penny
	Robert T. Hunt		R. C. Puydak
	Walter B. Horne, LaRC		R. S. Auda
	Upshur T. Joyner, LaRC		Charles E. Scheffler
	William LeFevre		A. R. Spencer
	K. J. McAulay		W. M. Spurgeon
	Tang Wu		J. L. Wingle
	Simon K. Chen	1967	W. L. Brown
	G. L. Borman		Fujio Nagao
	P. S. Myers		Yuzuru Shimamoto
	O. A. Uyehara		Bruce D. Van Deusen
	A. L. McPike		Gerald E. McCarron
	W. A. Turunen		Ralph S. Mosher
	J. S. Collman		H. K. Newhall
1966	L. B. Graiff		E. S. Starkman
	Marvin W. Jackson		W. A. Daniel
	A. C. Knoell, JPL		J. S. Alford
	S. O. Kronogard		Philip Bono
	Paul E. Kueser		Frank E. Senator
	Robert T. Larsen		D'Amaso S. Garcia

David L. Harrington M. L. Caplan W. W. Thayer J. D. Reams R. G. Ahlvin D. N. Brown J. L. Bicknell Walter Cornelius Donald L. Stivender Robert E. Sullivan 1968 I. N. Bishop A. Simko Jon D. Parisen William A. McGowan P. E. Rubbert Gary R. Saaris Donald E. Muehlberger L. J. Nestor L. Maggitti Donald L. Stivender Bo Björkman Michael C. Kaye Jerry P. Barrack Jerry V. Kirk John K. Jackson

> Mario S. Bonura David F. Putnam

Jay A. Bolt

Charles Matthews Manly Memorial Award

This award, established in 1928, is made "to the author of the best paper relating to theory or practice in the design or construction of, or research on, aerospace engines, their parts, components, or accessories." The honorarium is \$150.

1958	Robert H. Boden		Elling Tjonneland
1959	No award given	1966	No award given
1960	Donald B. Mackay	1967	Mark R. Kulina
1961	John M. Tyler		John F. Mullen
	Thomas G. Sofrin		Magge S. Natesh
1962	D. B. Colyer		Herbert W. Saltzman
	J. W. Bjerklie	1968	Brian Brimelow
1963	Joab J. Blech		H. Ivan Bush
	Antoni Paluszny		G. K. Richey
1964	No award given		Donald J. Stava
1965	William A Reinhart		

Wright Brothers Medal

Established in 1924, the Wright Brothers Medal is awarded annually "to the author of the best paper on aerodynamics or structural theory, or research, or construction or operation of airplanes or spacecraft presented at a meeting of the Society or any of its Sections during the calendar year." The honorarium is \$150.

MaVinnau In
. McKinney, Jr.
E. Kuhn
Reeder, LaRC
liams
K. Williams (USA, Ret.)
Garrard
lkovitch
AcKillop
J. Nestor
Maggitti, Jr.

George Eugene Bockrath

U. Society of Experimental Test Pilots

Iven C. Kincheloe Memorial Award

The Iven C. Kincheloe Memorial Award, established in 1958, is given "for outstanding professional accomplishment in the conduct of flight testing."

1958	James R. Gannett Joseph J. Tymcyzszyn		Maj. Virgil I. Grissom (USAF) Cdr. Alan B. Shepard, Jr. (USN)
1959	Maj. Robert G. Ferry (USAF)		Maj. Donald K. Slayton (USAF)
1960	A. Scott Crossfield	1964	Pilots of the YF-12A
	William M. Magruder		Louis W. Schalk
1961	Joseph A. Walker		William C. Park
	Maj. Robert M. White (USAF)		Robert J. Gilliland
1962	Donald M. McCracken		James D. Eastham
1963	Lt. Cdr. M. Scott Carpenter (USN)	1965	Alvin S. White
	Lt. Col. John H. Glenn, Jr. (USMC)	1966	Milton O. Thompson
	Maj. L. Gordon Cooper, Jr. (USAF)	1967	Richard L. Johnson
	Capt. Walter M. Schirra, Jr. (USN)	1968	Drury W. Wood, Jr.

V. United Engineering Trustees

Daniel Guggenheim Medal

Established in 1928 in cooperation with the Institute of Aeronautical Sciences, the Society of Automotive Engineers, and the American Society of Engineers, this medal is given "for notable achievement in the advancement of aeronautics."

1958 1959 1960 1961	William Littlewood Sir George R. Edwards Grover Loening Jerome Lederer	1964 1965 1966 1967	Robert H. Goddard (posthumously) Sir Sydney Camm (posthumously) Charles Stark Draper George S. Schairer
1962 1963	James H. Kindelberger (posthumously) James S. McDonnell, Jr.	1968	H. M. Horner

3. Government Awards

A. Atomic Energy Commission

Enrico Fermi Award

Established in 1956, this award honors Enrico Fermi for his contributions to basic neutron physics and the achievement of the controlled nuclear reaction. It is presented "not more often than annually" for "outstanding scientific or technical achievements or for scientific management and engineering in the development of atomic energy." The honorarium is \$25 000, or \$50 000 divided equally if a joint award.

1958	Eugene P. Wigner	1966	Lise Meitner
1959	Glenn T. Seaborg		Otto Hahn
1961	Hans A. Bethe		Fritz Strassman
1962	Edward Teller	1967	No award given
1963	J. Robert Oppenheimer	1968	John A. Wheeler
1964	Vice Adm. Hyman G. Rickover (USN)	#- -	

E. O. Lawrence Memorial Award

Established in 1959 to honor Ernest O. Lawrence, inventor of the cyclotron, this award is made annually to not more than five U.S. citizens under 45 years of age who have made "recent, especially meritorious contributions to the development, use or control of atomic energy in areas of all sciences related to atomic energy, including medicine and engineering." The honorarium is not less than \$5000 each and not more than a total of \$25 000.

1960 1961 1962	Harvey Brooks John S. Foster, Jr. Isadore Perlman Norman F. Ramsey, Jr. Alvin M. Weinberg Leo Brewer Henry Hurwitz, Jr. Conrad L. Longmire Wolfgang K. H. Panofsky Kenneth E. Wilzbach Andrew A. Benson Richard P. Feynman Herbert Goldstein Anthony L. Turkevich Herbert F. York	1964 1965	Herbert J. C. Kouts L. James Rainwater Lewis Rosen James M. Taub Cornelius A. Tobias Jacob Bigeleisen Albert L. Latter Harvey M. Patt Marshall N. Rosenbluth Theos J. Thompson George A. Cowan Floyd L. Culler Milton C. Edlung Theodore B. Taylor Arthur C. Upton	1966 1967 1968	Harold M. Agnew Ernest C. Anderson Murray Gell-Mann John R. Huizenga Paul R. Vanstrum Mortimer M. Elkind John M. Googin Allan F. Henry John O. Rasmussen Robert N. Thorn James R. Arnold E. Richard Cohen Val L. Fitch Richard Latter John B. Storer
----------------------	---	--------------	--	----------------------	--

B. National Academy of Engineering (Chartered)

Founders' Medal

Established in 1965 by the 25 original members of the National Academy of Engineering, the Founders' Medal is awarded annually for "outstanding contributions by an engineer both to his profession and to society."

1966 Vannevar Bush

1968 Vladimir K. Zworykin

1967 James Smith McDonnell

C. National Academy of Sciences (Chartered)

John J. Carty Medal

Established in 1930 by the American Telephone & Telegraph Company, in honor of John J. Carty, a distinguished scientist and engineer, this award is presented not oftener than once every two years and is given to "an individual for noteworthy and distinguished accomplishment in any field of science."

1961 Charles H. Townes

1965 Alfred H. Sturtevant

1963 Maurice Ewing

1968 Murray Gell-Mann

Henry Draper Medal

Established in 1883 by Mrs. Henry Draper in memory of her husband, a former member of the Academy, the Henry Draper Medal is awarded not more than once every two years and is given for "investigations in astronomical physics."

1960 Martin Schwarzchild

1966 No award given

1962 Richard Tousey

Bengt Edlen

1964 Martin Ryle

J. Lawrence Smith Medal

1968

Established in 1884, by Mrs. J. Lawrence Smith in memory of her husband, a former member of the Academy, this medal is presented not more than once every two years, and is awarded for "investigations of meteoric bodies."

1960 Ernst J. Ôpik

1967 John H. Reynolds

1962 Harold C. Urey

James Craig Watson Medal

The James Craig Watson Medal was established in 1874 as a bequest of James Craig Watson, a former member of the Academy, to provide recognition of outstanding astronomical research.

1960	Yusuke Hagihara	1965	Paul Herget
1961	Otto Heckmann	1966	Wallace J. Eckert
1962	No award given		(19th recipient)
1963	No award given	1967	No award given
1964	Willem J. Luyten	1968	No award given

D. Smithsonian Astrophysical Observatory

Thomas Hodgkins Prize

The Hodgkins gold medal, named for philanthropist Thomas G. Hodgkins (1803-1892), was first awarded in 1899 to James Dewar and for the second time in 1902 to J. J. Thomson. The award is made for contributions to atmospheric research and carries a \$3000 honorarium for each recipient.

1965 Joseph KaplanMarcel Nicolet

Sydney Chapman (3rd, 4th, and 5th recipient)

E. Smithsonian Institution

Langley Medal

Established in 1908 by the Regents of the Smithsonian Institution, the Langley Medal was initiated by Alexander Graham Bell for the purpose of presenting an American award to the Wright Brothers. The Medal honors Samuel Pierpont Langley (1834-1906), aviation pioneer and founder of Smithsonian Astrophysical Observatory who served as the Smithsonian Institution's third Secretary from 1887 to 1906. Presented only occasionally, the medal is awarded by motion of the Secretary of the Smithsonian and a designated committee "for specially meritorious achievements in connection with the sciences of aeronautics and astronautics."

1960 Robert H. Goddard (posthumously)

1964 Cdr. Alan B. Shepard, Jr. (USN)

1962 Hugh L. Dryden

1967 Wernher von Braun (12th recipient)

F. United States Air Force

The Mackay Trophy (USAF)

The Mackay Trophy is awarded "to the Air Force person or persons who made the most meritorious flight of the year." The trophy was established in 1910 by Charles H. Mackay and was first awarded in 1912 to Lt. Henry H. "Hap" Arnold. Deeded to the National Aeronautical Association after Mackay's death, the trophy is administered by the U.S. Air Force.

1958 1959 1960 1961	TAC's Composite Air Strike Force USAF Thunderbird Aerial Team USAF 6593rd Test Squadron (Special) Maj. William R. Payne (USAF) Capt. William L. Polheumus (USAF) Capt. Raymond R. Wagner (USAF) (all of 43rd Bomb Wing) Maj. Robert G. Sowers (USAF) Capt. Robert McDonald (USAF)	1963 1964 1965 1966 1967	Crew of C-47 464th Troop Carrier Wing YF-12A/SR71 Task Force Lt. Col. Albert R. Horwarth (USAF) Maj. John H. Casteel (USAF) Capt. Richard L. Trail (USAF) Dean L. Hoar M/Sgt. Nathan C. Campbell (USAF) Lt. Col. Daryl D. Cole (USAF)
	Capt. John T. Walton (USAF)		

General Thomas D. White Space Trophy

Established in 1961 by Dr. Thomas W. McKnew, chairman of the National Geographic's Board of Trustees, the General Thomas D. White Space Trophy is presented annually to an Air Force member, Civil Service employee, or organization that made the foremost contribution to U.S. progress in aerospace. The trophy honors the late retired Air Force Chief of Staff.

1962 1963 1964	Capt. Virgil I. Grissom (USAF) Maj. Robert M. White (USAF) Maj. L. Gordon Cooper, Jr. (USAF) Air Force Systems Command Lt. Col. Edward H. White II (USAF)	1966 1967 1968	Alexander H. Flax John Paul McConnell Col. Frank Borman (USAF) Capt. James A. Lovell, Jr. (USN) Lt. Col. William A. Anders (USAF)
1965	Lt. Col. Edward H. Wille H (OSAL)		

4. Miscellaneous Awards

A. Galabert International Prize for Astronautics

Established in 1957 by Mr. and Mrs. Henri Galabert, this award is presented annually for notable contributions "to human progress for the advancement of all sciences and techniques associated with astronautics." The award of \$4000 is divided among several recipients.

1961	Ernst Stuhlinger	1964	William H. Pickering
	Hermann Oberth		Valentina Tereshkova
1962	Alle Massevitch	1965	Wernher von Braun
	Ary Sternfeld		Jean-Pierre Causse
	Yuri Gagarin		Roger Chevalier
	Lt. Col. John H. Glenn, Jr. (USMC)	1966	No award given
1963	No award given	1967	No award given

B. Clifford B. Harmon Trust

Harmon International Trophies

Established in 1926, these aeronaut, aviator, and aviatrix tropies are awarded for "outstanding achievements in the arts and/or sciences of aeronautics."

	Aeronaut	Aviator	Aviatrix
1961	No award given	A. Scott Crossfield Joseph A. Walker	No award given
1962	Cdr. Malcolm D. Ross (USNR) Lt. Cdr. Victor A. Prather (USN) (posthumously)	Maj. Robert M. White (USAF) Lt. Col. William R. Payne (USAF)	Jacqueline Cochran
1963	Nini Boesman	Maj. Fitzhugh L. Fulton, Jr. (USAF)	No award given
1964	No award given	Maj. L. Gordon Cooper (USAF)	Betty Miller
1966	No award given	Capt. James A. Lovell, Jr. (USN) Col. Frank Borman (USAF) Capt. Walter M. Schirra, Jr. (USN) Lt. Col. Thomas P. Stafford (USAF)	No award given
1967	No award given	Capt. James A. Lovell, Jr. (USN) Lt. Col. Edwin E. Aldrin, Jr. (USAF) Alvin S. White	Sheila Scott
1968	No award given	Maj. William J. Knight (USAF)	No award given

C. University of California Institute of Navigation

Hays Award

Established in 1965, the Hays Award is given in memory of Norman P. Hays, an outstanding navigator, "to recognize individuals providing encouragement, inspiration, and support contributing to the advancement of navigation."

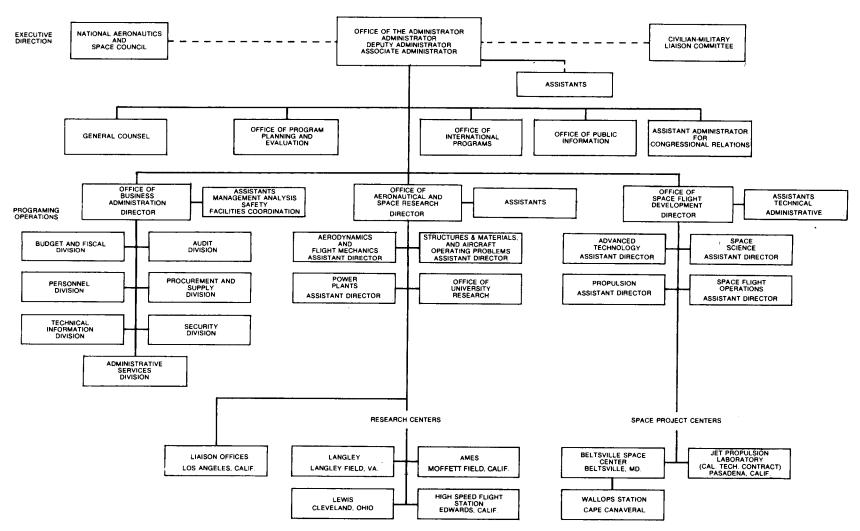
1965	Patrick R. J. Reynolds	1967	Robert Clifton Duncan
	Alexander B. Winick	1968	Gene R. Marner

Thomas L. Thurlow Navigation Award

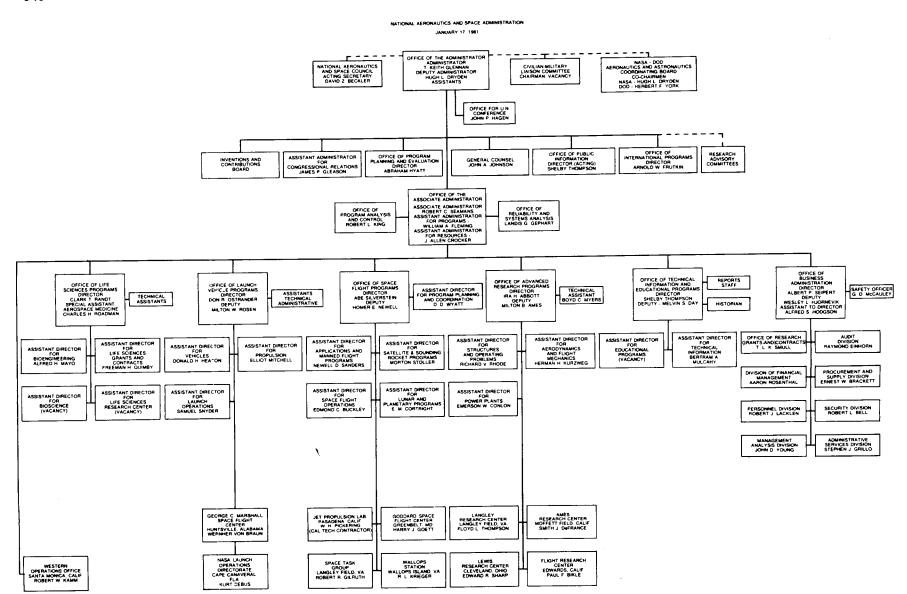
Established in 1945 in honor of Colonel Thurlow to stimulate the development of the science of navigation in the United States. It is awarded "for the outstanding contribution to the science of navigation in the year."

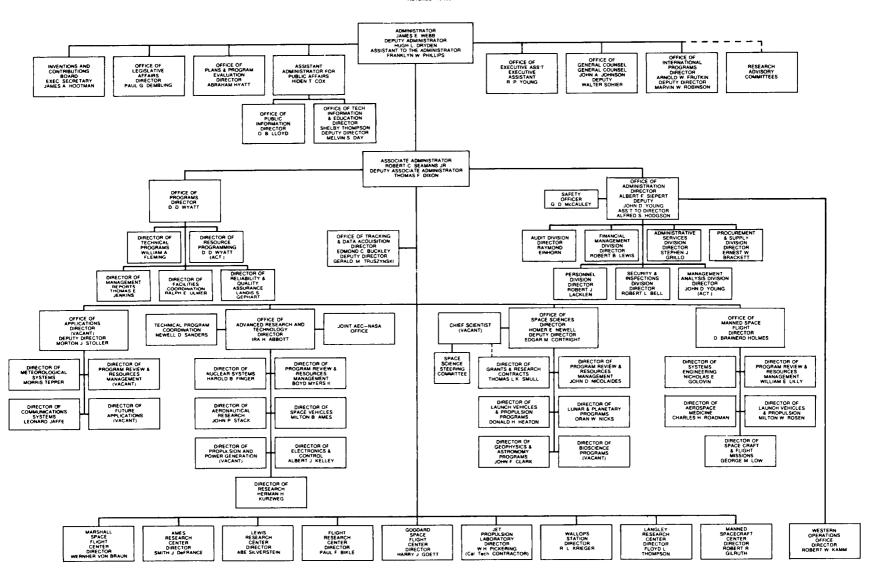
1958	Charles F. Blair, Jr.	1964	Col. Robert A. Duffy (USAF)
1959	William J. Tull	1965	Ernst Ludwig Kramar
1960	Victor E. Carbonara	1966	W. J. O'Brien
1961	John R. Moore	1967	Winslow Palmer
1962	Thomas E. Curtis	1968	Maurice A. Meyer
1963	Joseph A. Cestone		

Appendix B MAJOR NASA ORGANIZATION CHARTS

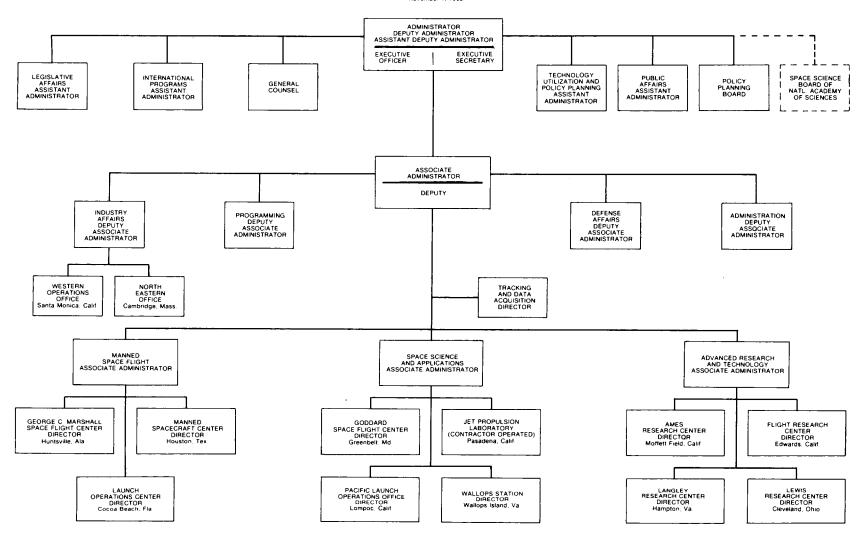

Appendix B

MAJOR NASA ORGANIZATION CHARTS

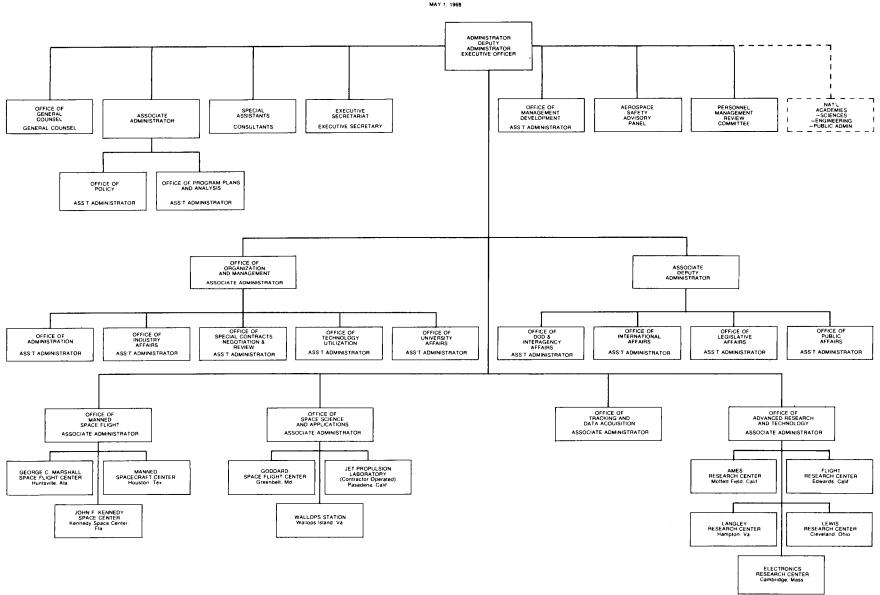

Contents


	Page
January 29, 1959	539
January 17, 1961	540
November 1, 1961	541
November 1, 1963	542
May 1, 1968	543

JANUARY 29, 1959



NASA HISTORICAL DATA BOOK



November 1, 1963

The Authors

Jane Van Nimmen's publications include The Work of Edvard Munch from the Collection of Mr. and Mrs. Lionel C. Epstein, a catalog prepared for the Phillips Collection in Washington, D.C., and Thomas Couture: Paintings and Drawings in American Collections, a catalog of an exhibition held at the University of Maryland Art Gallery. Mrs. Van Nimmen has served as writer-editor in the Library of Congress Science and Technology Division, as editor with the Columbia University Research Program in International and Economic Integration, and as Museum Training Fellow with the University of Maryland Department of Art. She received her B.A. degree from Antioch College and an M.A. from the University of Maryland and has done graduate work at Columbia.

Leonard C. Bruno, a writer-editor in the Library of Congress Science and Technology Division, is the author of the launch table appendixes in Astronautics and Aeronautics: A Chronology of Science, Technology, and Policy for the five annual volumes 1968 through 1973. He also contributed to Appendix A of the President's annual report to Congress, Aeronautics and Space Report of the President, for 1969 through 1973. He is now writing Volume II, NASA Programs, of the NASA Historical Data Book. Mr. Bruno received his B.A. degree in political science from Providence College in Rhode Island and is preparing his dissertation for a Ph.D. degree in international law at The Catholic University of America, investigating legal, political, and organizational aspects of international participation in remote sensing from space.

Robert L. Rosholt, Chairman of the Department of Political Science of Bloomsburg State College in Pennsylvania, is the author of An Administrative History of NASA, 1958-1963. He has taught social and political science at Luther College in Iowa, the University of Minnesota, and the College of Wooster in Ohio and has served as a program analyst in the NASA Office of Programs. He earlier served as business economist with the Department of Agriculture's Rural Electrification Administration. Dr. Rosholt received his A.B. degree from Luther College and the M.A.P.A. and Ph.D. degrees from the University of Minnesota. He also studied at the London School of Economics and Political Science.

NASA Historical Publications

Histories

- Robert L. Rosholt, An Administrative History of NASA, 1958-1963, NASA SP-4101, 1966, GPO.*
- Loyd S. Swenson, James M. Grimwood, and Charles C. Alexander, This New Ocean: A History of Project Mercury, NASA SP-4201, 1966, GPO.
- Constance McL. Green and Milton Lomask, Vanguard-A History, NASA SP-4202, 1970; also Washington: Smithsonian Institution Press, 1971.
- Alfred Rosenthal, Venture into Space: Early Years of Goddard Space Flight Center, NASA SP-4301, 1968, GPO.
- Edwin P. Hartman, Adventures in Research: A History of the Ames Research Center, 1940-1965, NASA SP-4302, 1970, GPO.

Historical Studies

- Mae Mills Link, Space Medicine in Project Mercury, NASA SP-4003, 1965, NTIS.**
- Historical Sketch of NASA, NASA EP-29, 1965 and 1966, NTIS.
- Katherine M. Dickson (Library of Congress), History of Aeronautics and Astronautics: A Preliminary Bibliography, NASA HHR-29, NTIS.
- Eugene M. Emme (ed.), Statements by the Presidents of the United States on International Cooperation in Space, Senate Committee on Aeronautical and Space Sciences, Sen. Doc. 92-40, 1971, GPO.
- William R. Corliss, NASA Sounding Rockets, 1958-1968: A Historical Summary, NASA SP-4401, 1971, GPO.
- Helen T. Wells with Susan Whitely, Origins of NASA Names, NASA SP-4402 (1976).

Chronologies

- Astronautics and Aeronautics: A Chronology of Science, Technology, and Policy, series of annual volumes continuing from 1961, with an earlier summary volume, Aeronautics and Astronautics, 1915-1960. Early volumes available from NTIS; recent volumes from GPO. Astronautics and Aeronautics, 1973, NASA SP-4018, to appear in 1975.
- Project Mercury: A Chronology, NASA SP-4001, 1963, NTIS.
- Project Gemini Technology and Operations: A Chronology, NASA SP-4002, 1969, GPO.
- The Apollo Spacecraft: A Chronology

Volume I, Through November 7, 1962, NASA SP-4009 I, 1969, GPO.

Volume II, November 8, 1962-September 30, 1964, NASA SP-4009 II, 1973, GPO.

- Project Ranger: A Chronology, JPL/HR-2, 1971, NTIS.
- Skylab: Preliminary Chronology, NASA HHN-130, May 1973, NTIS.

^{*}GPO: Titles may be ordered from the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

^{**}NTIS: Titles may be ordered from National Technical Information Service, Springfield, Va. 22151.

^{*}U.S. GOVERNMENT PRINTING OFFICE: 1976 - 635-275/91