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Foreword 
History is written and read for several reasons, and the NASA history program 

serves multiple purposes. John Sloop's history of liquid hydrogen as a fuel illustrates 
the most practical of those purposes: it is useful to current and future manager~ of high 
technology. Of course history does not iepeat itself-there are too many variables. But 
similar situations often have similar results, and thoughtful study of the management 
of technology in the past can sometimes help us to recognize pitfalls in the present­
pitfalls that managers can then act to avoid. We may also find ways to make desired 
outcomes more likely. In any event, study of history lets us see current problems more 
clearly. 

For example, notice in this book how many times something had to be rediscovered. 
This has been a real problem, and a costly one, in the recent past; it is apt to get worse in 
the future. Are we in NASA doing all we reasonably can to manage this problem-not 
just making new technology available to industry, not just trying to stay current in our 
respective fields, but contributing something to the process by which the knowledge 
explosion can be made more tractable? 

It is a truism that technology feeds on itself- that work in one area often is quickly 
applicable in an entirely different area. Perhaps the sharpest example in this book is the 
Air Force's building of plants for liquefaction of hydrogen and developing equipment 
and procedures for its handling. That program was cancelled short of completion, but 
the technology was on the shelf, already paid for, when NASA needed it for the Apollo 
program. Can we explain this process to Congress and to the taxpayers more 
effectively? The problem is similar to that of justifying basic scientific research. Can 
future NASA managers, in defending their programs, do so more effectively by 
elaborating that similarity? 

A recurring theme in this book is the widespread fear of hydrogen, originating with 
the explosion of the Hindenburg and reinforced by the H-bomb. Proponents of 
hydrogen-fueled rockets had to overcome that prejudice. Are other technologies 
ignored today because of a bias against certain materials or processes? Engineers and 
scientists remain subject to the human condition; they, like the rest of us, need to be 
reminded from time to time to take a fresh look at old attitudes and familiar 
procedures. 

The author illuminates the overlapping, often conflicting roles of the individual, who 
originates ideas, and of the group, which manages today's complex technology. Many 
worthwhile ideas have doubtless been lost, at least temporarily, because individuals 
were unable to convince committees. Hence how consensus is achieved within groups is 
worth studying. When agreement seems impossible, an individual is occasionally big 

xi 
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enough, wise enough, to forego his preferred solution, so that a project may continue. 
In this regard , timing is critical. If the individual does not press his case hard enough, he 
is labeled irresolute; but if he says, in effect, "My way or none," he is obstinate. The 
story of the decision to use liquid hydrogen in the upper stages of the Saturn launch 
vehicles contains several accounts of individual-group interaction from which any 
manager can profit. 

Finally, the book argues against the casual hindsight judgment of "the idea whose 
time had come." More than once participants were convinced- wrongly- that 
hydrogen's time had come. Its time came only after a number of disparate events 
gradually took on a pattern. If we are sometimes tempted to assume that a favorite 
project is inevitable, or that a solution to a sticky technical problem will inevitably be 
found , then we may be contributing to the failure of our own purposes. 

This book is also a good story, with real drama, colorful men, and fascinating 
technology. If hydrogen comes to occupy an important place in the energy field, as 
some now predict, this book will take on an importance that cannot now be foreseen . 
But at a time when NASA is emphasizing the solution of workaday problems facing the 
nation and seeking early return on the taxpayers' investment, it seems appropriate to 
point out the book's practical significance. 

JAMES C. FLETC HER 

Administrator 

April 1977 



Preface 

In 1957, when Russia launched the first satellite, the ability of the United States to 
respond depended on one small launch vehicle still under development, Vanguard, and 
modifications to ballistic missiles. The subsequent space race featured a rapid buildup 
of launch vehicle capability in this country during the 1960s, culminating with the 
giant Saturn V which launched the Apollo lunar expeditions beginning in 1968. A 
significant part of the increased launch capability resulted from technical decisions 
made in 1958 and 1959 to use liquid hydrogen in the upper stages of the Centaur and 
Saturn vehicles- and that story is not well known. The decision to use liquid hydrogen 
in developing the nation's largest launch vehicle was particularly bold, for many 
experienced engineers doubted the advisability of using a highly hazardous fuel 
associated with the Hindenburg disaster of 1937, a gas difficult to liquefy, a liquid so 
cold- close to absolute zero- that storage and handling are difficult, and so light-
1/ 14 the density of water- that large tank volumes are required, with attendant 
problems of vehicle mass and drag. Hydrogen had been considered in astronautics and 
aeronautics several times before; but in each case, as the problems became better 
known, the attempt was abandoned . What was different in this case? Why was there so 
much confidence about hydrogen within the young space agency to warrant risking the 
success of the nation's manned spaceflight program? The decision, of course, turned 
out to be the right one. Subsequent advancements in the technologies of liquefying, 
storing, transporting, and using large quantities of liquid hydrogen made it just 
another flammable liquid that could be handled and used safely with reasonable 
caution. 

The key role that liquid hydrogen played in the success of the Centaur and Saturn 
launch vehicles has long interested me. As a pa rticipant in research on hydrogen for 
rockets in the 1950s and a proponent for its use, I understood the potential as well as 
the risks and in recent years wanted to investigate more fully the circumstances leading 
to the 1958 and 1959 decisions. 

In digging into the background for the decisions and the status of hydrogen 
technology that influenced those decisions, the question arose: how far back to 
investigate? The flammability of gaseous hydrogen has been known for centuries; its 
large heat content was measured in the 18th century; and it was liquefied by Dewar in 
1898. Five years later, Tsiolkovskiy, the Russian rocket pioneer, proposed its use in a 
space rocket, as did Goddard in 1910. In the 1920s, Oberth correctly ass~ssed the 
advantage of using hydrogen in the upper stages of space vehicles.None of these rocket 
pioneers experimented with hydrogen ; other fuels appeared more attractive in the face 
of hydrogen's disadvantages, particularly its low density. One German experimenter, 
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Walter Theil, tried to use liquid hydrogen in a small rocket engine a few years before 
World War II, but numerous leaks and higher priority tasks ended the experiments. 
The first systematic investigations of liquid hydrogen to propel aircraft and rockets 
began in the United States in 1945 and although earlier developments undoubtedly had 
an influence, I have chosen to start this book at that point. A summary of the earlier 
story is in appendix A. 

In describing the history of rocket technology, it is easy for an engineer-author to 
become immersed in the technical aspects that may be of little interest to some readers. 
I have tried to minimize mathematics, technical language, and other specialized details, 
but some are unavoidable if propulsion research is to be presented fairly and 
accurately. Adding to this problem has been the conversion of many familiar English 
units into the metric system. Those accustomed to thinking of rocket performance in 
terms of specific impulse will not find it here; instead, they will have to settle for its 
equivalent, exhaust velocity. Appendix B is provided as an aid in the technical aspects 
of propulsion, units, symbols, and abbreviations. 

This work would not have been possible without the help of numerous participants 
in hydrogen and rocket research, who were generous with interviews and documents; 
the guidance of Monte Wright and Frank Anderson; the essential services of the 
NASA archivist, Lee Saegesser, and NASA librarians, particularly Mary Anderson 
and Grace Reeder, in obtaining many obscure documents; the aid of Col. John D. 
Seaberg (USAF, ret.) and Malcolm Wall, deputy command historian, AFSC, for 
securing invaluable Air Force documents; the enlightened attitude of Howard Maines, 
NASA security office; the encouragement of Gene Emme; and my wife, who served as 
editor as well as helpmate. 



1 
Introduction 

In September 1944, a general and a professor met in an Air Force car parked at one 
end of a runway ofN ew York's La Guardia airport. General of the Army H. H. Arnold, 
chief of the Army Air Forces and on his way to a meeting in Quebec, had arranged the 
meeting with Professor Theodore von Karman, famed aerodynamicist and jet 
propulsion pioneer at the California Institute of Technology. The two had first met in 
1936; they had discussed auxiliary rocket thrust for bombers in 1938 and the design of a 
new research wind tunnel in 1939. Now Arnold wanted von Karman to come to the 
Pentagon to draw up a plan for aeronautical research during the next twenty years. 1 

Confident that the war was won, Arnold had turned to the future. 
When the group of scientists von Karm~n had organized for the task met in January 

1945, Arnold stated his feelings bluntly: "I don't think we dare muddle through the 
next twenty years the way we have ... the last twenty years .... I don't want ever again 
to have the United States caught the way we were this time."2 Arnold was referring to 
technological superiority in the air. 

When Arnold and the combined chiefs of staff met with Roosevelt and Churchill in 
Quebec, the tide of battle in Europe was decisively in favor of the Allies. Fleets of Allied 
aircraft were pounding Germany's industrial capacity into rubble. Eisenhower's armies 
were moving towards the Rhine and some units were on German soil near Aachen. In 
the Pacific, MacArthur was able to step up his plans for landing on Leyte by two 
months. U.S. production of aircraft and training of air personnel so far exceeded the 
demands of war that both were cut back in the fall of 1944 to save money.3 

The air supremacy of the Allied European offensive in 1944 came not from 
technological superiority but sheer weight of numbers and better trained crews. 
Between May 1940 and September 1943, the United States alone produced 128000 
aircraft and 349000 engines.4 By 1944, however, there was ample evidence that piston­
engine aircraft were rapidly becoming obsolete and that future military aircraft would 
be jet-propelled. 

From the beginning, airplanes had been powered by the piston engine-propeller 
combination. Jet propulsion had been examined in the early 1920s but rejected as too 
inefficient at the prevailing aircraft speeds of 400 kilometers per hour. By the late 1930s, 
however, potential airplane speeds had doubled and this, along with other technical 
advances, made jet propulsion more attractive. Development began in Europe during 
the second half of the 1930s, but little work was done in the United States on gas 
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turbine engines until 1939.* Even then, the U.S. military was lukewarm about the 
potential of jet aircraft.5 

The two most serious disadvantages of early gas turbine engines for aircraft were 
their low thrust, which made long take-off rolls necessary, and high fuel consumption, 
which limited range. These disadvantages chilled Navy interest in gas turbines as 
primary propulsion systems until 1943. The Army showed greater interest in rocket 
propulsion for aircraft, rather than gas turbine engines. The Army became interested in 
rocket propulsion in 1938; in February 1941, when Arnold learned from intelligence 
reports that the Germans were using rocket propulsion, he asked the National 
Advisory Committee for Aeronautics (NACA) to study jet propulsion. The NACA, 
the government's aeronautical research organization, set up an advisory committee 
headed by 83-year-old Dr. William F. Durand, eminent aerodynamicist at Stanford 
University. Durand's interest in turbine machinery directed the NACA study almost 
entirely towards gas turbine engines. Representatives from three firms proficient in 
turbine machinery- Allis Chalmers, Westinghouse, and General Electric- served on 
the Durand committee, and their firms were given study contracts by the military 
services.6 

Arnold visited Great Britain in the spring of 1941 and was impressed by the Whittle 
gas turbine engine. He arranged for General Electric to manufacture it in the United 
States. On 2 October 1942, the Bell P-59A, powered by a General Electric I-A gas 
turbine engine, became the first American jet-propelled aircraft to fly. The I-A 
produced so low a thrust, however, that performance was disappointing. Despite later 
installation of a more powerful engine, the 1-16, the P-59A did not reach the 
production stage. The British developed the Meteor powered by a Rolls Royce W-2B 
gas turbine engine and used it in World War II, a lthough its performance was little if 
any better than that of the P-59A. By 1944, General Electric had developed a much 
more powerful gas turbine engine, the 1-40, which was used to power the Lockheed XP-
80A fighter, developed by Clarence L. (Kelly) Johnson in just 143 days.7 Production 
began before the war ended, but the P-80 did not reach tactical units until seven months 
after the war ended in Europe. 

fo mid-1944, the Allie~ confirmed that the Germans were using turbojet interceptors 
against Allied bombers. By January 1945, a special German squadron of sixteen 
ME-262 turbojet fighters, armed with twenty-four 55 mm rockets, operated against 
Allied bomber formations with high success. In early April 1945, a German pilot, tired 
of the war, landed an ME-262 at an Allied airfield. Arnold questioned the pilot about 
its capability and arranged for shipment of the aircraft to Wright Field forevaluation.s 

Robert Schlaifer, who studied the development of aircraft engines through World 
War II, saw the lag of jet propulsion in the United States as a lesson in the importance 
of avoiding delays in adopting new technology : 

•A gas turbine engine. the most common form of which is the turbojet. consists of an air inlet. a rotary fan 
or compressor. one or more combustion chambers. a turbine driven by ho t. expanding combustion gases, 
and an exhaust nozzle. The turb ine drives the compressor: the thrust comes from expanding and accelerating 
the hot air and combustion gases through the nozzle. 
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The most serious inferiority in American aeronautical development which 
appeared during the Second World War was in the field of jet propulsion. Had the 
Germans put their jet fighters in production a year sooner, as they were technically 
able to do, or had the Allied campaign in Europe come a year later, the use of jet 
fighters by the Germans might have had a most serious effect on the course of the 
war.9 

What about the aeronautical research laboratories of the NACA and Air Force? 
Why had they not led in investigating advanced forms of propulsion? They had been 
slow in recognizing, during the second half of the 1930s, that the time of the gas turbine 
engine had come. A few investigators in NACA, particularly Eastman Jacobs and 
Benjamin Pinke!, began to realize this and were working on the problem by 1939, but 
progress was slow. The Durand committee provided new stimulus, but by that time 
war was close. The policy of mass production of piston engines led U.S. aeronautical 
laboratories to concentrate on solving urgent problems arising from their production 
and operation. Improvements were made in aviation fuels, in engine components such 
as the turbosupercharger, and in numerous operating problems. The laboratories of 
the NACA were at the disposal of the military services for this effort, giving first 
priority to war-related problems, leaving little time for long-range work on advanced 
propulsion systems. 

In spite of concentration on piston engine problems, however, NACA continued 
some research on jet engines and rockets. In December 1943, both the Army and Navy 
asked the NACA to evaluate their jet engines developed under contracts originally 
recommended by the Durand committee. The first test was made in the unique altitude 
wind tunnel at NACA's engine laboratory in May 1944, and by fall the tunnel was used 
exclusively for jet engine research. The same year, NACA's director of research, 
George Lewis, authorized the engine laboratory in Cleveland to spend $43 000 for the 
construction of some simple rocket test stands; and about the same time, researchers at 
the NACA Langley laboratory began eyeing rockets as a means of propelling 
experimental models to transonic and supersonic speeds for aerodynamics and 
controls research. 10 

Late in 1944, the government aeronautical laboratories felt an easing of the pressure 
to concentrate on ad hoc problem solving, freeing men and funds for advanced 
concepts. The suppression of the long-felt desire by researchers to work on advanced 
propulsion was accentuated by reports of German accomplishments in jet propulsion 
and rockets, particularly the V-2. Teams of scientists and engineers were dispatched to 
obtain German technical data in the wake of advancing Allied armies and to 
interrogate German technical specialists. Plans were made to bring a group of German 
rocket experts to the United States. The mood in the government propulsion 
laboratories was the same as that expressed by Arnold to his advisory group-to catch 
up and not ever fall behind again in advanced propulsion. 

Parallel to NACA research on aeronautics during the war was research and 
development in other fields of military importance by a large group of scientists and 
engineers, coordinated by the Office of Scientific Research and Development (OSRD). 
Among the many significant contributions OSRD made was rocketry. At the time of 
the Pearl Harbor attack, the U.S. military did not have a single rocket in service use; 
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but by the end of the war, $1.35 billion worth of solid-propellant rockets were being 
produced annually, mostly for the Navy. These were short-range, armament rockets. 
OSRD also sponsored work on liquid-propellant rockets for assisted take-off of 
aircraft. Information on the German V-2 was available to OSRD by mid-1943, but 
there were no plans for long-range rockets. 11 Like their fellow researchers in 
aeronautics, OSRD initially had their hands full with pressing war problems, with little 
time left for future systems. About 1944, however, an OSRD panel was formed on jet 
propulsion with Edwin R. Gilliland as its chief.* 

Among the studies of the OSRD jet propulsion panel was a very significant one on 
fuels for jet propulsion reported by Alexis W. Lemmon, Jr., in May 1945.12 The 
Lemmon report, or "blue book"-from the color of its cqver-became a standard 
reference for researchers injet propulsion and rocket fuels in the early postwar years. It 
marked the beginning of such research in the U.S. 

For jet engines using the oxygen in air to burn the fuel, as in turbojet and ramjet 
engines, Lemmon considered eleven hydrocarbons and eleven high-energy fuels in the 
diborane and borohydride family. t High-energy fuels yield more heat in burning than 
conventional fuels, such as gasoline or kerosene, and therefore have the potential for 
greater performance. Lemmon concluded, however, that little change could be 
expected in fuels for jet engines using air and that "high density and high heat of 
combustion fuels will be used for minor applications but no major change from present 
fuel of gasoline or kerosene is probable."IJ In the years to come-extending into the 
second half of the 1950s-the government spent a quarter of a billion dollars 
investigating high-energy fuels containing boron and light metals for air breathing 
engines before abandoning them. Lemmon's early conclusion was right. 

On rocket fuels, Lemmon presented the performance of 25 fuel-oxidizer 
combinations, 14 monopropellants, and 6 solid propellants.t Separate fuels and 
oxidizers, when mixed and burned, yield higher energy than either monopropellants or 
solid propellants. This advantage of higher energy is sometimes offset by the 
undesirable physical or chemical properties of fuel, oxidizer, or both. Of all the rocket 
fuel and oxidizer combinations that he considered, Lemmon found that the 
combination of liquid hydrogen-oxygen gave the highest performance, but he rejected 
it. "Although the liquid hydrogen-liquid oxygen system has by far the highest specific 
impulse performance of any system considered in this report, the low average density 
of the fuel components almost completely eliminates this system from all but very 

*Other members: Neil P. Bailey, Howard E. Emmons, Ernst H. Krause, Alexis W. Lemmon, Jr., Lloyd 
W. Morris, John C. Quinn, Edward M. Redding, Theodore H. Troller, Merit P. White, Glenn C. Williams, 
and Harold A. Wilson. 

t A ramjet engine uses atmospheric air but no mechanical compressor or turbine. Essentially an open duct, 
the ramjet depends upon high-speed flight and ram air for compression. Fuel is injected and burned and the 
hot gases expand through a nozzle to provide thrust. 

Diborane (B, Hr.) and pentaborane (B, H,) were of great interest in the late 1940s and the 1950s. Lemmon 
listed as borohydrides compounds containing light metals such as sodium, beryllium, aluminum, and 
magnesium. 

tA fuel-oxidizer combination, also called bipropellant, is a fuel and an oxidizer which arc injected and 
burned in the rocket combustion chamber; a monopropellant decomposes and gives off heat in the process; a 
solid propellant contains both fuel and oxidizer elements and burns to yield heat. 
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minor applications."' 4 Low density meant that large tanks were required, which added 
mass and drag to the vehicle. Lemmon went on to point out that the development of 
equipment to produce liquid hydrogen would be difficult, the cost high, and handling 
hazardous. 

On the practical application of liquid hydrogen to flight, Lemmon was proved 
wrong. In 1958 and 1959, decisions were made to use liquid hydrogen in the upper stage 
of the Centaur launch vehicle for unmanned space missions and the upper stages of the 
Saturn launch vehicle for manned voyages to the moon. Both decisions turned out to 
be sound; both vehicles were remarkably successful. Liquid hydrogen-oxygen 
emerged as the first high-energy rocket propellant combination to find practical 
application among many candidates investigated. To explain why and how this 
happened, and why it took so long, is the purpose of this book. 



.



2 
Air Force Research on Hydrogen 

The origins of Air Force interest in liquid hydrogen as a fuel are obscure, but 
researchers were well aware of hydrogen from general studies and from occasional 
external suggestions. One of the latter came to Robert V. Kerley on a warm July day in 
1942 and, at the time, made no sense to him. As chief of Wright Field's fuels and oil 
branch, Kerley was the Air Force's leading expert on aviation fuels and its 
representative on the fuels and lubricants subcommittee of the National Advisory 
Committee for Aeronautics (NACA). The subcommittee, under the chairmanship of 
Professor W .G. Whitman of the Massachusetts Institute of Technology, played a key 
role at the beginning of the war by coordinating aviation fuel needs and stressing the 
imperative of increased production.* 

Kerley's branch at Wright Field had a long tradition of leadership in improving 
aviation fuels. Although fuels research can be traced to the establishment of the 
aeronautical engineering laboratory at McCook Field in 1917, the first systematic fuels 
research program dates from 1928 when studies were started to determine the 
relationship between fuel composition, engine performance, and knock. As engine 
designers sought increased power output per unit volume of engine piston 
displacement, fuels had to be improved to keep pace. During the 1930s, the fuels and oil 
branch at Wright Field was the recognized leader in promoting research and 
production of improved aviation fuels. As a result, the United States was the only one 
of the Allies at the beginning of the war having a significant capacity for producing 
high-performance aviation fuel. 

Kerley was up to his ears in practical problems of increasing aviation fuel production 
and operating problems in July 1942 when he was requested to comment on a British 
suggestion forwarded by the NACA. It was a ten-page proposal by F. Simon to use- of 
all fuels- liquid hydrogen as a means for increasing aircraft range. Kerley knew that 
hydrogen produced knock; further, hydrogen liquefaction capacity in the United 
States was on the order of a few hundred liters per day, and those plants were in 
scientific laboratories. If the exasperated Kerley considered Simon a nut and his 
suggestion ridiculous, it would be understandable. Although the suggestion was 

*In July 1940. when President Roosevelt announced a goa l of 50000 airpla nes. the subcommittee 
estimated that current production of 100-octane aviation fuel must be increased twelvefold but could not 
convince the military services, who agreed o nly to a fo urfold increase. By wa r's end, Allied productio n of 
100-octane avia tion fuel was 40 times greater than in 1940. Sam D. Heron, "Development of Aviation 
Fuels.'' in Deve/opmenl a/ Aircraft EnRines and Fuels (Elmsford , NY: Maxwell Reprint. 1970), pp. 631-34. 

11 



12 LIQUID HYDROGEN AS A PROPULSION FUEL, 1945-1959 

impractical at the time and indicated Simon's naivete with respect to fllel production 
and aviation, he was anything but a nut. F. Simon was Franc Eugen Simon (1893-
1956), a thermodynamicist and ingenious experimenter with liquid hydrogen at 
Oxford University. He had earned his doctorate under the famous Nernst and worked 
in Germany on low-temperature phenomena until 1933 when, disturbed by rising Nazi 
power, he accepted an invitation from F.A. Lindemann (Lord Cherwell) to come to 
Oxford. Simon managed to bring a hydrogen liquefier with him and was instrumental 
in building an outstanding low-temperature laboratory at Clarendon; in August 1940, 
he was placed in charge of isotope separation research in Britain's nuclear fission 
effort. ' 

Kerley immediately recognized the utter impracticability of Simon's suggestion to 
use liquid hydrogen, but was not so pressed that he could not respond with a bit of 
humor: 

Now F. Simon went a-hunting 
With a lot of gaseous pride 

We say his purpose does appear 
To take US for a long sleigh ride 

Hydrogen is a knocking fuel 
And is plenty good for heating 

But what good is a B T U 
When horsepower goes a-fleeting? 

After several more verses, the doggerel ended: 

If morals one must always sing 
To Ally Simon we'd sing thus 

'Keep working on a simple thing 
And shut off all this goddam fuss!'2 

Simon, who had an impish sense of humor and laughed at jokes on himself, would have 
been delighted with the verses, if not the disposal of his suggestion. 

Simon was not alone in considering hydrogen for aviation fuel. Much earlier, P . 
Meyer had written an article entitled "Is There Any Available Source of Heat Energy 
Lighter than Gasoline?" which the N ACA translated as Technical Note 136 in the early 
1920s. Meyer noted that hydrogen had a greater heat content than any other known 
fuel. Apparently considering it only in gaseous form under pressure, he also noted that 
the containers had to be strong and heavy, which counterbalanced the energy 
advantage. 

Both Meyer and Simon, therefore, found that hydrogen in any form was an aviation 
fuel whose time had not come. Interest in hydrogen, however, was not lost entirely and 
surfaced when war pressures eased in late 1944 and 1945 and the men at Wright Field 
began to think again about future projects. Opie Chenoweth, chief civilian engineer of 
the power plant laboratory, suggested that research be sponsored on increasing the 
energy content of aviation fuels.J Hydrogen was not a good fuel for piston engines 
because of the tendency to knock, but what about using it injet engines? Over at Ohio 
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State University in nearby Columbus was a professor who had built a cryogenics 
laboratory during the war and was one of a few experts in liquefying hydrogen and 
studying its properties. Why not have him study liquid hydrogen for aircraft and 
rockets? The professor's name was Herrick L. Johnston. 

The Cryogenics Laboratory at Ohio State University 

Soon after his arrival at Ohio State University in 1929 as an assistant professor of 
chemistry, Herrick L. Johnston (1898-1965) prepared plans for a cryogenics 
laboratory to match that of his preceptor, William F. Giauque of the University of 
California at Berkeley. This was ambitious planning, for Giauque's laboratory and one 
at the Bureau of Standards in Washington were among the very few in the country 
capable of research at the temperatures of liquid hydrogen. Giauque and Johnston had 
just published their revolutionary discovery that atmospheric oxygen contains atoms 
of mass I 7 and 18, as well as 16, a discovery that set into motion a chain of experiments 
leading to the discovery of heavy hydrogen by Harold C. Urey in 1939 (appendix A-3). 

Unfortunately for Johnston, his move to Ohio took him out of the mainstream of 
the swiftly moving research of low-temperature phenomena, and his dream of a 
cryogenics laboratory lay dormant a decade for lack of funding. In 1939, Johnston, a 
full professor and still pushing for his cryogenics laboratory, got a big break. The year 
before, William McPherson, a former head of the chemistry department, was called 
out of retirement to be acting president of the university. The first annual alumni 
development fund drive in 1939 included plans for a cryogenics laboratory and 
McPherson personally contributed the first $1000. This amount was augmented by 
$5000 from the university budget and Johnston was quick to start spending it. He 
ordered a hydrogen compressor and other equipment needed for a liquefier but soon 
encountered another obstacle-no space for the equipment. This problem was solved 
when federal funds-part of a plan to involve universities in war research-became 
available for a building. It was bluntly named the War Research Building. Johnston 
was initially allocated part of the first floor for a cryogenics laboratory, but later he 
took over the first two floors.4 

Construction of the building began about mid-1942, but before the foundation and 
framework were completed, another crisis threatened to shatter Johnston's dreams for 
a laboratory. The government had decided to push forward the research necessary to 
build and test an atomic bomb. Part of the urgently needed research was for more 
information on hydrogen and deuterium as likely moderators. The university received 
word that its low-temperature equipment was needed elsewhere for war research, and 
Johnston was requested to set up and direct a cryogenics laboratory in the East. By 
some remarkably fast footwork and persuasion, university officials and Johnston 
managed to get the government to locate the cryogenics laboratory at Ohio State 
University. By mid-November, Johnston had a research contract. 

Johnston worked best under pressure and short deadlines. He quickly recruited a 
staff including Gwynne A. Wright, an engineer who was to remain with him for 16 
years, and Dr. Thor A. Rubin, a research chemist and another pupil of Giauque. 
Wright was placed in charge of installing the liquefier equipment. Typically, Johnston 
drove himself and his men hard. During December and most of January they worked 
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in overcoats, for the building was still under construction and without heat. On 2 
February 1943, Johnston and Wright produced their first batch of liquid hydrogen 
(fig. I) and Rubin lost no time in making use of it in an experiment.5 

Fig. I. Gwynne A. Wright. left. operating Professor Herrick L. Johnston·s first hydrogen liquefier ~t Ohio 
State University. as Johnston observes. ca. 1943. (Courtesy of G. A. Wright.) 
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By the end of his Manhattan Project research contract in 1946, Johnston had a fine 
cryogenics laboratory. Included were air, hydrogen , and helium liquefiers and other 
low-temperature equipment. He organized five sublaboratories-calorimetric, high 
pressure, spectroscopic, electrical and magnetic, and high temperature. The last, 
capable of reaching temperatures up to 2700 K, indicates that Johnston viewed a 
cryogenics laboratory in very broad terms. 

The hydrogen system comprised five major components. Gaseous hydrogen was 
generated by electrolysis of water and the equipment was capable of producing 2 cubic 
meters per hour. The hydrogen was purified by a series of steps including heating to 
570 K to remove oxygen, chilling to remove moisture, and use of a liquid-air trap to 
remove other condensable impurities. The third component was a three-stage 
compressor with an output of I. 7 cubic meters per minute at 300 atmospheres pres­
sure. The hydrogen liquefier. a group of heat exchangers. was capable of 25 liters of 
hydrogen per hour. A large vacuum pump. capable of handling 5 cubic meters at a 
vacuum of 0.03 atmosphere, comprised the last component. 

The hydrogen liquefier was modeled after the one developed by Giauque which was, 
in turn, a refinement of the basic process of regenerative cooling used by James Dewar 
in the first liquefaction of hydrogen in 1898. The process consisted of cooling high­
pressure gaseous hydrogen as close as possible to the boiling point of liquid hydrogen 
(20.3 K) and then expanding the gas through a valve. Expansion provided the final 
cooling needed to liquefy part of the gas. Dewar used boiling liquid air for part of the 
hydrogen cooling and passed the cold, expanded hydrogen gas through a coil 
containing the incoming high-pressure gas on its way to the expansion valve. Giauque 
and Johnston did the same, although they used a total of eight heat exchangers to 
increase liquefaction efficiency. The liquefier (fig. 2) was diagramed and described by 
Johnston in 1946. 

ln steady-state operation, liquid hydrogen was in the left column (fig. 3). This 
column had four heat exchangers: the three upper ones. A'. R. and F . usu.l t·scaping 
cold gaseous hydrogen as a coolant; the bottom heat exchanger. Ci. was immersed in 
the liquid hydrogen. which served as a coolant. The right column also had fnur heat 
exchangers; the two upper o ne' . A and C. used escaping cold gaseous nitrogen and 
oxygen. from liquid air boiling under reduced pressure. a' coolant!-. The t \.1 11 inwcr 
heat exchangers. E and D. were immersed in liyuid air as coolant ·r !w l1•.\' !1>! :: ; ~ · \U s i: · 

two containers connected by a tloat val\ e . to ensure that the c-;caping µ.h , s \\ ere 
nitrogen-rich . (If the gas were o xygl'n-rieh . it would hurn when in cn n l ;1,· t 11 ·:f, lht· ui ! 
of the pump.) 

Incoming hydrogen µa s at rnom temperature and a pre, surc of ;1h <·::t ! ~·C, 
atmospheres was split between thl' \\\·o columns and rt~cei\'Cd its first ,., .. 1\1 1;~ . i 11 h c :1t 

exchangers .\ and A". The \\\ \1 hydrog~·n :.;t r«:a m'> then comh;•t r.:o.l 1 :.i;t !""':-.<. d 
successively . th rough heat och,rngers H. C. D. E. F . and (i . ;!Ctti n1,: r r 11)! i · ·.~ i \ c l \ 

colder until 1:11 (i) the µas was near the boiling point o l 11qu1d h\'d r<>_; , 1: lO. \ t'. 
Finally. the high prcs, ure co ld h\drogen gas e'panded tlnou~!l11 a i'. 1 .· 'i :: ... , · .'.; ,., _.t : 1

• 

percent o f it iiquetied . I he re't pa,,cd up through the heat cxch,rnge1 > .11 1\! ... ., ; <: ' 'ti... 

incoming high pressure h~Li rogen "' prn1oush mcnlinned. I he liqu .·f1« 1 '.' i ,,, ; 1 ~< . Ii 
a bout 25 liters per ho ur. 
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Fig. 2. The several heat exchangers (shell removed) of H. L. Johnston's hydrogen liquefier. ca. 1946. 
(Courtesy of W. V. Johnston.) 
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Fig. 3. Diagram of hydrogen liquefier, Cryogenic Laboratory, Ohio State University. 1946. Professor H. L. 
Johnston modeled this liquefier after one developed by Professor Giauque of the University of California. 
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Hydrogen for Aircraft and Rockets 

By early 1945, the pace of war-needed military research had slackened. The 
government's laboratory at Los Alamos, New Mexico, was preparing for the first 
atomic bomb test in July. Johnston needed new support for his cryogenic laboratory 
and was receptive when the men in charge of fuels research at Wright Field approached 
him in the spring; agreement was soon reached on a contract, the first on hydrogen for 
aircraft and rockets in the United States. 

Starting on I July 1945, the contract covered two major types of investigations. The 
first was hydrogen as a fuel for aircraft and rockets and was essentially engineering 
research. The second dealt with measurements of the physical, chemical, and 
thermochemical properties of hydrogen and the effect of very low temperatures on the 
properties of metals. This was science, the kind of work Johnston was most familiar 
with and which provided the research opportunities academicians seek for their 
graduate students. In 1948, both types of work were continued but under separate 
contracts. The fuel contract ended in December I 951, but the scientific properties 
contract continued . The contracts required bimonthly progress reports and annual 
summaries. In addition, special reports were written and the scientific work appeared 
in numerous doctoral theses and papers in scientific journals. 6 

The properties research contributed to the propulsion research by providing basic 
data needed for the theoretical aspects of propulsion research, such as thermochemical 
calculations of performance at various fuel/ oxidant mixtures and combustion 
pressures, the composition of the exhaust gas and its properties for heat transfer 
calculations, and the properties of liquid hydrogen as a coolant. 

Johnston devoted most of his time to his specialty, low-temperature equipment and 
properties research. The propulsion work was delegated largely to a group of engineers 
and technicians assisted by engineering students, all in the charge of a chief engineer. 
Three chief engineers served during the course of the propulsion work : Marvin L. 
Stary from early in the contract until 1949: Willard P. Berggren from 1949 to 1950: 
and William L. Doyle from 1950 to 1951 . The rocket work involved, at one time or 
another, 18 research engineers, 2 I students, I 3 technicians, 7 administrative personnel. 
and 3 consultants. Figure 4 is a photograph of the rocket laboratory staff about 1950 
and shows a typical mix of skills: 3 engineers, 3 engineering students. and 5 technicians. 

Many aspects of the hydrogen work at Ohio State are beyond the scope of our 
subject, and only the work directly related to propulsion will be described. This is 
divided into five topics: hydrogen-air experiments, hydrogen-oxygen rocket 
performance, hydrogen-oxygen rocket cooling, pumping liquid hydrogen. and 
hydrogen-fluorine rocket performance. 

Hydrogen-Air 

In the initial days of the contract, the studies of hydrogen as a fuel related to its 
ignition and burning in air for possible application to jet engines. The work began with 
67 tests of gaseous hydrogen injected, ignited, and burned in an air stream. No data 
were published, but presumably there were no problems. In the next series of 
experiments, liquid hydrogen was injected in open air ahead of a stream of air from a 
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small pipe (about 7.5 cm in diameter), and later the liquid hydrogen was injected in the 
air flowing within the pipe. The liquid hydrogen flow was very small (about 2 grams per 
second) and when the liquid hydrogen was directed as a straight jet, an icicle-from 
moisture in the air-formed on the injector and impeded the flow. A splash plate was 
placed in front of the liquid hydrogen jet to spread it radially into the air stream and 
this gave better results. Combustion was maintained over a wide range of hydrogen-air 
mixture ratios.x 

An unsuccessful attempt was made to use hydrogen in a pulsejet engine, the type of 
engine used in the German V-1. The inlet of a pulsejet consists of a number of flapper, 
or one-way, valves. When air enters through these, fuel is injected and the mixture 
ignited. The rise in pressure from combustion closes the flapper valves and the hot 
gases flow rearward through the nozzle, producing thrust. When operated on gasoline, 
the rapid series of explosive bursts was very noisy-as anyone can attest who 
experienced them popping along overhead in World War II. The Ohio State 
investigators obtained a tiny pulsejet engine marketed for model airplanes and 
substituted hydrogen for the fuel. It would not work because the very wide 
flammability limits of hydrogen resulted in continuous, rather than intermittent, 
burning. The investigators concluded that the narrow range of flammability of gasoline 
was responsible for establishing cyclic combustion by flaming out at lean and rich 
mixtures; it was these characteristics that made the pulsejet work. 

Fig. 4. Staff of Ohio State University's rocket laboratory, ca. 1950. First row. L to R : Lester Cox. shop 
supervisor: Darwin Robinette. student: James Pierce, student; Arthur Brooke. test mechanic: William 
L. Doyle. chief engineer: Philip Petre. student. Standing: Lawrence Anthony. rocket shop supervisor: 
Ross Justus. machinist: Harold Smeck. engineer: James Sweet. test mechanic : William Strauss. 
engineer : unident ified . (Courtesy of Arthur Brooke.) 
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In the latter part of 1948, large-scale equipment was built to investigate hydrogen as 
a fuel for ramjets. A few tests were made, but were discontinued when the facilities were 
needed to test a liquid-hydrogen pump. 

To sum up the hydrogen-air burning experiments, they were qualitative 
observations and verified only what was already well known-hydrogen burns in air 
over a wide range of conditions. The nature of the experiments and their cessation in 
favor of another project indicated a lack of interest in hydrogen as a fuel for air­
breathing engines. 

Other hydrogen-air experiments were made to assess the hazards of handling 
hydrogen. Tests of hydrogen-air explosions were made using a liter ofliquid hydrogen 
in an open-mouth dewar. Ignition of the evaporating hydrogen resulted in a quiet 
flame, whereas hydrogen containing 10 percent solid air exploded with violence. 
Johnston was well aware of these characteristics as the following incident, part of the 
legend about him, illustrates. 

Johnston supplied liquid hydrogen not only for his own experiments but also for the 
low-temperature experiments of other groups on the campus. One day a fire broke out 
at the top of a liquid hydrogen dewar of about 25 liters capacity being used for some 
materials testing. The fire department was called and the dewar was hurriedly rolled 
out into a parking lot. The firemen and a crowd were standing in a circle about the 
dewar, obviously puzzled about what to do next, when a passing car suddenly stopped 
in the middle of the street and a man got out. He pushed through the crowd, 
approached the dewar, pulled out his handkerchief and used it to snuff out the flame. 
He returned to his car and departed without having said a word. None in the crowd 
recognized Professor Johnston.8 

Hydrogen-Oxygen Rocket 

Experiments with hydrogen and oxygen in a rocket began at Ohio State University 
on 2 April 1947 and ended 29 M~y 1950. Similar tests were also underway at Aerojet 
General Corporation in California from 1945 to 1949 and at the Jet Propulsion 
Laboratory of the California Institute of Technology from 1948 to 1949, which will be 
described in the next chapter. 

At Ohio State, the first twelve tests were made with liquid hydrogen and gaseous 
oxygen, because the installation of a liquid-oxygen tank at the test cell had been 
delayed. On 13 June 1947, Stary and his staff made the first rocket engine test in the 
United States using liquid hydrogen and liquid oxygen. The engine produced 471 
newtons ( 106 lb of thrust) at a chamber pressure of 21.1 atmospheres with an oxygen­
to-hydrogen mass ratio of 4.2. Exhaust velocity was 2405 meters per second, or 82 
percent of the theoretical performance for that ratio (according to the theoretical 
performance given in the Lemmon report). Following this, an additional 118 runs were 
made with the same engine, and beginning in September 1948, 38 runs were made with 
an engine five times larger. One of the most significant accomplishments was a series of 
37 runs at the smaller thrust using an engine regeneratively cooled with liquid 
hydrogen, starting of 26 August 1949. These will be discussed later. 

An early problem for all rocket experimenters was satisfactory instrumentation to 
measure thrust, mass flow rates of fuel and oxidizer, and combustion pressure. From 
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these the exhaust velocity at a given mixture ratio can be obtained and compared with 
theoretical calculations.* Of these measurements, the mass flow rate of liquid 
hydrogen was of most concern. It was determined by measuring the pressure 
differential across a sharp-edged orifice-a time-honored method of measuring flow 
rates. The accuracy depends upon the density of the fluid being measured; for liquid 
hydrogen, the large density changes with temperature are lessened at the high pressures 
used in rocket experiments. Measurements of hydrogen properties by Johnston, 
David White, and others were going on in parallel with the rocket work. Using Ohio 
State's temperature-density data, Johnston and Doyle reported that ifthe temperature 
of liquid hydrogen in a tank increased from its normal boiling point to the critical point 
at 25 atmospheres, the flow measurement would be approximately 10 percent too high. 
For this reason and because improvements in measurements were made as the tests 
progressed, strict comparisons of the various runs were not made, but qualitative 
comparisons were made to show trends. 

The major design element affecting high performance is the propellant injector. 
Stary came to Ohio State from Aerojet General Corporation where impinging jet 
injectors had been successfully used with other propellants. In this type of injector, 
streams of propellant are directed so as to impinge on each other to break up the liquid 
stream into fine droplets and mix the fuel and oxidizer (fig. 5). This was the prevailing 
design philosophy of the period, and it is not surprising that major emphasis was 
placed on this type of injector for hydrogen-oxygen at Ohio State. In fact, 18 out of 20 
injectors at Ohio State used impinging jets for at least one, and usually both, 
propellants. The two exceptions, a concentric tube and a "showerhead," were not 
tested. Ironically, these were later found by the Aerojet team and other investigators to 
be best for liquid hydrogen. 

Rocket-Engine Cooling 

In rocket experiments, the measurement of the heat flowing from the combustion 
gases to the engine walls and the use. of this information to devise satisfactory cooling 
of the engine are second only to obtaining maximum performance. Without cooling, a 
flight-weight rocket engine would be heated to its melting point in a second or two. 
Major factors affecting this heat transfer are gas temperature, density, and velocity; all 
three of these are much higher in rocket engines than in other internal combustion 
engines. These factors, plus gas composition, are functions of the propellants, engine 
design, and operating conditions. The particular fuel and oxidizer, the proportions 
used, combustion pressure, and combustion efficiency determine gas composition, 
temperature, and density. Injector design, propellant proportions, mass flow, and 
combustion chamber design affect gas velocity. The rocket engineer seeks a design 
giving both high performance and a cooling method for steady-state operation. He is 
aided by combustion characteristics, for peak performance usually occurs at a fuel-rich 
mixture where the heat transfer is lower than at a leaner mixture. 

*Rocket experiments used specific impulse (thrust divided by total propellant flow rate) for determining 
performance, which is equivalent to exhaust velocity used in this text (appendix B). 
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VARIOUS HYDROGEN-OXYGEN IMPINGING~ET INJECTORS 

Fig. 5. Experimental rocket engines using hydrogen-oxygen, Ohio State University. 1947-1950. 
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Heat transfer measurements at Ohio State used two techniques common in rocket 
experiments. In the "heat-sink" method, the combustion chamber and nozzle are made 
from a high-conductivity material, usually copper, in which a thermocouple to 
measure temperature is buried in the thick, uncooled wall. During rocket operation, 
the high thermal conductivity of the copper keeps the inside wall from melting as the 
heat rapidly flows into the interior of the mass. This allows a rocket to operate for a few 
seconds, and sometimes as long as 30 seconds. After the run, the temperature of the 
copper mass comes to equilibrium and by measuring this temperature, the total 
amount of heat absorbed can be calculated from the known mass an~ specific heat of 
the copper. In the second method, a water jacket surrounds comparatively thin engine 
walls and a high-velocity water flow keeps the walls cool. The average heat transfer can 
be obtained by measuring the water flow and its temperature rise. Using these methods, 
Ohio State measured average heat transfer rates of about 1.6 joules per second per 
square meter ( 1 Btu/ sec-sq in) for the combustion chamber and about twice that for the 
nozzle. These values were on the same order as found in high-performance rocket 
engines using other propellants, but are several times higher than heat transfer rates in 
other types of internal combustion engines and are, for example, from 20 to 200 times 
higher than in steam plants. 

In mid-1948 a mechanical engineer from Aerojet, Irwin J. Weisenberg, joined the 
Ohio State rocket staff under Stary and specialized in heat transfer and cooling 
experiments. The first attempt to use hydrogen as a coolant was to employ a porous 
combustion chamber wall and force hydrogen through the wall into the combustion 
chamber. 10 This type of cooling, called transpiration or "sweat" cooling, was popular 
at the time and work with it was under way at several other rocket laboratories. 

In the first part of 1949, another engineer at the Ohio State rocket laboratory, Clair 
M. Beighley, made a theoretical analysis in which a temperature ratio inv.,olving 
combustion gas temperature, wall temperature, and coolant temperature was related 
to dimensionless flow parameters. A porous combustion chamber was tested later and 
the experimental data agreed with the theoretical predictions. Porous wall chambers 
with uniform permeability were difficult to make, however, and the Ohio State rocket 
engineers turned to regenerative cooling when an analysis showed it to be feasible. In 
this method, hydrogen is circulated in coolant passages surrounding the engine prior to 
injection and burning. 

In the midst of preparations to try it experimentally (in June 1949) Stary returned to 
Aerojet and still another Aerojet engineer, Dr. Willard P. Berggren, arrived at Ohio 
State as the new chief engineer for rocket experiments. 11 

The experimental thrust chamber for regenerative cooling was designed to produce 
445 newtons at a chamber pressure of 20.4 atmospheres (fig. 6). Liquid hydrogen in the 
coolant jacket would be well above this value and hence far above its critical pressure 
of 12.8 atmospheres so that no boiling could occur in the coolant passages. The first 
successful regenerative cooling run was on 26 August 1949, when the thrust chamber 
operated for 60 seconds at an oxygen-to-hydrogen mass ratio of 4.1 and produced an 
exhaust velocity of 3190 meters per second-about 93 percent of theoretical 
performance. 

In all, 33 successful runs were made, over half of which operated for 60 or more 
seconds; one operated for 159 seconds. The runs covered a range of mixture ratios and 



24 

:----1~~~~~!/'0,~~ 

~~~~~~Z<zZ!Zl 

I 
I 

,----I 
--?r---+· 
~--1 

I 
I 
L--~

LIQUID HYDROGEN AS A PROPULSION FUEL. 1945-1959 

100 LB. THRUST REGENERATIVE MOTOR 

Fig. 6. Rocket thrust chamber of 445 newtons designed to use liquid 
hydrogen-oxygen and be regeneratively cooled by the liquid hydrogen, 
Ohio State University; 1949. Scale and dimensions are inches. 
(Courtesy of I. J. Weisenberg.) 

. ' 

the maximum exhaust velocity for the series was 3270 meters per second.* In general, 
performance with the regeneratively-cooled engine was considerably higher than that 
obtained with the water-cooled chambers. The experimenters attributed this not only 
to the elimination of heat losses, but also to a lower-density hydrogen entering the· 
combustion chamber, which produced improved mixing and higher combustion 
efficiency. Figure 7 shows the regeneratively-cooled rocket operating in December 
1949 during the series of tests. The frost on the chamber indicates that it was well 
cooled. 12 

*The highest performance run lasted 90 seconds at a fuel-rich mixture (0/ F ,4. 7), 21 atm, and a relatively 
low overall heat transfer rate of 2.1 J I s·m2

; In contrast, the longest run (159 sec.) was at the stoichiometric 
mixture (0/F,8), 19.6 atm, much lower exhaust velocity (2800 m/s), but almost triple the overall heat 
transfer rate (5.2 J / s·m2

). The comparison illustrates that peak performance does not come at the same 
operating conditions as maximum heat transfer. It also shows that hydrogen cooling handled the higher heat 
load. 
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Fig. 7. Liquid hydrogen-oxygen rocket engine regeneratively cooled by the hydrogen. Ohio State 
University, December 1949. Note the frost on the outside of the rocket chamber and the shock diamonds 
in the exhaust. (Courtesy of l.J. Weisenberg.) 

Pumping Liquid Hydrogen 

By 1947, the scope of rocket research at Ohio State had broadened to study pumping 
of liquid hydrogen, which was carried out by Leroy F. Florant with the assistance of 
another engineer, Harold F. Snider. They were aware of the German development of a 
pump for liquid oxygen and of parallel work on liquid hydrogen at Aerojet General 
beginning in 1948, but their research was the most comprehensive analytical and 
experimental investigation of liquid hydrogen pumping of the period. They built two 
facilities-one for using fluids normally liquid at room temperature and the other for 
low-temperature fluids. They used water and isopentane in the first and liquid nitrogen 
and liquid hydrogen in the second. In the low-temperature facility the tanks, lines, and 
valves were vacuum jacketed for insulation. After initial troubleshooting, the system 
worked well, although there were high liquid hydrogen losses from the conversion of 
orthohydrogen to parahydrogen (pp. 266-67). 

Florant and Snider designed, built, and tested two types of centrifugal liquid 
hydrogen pumps. They also investigated bearings and seals at speeds up to 10000 
RPM. They concluded that centrifugal pumps were a desirable and practical way of 
pumping liquid hydrogen for rocket engines. They found that water was a satisfactory 
test fluid for determining and verifying pump design parameters for liquid hydrogen 
pumps. This facilitated testing and greatly reduced its cost.13 · 

One of the most significant results the two investigators obtained was that properly 
mounted, precision ball bearings would operate satisfactorily in liquid hydrogen at 
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speeds up to 10000 RPM. The bearings were cooled by the liquid hydrogen and 
required no lubrication. This useful information was to be rediscovered by Richard 
Mulready of Pratt & Whitney in 1958 in developing the first flight-model liquid 
hydrogen-oxygen rocket engine. 

Hydrogen and Fluorine 

Early in 1949 William L. Doyle, a chemist engaged in rocket propellant research at 
North American Aviation, made a deal with Herrick Johnston. Doyle would come to 
work at the Ohio State University Rocket Laboratory if given a free hand to investigate 
the performance of liquid hydrogen with his favorite oxidizer, liquid fluorine.* 

In February 1949, Doyle reported for duty at the Ohio State laboratory. He did not 
like the experimental equipment, the operations, or the procedures, so he began to 
make changes. 

William Doyle was a dynamic young man who knew what he wanted and just how to 
do it. The antithesis of the desk-bound supervisor and paper shuffler, he liked to be part 
of the action. He found his right environment at Ohio State where a senior engineer 
was responsible for his entire project- from inception, through design, fabrication, 
installation, operation, data analysis, and writing up the results. Doyle found this 
situation ideal and he made the most ot it. 

Doyle's interest in the hydrogen-fluorine combination was natural. It represented 
the combination of the ultimate fuel and the ultimate oxidizer, with a higher theoretical 
performance than hydrogen and oxygen. In addition, the mixture of 6 percent 
hydrogen and 94 percent fluorine by weight not only resulted in near-maximum 
performance, but also meant higher average propellant density for the combination. 
Doyle visited the men in the fuels and oil branch at Wright Field and convinced them to 
modify the Ohio State contract to include the work he wanted to do. 

One of Ohio State's rocket test facilities was rebuilt to handle liquid hydrogen and 
liquid fluorine. The hydrogen flow system was encased in a vacuum jacket for 
insulation. A series of problems with maintaining the vacuum were solved. The flow of 
liquid hydrogen was measured by a dual system: the conventional way of .measuring 
the pressure differential across a sharp-edged orifice as well as continuous 
measurement of the hydrogen tank mass. Once the hydrogen system was functioning, it 
gave little more trouble, but many problems were encountered in the fluorine system. 
The fluorine gas, procured commercially as a compressed gas, was condensed in the 

*Doyle had become interested in fluorine a t North American Aviation when he was assigned to take over 
an experimental rocket project. Doyle redesigned the equipment and the test rig to his own liking and 
proceeded to investigate the burning of hydrazine and fluorine. On 8 Nov. 1947, Doyle successfully operated 
the first rocket to use fluorine. the most powerful of all stable oxidizers. He found that fluorine quickly 
decomposed Teflon. at the time the favorite "inert" ma terial fo r gaskets and sealants in rocket experiments. 
Fluorine will also combine with moisture and impurities and once a reaction sta rts. the heat generated make~ 

it q uick to attack and burn meta ls. It is a lso highly toxic, and Doyle's pa rking-lot operation became a matter 
of some concern by the time he was ready to head fo r Ohio. Interview with William L. Doyle. Redo ndo 
Beach, CA, 26 Apr. 1974. 
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propellant tank by immersing it in a liquid air bath. Liquid fluorine flow was measured 
by the same methods used for hydrogen. 

Doyle made his first liquid hydrogen-liquid fluorine run on 15 June 1950. He first 
operated the injector alone to see if the hydrogen and fluorine would ignite readily and 
spontaneously, which they did. He followed this experiment with rocket engine tests. 
By the first part of August, nine runs had been made and Doyle felt confident enough to 
invite his sponsors from Wright Field to witness a test. Judging from the mishaps 
reported for the first eight runs, Doyle was displaying a considerable amount of 
confidence. Don Kennedy arrived in response to the invitation and witnessed the tenth 
test on 11 August 1950. The run was perfect in Doyle's view. with a measured exhaust 
velocity of about 3600 meters per second at 20 atmospheres. Kennedy was greatly 
impressed and reported the results to his boss, Weldon Worth, Doyle continued the 
experiments and in mid-January 1951, Kennedy informed him that a group of high 
officials at Wright Field would visit Ohio State to witness a run with hydrogen­
fluorine. Soon after the call, Doyle made a run at a high pressure (38 atmospheres) and 
measured an exhaust velocity of over 4300 meters per second. On 29 January. 14 
people from Wright Field's Power Plant Laboratory arrived in terrible weather-a 
sheet of ice compounded by mist and drizzle. Icing difficulties delayed the run for an 
hour, but it was a success, lasting over a minute. Performance. however, was lower 
than obtained in earlier runs. '4 

One measurement necessary to determine performance-fluorine flow-had 
bothered Doyle from the start. Whereas the two flow measurements for liquid 
hydrogen checked with each other. the fluorine flow as measured by the orifice was 
lower than that measured by weighing the propellant tank. The difference was 
consistent-about 18 percent lower for the orifice. Five design changes were made to 
improve the orifice measurement, but the discrepancy remained. 

Doyle was not the only experimenter having difficulty measuring the flow rate of 
liquid fluorine. Aerojet was having the same difficulty and investigators there began to 
suspect that the density of fluorine might somehow be wrong. This was heresy, for a 
number of eminent scientists had measured the density of fluorine and they all agreed. 
James Dewar and Henri Moissan had first measured it in 1897 and found it to be close 
to 1.14 grams per cubic centimeter at 83 K. The value in use in the 1950s was 1.13 grams 
per cubic centimeter at 77 K. determined by E. Kanda in 1937. 

Near the end of April 1951, Kennedy telephoned Doyle that Aerojet, using a 
hydrometer, found that the density of liquid fluorine was 1.55 grams per cubic 
centimeter, considerably higher than the published value. Doyle used the Aerojet value 
with his orifice measurements and found that the 18 percent discrepancy with the 
weighing measurement disappeareti! The greater density of liquid fluorine was an 
exciting discovery to rocket engineers. for it meant the oxidizer was even more 
attractive than first realized.* 

*The specific gravity of liquid fluorine. l .54 at 77 K. reported by Kilner. Randolph. and Gillispie (J. Am. 
Chem. Soc. 74: 1086) in 1952 was verified by Elverum and Doescher the same year (J. Chem. Physics 
20: 1834). See also National Bureau of Standards Technical Note 392. rev., 1973. Some contributors to 
chemica l handbooks were slow in noting the change. 
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Doyle made his 48th and last hydrogen-fluorine run in mid-April 1951 and turned 
his attention to the ammonia-fluorine combination. This ended the Ohio State rocket 
experiments with liquid hydrogen, although the properties work continued, as well as 
some small-scale combustion research of a fundamental nature. 

Significance 

The first experimental investigation of liquid hydrogen as a fuel for aircraft and 
rockets was started in 1945 by the research arm of the Air Force, as part of a long 
tradition of searching for new and improved fuels. Hydrogen, the ultimate fuel in 
energy content, needed to be investigated for its potential application in air-breathing 
and rocket engines. The availability of hydrogen liquefaction equipment and the 
experts at Ohio State University provided the catalyst for starting the experimental 
investigation. 

The Ohio State research on hydrogen for air-breathing engines never progressed 
beyond a few exploratory experiments. These showed that hydrogen burned readily 
over a wide range of conditions-a result that could have been predicted from earlier 
work. That more was not done with hydrogen for air-breathing engines could have 
come from one or more of the following: (1) hydrogen's low density, long its 
outstanding disadvantage for aircraft applications, as pointed out by Tsiolkovskiy in 
1930; (2) rising interest in boron compounds as high-energy fuels for ramjets, as 
sponsored by the Navy; (3) greater interest in rocket applications by Wright Field; and 
(4) lack of equipment needed for research on air-breathing engines. 

Ohio State University investigators focused their engine research on rocket engines 
and made many contributions to liquid hydrogen technology. The high performance 
potential of liquid hydrogen-liquid oxygen was verified, and it was also found that 
liquid hydrogen was a satisfactory regenerative coolant. Research established that 
centrifugal pumps were capable of pumping liquid hydrogen to the high pressures 
needed for rocket engines. It was also found that ball bearings for pumps would 
operate satisfactorily when immersed in liquid hydrogen without the usual oil 
lubrication, showing that design of practical pumps was feasible. Pump tests with 
water produced data that were valid in predicting performance with liquid hydrogen­
a decided convenience in determining several design parameters. Finally, it was shown 
that the performance of liquid hydrogen-liquid fluorine was higher than for liquid 
hydrogen-liquid oxygen, and density was higher also. 

With such significant results with liquid hydrogen, then, why did Air Force interest 
in sponsoring further research begin to wane in the late 1940s? Several possible reasons 
come to mind, one being the shift in Air Force interest from rockets to air-breathing 
propulsion in the late 1940s. Another possibility is that the Air Force managers may 
have felt the exploratory research had fulfilled all of its objectives and without an 
application, there was no need for further work. There is, also, the ever-present 
possibility that the sum of all of hydrogen's disadvantages-formidable for military 
applications-may have overwhelmed Wright Field's attraction to the high energy of 
hydrogen in the same manner experienced earlier by both Tsiolkovskiy and Goddard. 

The scientific and technological progress made at Ohio State with liquid hydrogen 
served as the foundation for contributions by other groups. Running parallel to Air 
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Force interest in hydrogen as a fuel was Navy interest, which also faded by the end of 
the 1940s. Unlike the Air Force, however, the Navy had a specific application in mind 
and its efforts to secure approval to develop a hydrogen-oxygen rocket will be 
discussed next. 



.
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Hydrogen-Oxygen for a Navy 
Satellite 

The Navy's Bureau of Aeronautics became interested in liquid hydrogen as a rocket 
fuel in the second half of 1945 in connection with its early satellite proposals. Unlike the 
Wright Field contract with Ohio State University, which was research-oriented with no 
specific application in mind, the Navy interest was, from first to last, linked directly to 
its proposal to use a single-stage rocket to boost a satellite into orbit. For this reason, 
the effort is best viewed within the broader context of the Navy's early interest in 
missiles and satellites. 

Origins of Navy Interest in Satellites and Hydrogen 

Considering the Navy's involvement in solid rocket research and development 
during the war, the rising interest in jet propulsion as German developments became 
known, the Navy's sponsorship of OSRD's Jet Propelled Missiles Panel, and the 
Lemmon report on jet propulsion fuels (p. 4), the interest in hydrogen would appear to 
be an evolutionary step. In fact , these prior events had little influence. The proposal to 
use liquid hydrogen to place a satellite into orbit with a single-stage-to-orbit rocket 
came from Comdr. Harvey Hall, a Navy physicist who had educated himself quickly in 
jet propulsion, had not heard of the Wright Field contract with Ohio State University 
on liquid hydrogen (p. 18), and had not read the Lemmon report. Neither was he 
acquainted with the proposals ofTsiolkovskiy, Goddard, or Oberth to use hydrogen in 
rockets (appendix A-2); but like Tsiolkovskiy, he had gone to chemistry textbooks in 
search of the most energetic fuel. Not surprisingly, Hall found and selected liquid 
hydrogen, and in his quest for more information on its use in rockets, he met Robert 
Gordon of the Aerojet Engineering Corporation, who also had gone to his textbooks 
and was thinking about hydrogen at about the same time.1 

The train of events that led to the Navy's interest in satellites and the use of liquid 
hydrogen as a fuel in the booster rocket was triggered by information brought to the 
Bureau of Aeronautics in July 1945 by a young Marine officer, Lt. Abraham Hyatt. 
The Bureau of Aeronautics was aware of German developments injet propulsion and 
rockets from intelligence reports during the war. Hyatt had been part of a technical 
intelligence team in Europe following closely in the wake of the advancing armies early 
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in 1945 to interrogate German scientists and technicians and gather documents. 
Among the Germans interrogated in May 1945 were Wernher von Braun and his 
associates who had developed the V-2 at Peenemiinde. Among the documents Hyatt 
brought to the Bureau of Aeronautics in July 1945 was a summary by von Braun of 
liquid propellant rocket developments in Germany and his view of future prospects. 
Von Braun listed five future possibilities: (I) rocket-propelled transports for 
intercontinental travel; (2) multi-stage, piloted rockets orbiting the earth; (3) a large 
space station orbiting the earth; ( 4) a large orbiting mirror to concentrate solar energy 
and beam it to the earth for various purposes, including weather control;* (5) travel to 
other planets but "first of all to the moon," possibly by harnessing atomic energy. Von 
Braun saw the rocket as having the same impact on future scientific and military 
activities as the airplane.2 

Among those in the Bureau of Aeronautics who were most excited over the potential 
of satellites were Lt. Robert Haviland and Comdr. Harvey Hall. By the first part of 
August, Haviland had written an internal memorandum proposing that the Navy 
initiate a program leading to a manned space station. He developed the Tsiolkovskiy 
equationt relating vehicle velocity to exhaust gas velocity and mass ratio. but referred 
only to available fuels, with no mention of hydrogen. A British report of March 1945 
on the mass of various components of the V-2 was used by Haviland to calculate the 
terminal velocity of a two-stage rocket based on these masses. The result was 
disappointing; the second stage velocity was too low to achieve orbit. To get out of this 
dilemma, Haviland drew on a 1934 publication of E. Sanger to assume that an exhaust 
gas velocity of 3500 meters per second was achievable with gasoline and oxygen.! This 
is highly optimistic even at altitude: the V-2 exhaust gas velocity, using alcohol­
oxygen, was only about 2/ 3 that value. However, his conservative mass and optimistic 
rocket performance assumptions led him to the correct conclusion that a satellite could 
be launched with a two-stage rocket booster using gasoline-oxygen. He wisely included 
a recommendation that more research be undertaken to secure a high energy fuel. As a 
further assurance of success, he suggested that the launch be made from a mountain 
top, to gain altitude, and in the direction of the rotation of the earth, to gain rotational 
velocity.J 

In spite of his excitement over satellites, Hall took a slower and more deliberate 
course than Haviland. For one thing, he was not well acquainted with jet propulsion, 
but having a doctorate in physics, he went to basic concepts to work out the flight and 
energy relationships for himself. In the process, he also obtained the Tsiolkovskiy 

• The same month that Hyatt brought von Braun's predictions to the Bureau of Aeronautics, Life 
published an article on the German plans for a large orbiting mirror which was also a manned satellite. The 
article stated that the Germans had planned to use the mirror to focus the sun's rays into a beam to scorch the 
earth. Life 19 (23 July 1945) : 78-80. 

t The Tsiolkovskiy equation is V=V, 1 n (Mo/ M,) where Vis the maximum velocity of the rocket in gravity­
free, drag-free night; V1 is the rocket exhaust velocity; 1 n is the natural logarithm; Mo is the initial, full, or 
gross mass of the rocket; and M,. is the final or empty mass of the rocket. The two masses differ by the amount 
of propellant expended. More details are given in appendix A-2. 

Haviland used Willy Ley, Rockets, the Future of Travel beyond the Stratosphere, 1944, for tabulated 
values in the Tsiolkovskiy equation. 

tThe NACA translated and publ ished the Sanger paper in 1942 as Technical Memorandum 1012. 
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equation. He then began to explore the extremes of its two variables-exhaust gas 
velocity, determined by the energy of the reactants and expansion through the nozzle; 
and mass ratio, determined by the structure. He could have obtained excellent data on 
exhaust gas velocities of various propellants from the Lemmon report which had been 
issued in May, but it had not come to his attention. Instead, he simply went to his 
chemistry textbooks in search of the most energetic fuel he could find to use as a 
yardstick in comparing the performance of various fuels. There he found the hydrogen­
oxygen combination, whose heat of combustion had been measured numerous times 
since Lavoisier and Laplace first measured it in 1783. Hall was totally unaware that he 
was repeating the same steps Tsiolkovskiy had taken almost a half century earlier 
(appendix A-2). 

ln considering the ratio of initial to final mass, Hall thought of very light structures, 
somewhat analogous to Oberth's, and his structural design was as optimistic as 
Haviland's was conservative. Hall's calculations led him to believe that, using liquid 
hydrogen and oxygen and very light structures, he could put a payload in orbit with a 
single-stage vehicle, eliminating the complications of multiple staging. 

Hall wanted to discuss his calculations with rocket experts, so he visited the Jet 
Propulsion Laboratory (JPL) of the California Institute of Technology where he met 
with Martin Summerfield, Frank Malina, and Homer Joe Stewart.* Encouraged by 
his visit, Hall went on to the Aerojet Engineering Corporation to talk about rocket 
propellant experiments. 

Aerojet Propellant Research, 1944-1945 

At the end of 1944, the Aerojet research group, headed by Fritz Zwicky, noted 
astrophysicist at the California Institute of Technology, had completed a Navy 
contract to investigate high-energy solid and liquid propellants. The results led the 
investigators to monopropellants; they were enthusiastic over the possibilities ofusing 
nitromethane, which has a theoretical exhaust velocity of 2200 meters per second. 
Zwicky was aware of other Navy-sponsored work on boron hydrides that had potential 
exhaust velocities of 2800 to 3100 meters per second-considerably higher than 
nitromethane but also much further from practical utilization.4 At the time of Hall's 
visit, Aerojet was in the second phase of investigating nitromethane-determination of 
its experimental performance and handling characteristics. David A. Young and his 
new assistant, Robert Gordon, were in charge of the work, and Hall asked them about 
the combustion properties of hydrogen and oxygen. 

Gordon had worked on aircraft engines at the power plant laboratory at Wright 
Field for several years and later was a navigator with the Eighth Air Force in Europe. 
There he had acquired a first-hand awareness of German competence injet propulsion. 

*Rocket research began at the Guggenheim Aeronautical Laboratory of the California Institute of 
Technology (GALCIT) in 1936 and was known as the GALCIT Rocket Project. GALCIT became the 
undisputed leader in rocket research during the 1940s. Jn 1944 the project was reorganized and named the Jet 
Propulsion Laboratory, GALCIT; it is now called the Jet Propulsion Laboratory of the California Institute 
of Technology or simply JPL. R. Cargill Hall, "GALCIT-JPL Developments, 1926-50, a Chronology," 
8 Sept. 1967, NASA History Office. 
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He took part in bombing Peenemtinde, observed the launching of a V-2, and was 
attacked by ME-163s-the first rocket-powered aircraft. Gordon joined Aerojet in 
July 1945 and during his orientation, Young introduced him to the fundamentals of 
rocket theory. Gordon then began calculating theoretical rocket performance of 
various propellant combinations using the heat of formation of exhaust products. This 
lead to the consideration of the simplest and most energetic reaction-hydrogen and 
oxygen-and he asked Young to let him try hydrogen-oxygen in a rocket experiment.5 

Aerojet's First Series of Experiments, 1945-1946 

Hall's visit to Aerojet was fortunate in its timing. He believed that he brought a new 
idea to Young and Gordon because none of Aerojet's previous work or proposals on 
propellants mentioned liquid hydrogen as a fuel. To Gordon, however, here was his 
boss's boss-the Navy- voicing ideas similar to his own and he was eager to get 
started. After Hall returned to Washington, Aerojet was authorized to experiment 
with hydrogen and oxygen as part of their nitromethane contract. In less than a month, 
Young and Gordon operated the first recorded run of a hydrogen-oxygen rocket in the 
U.S. on 15 October 1945. * The run ended after 15 seconds when the uncooled thrust 
chamber burned out, but not before a thrust of 200 newtons (45 lb) and a chamber pres­
sure of 25 .5 atmospheres were recorded. From these, the experimenters estimated the 
exhaust velocity to be 2600 meters per second .6 They were undaunted by the burnout 
and began preparations to use a water-cooled thrust chamber. In the next test, they 
obtained a lower exhaust velocity, and in spite of water cooling, the chamber showed 
signs of overheating. t 

From the first test in October until the end of the first phase of the work in June 1946, 
about 50 rocket runs were made at thrusts of 445 and 1780 newtons (100 and 400 lb) 
and chamber pressures of 20.4 and 34 atmospheres. The experimenters found it 
relatively easy to achieve high performance (3050 meters per second). Much of the 
work was concentrated on cooling and several methods were tried. One was a porous 
chamber through which water was forced as a form of transpiration or "sweat" cooling. 
Another was gaseous hydrogen flowing through the porous combustion chamber. The 
main method, however, remained water cooling. 

As had other experimenters since the eighteenth century, the Aerojet research team 
found that hydrogen and oxygen ignite very readily and burn over a wide range of 
mixture ratios. Rapid burning meant that the combustion chamber could be small, and 
this led Young to his idea of the ultimate small thrust chamber-the "flared tube." 

*Richard B. Canright operated a gaseous hydrogen-oxygen rocket at JPL about 1943. but no reports on 
this work have been found. The first JPL laboratory was referred to as the "Gashouse" and apparently 
Canright used gaseous hydrogen and oxygen, mainly for their convenience and availability. Howard S. 
Seifert, "Twenty-Five Years of Rocket Development," lei Propulsion 25 (Nov. 1955):595; telephone 
interview with Howard Seifert, 22 Aug. 1973; Seifert to Sloop. 29 Nov. 1973; telephone interview with 
Richard B. Canright, 21 Aug. 1973; interview with Richard B. Canright. Camp Hill, PA, 7 Mar. 1974. The 
Germans operated a hydrogen-oxygen rocket during 1937-1940 (appendix A-3). 

tAverage heat transfer rate was 5.7 J /s ·m2 ; this value and the relatively low exhaust velocity are 
approximately the same as Ohio State obtained later at the stoichiometric mixture (p. 24. n.). 
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Essentially it was a straight wall tube for the combustion chamber with a flare for the 
expansion portion of the nozzle, as shown at the top of figure 8. Young experimented 
to find the minimum size tube chamber and soon became confident that he could use 
from 1/10 to 1/20 the volume normally used for rocket thrust chambers. This was a 
great step forward, for a tiny combustion chamber meant less mass for the vehicle and 
less surface area to cool-both big advantages. He became a missionary for the idea 

. and set forth to sell the Navy an expanded program. 

The Hall Committee 

Haviland's August memorandum proposing a manned space station (p. 32) was 
convincing to his supervisor, Comdr. J. A. Chambers, head of a special weapons 
section, who saw among its advantages the possibility of a worldwide navigation and 
communication system on high frequencies-free from horizon limitations and sky­
wave errors. He endorsed it and passed it up the line. It also received support from 
Capt. Lloyd V. Berkner, head of the electronics materiel branch. During this time, Hall 
was arguing his case for the single-stage rocket, and he must have been persuasive 
because on 3 October 1945, Capt. R. S. Hatcher, deputy director of engineering in the 
Bureau of Aeronautics, established the Committee for Evaluating the Feasibility of 
Space Rocketry. Its purpose was "to investigate the presently available materials and 
techniques and to arrive at some estimate of the possibility of attaining a velocity of 
liberation from one stage of operation." Hall was made chairman and the first meeting 
was held five days later.* Both Haviland and Hall explained their ideas, and it was 
revealed that detailed calculations for an earth satellite were under way in another 
branch of the Bureau of Aeronautics. 7 

The second meeting took place on 15 October 1945, and the subject was 
experimental data on some fuels and theoretical estimates on others. Lt. Comdr. F. A. 
Parker presented experimental data on only two propellant combinations: mixed 
nitric and sulfuric acid with methyl-ethyl-aniline, and alcohol with liquid oxygen. He 
gave their exhaust velocities at sea level as 1950 and 2300 meters per second, 
respectively. He thought that any hydrocarbon-oxygen system wou.Jd likely have an 
upper limit near that of the alcohol-oxygen value. Parker estimated that increasing the 
combustion pressure to practical limits would increase exhaust velocity about 15 
percent. A greater increase would be possible by increasing the area ratio of the exhaust 
nozzle. The upper limit on this appeared to be an increase in velocity of about 40 
percent over sea level values. The theoretical performance of hydrogen and oxygen was 
given as 3000 meters per second at sea level and 4300 at altitude. The performance of 
diborane and oxygen was unknown, but was estimated (optimistically) to be about the 
same as for hydrogen and oxygen. 

The Hall Committee concluded that a single-stage rocket for boosting a satellite to 
orbit would need an exhaust velocity on the order of 4300 meters per second and 
recommended that the performance of both hydrogen and diborane be investigated. 

*Other members: Comdr. C. D. Case. Lt. (jg) K. W. Max. Lt. R. P. Haviland. Lt. Comdr. F. A. Parker. 
Lt. L. A. Hansen, Comdr. 0. E. Lancaster. and J. R. Moore. 
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theoretically and experimentally.x The same day, AeroJet made the1r hrst expenmental 
rocket test with hydrogen and oxygen. The exhaust gas velocity during the run was 
estimated at 2600 meters per second, which meant that 3600 would be attainable at 
altitude with proper design. No one had tried diborane, but Hall was attracted to it as 
an alternate to hydrogen. At the next meeting, on 22 October 1945, he discussed 
diborane and estimated that it could produce an exhaust velocity of 5500 meters per 
second, a value far greater than that for hydrogen-oxygen.9 Diborane therefore 
appeared to be the dream fuel, but Parker pointed out that boron oxides, formed 
during combustion of diborane and oxygen. might solidify when expanded to the 
lower temperatures in the nozzle. and this would lower performance.* L.A. Hansen 
raised the problem of dissociation. where energy is absorbe9 in breaking molecules 
apart, which would further reduce the exhaust velocity. In spite of these cautions, the 
committee accepted the 5500 meters per second theoretical value for diborane-oxygen 
and estimated that actual performance would probably be close to the desired 4300. 
Hall recommended that: ( 1) an experimental program be initiated leading to a satellite 
orbiting the earth at an altitude of 1850 kilometers : (2) engineering layouts be made on 
the basis of an exhaust velocity of 4300 meters per second and a mass ratio of 10, and an 
empty mass of at least 4500 kilograms: (3) the vacuum performance of the most 
promising fuels having estimated exhaust velocities of 4300 meters per second be 
tested; and (4) diborane and similar compounds be studied. With this proposal , Hall­
the original proponent of hydrogen-oxygen-was now referring to that combination 
only indirectly in terms of performance and was urging the study of diborane as a fuel. 
The committee agreed with Hall's proposal for an engineering design layout with his 
guidelines. but made no reference to diborane. 

By the fourth meeting. qn 29 October. the committee amended the minutes of the 
previous meeting to agree with Hall's higher estimate for the performance of diborane. 
Both Lancaster and Haviland. however. had analyzed boosters, and they continued to 
prefer hydrogen and oxygen . The two analysts differed in their mass assumptions. 
Lancaster found an initial-to-final mass ratio of 10 impractical, but Haviland did not. 
The committee found both sufficiently close to the desired goal to be promising and 
recommended that a more detailed study be made. 10 This was carried out by Lt. 
Comdr. Otis E. Lancaster and J. R. Moore. 

In November 1945, Lancaster and Moore reported their study: "Investigation on the 
Possibility of Establishing a Space Ship in Orbit above the Surface of the Earth." Using 
the basic energy relationships and a simplified formula for estimating structural 
weight, comparisons were made of the minimum mass ratio needed for rockets to orbit 
at various altitudes with the _ mass ratios attainable with several propellant 
combinations. Liquid hydrogen-oxygen was considered the best on the assumptions 

*Parker was right. In 1948, at the NACA Conference on Fuels, Flight Propulsion Research Laboratory, 
Cleveland. the author, P. M. Ordin, and V. N. Huff reported results from rocket experiments in which boron 
oxides were deposited on the nozzle, verifying Parker's speculation. In the 1950s the Navy and Air Force 
mounted a major effort to use boron hydrides in turbojet engines and failed , largely because boron oxides 
clogged the turbine blades. Hearings on Boron High Energy Fuels before the Cammi/lee on Science and 
Astronautics, U. S. House of Representatives. 26-27 Aug_ and l Sept. 1959. 
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of a jet velocity of 4300 meters per second in a vacuum, which was realistic. The 
structural formula, however, made mass ratio results very pessimistic. Lancaster and 
Moore concluded that an initial-to-final mass ratio of from 10.9 to 12.1 was needed to 
orbit at a high altitude. Since the structural mass formula indicated that for a ratio of 
I 0, a very large rocket (one with a mass of some 2270 metric tons) would be necessary 
without considering payload, the authors concluded that a single stage to orbit was not 
feasible .* A multiple stage rocket using alcohol and oxygen, however. could orbit a 
satellite .11 

The analysis was a blow to Hall's single-stage-to-orbit concept, and he proposed that 
JPL conduct an independent analysis . 

JPL Study 

The rocket experts of the Jet Propulsion Laboratory of the California Institute of 
Technology began their study of single-stage rockets for the Bureau of Aeronautics in 
December 1945 and completed it by July I 946t They wrote six reports, with the 
earliest appearing on 3 January 1946. The study was based on three assumptions: (I) 
the orbiting vehicle would be a single-stage liquid propellant rocket, (2) the propellants 
would be liquid hydrogen and liquid oxygen, and (3) the exhaust velocity of the rocket 
would be 3240 meters per second at sea level and 4320 at very high altitude. The rocket 
performance values were furnished by David Young of Aerojet. With these 
assumptions, the JPL men sought to determine the most suitable trajectory and 
designs for minimum initial-to-final mass ratio. 

The final report, appearing in July, stated that ifthe single-stage rocket was launched 
from sea level, the initial-to-final mass ratio must be 8.70; if launched from a high 
mountain (4300 m), the mass ratio could be decreased slightly.12 These results made 
clear to the Bureau of Aeronautics what the next steps should be: expand Aerojet's 
work on the experimental performance of hydrogen and oxygen and get improved 
weight estimates for rocket engines and vehicle structures. The latter called for the 
experience of an airframe manufacturer. The JPL-GALCIT study also pointed out 
that the mass ratio requirements for orbiting a satellite could be greatly reduced if 
multiple-stage rockets were used . 

Apparently as a derivative of these classified military studies, Frank Malina and 
Martin Summerfield reported on the problem of escape from earth by rocket in August 
1946, and Malina presented the results at the Sixth International Congress for Applied 
Mechanics at Paris in September. They made a strong case for using hydrogen-oxygen. 
A multistage rocket using nitric acid and aniline (a combination in use at that time) was 
considered too large to be practical even for a 5-kilogram payload. They concluded 

*Lancaster and Moore doubted the accuracy of the structural masses they were using and recommended 
that a detailed structural design study be made. They also recommended intensifying the research program 
on rocket fuels and engines to find fuels with higher exhaust velocities and to develop larger engines. 

t Participating in the study were W. Z. Chien. Lt. Comdr. E. C. Sledge. Lt. Comdr. G. G. Halverson. 
J . V. Charyk. and H.J . Stewart. Stewart wrote the final report. 
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that a multistage rocket of reasonable size using liquid hydrogen and liquid oxygen 
could carry a payload of 45 kilograms and was within engineering feasibility. They 
assumed an exhaust velocity of 3660 meters per second for hydrogen-oxygen, five 
stages, and a gross mass of 37 600 kilograms. The authors also pointed out the 
advantages of using hydrogen as the working fluid with heat supplied by a nuclear 
reaction. Potential exhaust velocities were as high as 11 400 meters per second-close 
to the vehicle velocity needed for escape from the earth's gravitational field.13 

Attitudes towards Missiles and Satellites 

While the advocates of satellites in the Bureau of Aeronautics were pursuing thei
technical studies, they were also attempting to obtain high-level support. The
estimated that five to eight million dollars would be needed, but in the budge
competition, they faced an uphill struggle. Ironically, their sister service, the Army Ai
Forces, had support at the top but little initiative at the working level. Durin
September, the AAF's Scientific Advisory Committee, headed by Dr. Theodore vo
Karman, issued the first volume of its series, Towards New Horizons- a bol
assessment of future developments.14 

On 12 November 1945, in his Third Report to the Secretary of War, Gen. H. H
Arnold predicted that strategic bombers would eventually be replaced by long-rang
ballistic missiles that would need to be launched "from true space stations, capable 
operating outside the earth's atmosphere."15 

If the Bureau of Aeronautics men were heartened by Arnold's statement, they mu
have been dismayed the next month at the lack of support from the top scientist in th
government. In December, Vannevar Bush, Director of the Office of Scientifi
Research and Development, appeared before the Special Senate Committee o
Atomic Energy and stated: 
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There has been a great deal said about a 3000-mile [ 5600 km] high-angle rocket. In 
my opinion such a thing is impossible and will be impossible for many years.16 

Bush was not alone. The following April, the chairman of the National Advisory 
Committee for Aeronautics, Jerome C. Hunsaker, echoed the same view in an address 
before the National Academy of Sciences: 

One is tempted to speculate about the possibilities of an improved rocket of this 
type [V-2]. An engineer cannot see much prospect for an improved propellant nor 
for much better materials of construction. It is unlikely that a ratio of starting 
weight to empty weight of much more than three can be obtained. It, therefore, 
appears that the range of 200 miles is near the maximum for the type. 17 

By the first part of 1946, the funding prospects for the satellite project were well 
below what its supporters in the Bureau of Aeronautics considered to be a minimum. 
They decided that drastic action was needed to save the project and contacted the AAF 
regarding a jointly supported satellite project. A meeting on satellites was held on 7 
March 1946, with Hall speaking for the Bureau of Aeronautics on the proposed joint 
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effort. The initial reaction was favorable and Hall was elated. However, his joy was 
shortlived; in less than a month he was called to the office of Lt. Gen. Curtis E. Le May, 
the AAF deputy chief for research and development, and told that the AAF would not 
support the Navy proposal. LeMay did leave the door open for future discussions on 
earth satellites. 18 Almost coincident with the meeting on 22 March a JPL-Army 
Ordnance WAC rocket became the first American rocket to go beyond the earth's 
atmosphere. It reached an altitude of 93 kilometers. 

The Air Force's Interest in Satellites 

With Arnold an outspoken proponent for long-range missiles and satellites, the Air 
Force was not about to take a back seat to the Bureau of Aeronautics on the subject. 
An organization well staffed to study the potentialities of military satellites had just 
been formed-a "think tank" known as Project RAND.* 

Soon after the meeting with Hall, Le May instructed the Douglas Aircraft Company, 
RAN D's parent organization, to give priority to a design study of a satellite vehicle. He 
wanted the basic study in three weeks "to meet a pressing requirement." 19 Douglas 
assigned the top manpower of its Santa Monica engineering department to this task 
and stopped all other RAND studies and several important Douglas design projects. 

At the peak, over fifty of the best scientists and engineers of the firm were on the 
study-including Louis Ridenour and Francis H. Clauser, both of whom had been in 
the team that interrogated Wernher von Braun in 1945. The result of the study, 
"Preliminary Design of an Experimental World-Circling Space Ship," was hand­
carried to Wright Field on 12 May 1946. Project RAND stopped further work while 
the Air Force evaluated the report and decided what further studies were wanted. 

World Circling Spaceships 

In their first quick look, the RAND group faced the same problems as the earlier 
investigators at the Bureau of Aeronautics and JPL. Simple physics gave the required 
orbital velocity and the Tsiolkovskiy equation gave the vehicle velocity without drag or 
pull of gravity. The major unknowns, other than those velocity losses, were the 
structural weights and the performance of propellant combinations. The velocity 
losses were not difficult to assess. The V-2 data furnished a guide for structural mass . 
estimates as well as the actual performance of the alcohol-oxygen propellant 
combination. RAND considered 39 different fuel-oxidizer combinations and found 
that hydrogen-oxygen ranked highest (the same result as the Lemmon report, p. 4) . 

*Project RAND was the brainchild of Frank Collbohm, an engineer working for the Douglas Aircraft 
Company. In late 1945, he talked to government officials about forming a postwar scientific organization to 
work on problems of national security. He got plenty of expressions of interest but no action until he met 
General Arnold in October 1945. Arnold liked the idea and implementation began the same day. On 2 March 
1946, the Douglas Aircraft Company was given a letter contract for $10 million to set up an autonomous 
group of engineers and scientists, Project RAND. On 12 May 1947, RAND became an independent 
corporation. William Leavitt, "RAND-The Air Force's Original Think Tank," Air Force / Space Digest, 
May 1967, p. 100. 
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Hydrogen's low density, low temperature, and wide explosive range would cause 
problems, but RAND decided to accept it for design studies anyway. A parallel design 
study used alcohol and oxygen. A satellite with a mass of227 kilograms was selected as 
the payload to orbit at 556 kilometers.20 

The RAND study gave the V-2 structural mass as 18 percent of its initial mass, 
estimated that 16 percent was as good as could be obtained, an.d used the latter for 
propellants not involving hydrogen. The larger tank needed for low-density hydrogen 
would probably increase the structural mass proportion to 25 percent.* This, of course, 
greatly offsets the advantages of the high exhaust velocity of the hydrogen-oxygen 
combination. Not surprisingly, RAND concluded that a vehicle using either hydrogen­
oxygen or alcohol-oxygen could not reach orbital velocity with a single stage-a 
repudiation of the Navy proposal. 

The RAND study found that with multistage rockets, however, orbital velocities 
could be reached with either hydrogen-oxygen or alcohol-oxygen, but the designs 
would differ considerably. The alcohol-oxygen vehicle required 4 stages with an initial 
mass of about 100 metric tons. A 2-stage vehicle using hydrogen-oxygen, but having a 
third more mass, could do the same job. A 3-stage hydrogen-oxygen rocket would 
reduce the initial mass to below that of the alcohol-oxygen vehicle. RAND concluded 
that hydrogen-oxygen should be given serious consideration in any future study. The 
cost of constructing and launching a satellite was estimated at $150 million over a 
5-year development period. 

The RAND study gave the AAF a strong position in discussing satellite proposals 
with the Bureau of Aeronautics. The War Department had a mechanism for 
coordinating similar programs between the air services-the Aeronautical Board, 
created during World War II. In June 1946, the board considered the satellite studies of 
the two services and took the neutral position that both should continue their studies 
independently.21 Both the Bureau of Aeronautics and the Air Force moved to 
strengthen their positions. 

The Air Force instructed RAND to start a 6-month study to provide a design 
sufficiently complete that development contracts could be negotiated for a vehicle 
capable of launching a satellite. For their part, the Bureau of Aeronautics contracted 
with North American A via ti on for a 90-day study of the feasibility of their proposal, 
using the GALCIT structural limits as a guide. For a more detailed study of the 
structural aspects, the Navy also contracted with the Glenn L. Martin Company for a 
12-month study, using the same guidelines as the North American contract. To supply 
data on rocket power plants , the Navy contracted with Aerojet for the detailed design 
study of a 1.33 meganewton (300000 lb thrust) engine suitable for a vehicle of 45400 
kilograms initial mass. The Navy called its vehicle the High Altitude Test Vehicle, or 
HATV. 

*Structural mass is generally assumed to be the final mass less payload and engine; the RAND structural 
figures are not convertible directly into initial-to-final mass ratios. 
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North American Aviation Study 

On 26 September 1946, North American Aviation reported the results of its study. 
The Navy had specified an initial mass of 45 360 kilograms with a 454 kilogram 
payload. From the GALCIT report series, an initial-to-final mass ratio of 9.09 was 
assumed (which meant a propellant mass of 40370 kg and an engine and 
structural mass of 4536 kg). Aerojet was asked for an estimate of the rocket engine 
mass and gave a range of 1361 to 2268 kg. North American used the higher number, 
leaving an equal mass for the structure-comprising the tanks, supporting structure, 
external vanes, controls, and skin. R. G. Wilson, the principal structural analyst, found 
that a structure with a mass of 2903 kg-635 over the limit-was the lightest that could 
be designed for the propellant mass specified. This increased the initial mass of the 
vehicle (to 45995 kg), and Wilson concluded that the use of a single-stage rocket to 
achieve orbit was not possible with the specifications given. This not being what the 
Navy wanted, Wilson added that if the initial mass was increased to 59000 kg and 
rocket burning time to 165 seconds, the vehicle could achieve orbit with a single stage.22 

The North American Aviation study reloaded the Navy's guns. A 59000 kg vehicle 
could place 454 kg in orbit with a single-stage vehicle, whereas the Air Force with the 
RAND study needed from 2 to 4 stages and initial masses I \12 to 2 times greater to place 
half as much payload in orbit. One reason for the light North American design was 
pressure-stabilized tanks with a common bulkhead separating the liquid hydrogen and 
oxygen. Pressure-stabilized tanks are thin-walled vessels without bracing which 
depend upon internal pressure for rigidity in the same manner as does a balloon. The 
technique had been proposed by Oberth in 1923 (p. 262) and was a controversial design 
in the 1940s and early 1950s. 

Concurrent with the North American study, RAND was proceeding with its second 
phase of satellite studies scheduled for completion by the end of January 1947. The 
RAND engineers selected vehicle mass, volume, and complexity as criteria for 
evaluating a number of propellant combinations. Hydrogen-oxygen was still the best 
on the basis of initial mass, but considering all three criteria, RAND liked hydrazine­
fluorine better. The study was far from complete when the North American Aviation 
report came out. In the interim, James Lipp of RAND wrote a special report on the 
advantages of satellites. Using an estimate of $50-150 million to orbit a satellite in the 
1950s, Lipp urged a quick start so that the United States could maintain superiority 
over possible enemies. He recommended that the AAF be given priority for a research 
program leading to a satellite.23 This recommendation was strengthened a week later 
when Army Ordnance launched a V-2 from White Sands. The missile reached an 
altitude of 120 kilometers and took motion pictures of 100000 square kilometers of the 
earth's surface. Lipp's arguments, however, fell on barren ground. for the country was 
complacent in its atomic bomb superiority- a complacency that was to last until the 
Russians exploded their bomb in 1949. 

Fading of Satellite Proposals 

The competition between the Air Force and the Navy's Bureau of Aeronautics over 
satellites might have grown keener had it not been overshadowed by national and 
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international events. In the fall of 1946, President Truman's administration faced 
formidable problems at home and abroad. The railroad strike in August had 
threatened to paralyze the nation's transportation system, and Truman had countered 
by threatening to take over the railroads and draft its workers into the military. On 
the international front, the hoped-for mutual understanding with the Russians became 
less likely as Stalin became increasingly more hostile. With the United States facing 
increasing obligations abroad, preparations for the next year's budget brought 
decisions to restrict long-range research and development programs in favor of 
expenditures promising more immediate benefits. By December, such strictures had 
ended the prospects for satellites as a military weapon. The Air Force ordered RAND 
to shift emphasis from satellites to airplanes and ramjet vehicles. 

During the first quarter of 1947, Project RAND wound up its first satellite study and 
published a final report in April. The favored configuration was a 3-stage rocket using 
hydrazine and oxygen, with an initial mass of 38 600 kilograms and an orbit altitude of 
648 kilometers. The cost for a satellite in orbit was estimated to be $82 million. 24 If 
there was no immediate result, RAN D's dozen reports on satellites had an important 
side benefit. The RAND staff had become thoroughly versed in rocket vehicles and 
their potential. Although the new Air Force directive emphasized air-breathing 
engines, RAND continued to consider the possibility of long-range rockets. In effect, 
this marked the beginning of the RAND-Air Force work on intercontinental ballistic 
missiles-the great driving force for rocket developments in the 1950s. 

The Navy, however, took a different tack. The previous August, the Naval Research 
Laboratory had been authorized to develop a high-altitude test vehicle for scientific 
research. The satellite supporters in the Bureau of Aeronautics saw science as the 
savior of their project and began emphasizing this aspect. In November, the Bureau of 
Aeronautics requested the Naval Research Laboratory to study the use of satellites for 
scientific research and allowed the Martin and Aerojet contracts to continue. 

Aerojet and Martin Design Studies 

Aerojet's contract that began July 1946 called for furnishing detailed design 
information to the North American Aviation and Glenn L. Martin design study groups 
on a hydrogen-oxygen rocket engine suitable for their vehicles. The thrust of the rocket 
engine was specified as I.33 meganewtons (300000 lb), the exhaust velocity 4165 
meters per second, and the mass not more than 1814 kilograms. Aerojet chose a 
combustion pressure of 34 atmospheres and a hydrogen-to-oxygen molar mixture 
ratio of 3 to 1. The combustion chamber and nozzle were to be made of porous stainless 
steel for transpiration cooling. Young's flared tube design concept (fig. 8) was to be 
used. A greater unknown than the thrust chamber was the turbopump design, and 
Aerojet concentrated its initial effort there. By mid-October, pump characteristic 
curves had been determined and a pump speed of 10000 revolutions per minute 
selected. Although larger than any previously designed for a rocket engine, the pump 
would be about the size of the turbines in turbojet engines of the period and not beyond 
current technology. 

The Aerojet design study was completed and reported by the end of March 1947-in 
time for use in the Martin study but too late for the North American analysis. The 
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Fig. 8. Aerojet's experimental flared-tube engine (top) had less than a tenth the combustion 
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thrust chamber resembled a huge ice-cream cone some 7 meters long; the combustion 
chamber at the small end was dwarfed by the large conical nozzle (fig. 8, bottom). The 
inner wall, porous stainless steel, was cooled by hydrogen flowing through it into the 
combustion chamber. The mass of the chamber, turbopump, and assorted valves and 
lines added up to 1762 kilograms, comfortably within the specifications.25 
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The Glenn L. Martin Company had the same general guidelines as North American 
Aviation for designing a single-stage rocket to orbit a satellite, but they too found that 
it could not be done within these guidelines.• In striving to do so, Martin's structural 
designers developed a remarkably ingenious and lightweight structure using pressure­
stabilized, thin-wall tanks. With initial vehicle mass only 5 percent greater than 
specified in the guidelines, they managed to increase the payload by 50 percent over 
that specified.2~ 

A comparison of the North American and Martin designs is given by table 1. Martin 
increased the wall thickness of Aerojet's thrust chamber and used a heavier engine than 
Aerojet furnished. In addition to the thin-wall, pressure-stabilized tanks, the Martin 
design made the large thrust chamber an integral part of the aft liquid-hydrogen tank, 
and added four small auxiliary rockets around the nozzle exit for stability and control. 
The small rockets eliminated the need for external aerodynamic stabilizer fins and 
movable fins in the hot exhaust stream for thrust-vector control. The idea of 
surrounding the thrust chamber with the tankage was remarkably similar to 
Tsiolkovskiy's hydrogen-oxygen spaceship of 1903 (fig. 9). 

Using the same basic design, Martin analyzed a family of vehicles with initial mass 
from 13 600 to 72 600 kilograms with payloads varying from 136 to 780 kilograms. 
With these the Bureau of Aeronautics had a range of vehicle sizes for possible 
development. 

T AHLE I. Comparison o( Si11f(le-S1age-10-0rhi1 Ruckel Designs 

Item 
'.'forth 

American Martin 

Guidelines kg kg 
Initial mass (Na\\) 453ti0 45360 
Payload (l\;a\·y) 454 454 
Engine ( Acrojet) 2268 1762 

Results 
Initial mass 59000 47468 
Propellant 52510 42484 
Final mass 6490 4984 
Mass ratio (in itial-to-final) 9.09 9 .52 
Payload 454 658 
Engine 2268 2044 
Structure 3768 1791 
Instruments for control 491 

Aerojet's Second Series of Experiments, 1946-1947 

In addition to the rocket engine design study, Aerojet's contract that began in July 
1946 called for experiments with a gaseous hydrogen-liquid oxygen thrust chamber. 
The thrust was 4.5 kilonewtons ( 1000 lb) and the minimum exhaust velocity was 
specified as 2940 meters per second. Moreover, the engine was to operate continuously 

*Martin used the same JPL satellite study as North American but chose a n initial-to-final mass ratio of 
9.52. rather than the 9.09 used by North American. 
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for three minutes. The chief experimenters were Robert Gordon and Herman L. 
Coplen, reporting to David Young. By the end of the twelve month period they had met 
the specified performance. 
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Fig. 9. Comparison of Tsiolkovskiy rocket concept ( 1903) and Martin HATV ( 1947). Note similarity of 
integral tanks and thrust chambers in the aft sections. 
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The thrust chamber had a water jacket and an inner liner of porous material through 
which the water seeped and evaporated on the inner surface for cooling. The shape was 
the flared tube design (fig. 8), having in this case a chamber diameter of 5 centimeters 
and overall length of 21. The gaseous hydrogen was injected through a series of holes to 
form a cone in the chamber, and the gaseous oxygen was injected radially inward to 
intercept the hydrogen cone. The combination of this injector and the flared tube 
design produced very high heat transfer rates-several times higher than normally 
experienced in rocket experiments. This led to a separate investigation of the 
characteristics of the flared tube by Gordon using a smaller engine independently 
cooled with water. Gordon found that high performance (95 percent of theoretical) 
could be obtained with the design, but the combustion pressure was not constant as in a 
conventional plenum chamber; it dropped rapidly throughout the length of the flared 
tube chamber.27 The average heat transfer rates were much higher than those of a 
plenum chamber.* 

Instead of reconsidering their basic engine design, the Aerojet men focused most of 
their attention on cooling. They tried a dozen different porous materials. Porous nickel 
made by the Amplex Division of the Chrysler Corporation proved to be the best. An 
attempt was made to match the water flow through the porous liner with the large 
variation of heat transfer rate along the combustion chamber and nozzle, but this was 
only partially successful. The best they could do was to use almost twice as much 
coolant as they had originally calculated to be necessary. This was a matter of some 
concern, as the water entering the combustion chamber diluted the propellant and 
lowered performance, for its mass had to be considered in determining thrust per unit 
mass flow or its equivalent, exhaust velocity. (One percent increase in water flow 
decreased the exhaust velocity by 0.75 percent.) To make up for the drop in 
performance, the combustion pressure was increased , which increased gas expansion 
and exhaust velocity. On 26 June 1947, four days after expiration of the contract, the 
performance objective was achieved on the 46th run, which lasted over three minutes.2s 

With these experiments, Young, Gordon, and Coplen were still confident that their 
1.3 meganewton (300000 lb thrust) design study was sound, although they had yet to 
operate a rocket using liquid hydrogen and oxygen or to cool a hydrogen-oxygen 
rocket with hydrogen rather than water. 

Switch in Emphasis from Military to Science 

While the contracts for industrial research were producing satisfactory results, the 
Navy's change in tactics-emphasizing scientific purposes rather than purely military 
ones-required closer liaison with civilian scientists. This, in turn, implied a shedding 
of the secrecy that envelops military projects. Admiral Leslie Stevens of the Bureau of 

*The average rate was 13 J / s · m2 ; in the section just before the nozzle, a peak of29 was measured. Pressure 
was 20 atm at the injector end and the mixture was fuel-rich (oxidizer-to-fuel mass ratio of 5). The average 
heat transfer rate was about 6 times greater than Ohio State's values when the latter used a plenum chamber 
at about the same operating conditions and performance (f n .. p. 24). Some of the difference can be attributed 
to the much greater gas velocities in the flared tube as well as the different types of propellant injection. 
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Aeronautics recommended in January 1947 that the Joint Research and Development 
Board remove the satellite project from the jurisdiction of the Aeronautical Board and 
"establish an agency for the coordination, study, evaluation, justification, and 
allocation of all phases of the Earth Satellite Vehicle Program .... "~9 The need for 
something like the National Aeronautics and Space Administration was envisioned a 
decade before it became a reality. 

Stevens's recommendation meant the voluntary relinquishment of control over 
satellites by the Joint Research and Development Board. Not surprisingly, the 
recommendation was referred to the Aeronautical Board where it was studied for a 
couple of months with the not unanticipated conclusion that jurisdiction should 
remain where it had been. By then it was mid-1947 and although the reports of Martin 
and Aerojet were in, satellite considerations were becalmed in a sea of changing 
organizations. 

On 26 July, President Truman signed the Armed Forces Unification Act. The 
Departments of War and Navy were abolished and the National Military 
Establishment was created, headed by the Secretary of Defense. The Army Air Forces 
became the Department of the Air Force, equal in status with the Departments of the 
Army and Navy. By the end of September, the old Joint Research and Development 
Board was replaced by the Research and Development Board under the same 
chairman, Yannevar Bush. Reorganization had little effect on the board and its 
subgroups, but there was much additional work to be done, especially in defining the 
role of the Air Force with respect to missiles. The Aeronautical Board and the 
subcommittee on earth satellite vehicles continued to function . In November, the 
Office of Naval Research asked to be designated thecoordinatingagencyforthe"High 
Altitude Research and Earth Satellite Program." Before the subcommittee reached a 
decision, the parent Research and Development Board gave responsibility for earth 
satellites to the Committee on Guided Missiles, which formed a Technical Evaluation 
Group under the chairmanship of Professor Clark Milliken of the California Institute 
of Technology.Jo 

The Canright Report 

During changes in government R&D organizations and objectives in 1947, rocket 
analysts were looking beyond the merits of exhaust velocity in comparing propellants 
and focusing on the importance of propellant density and its influence on vehicle 
design and performance. Not satisfied with an analysis by von Braun, Hager, and 
Tschinkel in 1946 that placed considerable emphasis on propellant density, Richard 
Canright of JPL developed a method of comparing propellants for rockets of the V-2 
class and larger with propellant masses 70 to 90 percent of initial vehicle mass. Equal 
total impulse (thrust · time) was assumed; tank volume was adjusted to provide the 
necessary propellant in each case; and total vehicle mass was calculated. The vertical 
height attained by the rocket was the comparison criterion, which was almost the same 
as comparing initial masses.JI 

For large vehicles, Canright found that the exhaust velocity of propellant 
combinations was decidedly more important than propellant density and that 
emphasis on high energy propellants was justified. Although his analysis showed that 
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hydrogen was superior to any other fuel using the same oxidizer, Canright favored 
hydrazine, finding it favorable under all the conditions assumed.* 

Aerojet's Third Series of Experiments, 1947-1949 

When the Navy renewed Aerojet's contract in mid-1947, the central task was to de- . 
velop a liquid hydrogen-oxygen rocket engine suitable for ~ small-scale version of 
the earth satellite vehicle. The engine was to be in the thrust range of9-l 3 kilonewtons 
(2000-3000 lb), have a minimum exhaust velocity of 2972 meters per second, and be 
capable of operating for 60 seconds. Maximum mass was specified as 34 kilograms. 
Propellants were to be supplied to the thrust chamber by a turbopump. Other tasks, 
which were concerned with drawings and operating instructions, indicated that the 
Navy intended to be prepared for development of a small-scale experimental vehicle. 
The contract also called for several analyses and a design study of a rocket engine of 
37 .8 kilonewtons (85 000 lb thrust), apparently for the Martin minimum-sized vehicle. 
Although there was little reason for optimism, the Bureau of Aeronautics was keeping 
its options open. 

The Aerojet work with hydrogen from mid-1947 to mid-1949 was the climax of five 
years of effort along three major lines: (I) the supplying of liquid hydrogen, (2) 
turbopump development, and (3) thrust chamber development.32 These will be 
described separately. 

Supply of Liquid Hydrogen 

From the first tests in 1945 through the second series of rocket experiments in 1947, 
Aerojet had to use gaseous hydrogen because liquid hydrogen was not available. 
Starting in early 1946, Aerojet enlarged its facilities to handle gaseous hydrogen and 
oxygen. Gaseous hydrogen under a pressure of 136 atmospheres was available directly 
from a trailer of high pressure tubes with a capacity of 800 cubic meters (at atmospheric 
pressure) and from a stationary bank of high pressure tubes of about the same capacity. 
Gaseous oxygen at pressures up to 163 atmospheres was supplied from two trailers 
with a capacity of 560 cubic meters. The total quantity of gases from these sources 
allowed only a few minutes of operation-a situation conducive to continued 
frustrations, as the following incident illustrates. One day the test crew was ready to 
run the rocket and waiting impatiently for a commercial firm to deliver some needed 
gas. When it came, the crew quickly connected the trailer to the pipes leading to the test 
cell and ran the test. Meanwhile, the truck driver had gone to the office to get the 
delivery ticket validated. On his return he was told the trailer was empty and could be 
taken back. Used to leaving such trailers for a considerable time at other places, the 

*On the basis of an a ltitude index of 100 for alcohol-oxygen and a tank pressure of 20 atm. hydrogen­

oxygen was 153, 21 units highe r than hydrazine-oxygen; the advantage of hydrogen increased if a lower tank 
pressure was assumed. In his initial calculations, Canright considered hydrazine-fluorine. which he found 
superior to hydrogen-oxyge n. Later. however. Can right indicated that hydrogen-fluorine should give the 
maximum range obtainable from chemical reactions. 
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driver simply would not believe the crew until it was explained rather forcibly to him. 
He departed with the trailer, shaking his head.33 

By early 1947, the Aerojet group was planning ahead to the next phase ofhydrogen­
oxygen experimentation and acutely felt the handicap of not having a supply ofliquid 
hydrogen. Envying theirformer associate, Marvin Stary at Ohio State University, with 
his assured supply of liquid hydrogen from the Johnston liquefier, they decided to 
attack the problem directly . They discussed liquid hydrogen with several possible users 
on the West Coast and the idea blossomed into a proposed cooperative venture among 
several government agencies, universities, and industrial firms. Confident that they 
could get liquid hydrogen- and having gone to as high a thrust as was reasonable with 
gaseous hydrogen-the Aerojet engineers proposed to use liquid hydrogen in their 
third series of experiments starting in July 1947. They went even further and proposed 
to build a flyable rocket engine, complete with its own controls and turbine-driven 
pumps. They also recommended that the government build a medium-scale hydrogen 
liquefier on the West Coast. 

Aerojet got its new contract in July 1947, but immediately faced a problem : the 
cooperative venture to get liquid hydrogen failed to materialize. Aerojet decided to try 
to interest private industry in supplying liquid hydrogen, and if that failed, to get 
authority and funding from the Navy to build a liquefier. The first step was to get an 
estimate of the amount of liquid hydrogen needed. The Jet Propulsion Laboratory 
agreed to participate and estimated a need for 600-900 kilograms a year. Aerojet added 
their needs and settled on a 3600-kilogram total requirement for two years. Three 
possible commercial sources were then queried. The Shell Development Corporation 
could not supply liquid hydrogen, but had a surplus of high-purity gaseous hydrogen 
for sale. The National Cylinder Gas Company believed that the sale of liquid hydrogen 
was neither economical nor safe and recommended liquefaction at the point of 
consumption . The Linde Air Products Company submitted an oral bid for $62 per 
kilogram at their plant in Los Angeles, but later lowered the price to $55 per kilogram 
for the first 1800 kilograms and $44 thereafter. 

While soliciting industry, Aerojet began investigating the possibility of building a 
liquefier modeled after Johnston's and estimated that it would cost $100000, including 
the cost of the liquefier, materials, and labor for producing 3630 kilograms of liquid 
hydrogen. This was half the revised Linde estimate and had the added advantage of 
being under Aerojet control and located near the rocket test stand. Aerojet officials 
became enthusiastic over the prospect and set about convincing the Navy. By late 
September they received oral approval, which was formalized on 16 December 1947. 
Aerojet engaged Johnston as a design consultant; he was also to supply parts of the 
liquefier. Herman L. Coplen was the principal Aerojet engineer for design, 
construction, and operation. 

Aerojet expected to have the liquefier in operation by late spring or early summer. As 
so often happens, the optimistic schedule fell victim to late equipment deliveries. 
However, the liquefier produced its first liquid hydrogen-12 liters- on 3 September 
1948. The initial operation turned up the usual number of bugs; the second operation 
on 21-23 September produced 120 liters. Of this, 75 liters were shipped to the Jet 
Propulsion Laboratory for rocket tests there. 
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AeroJet was pleasantly surprised to find that the actual capacity of the liquefier was 
30 liters per hour instead of the design value of 25. The increased capacity came from a 
larger hydrogen compressor; the Johnston-built heat exchangers were oversized. This 
led Aerojet to propose, in early 1949, the doubling of the liquefaction capacity by 
installing additional hydrogen compressors. 

At first, the liquefier was operated intermittently. Beginning on 8 November, a two­
shift operation was begun to meet the needs of the rocket test engineers, and from 27 
December three shifts were employed. By the end of 1948, 7500 liters (535 kg) ofliquid 
hydrogen had been produced, over 90 percent of it in November and December. Only 
about 30 percent of the hydrogen liquefied was used in test operations; the bulk was 
lost during storage and test delays. 

In the first three months of operation, the liquefier was shut down twice, but the 
troubles were quickly fixed; the time lost was four days. Overall, the liquefier was 
highly successful and made possible the testing of pumps and thrust chambers. 

By the end of March, Coplen had added two more compressors and the liquefaction 
rate rose to 80 liters (5.67 kilograms) per hour. But early March had brought 
catastrophic news to the liquid hydrogen producers. On 2 March 1949, the Bureau of 
Aeronautics directed Aerojet to change fuels from liquid hydrogen to anhydrous 
hydrazine, which is a liquid at room temperature and pressure.• The directive allowed 
Aerojet to continue liquid hydrogen testing until the end of June, but the irony was that 
the switch came just as the producers of liquid hydrogen were finally prepared to meet 
rocket test needs. 

In its operations through June 1949, the Aerojet liquefier produced 47000 liters 
(3357 kilograms) of liquid hydrogen at an estimated cost of $29.72 per kilogram. The 
cost of commercial gaseous hydrogen and liquid nitrogen were major expenses. 

Sometime after the contract ended in mid-1949, Aerojet received a government 
directive to dismantle and prepare the liquefier for shipment. Very few at Aerojet knew, 
but the liquefier was destined for reassembly on a remote Pacific isle for use in the first 
test of a thermonuclear device, the predecessor of the hydrogen bomb. 

Turbopump Development, 1947-1949 

The principal engineer for turbopump development was George Bosco. This was a 
new field for Aerojet, and during the second half of 1947, Bosco and his group learned 
about the pump work of others and made preliminary design studies. Aerojet 
representatives visited Ohio State University where Florant was working on hydrogen 
pumps, and consulted Dietrich Singelmann, a German pump expert at Wright Field. 

*The author has been unable to pin down the reason for this sudden change, but it is not surprising. 
Hydrazine is storable and considerably easier to handle than liquid hydrogen, its performance is high, and 
interest in it during the 1940s and 1950s was high. For example, Canright, in his analysis of relative 
importance of exhaust velocity and density. preferred hydrazine to hydrogen even though hydrogen gave 
higher performance (pp. 47-48). 
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Bosco subsequently used Singelmann's data in designing Aerojefs first hydrogen 
pump.* 

By mid-1948. Aerojet had selected centrifugal pumps for both liquid hydrogen and 
liquid oxygen. They obtained some German radial-vane pumps from the Navy and 
tested them during the second half of the year.t 

By the end of 1948, Aerojet had designed, built, and tested a liquid-hydrogen pump 
(15 cm diameter). Initially, it used ball bearings that were run clean and dry, because 
the low temperature made conventional lubrication impractical. The pump was first 
operated at low speeds to allow its parts to cool down to operating temperature. When 
temperature gauges showed that liquid hydrogen had reached the pump, an attempt 
was made to accelerate from 5000 to 35000 revolutions per minute. The pump failed 
and examination of the pieces pointed to a failure of the bearing, as well as the impeller. 
After some testing, super-precision bearings, lubricated by oil that was atomized and 
directed by a stream of gaseous nitrogen, were used. On the next run, the bearings 
worked satisfactorily but the stresses were too great for the brazed impeller and it flew 
apart. A new one was made by milling from a solid block of aluminum. Time was 
running out, as the contract had less than six months to go. The next two runs with the 
new pump were a great disappointment ; the instruments showed no significant flow or 
pressure rise. The problem was traced to the exit diffuser of the pump, which was too 
small and insufficiently cooled during the cool-down cycle so that it limited the flow. 
This was corrected by adding vent holes in the pump housing; the vents were opened 
during cool down and closed when the pump was cold. With this fix, two additional 
runs were made in March 1949 and both were successful. Flow rate and pressure were 
found to be in approximate agreement with theoretical predictions. The maximum 
pressure was 26 atmospheres and the flow was 0.25 kilogram per second . 

Thrust Chamber Experiments, 1947-1949 

From their previous work, Young and Gordon were confident that the flared tube 
configuration, with its very small combustion chamber, was the best design for the 
thrust chamber of 13.3 kilonewtons (3000 lb thrust). They intended to use a porous 
inner wall but were still undecided about the coolant. They decided to determine the 
relative merits of both water and liquid hydrogen as transpiration coolants. They also 
planned to study injection methods for liquid hydrogen. Stary was studying the same 
things at Ohio State University and had just made his first run using liquid hydrogen (p. 
20). 

From mid-1947 to mid-1948, the Aerojet men made few thrust chamber tests. None 
was made with liquid hydrogen, for the liquefier was not yet in operation. The major 
experimenta l work was an investigation of the performance loss at sea level in 
operating a nozzle designed for maximum performance at altitude. 

*T he initial design p rovided for pumps fo r hyd rogen. oxygen. a nd water (coolant). each with inlet a nd 
discha rge pressures of 2.4 a nd 51 atm. respectively. The liquid hyd rogen Ho w rate was 0 .39 kg: s: oxygen. 2.1: 
and wa ter. 0.54. An estimated 9.7 kW (130 horsepower) turbine was needed to drive the three pumps. 

+T he pumps, made by the Bayerische Motoren Werke, were from the BMW 109-7 18 booster roc ket engine 
used on the M E-262 a ircraft. 
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The force produced by a nozzle from expanding exhaust gases is the result of a 
momentum force and two pressure forces. One of the pressure forces aids the 
momentum force and the other opposes it. An ideal nozzle is one that expands the 
exhaust gases from the pressure in the combustion chamber to the outside ambient 
pressure. The nozzle thereby maximizes the momentum force and the two pressure 
fore~ cancel each other. Since a rocket nozzle is a fixed design, the designer must 
choose a single ambient pressure for his design. Ifhe chooses sea-level pressure, he gets 
less than optimum performance at altitude; if he chooses a lower pressure 
corresponding to some altitude, he theoretically loses performance at sea level. Since 
much of the operation occurs at reduced ambient pressure, the designer usually wishes 
to make the nozzle as large as mass and size restrictions permit. The question at Aerojet 
was: What penalty would result from sea-level operation of a nozzle designed for best 
operation at altitude? In experiments with a small rocket chamber they found, to their 
great joy, that the actual performance loss was much less than theoretically predicted­
their nozzle designed for altitude had only a 10 percent loss at sea level.* 

Aerojet was still committed to transpiration cooling but had encountered a series of 
new and worrisome material problems. It was difficult to obtain porous materials of 
uniform permeability-but worse yet, the porous structure became clogged in 
unpredictable and nonuniform ways. These problems began to raise doubts about 
using the flared tube configuration as well as transpiration cooling. When the project 
received new funding and directions in mid-1948, Aerojet planned to use a group of 
thrust chambers of various sizes and shapes, as well as a variety of injection methods. 
The engineers believed regenerative cooling would be possible with either oxygen or 
hydrogen, or both. Preparations were made to study the heat transfer properties of 
oxygen and hydrogen by means of an electrically heated tube. All of these activities 
signaled a major change in direction by Aerojet, from emphasis on their flared tube 
design using transpiration cooling to a conventional plenum thrust chamber with 
regenerative cooling. It was about this time, mid-1948, that George H. Osborn became 
the chief test engineer. 

The first Aerojet test with liquid hydrogen and oxygen was made on 20 January 1949 
with a 1780-newton ( 400 lb thrust) chamber. By the end of March, 10 runs had been 
made with disappointingly low exhaust velocities-about 2920 meters per second or 82 
percent of theoretical. Of equal concern was the unsteady operation, or "chugging," 
which indicated unstable combustion. The injector, designed by Osborn, used a 
diverging cone of liquid oxygen intersecting a converging sheet ofliquid hydrogen. The 
only good news was a low heat transfer rate, which was attributed to incomplete 
combustion. 

In the midst of all the bad experimental results came the worst news of all. On 2 
March 1949, as previously mentioned, the Bureau of Aeronautics directed Aerojet to 
change the fuel from liquid hydrogen to anhydrous hydrazine, but allowed the 
experiments with liquid hydrogen to continue for the three months remaining in the 
contract. No evidence has been found that Aerojet protested this change-perhaps it 

*The exhaust gases did not overexpand as much as theory implied, but separated from the nozzle walls at a 
shock front. The exhaust gases filled the nozzle up to a certain point and then separated from the wall and 
flowed as though the rest of the nozzle were not there. 



53 

was welcomed after the first series of experiments with liquid hydrogen. However, the 
Aerojet designers were determined to do a creditable job with liquid hydrogen in the 
time remaining and the record shows that they did. The key was injector design. 

Osborn was designing new injectors even before all the dismal results with the spray 
type were in. The second design was a "showerhead" type with 115 fuel and oxidizer 
holes across the face and 30 fuel holes around the circumference for film cooling. The 
film, or layer, of fuel-rich gas next to the chamber and nozzle walls kept them cool. The 
design gave low performance and failed structurally on 4 April, three months before 
the end of the contract. 

The pressure on the team to succeed must have been great. Fortunately, Osborn had 
designed a third injector, called a multi tube concentric orifice, in March and it proved 
to be highly successful. Liquid hydrogen was injected through a number of thin-walled 
tubes surrounded by an annular flow of liquid oxygen, as illustrated by figure I 0. For 

SECTION VIEW 

HYDROGEN FOR 
FILM COOLING 

CONCENTRIC 
TUBE & ORIFICE 
ELEMENTS 

FACE OF INJECTOR 

HYDROGEN-OXYGEN FOR A NAVY SATELLITE 

ENLARGED VIEW OF 
A TUBE ELEMENT 

Fig. JO. Aerojet's mult it u be concent ric orifice injector. O ne design had 489 concentric tube orifi ce 
elemen ts for the 1:1.3-kN (3000-\b-t h rust) ex perimental rocket. 
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the 1780-newton ( 400-lb-thrust) chamber, 61 of these "tubes within tubes" provided a 
very fine degree of mixing. As in the previous design, axial orifices were spaced around 
the circumference for hydrogen film cooling. Two runs with this injector gave an 
exhaust velocity of 3590 meters per second, or virtually I 00 percent of theoretical. The 
propellants mixed so well that combustion occurred very close to the injector face and 
burned it. Osborn sought to correct this with design changes, but the fix did not work as 
well as the original design. However, he knew how he wanted to design the 13-
kilonewton (3000-lb-thrust) injector. When he signed the drawing for it on 5 May, 
there were less than two months left to complete the work. The injector had 489 sets of 
circular oxygen orifices surrounding hydrogen tubes, plus 60 hydrogen orifices for a 
fuel-rich layer at the walls. The thrust chamber, which had been designed and 
fabricated earlier, was a conventional plenum chamber, water cooled, with an inner 
liner of copper. The copper was machined from a solid billet and its size limited the 
nozzle design so that it was not ideal.* Starting on 27 May three successful runs were 
made with this engine at pressures from 24 to 31 atmospheres. Exhaust velocities of 
3380 to 3520 meters per second were obtained, approaching 95 percent of theoretical 
performance. On 16 June, with two weeks to go before the contract expired, they 
attempted to make a fourth run, but an explosion occurred in the liquid hydrogen 
propellant system-the second in that system. Aerojet attributed the cause to 
contamination of the liquid hydrogen with solid oxygen. That ended Aerojet's rocket 
experiments with liquid hydrogen. 

In reporting the results, Osborn and Wayne 0. Stinnett included experiments by 
Gordon on heat transfer and injectors using a smaller, water-cooled engine where the 
multitube, concentric injector had initially proved successful. Heat transfer rates were 
reported as excessive for both engines, leading the authors to conclude that additional 
film cooling over that used in the larger engine would be necessary. Although they had 
not fulfilled the objective of a self-cooled, lightweight rocket engine using liquid 
hydrogen-oxygen, the investigators believed that their results were highly encourag­
ing, and no fundamental difficulties were encountered. From their rapid progress 
during the last four months of the contract, there is little doubt that Aerojet was on the 
right track in thrust chamber design and with additional work would have been able to 
perfect self-cooling. Concurrent with their work, Dwight I. Baker at nearby Jet 
Propulsion Laboratory was doing just that. 

JPL Experiments with Hydrogen-Oxygen, 1948-1949 

It is ironical that Young's experimental team at Aero jet, early in getting started with 
hydrogen-oxygen in 1945- even building a liquefier to get a supply of liquid 
hydrogen-was not the first to experiment with liquid hydrogen in a rocket on the West 
Coast. Baker, using Aerojet-furnished liquid hydrogen, beat them by four months. 
JPL had been interested in hydrogen-oxygen as a high-energy propellant combination 
since starting a study for the Bureau of Aeronautics in 1945. t 

*The nozzle ratio of exit-to-throat area was 4, a ratio that theory indicates would underexpand the 
exhaust gases; hence the momentum force was not a maximum. 

t J PL was also interested in the rossihlc use of nuclear energy to heat hydrogen. In 1947. Walter B. Powell 
of J Pl. attcmrted to measure the rcrformancc of gaseous hvdrogcn heated elcctricall\· in a tuhc. hut found 
that the thrust and flow rates were so low that accurate measurement was imrractical. 
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When Aerojet queried JPL in 1947 for interest in using liquid hydrogen, JPL 
responded with an estimated need for 600 to 900 kilograms for a year of ex­
perimentation. While Aerojet's liquefier was under construction. a IOO-liter dewar 
was built for use in transporting liquid hydrogen from the Aerojet plant to the JPL test 
cell. When Aerojet produced liquid hydrogen on 21 September 1948, Baker was ready 
and waiting. Aerojet provided 75 liters of liquid hydrogen to J PL and Baker used it in a 
rocket run the same day. The results were first reported in the JPL Combined Monthly 
Summary No. 8 for the period 20 August-20 October 1948 : 

The first motor test with liquid hydrogen and liquid oxygen was made during the 
past period on a I 00 lb thrust [ 445 NJ motor at a nominal chamber pressure of 300 
psia [20.4 atm] .... Three points .. . were obtained at mixture ratios [oxygen to 
hydrogen by weight] of 6.27. 5.46. and 4.99 ... during a single test having a 
duration of 105 seconds. 

With these words, J PL became the second U.S. laboratory to report rocket 
experiments using liquid hydrogen, a little over a year after Ohio State University's 
first test. 

The performance obtained in the first JPL test with liquid hydrogen-oxygen was 
2717 meters per second, within 15 percent of theoretical- not bad for the first attempt. 
The average heat transfer rate was 3.6 joules per second per square meter, much lower 
than measured by Aerojet but in agreement with the data from Ohio State University. 

Baker was appalled at how little liquid hydrogen he was able to use in the rocket 
firing . Only 37 percent was burned in the rocket chamber. An estimated 21 percent was 
lost in cooling the transport dewar, 16 percent evaporated during transit from Azusa to 
Pasadena, and 26 percent was lost in cooling the propellant tank of the test rocket. If 
Baker had not already precooled the hydrogen containers and system with liquid 
nitrogen, the liquid hydrogen loss would have been much greater. This experience led 
JPL to use gaseous hydrogen for injector testing while reserving liquid hydrogen for 
heat transfer and cooling tests . They were already conducting some experiments with 
gaseous hydrogen which also were reported in Monthly Summary No. 8. 

The gaseous hydrogen-liquid oxygen rocket experiments were conducted with a 
445-newton ( 100-lb-thrust) chamber and the results indicated that liquid oxygen above 
its critical pressure cooled two-thirds of the combustion chamber, with water cooling 
the rest. At that time, cooling with liquid hydrogen was a big unknown, for 
fundamental heat transfer data on hydrogen above its critical pressure were missing. 
Walter B. Powell, who had built an electrically heated tube for heat transfer research, 
agreed to obtain the missing data . This was given first call on the next available supply 
of liquid hydrogen while injector testing continued with gaseous hydrogen-liquid 
oxygen at a higher thrust (2.2 kN or 500 lb) . Baker was to use the data Powell obtained 
to design a regeneratively cooled thrust chamber, possibly using both liquid hydrogen 
and liquid oxygen as coolants. 

Early in 1949. Baker succumbed to enthusiasm. confidence. or impatience and de­
cided to go ahead with designing and testing a hydrogen-cooled thrust chamber with­
out waiting for Powell's results . He had already calculated that liquid hydrogen had 
twice the heat absorbing capacity of liquid oxygen at their relative flow rates and 
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therefore would be a better coolant. He designed a rocket engine of 445 newtons (I 00-
lb thrust) for operation at 20 atmospheres chamber pressure. On 15 April 1949, Baker 
became the first person in the United States, if not the world, to operate a liquid 
hydrogen-liquid oxygen rocket thrust chamber that was cooled with liquid hydrogen. 
The test ran for 77 seconds and performance was relatively low (2630 meters per 
second); succeeding runs, however, established beyond any doubt that high 
performance and regenerative cooling with liquid hydrogen were rea.lizable. Sixteen 
runs were made through I 0 June 1949 over a range of hydrogen-oxygen mixture ratios, 
with an average running time of 69 seconds for the series. Three runs were made at a 
combustion pressure of 33 atmospheres and three sizes of combustion chambers were 
used during the series. Maximum performance was an exhaust velocity of 3420 meters 
per second at 33 atmospheres combustion pressure and an oxygen-to-hydrogen mass 
ratio of 4. Baker encountered no serious difficulties and concluded that large size, 
regeneratively-cooled rocket thrust chambers using liquid hydrogen-liquid oxygen 
were practical.34 

Although Baker had no serious problems with burning hydrogen or cooling with it, 
he was still concerned over the supply of liquid hydrogen. The cost was about $45 per 
kilogram and he was able to burn half or less of the amount purchased, with the rest 
lost in transit and cooling. The hydrogen delivered was about half orthohydrogen and 
half parahydrogcn. Baker was aware that the spontaneous conversion of orthohydro­
gen into parahydrogen released heat, and suggested that savings could be made if all 
the hydrogen were converted to parahydrogen by means of a catalyst at the liquefier. 
With this sensible suggestion, he anticipated developments during the 1950s. 

Fading Interest in Hydrogen-Oxygen 

The successful results at Ohio State University, Aerojet General Corporation, and 
the Jet Propulsion Laboratory with liquid hydrogen-liquid oxygen for rocket engines 
in the late 1940s had little effect on the higher levels of the Air Force and Navy. In late 
1948, Harvey Hall and his colleagues at the Bureau of Aeronautics attempted to 
maintain the Navy satellite program by proposing a reconfigured HATV as a super­
performance sounding rocket to obtain information on the upper atmosphere. The 
proposal, backed by a detailed engineering report by the Glenn L. Martin Company, 
was made to the NACA Subcommittee on the Upper Atmosphere and to the 
Geophysical Sciences Committee of the Research and Development Board. The 
NACA subcommittee endorsed it- but it was only moral support, for the NACA had 
no funds for such work. The Geophysical Sciences Committee simply listened and took 
no formal action. This last-ditch effort was essentially the end of the Bureau of 
Aeronautics struggle for a high altitude test vehicle.35 

In 1949, the Air Force again considered satellites for military operations and 
directed RAND to resume satellite studies. By the end of the year, Ohio State 
University was the only laboratory engaged in experimental investigations of liquid 
hydrogen for rockets, and there William Doyle had switched emphasis from hydrogen­
oxygen to hydrogen-fluorine. The Ohio State hydrogen investigations in rockets ended 
in 1951. 



SUMMARY, PART I 

From 1945 to 1950, liquid hydrogen received considerable attention in analytical 
and design studies and in experimentation. The Jet Propulsion Laboratory of the 
California Institute of Technology and Project RAND at Douglas Aircraft Company 
compared rocket vehicle performance using hydrogen with the performance from 
other fuels. The superiority of liquid hydrogen was clearly indicated, but the biggest 
uncertainty related to the mass of vehicles using liquid hydrogen. North American 
Aviation and the Glenn L. Martin Company both made detailed designs of rocket 
vehicles using liquid hydrogen to obtain better vehicle mass values. Both incorporated 
thin-wall, pressure-stabilized, lightweight tanks as Oberth had proposed in 1923. 
Although not yet proven, this later became a key concept in the successful use ofliquid 
hydrogen. Both the North American and Martin designs indicated superior vehicle 
performance with liquid hydrogen. 

Concurrent with analytical and design studies were experiments on using liquid 
hydrogen-liquid oxygen in rocket engines. The Air Force sponsored experiments at 
Ohio State University on rockets, as well as scientific investigations of hydrogen's 
properties. At the same time, the Navy sponsored work at the Aerojet Engineering 
Corporation on liquid hydrogen-liquid oxygen rockets to determine the feasibility of 
launching a satellite with a single-stage-to-orbit vehicle. JPL, supported by the Army, 
also investigated the experimental performance of liquid hydrogen-liquid oxygen 
rockets and regenerative cooling. 

All three laboratories conducting experiments had little difficulty obtaining efficient 
combustion and high exhaust velocities. Aerojet concluded that efficient combustion 
could be obtained with as little as 1/10 the volume normally used for rocket 
combustion. This, plus measurements indicating very high heat transfer, led them to 
propose and investigate an unusual thrust chamber design featuring a very small 
combustion volume and porous walls for transpiration (sweat) cooling, but difficulties 
with materials and cooling led to abandonment of the concept in favor of a more 
conventional design. Ohio State and JPL both used the more conventional thrust­
chamber design and obtained much lower heat transfer values than Aerojet. This led to 
the successful use of liquid hydrogen as a regenerative coolant, a major contribution to 
liquid hydrogen technology. 

In the investigation of injection techniques for efficient combustion, it was found 
that a concentric tube design, where an annulus of hydrogen surrounds an oxygen 
stream, was superior to the conventional impinging stream concepts, and an injector 
with many such concentric tube elements gave good performance. This concept, 
verified by Aerojet, was another major contribution to liquid hydrogen technology for 
rocket engines. 

Both Ohio State and Aerojet investigated the pumping of liquid hydrogen and both 
found it feasible with a centrifugal pump. Ohio State also found that ball bearings for 
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the pump could be operated without lubrication when immersed in liquid hydrogen, a 
very important finding for simplifying hydrogen pump design. The two investigations 
indicated liquid hydrogen could be successfully pumped. 

Aerojet, using Herrick L. Johnston's design, built a hydrogen liquefier of 80 liters per 
hour, over three times greater than previous liquefiers. This showed that greater 
hydrogen liquefaction capability could be achieved through relatively straightforward 
engineering design. Dwight I. Baker of JPL found, however, that losses of liquid 
hydrogen prior to experimentation were too high to be tolerated and suggested that 
orthohydrogen be converted to parahydrogen at the liquefier by means of a catalyst-a 
key concept for practical use of large quantities of liquid hydrogen. 

All the foregoing technical developments indicated that the basic technology for 
successful development of a rocket vehicle using liquid hydrogen-liquid oxygen was at 
hand, yet interest in using liquid hydrogen waned near the end of the 1940s. There are 
several explanations for this lack of interest. One is technical, for in spite of their 
successes, the experimenters encountered more than the usual number of difficulties in 
using liquid hydrogen, largely because of its lack of availability , very low temperature, 
explosive hazard , losses from orthohydrogen to parahydrogen conversion, and above 
all, the very low density . These were formidable obstacles for designer and 
experimenter alike, indicating that development of a hydrogen-fueled vehicle would be 
a long and costly development. 

A second reason for lack of interest in hydrogen was the absence of a clear-cut need 
for its high performance. There were many other candidate fuels to be investigated 
including the boron compounds, hydrazine, and ammonia; and none had as many 
handicaps as liquid hydrogen. Of these, hydrazine looked particularly attractive. 

A third reason was political. High Navy officials did not strongly support satellites. 
The Air Force made a major policy decision near the end of the 1940s to emphasize air­
breathing propulsion rather than rocket propulsion. 

Taking these reasons together, it is not surprising that interest in liquid hydrogen as a 
propulsion fuel receded in all but a few places where research-minded people remained 
interested in all high-energy rocket propellants. One such place was the Lewis Flight 
Propulsion Laboratory of the National Advisory Committee for Aeronautics at 
Cleveland, Ohio. The Lewis group was planning to conduct research with liquid 
hydrogen in 1950. but faced the same problem as Aerojet-the lack of liquid 
hydrogen. As they struggled with this problem, another development involving liquid 
hydrogen was begun on a crash basis and greatly advanced liquid hydrogen 
technology-thermonuclear research leading to the hydrogen bomb. These two 
contrasting activities-propulsion and explosives research- would renew interest in 
liquid hydrogen during the early 1950s. 
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1950-1957 
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PART II 

1950-1957 

During 1949-1950, changes in international relationships led to accelerated research 
in weaponry and aeronautics, bo.th of which involved liquid hydrogen technology. 

In the early postwar years, the United States was supremely confident of its 
superiority in atomic weaponry and did little to advance the technology. In September 
1949, President Truman announced that Russia had exploded an atomic bomb; with 
it. went U.S. complacency. Relations between the two countries had been steadily 
deteriorating. Late in 1948, the Russians announced the withdrawal of occupation 
forces in Korea north of the 38th parallel and the establishment of a North Korean 
communist government. The North Koreans soon added to the tension by conducting 
raids south of the parallel. In June 1950, after massive invasion by North Korea, 
Truman authorized U.S. armed forces to assist the South Koreans. 

Unlike the stagnation in weapons technology, U.S. progress in aeronautics during 
the postwar years had been significant. Effort concentrated on exploring transonic and 
supersonic flight regimes. The Air Force's Bell X-1 was flying at supersonic speeds in 
1948, and a year later so was the Navy's Douglas D-558-II. Both were part of a military­
industry-NACA flight research program which, by 1949, included more than a half 
dozen advanced experimental aircraft. In N ACA's 1949 Annual Report, the chairman, 
Jerome C. Hunsaker, reported that this program had "given aeronautics perhaps the 
greatest impetus in its history." The same year, Congress passed the unitary wind­
tunnel bill to coordinate and expand the nation's aerodynamic research. 

In this environment of international tensions and greater emphasis on weaponry and 
aeronautics appeared three different research and development activities that involved 
liquid hydrogen. Each drew upon the technology developed by Ohio State University, 
Aerojet Corporation, and the Jet Propulsion Laboratory of the California Institute of 
Technology during the second half of the 1940s. And in the next seven years each added 
significant contributions to hydrogen technology. One, beginning in 1950, was the 
crash effort to develop a thermonuclear weapon, the hydrogen bomb. The second was 
research on high-energy rocket propellants by the National Advisory Committee for 
Aeronautics, which began to focus on liquid hydrogen in 1950. The third, started in 
1952 or perhaps earlier, was an escalation of interest in high-altitude aircraft by the Air 
Force, which led to considerations of liquid hydrogen as an aviation fuel by both the 
Air Force and the NACA. The first and third activities dwarfed the second in terms of 
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funding and manpower, but all three provided the basis for later development of 
launch vehicles using liquid hydrogen. The three activities will be described in the five 
chapters of this part. 



4 

Hydrogen Technology from 
Thermonuclear Research 

Thermonuclear research began in the 1930s with the hypothesis that thermonuclear 
reactions are the energy sources of the Sun and stars. The nuclei of deuterium (heavy 
hydrogen) react more easily than the nuclei of normal hydrogen, and after Harold Urey 
separated deuterium in 1931 , interest in the possibility of reacting deuterium increased. 
In 1942, Edward Teller began working on the possibility of initiating such reactions by 
means of an atomic explosion, but his initial conclusion was negative. Later the same 
year, he attended a conference on thermonuclear reactions where the group agreed that 
tritium (isotope of hydrogen) should be studied as well as deuterium and concluded 
that a thermonuclear explosion could be accomplished . The following year, plans for 
research on thermonuclear reactions were put aside at the newly formed Los Alamos 
laboratory to concentrate on uranium fission. Teller and a few others, however, 
continued their research. 1 

Until 1948, thermonuclear research received little support. Robert Oppenheimer, an 
early supporter, became opposed to further research on thermonuclear reactions after 
Hiroshima. Following the announcement that Russia had exploded an atomic bomb, 
the general advisory committee of the Atomic Energy Commission, chaired by 
Oppenheimer, recommended against proceeding with the development of a hydrogen 
bomb on technical, political, and moral grounds. The committee felt that the H-bomb 
was not yet technically feasible or economical and that lack of restrictions would mean 
high danger to civilization. This position was unpopular with many scientists at Los 
Alamos, where work continued, and with politicians, who recommended to President 
Truman that H-bomb development be initiated. The final catalyst appears to have been 
Klaus Fuchs's treachery; four days after he confessed to having given U.S. atomic 
secrets to the Russians, Truman directed that development of the H-bomb start. 

With the presidential go-ahead in January 1950, Teller and associates at Los Alamos 
intensified their efforts to design a practical bomb and began preparations for some 
critical tests. Hydrogen liquefiers were needed for these, and Herrick L. Johnston of 
Ohio State University became a key figure in setting up and operating the equipment. 
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Johnston's New Career 

The announcement that the U.S. would proceed with the H-bomb had special 
interest for Professor Johnston; he saw it as a golden opportunity to capitalize on his 
position as an authority on large-scale hydrogen liquefaction and associated 
equipment.2 

Whether Johnston realized that this new opportunity would eventually take him 
completely away from his academic career is a matter of conjecture. His colleagues 
knew that he harbored a long-time disappointment over what he considered a lack of 
sufficient recognition in the scientific community.3 Perhaps some of this feeling was 
associated with his earlier work on deuterium. His preceptor, William Giauque, had 
been awarded the 1949 Nobel chemistry prize for his achievements in low-temperature 
physics, and Giauque had generously credited Johnston with significant contributions 
in the description of the prize-winning work.4 Whatever his reasoning, Johnston 
resolved to seek greater compensation for his expert knowledge of cryogenics. The 
hydrogen bomb development provided this opportunity and he seized it. From then 
on, Johnston gave less attention to science and education and more to developing a 
business in cryogenics equipment. By 1954 the metamorphosis was complete, but 
during the crucial 1950-1954 period, he simultaneously pursued three careers­
scientist, educator, and businessman-all involved liquid hydrogen. 

Johnston was colorful, unconventional, controversial; it was difficult for those who 
came in contact with him to remain neutral about him. To aspiring undergraduates, he 
was a person who made or broke them, for a good grade in his tough thermodynamics 
course was required for continuing a career in chemistry.5 To graduate students, post­
doctoral fellows, and his peers, Johnston was a first-class preceptor and scholar, a man 
of great inspiration and integrity. 6 To university officials, he was a mixed blessing; his 
contracts brought equipment, staff; and prestige; but his utter disregard for normal 
operating procedures brought endless problems. 7 To employees, he was a paternalistic 
and high-handed autocrat, impatient and demanding, who would, and did, fire a 
person at the slightest provocation.8 To business associates, he was a formidable 
competitor, capable of quick responses, low bids, and early delivery of his products.9 

To Johnston, there was no problem that could not be solved and solved quickly. He 
demanded and got the best in equipment and services for himself and his people. He 
disdained normal administrative procedures and anything resembling bureaucracy 
infuriated him. He was often at odds with one official or another and never hesitated to 
go over their heads to appeal to higher authority. An unsung hero and loyal supporter 
of Johnston was Edward Mack, Jr., chairman of the department of chemistry at Ohio 
State from 1941 to 1955, who spent long hours sorting out and solving the endless 
problems that always seemed to surround the fast-moving Johnston and his 
activities. 10 In spite of the problems, Johnston's work was internationally recognized 
and many of his graduate students and assistants became prominent in the scientific 
community.* 

*One graduate student was Clyde Allen Hutchinson. professor of chemistry at the University of Chicago: 
a key assistant was David A. White. now chairman of the department of chemistry of the University of 
Pennsylvania; another assistant was Thor Rubin. professor of chemistry at OSU. The old War Research 
Building at OSU is now named the Johnston Building in his honor. 
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Fig. I_ I. Herrick Lee Johnston (1898-1965), scientist, educator, entrepreneur, and a pioneer in the science 
and technology of liquid hydrogen. (Courtesy of the Photo. Archives, Ohio State University.) 
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In the 1950-1951 period, Johnston supplied the Los Alamos Scientific Laboratory 
with two hydrogen liquefiers. When the decision was made to conduct thermonuclear 
tests at Eniwetok, he was given the contract to reassemble the old Aerojet liquefier and 
add a second one. He chose Gwynne Wright to head the team to do this and the next 
two years became a period of swiftly moving activity for all of them. In May 1951, the 
first thermonuclear test, Operation Greenhouse, was successful and not long after it, 
preparations began for the next test. By late 1951, Johnston was so involved that he 
wrote to the president of Ohio State University requesting that : (I) his services to the 
university be reduced to 25 percent of full load, effective 1January1952; (2) selected 
members of the cryogenics laboratory be given leaves of absence; (3) OSU shop 
facilities be allowed to continue their work for Los Alamos; and (4) air and hydrogen 
liquefiers be made available for an essential training program. Johnston ended by 
assuring President Bevis that the university would be recompensed for its expenses and 
services. He was off and running again, doing very high priority work for the 
government, and the university had little choice but to go along with his wishes." 

In 1952, Johnston set himself up in business as the H. L. Johnston Company, Inc., 
and lured some of the key people from the OS U cryogenics laboratory. In May, the 
graduate school notified Mack that Johnston's name would be removed from the list of 
faculty approved to advise graduate students for masters and doctoral degrees. Mack 
protested vigorously, and in December he was joined by seven students who petitioned 
to retain Johnston as their preceptor. During this period, and working against odds, 
Johnston and his men delivered on their promise to produce deuterium on Eniwetok 
for the Mike Event of Project Ivy (fig. 12). On I November 1952, the event took place 
and was the first test of a thermonuclear "device"-a device that wiped out the islet 
where it had been set up. It was the most powerful explosion man had devised up to 
that time. 12 

National Cryogenic Engineering Laboratory 

The development of the hydrogen bomb gave the National Bureau of Standards the 
opportunity to establish itself as the leader in cryogenic engineering research during the 
1950s. The bureau had been involved with liquid hydrogen and cryogenic research 
since purchasing its first liquefier from the British Oxygen Company in 1904. 13 In 1925, 
Frederick G. Brickwedde became head of the cryogenic laboratory in the heat and 
power division, a post he held until 1957. He distilled liquid hydrogen to obtain a 
sample of deuterium for Harold Urey in 1931 (appendix A-3). In 1947, Brickwedde and 
William Gifford began a cryogenic engineering project. Some years earlier, Professor 
Samuel C. Collins of the Massachusetts Institute of Technology had designed a helium 
cryostat, which was being produced and marketed by the Arthur D . Little Company as 
the AOL-Collins cryostat. It had a capacity of about 4 liters of liquid helium per hour, 
which was ample for most university research needs, but Brickwedde wanted a cryostat 
of greater capacity. He and Gifford, working with the Arthur D . Little Company, 
designed one with a capacity five times greater than the AOL-Collins cryostat. It was 
placed into operation in 1952. From the summer of 1948, Brickwedde visited the Los 
Alamos Scientific Laboratory as a consultant. There he worked with Edward F. 
Hammel, head of the cryogenic laboratory, and E. R. Grilly. In 1949, Hammel began 
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suggesting that the country needed a single large national laboratory for cryogenic 
engineering. He formed a committee of advisors on cryogenic engineering that 
included Manson Benedick, Brickwedde, Samuel Collins, Herrick Johnston, Earl 
Long, and Darrell Osborne. This group discussed Hammers idea for a laboratory and 
supported it.1 4 

The Bureau of Standards had become pinched for space in Washington and had 
decided to locate its expanding radio facility elsewhere. In 1949, the citizens of 
Boulder, Colorado, donated a 0.9-square-kilometer tract at the foothills of the Rockies 
for the facility. All these events might have remained unconnected except that 
Truman's decision to go forward with the hydrogen bomb put considerable support 
behind Hammel's suggestion for a cryogenic laboratory. The Atomic Energy 
Commission selected the Bureau of Standards to build and operate a cryogenic 
engineering laboratory at the Boulder site. In the summer of 1951, the Stearns-Roger 
Manufacturing Company began construction and within a year, two buildings were 
completed-one for the hydrogen and nitrogen liquefiers and another for research. 
Brickwedde and Gifford became the first members of the staff. By March 1952 liquid 
hydrogen was being produced and by August the laboratories were open. 15 The NBS­
AEC Cryogenic Engineering Laboratory. with Dr. Russell B. Scott as its first chief. 
was in full swing in the fast-moving preparations for the hydrogen bomb development. 

The gas liquefaction capacity was 350 liters per hour of liquid normal hydrogen (or 
240 liters per hour of liquid parahydrogen) and 480 liters per hour of liquid nitrogen: 
storage capacity was 4500 liters of liquid hydrogen and 22000 liters of liquid nitrogen. 
It was the largest liquid hydrogen plant in the country and started operation less than 
three years after the Aerojet liquefier. built for hydrogen rocket experiments. closed 
down. By 1954. the Cryogenic Engineering Laboratory had an extensive program that 
included: (I) precise measurement of the thermal conductivities of metals and 
dielectrics, (2) mechanical properties of materials at low temperatures. (3) 
superinsulations, (4) high vacuum techniques. (5) transfer of liquefied gases. (6) 
development of vessels for storage and transport of liquid hydrogen, (7) ortho- to 
parahydrogen conversion. (8) hydrogen liquefiers and pilot plant evaluation. and (9) 
cryogenic testing, particularly with respect to vibration.16 

Mobile Liquid Hydrogen Equipment. 1952-1954 

The Air Force worked closely with the Atomic Energy Commission in hydrogen 
bomb development and as part of its responsibility. contracted for the development of 
mobile equipment. This work was cancelled in 1954. but not before some remarkable 
equipment had been built. which later became available for rocket research by the 
National Advisory Committee for Aeronautics. 

One piece of equipment the Air Force developed was the air-transportable dewar for 
carrying liquid hydrogen or deuterium in the B-36 or B-47. The National Bureau of 
Standards and H. L. Johnston. Inc .. both developed tactical dewars for the Air Force. 

17 and the vessels were described in a 1954 cryogenic engineering conference. Essentially 
they utilized the same thermal insulation method as the familiar dewar vacuum flask. 
but the design was much more elaborate and complex in order to store liquid hydrogen 
at 20 K. The design minimized heat transfer by its three modes : conduction. 
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convection, and radiation. The liquid hydrogen was held in an inner tank. Surrounding 
it was a space evacuated to a high vacuum to minimize heat transfer by conduction and 
convection. The wall on the other side of the s'pace was maintained at the temperature 
of liquid nitrogen, 77 K. which minimized heat transfer by radiation. The radiation 
shield-the walls of a liquid nitrogen container-was itself insulated from the outer 
shell of the dewar by another vacuum space. 

The air tactical dewars held 750 liters of liquid hydrogen. The heat flow to the liquid 
hydrogen shell was slight, amounting only to about 4 watts; liquid hydrogen boil-off 
was about 7.5 liters per day, or I percent of rated capacity. The dewars were equipped 
with an array of valves, instruments, and a vacuum pump. 

The tactical dewars (fig. 13) had to be built for rough treatment. The Johnston design 
employed hardened stainless steel rods to · suspend the inner tanks and minimize 
conduction. These rods had to be tuned to an exact frequency to meet vibration and 
shock load specifications. Howard Altman solved this problem in an ingenious fashion 
typical of Johnston's operation. He calculated the required frequency and pitch and 
brought his violin to work one night to tune the rods; the Johnston dewar then passed 
its Air Force test. Several years later it passed another-unplanned-test. Altman was 
helping to unload it from a truck at the NACA Lewis Laboratory in Cleveland when it 
slipped and dropped four feet to the ground. He heard the rods vibrating sweetly, and 
the dewar survived undamaged.IN 

Another type of transportable dewar was fabricated by the Cambridge Corporation 
for the Air Force, using a design by the Arthur D. Little Company. Called the 
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Fig. 13. Air-transportable dewar for 750 liters of liquid hydrogen developed by H, L. Johnston. ca. 1952. 
Howard Altman is on the left. (Courtesy of H. A. Altman.) 
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Refrigerated Transport Dewar, it used a closed cycle helium refrigerator, and the 2000 
liters of liquid hydrogen could be stored or transported indefinitely with no loss as long 
as the refrigerator was operated. It was a large piece of equipment, occupying all of a 
10.7-meter semi-trailer, and weighed 18. l metric tons, including a diesel generator for 
refrigerator operation away from electric power lines. 19 

The third type of mobile equipment developed for the Air Force in the 1952-1954 
period was a mobile hydrogen liquefier, again built by H. L. Johnston, Inc. It was 
mounted on three semi-trailers and was capable of producing 100 liters per hour of 45 

·percent liquid parahydrogen. Two of the trailers housed huge Norwalk horizontal 
compressors. The trailers also contained a gas holder and auxiliary equipment for the 
compressors. The third trailer housed the complete hydrogen purification and 
liquefaction equipment (fig. 14). All three trailers were capable of highway transport at 
89 kilometers per hour. Gross weight was about 25 metric tons, and they required 105 
kilowatts of electric power for operation.20 The author remembers inspecting these 
trailers when they were loaned by the Air Force to the NACA (about 1956) and 
marvelling at how much equipment had been packed into such a small space. 
Particularly impressive were the big compressors with their large flywheels. Johnston's 
students had designed the layout of these trailers using cardboard cutouts to arrange 
the equipment. In their first operation at Kirkland Air Force Base, the whole 25-

Fig. 14. Mobile hydrogen liquefier developed for the Air Force by H. L. Johnston. Inc., in 1952-1953. The 
lower trailer contains a gas holder and large compressor; the upper, hydrogen purifier and liquefier. 
(Courtesy of W. V. Johnston.) 
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metric-ton trailer began to bounce and "walk," moving 8 to 10 centimeters forward 
with each bounce-quite an awesome sight. The problem was solved by raising the 
trailer off its tires on large jacks.21 

Cryogenic Information Exchange 

With the fast-paced research and development in cryogenics that began in 1950, 
there was a need for exchange of information among the engineers and scientists 
engaged in the program. To that end, the NBS-AEC Cryogenic Engineering 
Laboratory sponsored an engineering conference at Boulder, 8-10 September 1954.22 
Sixty papers were presented on cryogenic equipment, instrumentation, insulation, and 
materials. A second conference, held in 1956, had fifty papers grouped into four 
categories- cryogenic processes, equipment, properties, and applications-and one 
special application, bubble chambers for research on the physics of particles. There 
were papers on the fundamentals of hydrogen liquefaction, ortho-to-para catalysts, 
distillation of hydrogen-deuterium mixtures, and safety.23 

Among the papers in the third conference in 1957 was one by three Bureau of 
Standards men on the design of orthohydrogen-to-parahydrogen converters (the 
necessary step seen by Dwight I. Baker in 1949, p. 56.) The investigators reported that 
the 240-liter-per-hour hydrogen liquefier at the NBS cryogenic laboratory used 1.5 
liters of 30-100 mesh granules of hydrous ferric oxide catalyst, and this converted the 
240-liter-per-hour hydrogen output to about 94 percent parahydrogen. Another paper 
described liquid oxygen transfer equipment capable of 3800 liters per minute, 
developed by the Cambridge Corporation; while another described a 6000-liter liquid 
hydrogen dewar made by Beech Aircraft Company.24 These papers illustrated the level 
of cryogenic and liquid hydrogen technology in 1957; a quantum jump had been made 
since the beginning of the decade. A fourth conference was held in Cambridge, 
Massachusetts, in 1958; the fifth at the University of California, Berkeley, in 1959; and 
the sixth back at Boulder in 1960.25 

Summary 

Under the stimulus of hydrogen bomb development, liquid hydrogen technology 
advanced rapidly in the first part of the 1950s. Hydrogen liquefier capacity had risen 
from the 80 liters per hour of the Aerojet plant in 1949 to the 350 liters per hour of the 
NBS-AEC Cryogenic Engineering Laboratory. The new national laboratory and the 
increased number of contractors who entered cryogenic engineering brought many 
new developments. Dewars were built that allowed as much as 6000 liters of liquid 
hydrogen to be stored indefinitely or transported cross-country. Applications of this 
cryogenic technology began to increase. Among them was the use of liquid hydrogen as 
a working fluid for nuclear rockets that began in 1955. The use of hydrogen in a nuclear 
rocket is not as a fuel, however; the energy comes from the reactor, and hydrogen is the 
ideal working fluid because of its low molecular weight. For this reason, the nuclear 
rocket development of the 1950s will not be discussed further except as it relates to 
technology used in the application of liquid hydrogen as a fuel.26 



.
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NACA Research on High-Energy 
Propellants 

The National Advisory Committee for Aeronautics (NACA), established in 1915 to 
develop practica l solutions for the problems of flight , showed interest in liquid 
hydrogen as a fuel in 1939 but did nothing about it for over a decade. The early interest 
came as a surprise to Robert Goddard when he visited NACA's director, George W. 
Lewis, in March 1939. He learned that "the NACA is considering liquid H [hydrogen] 
as a fuel(!) possibly used with air for rocket propulsion."! Four days after his visit, still 
amazed, Goddard wrote to a friend : 

On talking with Dr. Lewis of the N ACA I found that they are contemplating using 
liquid hydrogen, because of its low weight and high heat value, as a fuel with 
atmospheric a ir. I mention this because liquid hydrogen is expensive and difficult 
to transport and store ... and also because tanks of it have to be surrounded by 
liquid oxygen or liquid nitrogen. It makes my use and advocation of liquid oxygen 
seem really conservative by comparison. The main point is that even with the 
extreme difficulty of liquid hydrogen, its use is being considered by a body as 
serious as the NACA.2 

What did Lewis have in mind? The use of atmospheric a ir rather than readily available 
liquid oxygen suggests that he may not have been thinking of a simple rocket for 
propulsion but a rocket as a component in an air-breathing engine, possibly applied to 
a turbine engine. He may have heard about the early work of Hans von Ohain, 
employed in April 1936 by Ernst Heinke! to develop a turbojet engine. Pressed for 
time, von Ohain turned to gaseous hydrogen as a fuel for convenience in tests 
beginning in early 1937 and found that his turbojet engine worked well using 
hydrogen.* 

*Von Ohain's work made hydrogen one nf the firs t fuels tn be used in turbojet engines. Lewis visited 
Germany in September- October 1936. return ing o n the hydrogen-filled Hindenburg which impressed him 
so much he wrote a repo rt on it. Lewis may have learned about von Ohain's wo rk during his visit or through 
later reports of .John .I. Ide. N /\Ci\ represen tative stationed in Paris. or through iritelligcnce reports which he 
received ahout aeronautical devclormcnts. Hans von Ohain to author. 2 1 May 1974; George W. Lewis file. 
NASA History Office; tclcrhone interv iew with Rohert E. Littell. former NAC/\ aide at hcad4uarters. 20 
Aug. 1973. 
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On the other hand, Lewis had long been thinking about rocket research, for 18 
months earlier he had asked NACA member Charles A. Lindbergh, then in England, 
"for recommendations with reference to any rocket research for the National Advisory 
Committee for Aeronautics to carry on."3 Lindbergh, in turn, sought the advice of 
Robert Goddard who suggested "several lines of research: for example, liquid 
propulsion rockets for gliders; application of rockets to turbines; rockets for 
accelerating and decelerating planes; development of combustion chambers of large 
thrust."4 In 1938 Lewis wrote to Goddard expressing interest in his high-speed work 
and Goddard asked for NACA wind-tunnel tests to determine the flight stability of his 
rockets. Was Lewis thinking of Goddard's suggestion of applying rockets to turbines, a 
concept appearing later as a "turborocket"? Whatever Lewis had in mind remains a 
mystery for, characteristically, he kept his planning informal and shared it with few 
others. The incident, however, illustrates the dual nature of NACA during that 
period-receptive to new ideas but conservative and slow in entering new fields of 
research. It also indicates the ease with which liquid hydrogen comes to mind when 
engineers think of high-energy fuels . 

In 1944. seven years after asking Lindbergh about recommendations for rocket 
research and apparently after some prodding by Wright Field, Lewis authorized the 
construction of four simple rocket test cells at the Aircraft Engine Research 
Laboratory in Cleveland.s 

The information on German jet propulsion and rocket developments, which 
increased from a trickle in 1943-1944 to a flood of captured documents in 1945, made 
N ACA officials realize how far behind they had fallen in these new propulsion systems. 
In the fall of 1945, a sweeping reorganization of the Cleveland engine laboratory 
caught all but senior officials by surprise. Overnight, research emphasis shifted from 
piston engines to jet engines (turbojet and ramjet) with some work on rockets. The 
rocket research was kept small because of the conservative nature of NACA and the 
influence of its chairman, Jerome C. Hunsaker, who shared with many the belief that 
rockets were more applicable to artillery than aircraft and had no place in an 
aeronautical research laboratory. The word "rocket" was avoided in the organizational 
name in favor of "high-pressure combustion." 

The rocket group at the Cleveland laboratory concentrated on high-energy, liquid­
propellant rocket engines with teams working on propellant performance (theoretical 
and experimental) , combustion, and cooling.* The propellant work followed the 
logical path of computing the theoretical performance of several fuel-oxidizer 
combinations over a range of operating conditions and selecting the most promising 
for experimental investigation. By 1948, Riley Miller and Paul Ordin reported 
calculations of a number of propellant combinations containing hydrogen, nitrogen, 

. and oxygen atoms, with liquid hydrogen giving the highest exhaust velocity and having 
the lowest propellant density.6 The same year, Vear! Huff and his associates made a 
major contribution to theoretical performance techniques by developing a convergent, 
successive approximation method that saved considerable time over other methods.7 

*The rocket section was part of a combustion branch headed by Walter T. Olson in a division headed by 
Benja min Pinke!. Joseph R. Dietrich was the first head of the rocket section. followed by Everett R. 
Bernardo, and the a uthor in 1948. 
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High-energy rocket propellants were difficult to obtain, for most were available only 
in small quantities. The NACA researchers passed by liquid hydrogen in favor of 
hydrazine and diborane as fuels and JOO percent hydrogen peroxide, chlorine 
trifluoride, liquid oxygen, and liquid fluorine as oxidizers.x 

Calculated risks were taken to transport comparatively rare samples to the 
laboratory. Louis Gibbons, chief of fuels research, brought a gallon of pure hydrogen 
peroxide from Buffalo clamped between his knees in an all-night train ride. Paul Ordin 
used much the same method in bringing a sample of hydrazine from St. Louis. The first 
diborane, nested in dry ice, was delivered by private automobile from Buffalo. The first 
liquid fluorine was obtained from downtown Cleveland and transported in a special 
laboratory-built trailer escorted by police.9 

During the 1947-1949 period, diborane was of great interest as a rocket fuel, but 
experiments soon revealed that it had great disadvantages and its theoretical promise 
could not be realized. When used with liquid oxygen or hydrogen peroxide, diborane 
formed boron oxides which deposited in the rocket nozzle and degraded perform­
ance. 10 When used with liquid fluorine, the combustion products were volatile, but the 
absence of deposits was replaced with a greater problem- difficulty in cooling. The 
theoretical flame temperature of diborane-fluorine under rocket operating conditions 
is about 5400 K, far higher than many other propellants. Moreover, neither diborane 
nor fluorine is suitable as a regenerative coolant, \". hich means a third fluid is required 
for cooling, seriously degrading performance. Although experimental performance of 
diborane-fluorine was measured, it became apparent by the early 1950s that diborane 
was not a good rocket fuel. 11 The experience with diborane showed not only the 
limitations of theoretical considerations in selecting propellants but also the value of 
experiments in revealing practical problems. 

In 1949, the acceleration in aeronautical research brought another major 
reorganization to the Lewis Flight Propulsion Laboratory.• Its director remained 
Edward R. Sharp, a gregarious and able administrator who had started as an 
apprentice at the Langley laboratory. Technical management was strengthened by 
elevating Abe Silverstein to chief of research. 

The reorganization brought a pleasant surprise to the small rocket group. It was 
moved up one level in the organizational hierarchy, named for what it was, and given 
more personnel. Silverstein was the highest N ACA official to show significant interest 
in rocket research, although much of it was new to him. One of the things he wanted to 
understand better was the propellant selection process and, particularly, how 
candidates for research were chosen. 

During the same period, organizational changes were occurring in related military 
research and development. In 1949, a USAF advisory committee headed by Louis N. 
Ridenour recommended that the Air Force research and development activities be 
consolidated into a single command. In January 1950, the Air Force established the 
Air Research and Development Command which included the facilities at Wright 
Field and the Air Engineering Development Center at Tullahoma, Tennessee-the 
latter renamed in honor of General Arnold the following month. 

*The NACA Aircraft Engine Research Laboratory at Cleveland was named the Lewis Flight Propulsion 
Laboratory in 1948 in honor of NACA's first director of research. 
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The reassessment of research plans that followed the organizational changes had 
special significance for the Lewis rocket group in March 1950 when a group of Wright 
Field officials visited the Lewis laboratory.* The visitors showed considerable interest 
in rocket research in general and propellant selection in particular. Also discussed were 
the merits of forming a NACA subcommittee on rockets, a need recognized by the 
Durand committee nearly a decade earlier. 

Conference on Propellant Selection 

Apparently as a direct result of the visit by Wright Field officials, the NACA called a 
meeting of rocket experts at the Lewis laboratory on 19 May 1950 to discuss the 
selection of rocket propellants for long-range missiles.12 A secondary purpose was to 
use the meeting as a "test run" to determine if a NACA subcommittee on rockets was 
desirable and feasible. 

Propellant selection for any mission is always a compromise between performance 
and other desired characteristics such as density, cooling capacity, storability, 
handling, and availability (appendix A-4). The selection process had advanced 
through several levels of sophistication. The simplest method used exhaust velocity as 
the criterion, since range varies approximately with the square of exhaust velocity. 
This ignores the effect of propellant density, which affects tank and vehicle size and 
mass. In 194 7, Richard Canright of the Jet Propulsion Laboratory developed a method 
of relating exhaust velocity and propellant density for large rockets and found that 
exhaust velocity was the more important of the two. Combinations using liquid 
hydrogen ranked the highest, although Canright favored hydrazine for its overall 
characteristics (p. 47-48). Later studies involved more complex considerations of 
missile design and flight than Canright's, but all suffered from lack of data that could be 
obtained only when rockets were designed, built, and flown. 

In addition to the major flight parameters, the military was very interested in the 
logistics problems of propellants-such characteristics as vapor pressure, freezing 
point, stability during storage, corrosiveness, toxicity, availability, and cost. 

At the Lewis meeting, the military representatives and their contractors presented 
their views and research results. The NACA-Lewis recommendation for propellants, 
presented by the author, consisted ofa primary selection and alternatives. The primary 
fuel was liquid hydrogen and the primary oxidizer was liquid fluorine. If propellant 
density proved too great an obstacle for liquid hydrogen in a practical application, the 
alternate fuels selected were hydrazine, ammonia, or a mixture of the two. The Lewis 
choice of alternative oxidizer was oxygen. 

The N ACA recommendation, its first firm choice of liquid hydrogen as a rocket fuel, 
was not opposed by anyone at the meeting. After all, the selection was for research 

*They were: Col. Marvin Demler. chief of the power plant laboratory: Lt. Col. J. M. Silk: Opie 
Chenoweth, chief scientist; C. W. Schnare. in charge of rockets; E. C. Simpson. in charge of turbojet 
engines; W. A. Wolfe; E. Brown; and R. E. Ray. NACA attendees were: Edward R. Sharp. Abe Silverstein. 
E. J. Manganiello, Walter T. Olson. Willson Hunter. John H. Collins. Jr. . and the author. 
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purposes, not for a development. The selection of alternatives reflected the uncertainty 
over the effect of fuel density on long-range missile design and performance. The 
NACA position satisfied both those who believed in the potential of liquid hydrogen 
and those who did not. 

Views about using liquid fluorine, however, varied considerably. During the 
morning session, William Doyle, of Ohio State University, listened with growing 
impatience to presentations by Rocketdyne and Aerojet on their fluorine experiments. 
As a strong advocate of both liquid hydrogen and liquid fluorine, he felt that the 
presentations were too pessimistic. He could hardly wait to rebut them, but lunch 
intervened. After lunch, the meeting chairman, Abe Silverstein, noted the meeting was 
behind schedule and cancelled discussion of the morning papers. This was too much 
for the peppery Doyle who jumped to his feet, announced that he knew more about 
fluorine than anyone else present, and proceeded "to lambast the hell out of the two 
fluorine papers" for their pessimism. Silverstein allowed Doyle to make his point 
before clamping down.13 

Following the May propellant selection meeting, the NACA rocket group planned 
experiments with liquid hydrogen but faced the familiar problem : how to get a supply 
of it. Obtaining dewars of liquid hydrogen from Herrick Johnston at Ohio State 
University and transporting them to Cleveland was rejected as impractical. Since it was 
not available commercially, the only course open was to build a liquefier at the 
laboratory. Since the money needed was too much to come from operating funds, the 
NACA, for the first time, went to Congress in 195 l with a request specifically for rocket 
research. The fiscal year 1952 budget for construction of facilities contained an item of 
$150000 to buy a hydrogen liquefier and a building to house it. The justification stated 
in part: 

Of the chemical combinations that are available as propellants for rocket engines 
for maximum range, liquid hydrogen offers great potentialities. With certain 
oxidizers liquid hydrogen has the greatest thrust-per-pound propellant flow 
[exhaust velocity] of any of the chemical combinations, an important factor for 
long flight. Insufficient experimental research has been done in this Nation on the 
use of liquid hydrogen with suitable oxides (sic]. ... Although there are no com­
mercial cuppliers of liquid hydrogen, simple liquefaction equipment developed 
during the war, is available commercially.14 

Congress approved the request and NACA contracted with the Arthur D. Little 
Company of Cambridge, Massachusetts, for a hydrogen liquefier scaled up from a 
Collins cryostat. The company ran into some difficulties which delayed delivery, and 
the NACA spent the interim period investigating other high-energy rocket propellants. 

NACA Rocket Subcommittee 

NACA officials were pleased with the outcome of the May 1950 meeting of rocket 
experts and the following January established the Special Subcommittee on Rocket 
Engines under the Power Plants Committee. The chairman was Professor Maurice J . 
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Zucrow of Purdue University, a well known and respected authority on jet 
propulsion.* 

Establishment of the rocket subcommittee represented a significant milestone in 
N ACA recognition of the importance of rocket research. In addition to its great value 
for coordinating and exchanging information on rocket research and development, the 
subcommittee was a political force for assuring a fair share of attention to rocket 
propulsion. Although the number of research personnel assigned to rocket research at 
the NACA Lewis laboratory was still small-less than 3 percent-the group had the 
strong support of both Silverstein, an associate director of the laboratory, and a body 
of national experts on rockets whose advice and recommendations would carry weight. 

Research Conference on Supersonic Missiles 

On 13 March 1952, the N ACA held a research conference at the Lewis laboratory to 
present the latest results of research pertaining to supersonic missile propulsion. 
Papers on turbojet and ramjet propulsion dominated the meeting, but there was one 
paper on the status of liquid-propellant rocket engines by Gerald Morrell and Vear! 
Huff. Their paper covered propellants, combustion, and cooling-the three subjects of 
NACA research. Experimental performance data for rocket engines using ammonia 
and ammonia-hydrazine mixtures as fuels and liquid fluorine as the oxidizer were 
presented. With respect to high-energy propellants in general, the authors stated: 

The high specific impulse [exhaust velocity] propellant systems of greatest 
promise for application in long-range missile propulsion; recommendations for 
propellant systems which require development include hydrogen-oxygen, 
hydrogen-fluorine, and ammonia-fluorine. Experience with these systems is still in 
the early experimental stages, but the performance obtained to date is 
encouraging. With the hydrogen-oxygen system, other laboratories (JPL, Aerojet 
and Ohio State) have obtained 96 to 97 percent of the theoretical specific impulse 
calculated for equilibrium expansion; that is, maintenance of chemical 
equilibrium is assumed during the expansion process. Experiments with the 
hydrogen-fluorine system in a 100-pound-thrust [ 445 newton] engine at JPL have 
yielderl equally good performance. is 

are 

Boost from the Subcommittee 

Since the start of the Korean conflict in 1950, the NACA had submitted larger 
budget requests for aeronautical research each year, only to have the requests cut 

*Other members: Richa rd B. Canright. JPL-CIT; Comdr. K. C. Childers. USN. Bureau of Aeronautics: 
R. Bruce Foster. Bell Ai rcraft: Stanley L. Gendler. Rand Corp.: Joseph L. Gray, Office of Chief of Army 
Ordnance: Paul R. Hill. NAC A-Langley: G. E. Moore. General Electric : Thomas E. Meyers. North Amer i­
can Aviation: C. W. Sch na rc. Wright Air Development Center: J ack H. Sheets. Curtiss-Wright: Capt. Lev­
ering Smith. USN. Nava l Ordna nce Test Station: R. J. Thompson. Jr. . M. W. Kellog: Paul Winternit7 .. Re­
action Motors: David A. Yo ung. Acrojet: the author : and Henry E. Alquist. NACA . secretary. The next 
year. Lt. Col. Langdon Ayers . USAF. replaced Schnare : Eugene Mille r o f Redstone Arsenal replaced Gray: 
and Benson E. Gammon. NACA. replaced Alquist . 
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sharply in final appropriations by an economy-minded Congress. Within the N ACA, 
the rocket subcommittee, aided and abetted by the NACA rocket group, became 
convinced the N ACA was not doing enough rocket research. To support this view, a 
comprehensive review of the N ACA rockei program was conducted at the 26-27 June 
1952 meeting of the subcommittee. By this time, theoretical work on propellant 
performance, carried out with the aid of computers, was far ranging and included 
hydrogen with oxygen and fluorine. In addition, the relationship of propellants and 
propulsion systems to missions was being studied. Experimental work centered around 
ammonia and ammonia-hydrazine mixtures as fuels and fluorine as oxidizer, using 
small engines. Research with liquid hydrogen was still in preparation.16 

After reviewing the program, the rocket subcommittee passed a resolution that was 
to have far-reaching consequences: 

WHEREAS, The rocket propulsion research effort of the NACA 1s highly 
commendable and of good quality, and 

WHEREAS, The NACA rocket propulsion research activity is at much too low a 
level to be consistent with the importance of rocket propulsion to military 
services, and 

WHEREAS, The rocket propulsion research at the NACA is, in general, being 
conducted on equipment which is of such small scale that the results obtained are 
only of limited value to the rocket engine contractors, and 

WHEREAS, A function of the NACA is to serve the rocket propulsion industry 
as an advanced research agency, 

BE IT RESOLVED, That the Special Subcommittee on Rocket Engines 
recommends to the NACA that the research activity on rocket propulsion be 
expanded and emphasis placed on a broader and more advanced approach to the 
solution of rocket propulsion problems.1 7 

The subcommittee then listed nine problem areas that should be added to the NACA 
program, but none mentioned hydrogen or other high-energy propellants.• 

The rocket subcommittee resolution was presented to the parent Power Plant 
Committee by Zucrow; it was approved and passed to the NACA Executive 
Committee, which also approved it. Word passed from Washington to Cleveland to 
intensify the planning of rocket facilities . 

Plans for Rocket Facilities 

By 1952, the Lewis rocket facilities consisted of four original test cells and four newer 
and larger cells built with operating funds by the "Hurry-Up Construction 

*They included scaling factors for designing large-thrust rockets, causes and remedies of combustion 
oscillations. composite and multiple-stage missiles (in cooperation with structural and aerodynamics 
research teams). nit rogen oxides as oxidizers. rocket propulsion for fighter aircraft. problems of using nitric 
acid as a n oxidizer, variable-expansion nozzles, and altitude performance of rockets. 
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Company"-the self-styled, in-house construction group. With the word from 
Washington, the imaginative and ambitious rocket group began turning out a series of 
grand plans for rocket testing that required a huge site in a remote area of the West. 
These went far beyond the intent of NACA officials and the bubbles burst one by one, 
until planning narrowed down to what could be built at the Cleveland laboratory site. 
By the time the NACA executive committee approved the rocket subcommittee's 
resolution, NACA had decided to request an $8.5 million rocket-engine facility at the 
Lewis laboratory. It was described at the November 1952 meeting of the rocket 
subcommittee by Walter T. Olson and the author. 18 

The proposed facility provided complete engine systems research using two major 
classes of propellants: high-energy propellants for long-range missiles, and high­
availability, low-cost propellants for boosters, superperformance aircraft, and 
medium-range missiles.• The facility was unique in four features: (I) high thrust and 
long durations (89 kN and 3 min. for high-energy propellants; up to 445 kN and 3 min. 
for high-availability propellants); (2) hydrogen liquefaction and fluorine generation 
and liquefaction in quantity at the test site; (3) exhaust-gas scrubbers, designed from 
data provided by NACA research, to remove hydrogen fluoride from the exhaust; and 
(4) silencing equipment to muffle the rocket's roar. 

The subcommittee endorsed the proposed facility and its chairman, Maurice 
Zucrow, added his hearty endorsement. 19 This support was crucial but despite it, the 
attrition process that had befallen earlier plans reappeared at the Bureau of the Budget. 
The rocket group began to get telephone calls about cutting various features to reduce 
the cost. One of the first items to go was the fluorine plant, but this was not too serious 
as Allied Chemical was becoming interested in supplying fluorine for rocket 
applications.t Hans Neumark of Allied Chemical, under contract with the Air Force, 
was developing an over-the-highway trailer for transporting liquid fluorine. The next 
item to go from the proposed facility was the hydrogen liquefaction plant, followed by 
the large-scale facilities for engines of 445 kilonewtons. The rocket group became 
depressed as they watched their dreams melting away. One day a call came from 
Washington: What can you do for $2.5 million? The answer: the high-energy 
propellant features with exhaust-gas scrubber and silencer. This was accepted and the 
facility was authorized and funded by Congress. Construction began in 1953 with 
scheduled completion in 1956. During this period, an existing rocket test-cell was 
modified to handle high-energy propellants in engines of 22 kilonewtons and the 
Arthur D. Little hydrogen liquefier was installed. The research program remained 
essentially the same, but four years after selecting liquid hydrogen as its first choice, the 
NACA had yet to experiment with it. 

In spite of the increased NACA support, rocket research remained comparatively 
small during the construction of the new facility. Disappointed, the rocket 
subcommittee at its October 1954 meeting noted that the NACA was spending twice as 

*The high-energy propellants were liquid hydrogen. hydrazine, and ammonia as fuels. with fluorine and 
oxygen as oxidizers. The high-availability propellants were hydrocarbons as fuels with nitric acid and liquid 
oxygen as oxidizers. 

tSix years later (October 1958). the author participa ted in opening ceremonies of Allied Chemical's 
fluorine plant at Metropolis. Illinois. 
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much on ramjet research as on rocket research,* whereas the military services were 
emphasizing rockets, not ramjets-a clear signal that the NACA was about to miss the 
boat again as it had earlier with its late start in jet propulsion. 

Switch from Air-Breathing to Rocket Engines 

Up to 1952, military concepts for long-range missiles emphasized rocket-boosted, 
winged missiles powered by air-breathing engines. t Beginning that year, a series of 
events brought great changes in military thinking about strategic missiles. These 
events, according to Herbert York, a participant, were "the invention and 
demonstration of the hydrogen bomb, the election of Eisenhower and the concomitant 
extensive personnel changes throughout the executive branch .... and the growing 
accumulation of intelligence reports .. . that the Soviet Union had already launched a 
major program for the development of long-range rockets."20 

In June 1952, the Department of Defense established a study group on guided 
missiles which led to the Strategic Missiles Evaluation Committee, chaired by John 
von Neumman, the famed mathematician.! The von Neumman committee studied the 
Air Force's strategic missile program and reported in February 1954 that both the 
missile systems and their specifications were out of date and unsatisfactory. An urgent 
need for greater strategic missile capability was seen because of improved Soviet 
defenses against manned bombers as well as rapid development of Soviet strategic 
missiles. The committee pointed out that progress in weaponry research allowed 
reduction of warhead mass as well as a relaxation of accuracy requirements.21 The von 
Neumman committee recommendations had great influence and when adopted and 
implemented, long-range missile development swung from winged missiles using air­
breathing engines to ballistic rockets- the beginning of the accelerated ballistic missile 
development of the 1950s. In the first series of liq uid-propeHant missiles, the 
propellants were a kerosene-like hydrocarbon and liquid oxygen. 

The choice of a single propellant combination for development of long and 
intermediate range liquid-propellant ballistic missiles did not stop research on high­
energy propellants, which became candidates for a second generation of improved 
missiles. 

The N ACA was not oblivious to the changes in military empha~is from air-breathing 
to rocket engines, but took no strong steps to realign its research emphasis until about 
1956. Meanwhile, the small rocket group at the Lewis laboratory was steady on its 
course and late in 1954 was ready, at long last, to experiment with liquid hydrogen. 

*In October 1954. NACA rocket research was $ 1.2 million or 2.4 percent of the budget; ramjet research 
was $2.5 million or 5.1 percent of the budget. Minutes of meeting. NASA History Office. 

t Three strategic missiles in development were: Snark, a winged cruise missile, developed by orthrop and 
powered by a turbojet engine after assisted take-off with solid-propellant rockets; the Matador, developed 
:iy Glenn L. Martin, similar to but smaller than the Snark; and the largest, Navaho, developed by North 
American Aviation, powered by a ramjet engine after boost to supersonic speeds by three liquid-propellant 
rocket engines. 

t Other members: George Kistiakowsky. Charles A. Lindbergh, Simon Ramo. Jerome Wiesner. and Dean 
Wooldridge. 
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First Attempt to Use Liquid Hydrogen 

When the rocket subcommittee met in October 1954, preparations for the first 
experiment with liquid hydrogen were almost complete. The liquefier was producing 
liquid hydrogen. One of the larger test cells had been equipped to use liquid hydrogen 
with either of two oxidizers-liquid oxygen or liquid fluorine. Edward Rothenberg 
headed the team using hydrogen-oxygen and was ready first.* On 23 November 1954, 
the first successful run with liquid hydrogen was made; thrust and chamber pressure 
were at design values and exhaust velocity was 90 percent of theoretical. Ten days later, 
two more successful runs were made, but performance data were incomplete. A fourth 
successful run on 6 January 1955 yielded lower performance than the previous runs. 22 

After the four successful runs with liquid hydrogen-oxygen in 22-kilonewton 
engines, no more experiments with liquid hydrogen were undertaken for almost a year. 
The reasons were several. One was a need to reassess injector design. On the first three 
runs the oxidizer injection rings had burned, and the low performance of the fourth 
was a clear signal of poor injection. Another reason was a need for improved start and 
shutdown techniques. Although a satisfactory method had been worked out, it 
depended a good deal on the reaction time and skill of the operator. In starting, a low 
hydrogen flow was ignited outside the engine and flashed back into the engine when 
oxygen flow began. When flashback occurred, full hydrogen and oxygen flows were 
established. After the first run, the operators discovered that a fire had started during 
the ignition phase, which ignited hydrogen escaping from the supply tank. The 
problem was solved by opening the hydrogen valve and burning the escaping hydrogen 
until the tank was exhausted. The experience was somewhat similar to the leaks 
encountered by Walter Thiel in Germany about 1937 (p. 269). 

Two other factors contributed to the delay in hydrogen testing. The Air Force 
loaned the laboratory the mobile hydrogen liquefaction equipment developed by 
Herrick L. Johnston (fig. 14) which would produce almost twice as much liquid 
hydrogen as the installed equipment and help keep pace with growing demands for 
hydrogen in other laboratory work. Glenn Hennings of the rocket staff was placed in 
charge of getting the mobile equipment into operation. The other factor was increasing 
interest in the possibility of upgrading the performance of existing missiles using JP 
fuel-oxygen by adding a small quantity of fluorine to the oxygen. t The fluorine not 
only increased performance but made the combination self-igniting. By 1955, three 
repons had been written on investigations of JP-4 fuel with mixtures of oxygen and 
fluorine. 23 This concept was not tried in a missile, however, because of concern over the 
toxicity c~ fluorine. 

*Paul Ordin headed the team working with hydrogen-fluorine in 1954 and planned performance and 
regenerative cooling experiments. However, Silverstein picked Ordin to head a special hydrogen flight 
project (described later). and Howard Douglass took his place. For various reasons, the hydrogen-fluorine 
experiments were delayed until 1957. 

t JP (jet propulsion) fuel was the designation for the petroleum blend similar to kerosene, used at the time. 
Later rockets used RP (rocket propulsion) fuel. 
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The rocket subcommittee was still concerned over the low level of NACA rocket 
research when it met in November 1955.* A resolution was passed detailing the 
importance of rocket research, the concern over the low level of NACA activity, and 
the problems needing attention; it ended by recommending the NACA effort "be 
considerably increased so that significant progress can be made at the pace keyed to the 
swiftly moving national defense effort in rocket propulsion."24 Development of the 
Atlas and Titan ICBMs and Thor and Jupiter IRBMs was accelerating and 
subcommittee members from propulsion and airframe manufacturers as well as the 
military were feeling the pressure. They believed that the NACA ought to help solve 
their development problems. 

NACA officials recognized the increased emphasis on missiles but continued 
research on advanced air-breathing engines as wdl. In the 1955 NACA annual report, 
Chairman Hunsaker stated: "Today, probiems associated with a nuclear engine for 
aircraft propulsion and with an intercontinental ballistic missile are perhaps the most 
pressing."25 The nuclear engine for aircraft was soon to fade into oblivion, but the 
intercontinental as well as the intermediate-range ballistic missiles became key 
elements in U.S. military preparedness. 

Second Attempt to Use Liquid Hydrogen 

In December 1955, the Lewis rocket team resumed experiments with liquid 
hydrogen but with slight success. Seven runs were made on the 8th and 10th of 
December; two engines burned out. A successful run was made on 16 February 1956, 
followed by three more two weeks later. Preparations were then made to operate with 
liquid hydrogen-fluorine. On 9 March, the first attempt was made, but the engine 
burned out in four seconds. This was long enough, however, to measure performance: 
thrust and pressure were near design values and exhaust velocity was 3510 meters per 
second, or 93 percent of theoreticaJ.26 This was the highest rocket performance value 
obtained at the Lewis laboratory up to that time. Cooling, however, remained an 
obvious problem, and emphasis was placed on it. 

NACA Reconsiders Missiles 

Although the NACA had always maintained an interest in the problems of high­
speed flight and had made some significant contributions,t actual effort remained 
relatively small until about 1956. Meanwhile, the military ballistic missile effort had 
risen rapidly since early 1955; in FY 1956, it passed the half-billion-dollar mark and 
was nearly three times larger the next year.27 Interest in extending ballistic missile 

*Thomas E. Myers of North American Aviation replaced Maurice Zucrow as chairman in 1954. with 
Zucrow continuing as a member. Other members : Lt. Col. Langdon F . Ayers, USAF-ARDC; R. B. 
Canright, Douglas Aircraft; B. F. Coffman. Bu. Aer., Navy; H. F . Dunholter. General Dynamics; R. B. 
Foster, Bell Aircraft ; W. P. Munger, Reaction Motors; J. R. Patton, Office of Naval Research ; C. C. Ross, 
Aerojet-General; C. N. Satterfield. M.I.T. ; F. E. Schult1 .• General Electric; A. J. Stosick. JPL; R. C. Swann. 
Redstone Arsenal; F. l. Tanczos. Bu. Aer.. Navy; the author, NACA-Lewis and B. E. Gammon. secretary. 

t For example: the blunt-body theory for warhead reentry into the atmosphere from a ballistic trajectory 
conceived by Harvey Allen of NACA-Ames in 1951 a nd published in the open literature in 1958. 
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capabilities to launching satellites was also growing. In NACA's 1956 annual report, 
Chairman Hunsaker recognized the need for more missile research and added, "we are 
striving for the knowledge that will make possible satellites probing the regions beyond 
the earth's atmosphere ... . "2K 

Following up on the need for greater effort in both aircraft and missile research, the 
NACA established a panel to determine the type of facilities required for the coming 
years. Hugh L. Dryden, NACA's director of research, wrote to Thomas Myers. the 
rocket subcommittee chairman, acknowledging the three-year attempt by the 
subcommittee to increase rocket research and informed him that the facilities panel 
"now has under consideration . . . a proposal for a rocket systems research facility to 
provide the necessary space and equipment to implement the Subcommittee's 
recommendation."29 Dryden was fully aware of the new high-energy propellant facility 
nearing completion at Lewis and had in mind "basic research leading to improved 
turbopump designs for rocket engines and to improvements in propellant systems 
generally." Dryden had pinpointed a deficiency in NACA research that could be swiftly 
remedied. Since its formation in 1945, the Lewis rocket group had been limited to 
problems associated with the thrust chamber of a rocket engine system. The laboratory 
had a large division specializing in compressor a nd turbine research for jet engines. a 
technical field closely related to turbopumps of rocket engines. By building suitable 
facilities for turbopumps and complete engine systems. N ACA could tap this pool of 
technical talent and accelerate its contributions to missile problems. 

In his letter to Myers, Dryden asked for comments and answers to specific questions 
such as, "Why should N ACA enter the field of rocket propellant systems?" His choice 
of words was unfortunate for apparently Myers thought he meant rocket propellant 
combinations. Myers replied with an eloquent plea for NACA research on propellants, 
giving three reasons: high-energy propellants can increase missile range by an order of 
magnitude or for satellites, permit increases in payload; improved propellant systems 
have multiple applications and research data from NACA spread throughout the 
country have a beneficial effect on rocket developments; and the NACA's 
achievements in propellant research are widely recognized and used by the rocket 
industry.30 

Advanced Propulsion Concepts 

Dryden's request to Myers was typical ofNACA's conservative approach in entering 
a new field - solicit opinions and build a broad base of national support so that it 
would appear the agency was practically pushed into the new work. This process 
continued when Myers, at the May 1956 meeting of the rocket subcommittee, asked the 
members for suggestions for rocket research for the next 10 to 15 years. By the fall of 
1956, the responses were grouped into five discussion topics, one of which was high­
energy propellants. but without specific reference to liquid hydrogen.* In discussions 
0f these topics in meetings the following year. evaluation of high-energy propellants 

*The others: nonconventional rocket propulsion, such as solar energy. ions. electrons. charged particles. 
and free radicals: nuclear energy: comparison of nuclear a nd non-nuclear propulsion: and summary of the 
other topics from the viewpoint of applications and milita ry requ irements. 
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was of first-order importance, but again no specific propellant combinations were 
singled out.31 The NACA-Lewis rocket group, however, was still greatly interested in 
liquid hydrogen and believed that they had the support of the rocket subcommittee. 

In mid-1957, at the invitation of the chairman of the NACA subcommittee on 
aircraft fuels, Richard Canright (who had left JPL for Douglas Aircraft in 1953) 
submitted a paper on rocket propellants as viewed by an airframe manufacturer. 
Canright had a long interest in rocket propellants and his employer, Douglas Aircraft. 
had development contracts involving both solid and liquid rocket engines. From this 
viewpoint, he dismissed the application of air-breathing engines for missiles as 
"extremely limited if not completely non-existent." After discussing the relative 
advantages of solid and liquid rocket propellants, Canright gave his views on liquid 
hydrogen: 

This is, of course, the non-carbonaceous fuel that offers the highest performance 
of any fuel. However, because of its low density, it is useful only in certain extreme 
applications. Hydrogen offers excellent combustion characteristics, both in the 
gas generator and in the main motors, and good heat transfer characteristics in the 
supercritical regime; on the other hand, it is hazardous to handle and there is no 
large engine experience with this fuel to date.32 

Except for the mention of combustion and heat transfer characteristic~. Canright 
offered little more on liquid hydrogen than Tsiolkovskiy 30 years earlier, an indication 
of the continuing gap between what was known about liquid hydrogen and its practical 
application. 

When asked to summarize the contributions of the rocket subcommittee in its five 
years of existence, Canright replied: 

We have constantly spurred the NACA on to tests on a larger scale. We have urged 
them to become familiar with complete engines rather than work only on 
component R&D. We have tried to emphasize the importance of rocket 
technology to this country's defense effort and urged that the NACA devote a 
greater portion of its personnel and funding to this important field.33 

He added, however, that NACA interest in high-energy propellants was praiseworthy 
and that the subcommittee supported it. 

High-Energy Propellant Facility 

The new $2.5 million rocket facility for high-energy propellants, requested in 1952, 
was completed in the fall of 1957 (fig. 15). It comprised a test cell, propellant supply 
system, and a unique combination exhaust-gas treatment and silencing system. A 
service building and high-pressure helium bottles were adjacent to the test cell. Farther 
away were storage areas for fuels (hydrocarbons, ammonia, hydrazine). liquid oxygen, 
and water for the scrubber, all piped to the test cell under gravity. Fluorine was loaded 
into propellant pressure tanks from trailers and a similar provision was made for liquid 
hydrogen. The oxidizer tanks were in a pit behind the cell, suspended on a weighing 
system within another tank into which liquid nitrogen was placed as a coolant when 
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Fig. 15. The NACA-Lewis high-energy rocket propellant test facility, placed into operation in 1957. The 
building with the slanted roof is the test cell. The large horizontal duct with vertical stack is the exhaust-gas 
scrubber and silencer. The two men are in front of racks of high-pressure cylinders of helium used for 
pressurization. On the far right is the water storage tank and on the far left is the water detention tank and 
treatment system. 

fluorine was used (fig. 16). The tanks and system were sized to allow three minutes of 
operation at a thrust of 89 kilonewtons, a considerable increase in size over other high­
energy rocket facilities in the country. The exhaust duct at the rocket nozzle exit was 
3.7 meters in diameter; the horizontal section, 7.6 meters, and the vertical stack, 6 
meters. During a run, water from the 1500-cubic-meter (400000-gallon) tank on the 
upper level flowed to the exhaust scrubber at a rate of 190 cubic meters (50000 gallons) 
per minute. This was well over a hundred times the mass flow of exhaust gases. The hot 
gases, emerging from the nozzle at velocities of 3000-4000 meters per, second and 
temperatures of about 2300 K, were met with a drenching spray or'water and quickly 
cooled to steam temperature and slowed to a velocity of about 8 meters per second. 
Additional water sprays condensed the steam, and the non-condensable exhaust gas 
emerged from the stack at about 340 K and a velocity of 3 meters per second. The 
hydrogen fluoride of a fluorine-hydrogen rocket is highly soluble in water; the water 
containing it was collected in the detention tank. After the run, calcium hydroxide was 
introduced into the detention tank and the hydrogen fluoride converted to calcium 
fluoride-which is inert and harmless-and a slurry of it was pumped into tank trucks 
and hauled to a dump. The facility was equipped with barrels containing ordinary 
charcoal and connected to the fluorine system. Harold Schmidt of the rocket research 
group had found that fluorine reacts readily with charcoal and is converted into inert 
carbon fluorides-an excellent way to dispose of unwanted fluorine. Monitors to sniff 
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Fig. 16. Sectional view of the NACA-Lewis rocket facility. On the left a re h igh-pressure propella nt tanks in 
p its. The rocket engine and test stand. for vert ical downward firing. are dwarfed by the large ducting for 
exhaust gas scrubbing and silencing. 

a variety of gases and combustible mixtures were located at strategic places about the 
test area. The test cell was controlled by a well-equipped center in the rocket operations 
building about a kilometer away. 

Thrust Chamber Design and Fabrication 

The initial failure of the Lewis experiments with liquid hydrogen was primarily one 
of thrust chamber design. The key to a successful design lies in the injector which can 
mean high or low performance, durable operation or quick burnout. The function of 
the injector is to mix the fuel and oxidizer thoroughly and uniformly for complete 
combustion, while the propellants also cool the injector face. With a good injector, 
combustion chamber design becomes a matter of providing sufficient volume for the 
reaction to go to completion; sufficient wall strength to contain the pressure, and 
sufficient cooling to keep wall temperature within its working limits. The design of the 
nozzle involves a compromise between providing the optimum contour for complete 
gas expansion and size, the latter limited by vehicle design. 

Rocket experimenters exploring the performance of various propellant combina­
tions usually used either a water-cooled thrust chamber and nozzle or uncooled types 
that could withstand high temperatures for a few seconds. Most effort was 
concentrated on obtaining an injector yielding high performance. Following this, the 
next step was to cool the chamber and nozzle with the fuel. We have already seen that 
both the Jet Propulsion Laboratory and Ohio State University succeeded in operating 
regeneratively-cooled hydrogen-oxygen thrust chambers during the 1940s. The Lewis 
experimenters were trying the same but with larger engines (22 and 89 kN), combining 
regenerative cooling with thrust chambers of light weight to approach a practical flight 
design. These objectives had been spelled out in 1952 and reaffirmed each year. 
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The first injector used for liquid hydrogen-liquid oxygen at Lewis in 1954 was a like­
on-like impingement where jets of the same fluid impinge, breaking the streams into 
droplets. Mixing is obtained by locating the impinging streams of fuel and oxidizer 
near each other so that the resulting droplets mix well. Ohio State University used this 
type and it was popular among rocket experimenters. JPL used an injector with 
impinging hydrogen jets and an oxygen spray. Aerojet's best injector was a multiple­
tube, concentric type where each jet of hydrogen was surrounded by a sheath of oxygen 
(fig. 10). The three successful runs by the Lewis group in February 1956 used a "tube 
bundle" injector where a large number of small tubes carried the hydrogen and oxygen 
into the chamber with a fine degree of mixing. 

By all experience and design principles, the hydrogen-fluorine injector used in the 
first Lewis laboratory run in March 1956 should have worked well. It consisted of four 
rings of hydrogen holes producing streams parallel to the combustion chamber axis, 
alternating with four rings of similar holes for fluorine. The holes were small and 
mixing was good; but when tried, the operator summed the results in four cryptic 
sentences in his log: 

Hi-Fi was run on "B" stand, Cell 22. Made only I run. Injector burned out causing 
chamber to go. Run time=4 sec. 34 

Parallel to these experiments, more detail studies were under way at the Lewis 
laboratory on fundamentals of injector design. Such work had been in progress since 
the early 1950s, but it was not until 1956 that experiments in this basic work focused on 
hydrogen. Carmen M. Auble studied six types of injection methods for hydrogen­
oxygen in a small (900 N) thrust chamber.JS Gaseous hydrogen, chilled to the 
temperature of liquid nitrogen (77 K), simulated the physical characteristics of 
hydrogen after it served as a coolant prior to injection. Not surprisingly, Auble found 
correlation between the mixing and spreading of the propellants and performance over 
a range of propellant mixture ratios, all his designs doing well at fuel-rich ratios. 
Increasing the temperature of the hydrogen to room temperature was beneficial. 
Compared with hydrocarbon fuels, hydrogen needed a fifth as much volume for 
comparable combustion efficiency. Separate and parallel jets, as used in the hydrogen­
fluorine run, did as well as injectors that promoted mixing. Auble found, however, that' 
combustion efficiency was controlled more by the degree of oxygen vaporization than 
by hydrogen dispersion and mixing. 

Late in 1957, Marcus F. Heidmann and Louis Baker, Jr., extended Auble's 
investigation, combining it with earlier analyses of propellant vaporization as a rate­
controlling step in combustion. They investigated fourteen injectors for hydrogen­
oxygen in an engine of the size that Auble had used. Their investigation confirmed that 
the degree of oxygen atomization was the primary factor affecting combustion 
efficiency. 36 

Concurrent with injector and performance studies were several investigations of 
fabrication techniques for lightweight and cooled combustion chambers and nozzles. 
In 1953, John E. Dalgleish, a fabrication expert, and A. 0. Tischler, a rocket 
researcher, worked together on lightweight thrust chambers using an electroforming 
technique.37 In 1954, Tischler placed orders in the shop for two other types. One used 
tubes formed according to the contour of the combustion chamber and nozzle and 
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brazed together- a method used by several rocket manufacturers starting with 
Reaction Motors. The other type was similar except that, instead of tubes, channels 
were formed and then brazed or welded together with a closure over the channels to 
complete the coolant passage and strengthen the whole assembly. Both of these 
experimental types were still in the shop two years later as they had been given a low 
priority. 

Until 1956, the primary responsibility for designing thrust chambers rested with an 
engineering service group headed by William A. Anderson. He developed a fabrication 
technique consisting of an inner shell of spun metal, wire spacers to form spiral coolant 
passages on the outside of the shell, and a welded "clam-shell" outer wall to enclose the 
coolant passages. A variation of this method was to form the outer shell of square wire 
brazed together. The Anderson design was successfully used on engines of 4.5 
kilonewtons and was the prime design for larger engines until 1956-1957. 

Obtaining experimental engines was hampered by increasing congestion in the 
fabrication shop. The N ACA shops were unexcelled in advanced fabrication 
techniques and willingly accepted all challenging work, but delivery was sometimes 
delayed by an avalanche of orders or work of higher priority. In 1956, the shops had 
orders for over a dozen thrust chambers of various designs and delivery was delaying 
experimentation. Steps were taken to reduce the number of designs, and Silverstein 
assigned Edward Baehr, a gifted design and fabrication engineer, to assist the rocket 
group. Baehr made a major contribution to the rocket effort by choosing a design 
something like Tischler's channel-wire wound type and successfully fabricating it. It 
consisted of a number of longitudinal channels of varying depth according to the 
coolant velocity required. These were bonded together to make up the chamber and 
bound by stainless steel wire wrapping which was brazed to make a fluid-tight and 
strong outer skin (fig. 17). This design was used in 1957 and subsequently.>K 

Since the early 1950s, Lewis associate director Abe Silverstein had been interested in 
liquid hydrogen as a fuel for both jet engines and rockets. In the spring of 1957. he 
decided that it was time to hold a research conference on results of the laboratory's 
investigations. That conference, plus additional emphasis on rocket research at the 
laboratory, meant unprecedented support for the rocket group. and they made the 
most of it. Silverstein became more involved in rocket problems and on 9 August 1957 
held one of his famous after-hours staff conferences on the subject of injector design. 
The informal session was held in the control room of the new facility-complete with 
beer and pretzels, compliments of Silverstein-and ran past midnight. Everyone 
contributed his views.* The author remembers stressing the concepts of mixing on a 
very fine scale coupled with uniform mixing except for a fuel-rich cooling region at the 
chamber walls. These concepts, not new, were adopted along with other design ideas 
such as selecting angles of jet impingement well away from the injector face. avoidance 
of recirculation of reactants across the injector face, and fuel-cooling of the injector 
face . In September, Silverstein held another meeting on injectors as well as other 
rocket design problems for experiments intended to be reported at the coming 
conference.J9 

*Attendees were : S ilverstein. W. T . Olson. Edward Baehr. Vearl Huff. M . F. Heidmann. A. 0 . Tischler. 
Howa rd Douglass. George Kinney, William Anderson. and the author. 
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Fig. 17. Experimental rocket chamber of 22 kN, regeneratively cooled. Fabricated by a method developed by 
Edward Baehr. NACA-Lewis, 1957. 

Space Becomes an Acceptable Word 

The fall of 1957 was one of fast-paced activity. The new rocket facility at the Lewis 
laboratory was completed and system checkouts were under way. Plans were made to 
include it as an exhibit stop in the laboratory's triennial inspection, scheduled for 
October. These inspections were NACA's way of showing its facilities and latest re­
search progress to congressmen, government officials, professors, engineers from 
industry, reporters, families, and friends. The affairs were exhaustively planned and 
rehear:sed and executed with split-second precision. 

· For its part in the inspection, the rocket group showed the great advantages ofhigh­
energy propellants, including hydrogen-oxygen and hydrogen-fluorine. As an 
example, they illustrated the case of a manned satellite in an 1850-kilo.meter orbit with 
a winged glider for returning to earth. The use of high-energy propellants would reduce 
the required booster size and weight by half. The exhibit also demonstrated the 
powerful oxidizing property of fluorine. A steel bar, chemically cleaned, was exposed 
to a small jet of gaseous fluorine and nothing happened. The bar was then 
contaminated by a slightly greasy thumbprint and again exposed to the fluorine jet. 
. The fluorine then reacted with the contamination, the reaction heating the steel bar 
until it burned-a spectacular and impressive demonstration of fluorine's potency. 

Among the many rehearsals was a review by officials from N ACA headquarters. The 
climate in Washington in the fall of 1957 was very negative towards space. It was all 
right to talk about the slow-paced scientific Vanguard satellite, part of the 
International Geophysical Year, but anything beyond it was considered "space-cadet" 
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enthusiasm. When John Victory, NACA executive secretary and one of its original 
employees, heard the word "space," he ordered that it not be used for fear of offending 
some of the visitors, particularly congressmen and other government officials. Before 
the inspection, however, the Soviet Union's Sputnik I put the word "space" in the 
headlines of every American newspaper, and guests heard the word in many of the 
laboratory's presentations. 

Emphasis on Hydrogen 

When the NACA 1957 Flight Propulsion Conference was held at the Lewis 
laboratory on 21-22 November 1957, it could have been called, as one member of the 
audience remarked, a conference on liquid hydrogen as a fuel. The primary emphasis 
was on air-breathing engines, but the rocket group had a sizeable part of the 
program-the last three of eight presentations.4o Silverstein had decided that rather 
than having individual papers, each subject would be handled by a panel taking turns 
presenting the subject and discussing it . The subjects were broad. The three on rockets 
were propellants, turbopumps for high-energy propellants, and performance and 
missions. The last two were firmly on the subject of high-energy propellants, but 
somehow the one on propellants got out of line. It covered the spectrum of propellants, 
with high-energy propellants receiving attention only at the beginning and at the end, 
and even then the emphasis was on cooling rather than performance. This emphasis on 
cooling was due to circumstances. Of the four panelists on propellants, only Howard 
Douglass was experienced in investigating high-energy propellants. Two of the 
panelists were newcomers to rockets; one was studying solid propellants, and the other 
was a controls specialist. It was characteristic of Silverstein to stimulate research by 
obligating the staff to a research conference with tight deadlines and by assigning 
individuals the responsibility of discussing subjects broader than their immediate 
research . Douglass had intended to cover high-energy propellants more thoroughly 
and add experimental results, but a series of delays in experimental operations almost 
caused his discussion to be all theoretical. 

First Regeneratively-Cooled Hydrogen-Fluorine Rocket 

For many months-since the first run of hydrogen-fluorine in March 1955-­
Howard Douglass, Harold Price, and Glen Hennings* had worked to design, build, 
and operate a rocket engine of 22 kilonewtons using liquid hydrogen and liquid 
fluorine, with the liquid hydrogen serving as a regenerative coolant. Edward Baehr 
worked with them in designing and fabricating the engine. Two kinds of injectors were 
designed and fabricated: a showerhead type and an impinging-jet type with two jets of 
fuel impinging on one of oxidizer (fig. 18). The face of each injector was fuel-cooled. 

Hennings was operations chief. A perfectionist ideally suited to cope with the 
hazards of handling fluorine, he made many equipment changes. Operations with 

*Hennings had been in charge of liquefying hydrogen until a liquid hydrogen plant in Painesville. Ohio. 
built by the Air Force. made liquid hydrogen available to the laboratory in quantity. 
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Fig. 18. Showerhead and triplet injectors for rocket engines at 22 kilonewtons using hydrogen-fluorine at 
NACA-Lewis. 1957-1959. The same general concept was also used for hydrogen-oxygen engines of the 
same thrust and also for larger engines (89 k N). 

fluorine were scheduled for weekends to minimize possible hazards for laboratory 
personnel working nearby. In a series of attempted runs, an incredible number of 
problems arose which Hennings doggedly attacked and solved one by one in his 
careful, methodical fashion. Time was running out, however, and with the conference 
only a few days away, Douglass drafted his part of the propellants paper around the 
cooling aspects of hydrogen-fueled engines and hoped for the best. 

An attempted run on the weekend before the conference was aborted and prospects 
appeared grim. Hennings cleared up several vexing problems, determined to operate 
the engine as soon as possible. On Wednesday evening, 20 November- the day before 
the conference began-a run was attempted but again problems halted operations. The 
crew worked all night to solve the problems and through the day Thursday, aiming for 
another try Thursday night. Douglass was to speak on Friday. The author, fearing that 
fatigue could cause a misjudgment and an accident, urged the crew to give up, take a 
rest, and try another day. They continued, however, and worked all through Thursday 
evening. Finally, at 5 :59 Friday morning, they succeeded with a beautiful run that 
lasted eight seconds, with no sign of overheating. The exhaust velocity measured was 
3400 meters per second, 96 percent of theoretical performance. But these values were 
not known to the tired crew when Douglass went home for a short rest and freshening 
before his appearance with the panel at 9 :30. Harold Price remained to work up the 
data as fast as possible and bring it to Douglass at the conference. 

When the propellants panel began its discussion, Price had not appeared; he was 
having trouble with security guards because his name was not on the list of those 
permitted to attend the classified conference. Finally he managed to convince them, 
hurried to the projection room, marked a data point on Douglass's slide, hurried 
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downstairs and up the aisle to the stage where he handed Douglass a note with the data 
and the engine itself, which had been dismounted to display at the conference. He was 
in the nick of time, for Douglass was the next to speak. Some in the audience thought 
the entrance was staged, but it was the real thing and a great moment of triumph for the 
NACA rocket group.4 1 

Two other panels at the conference also made a persuasive case for high-energy 
propellants, particularly liquid hydrogen for rockets. The turbopump panel found no 
great obstacles in developing turbopumps for hydrogen-oxygen or hydrogen-fluorine 
combinations and estimated that the mass of such a turbopump would be comparable 
to one for conventional propellants. The panel on performance and missions found 
that the greater the energy requirements for a mission, the greater the need for high­
energy propellants. For the case of a moon landing and return, the difference in initial 
mass between vehicles using kerosene-oxygen and those using hydrogen-fluorine or 
hydrogen-oxygen could be a factor as high as 8 to 1. Silverstein and the Lewis rocket 
group were convinced that liquid hydrogen was an extremely attractive fuel. 

Significance 

Although NACA started late in rocket research, kept its effort relatively small, and 
was but one of many organizations investigating high-energy propellants, its 
technology contributions were significant to later vehicle developments. NACA was 
the only government laboratory conducting in-house experiments on high-energy 
propellants, and N ACA data were quickly available to and influenced the work of all 
other groups. The strong NACA-Lewis preference for liquid hydrogen, which began in 
1950 and persisted in spite of delays in securing a supply, was instrumental in keeping 
others interested in hydrogen. Abe Silverstein, the Lewis associate director, strongly 
supported liquid hydrogen, and he later occupied a key position in the nation's space 
program. The NACA rocket subcommittee. a unique body of rocket experts from 
government, industry, and universities, exchanged information between all interested 
groups and assisted in national planning of rocket research and development. 



.
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NACA Research on Hydrogen for 
High-Altitude Aircraft 

Hydrogen was considered as an aviation fuel by P. Meyer in 1918 (p. 12); 
Tsiolkovskiy considered and rejected it for a rocket-powered airplane in 1935 ( p. 256). 
In 1939. George W. Lewis. director of research for the National Advisory Committee 
for Aeronautics (NACA) was talking about using liquid hydrogen with atmospheric 
air. presumably for aircraft propulsion (p. 73). During World War II. F. Simon, a 
respected physicist in England. nearly confounded the practical fuel experts in the 
United States by suggesting that liquid hydrogen be used to increase aircraft range (pp. 
11-12). Opie Chenoweth, Robert Kerley. John Duckworth. and their associates at 
Wright Field's power plant laboratory contracted with Ohio State University in 1945 
to investigate the application of liquid hydrogen to aircraft and rockets ( p. 18). None of 
these. however. got very far. principally because hydrogen's very low density made its 
application in volume-limited airplanes appear totally impractical. If this was not 
enough. opponents to hydrogen clinched their case by citing its very low availability as 
a liquid and its handling hazards . 

Beginning in the 1950s. however. several factors combined to make liquid hydrogen 
appear exceedingly attractive as an aviation fuel. Among them : incentives to operate 
airplanes at very high altitudes. advances in liquid-hydrogen technology, and 
experiments showing that hydrogen burned readily at low pressures. 

One of the places where an intense interest in hydrogen for aircraft developed during 
the 1950s was the NACA Lewis Flight Propulsion Laboratory in Cleveland. where it 
was pushed hard by the associate director. Abe Silverstein. NACA involvement with 
hydrogen for this application. however. had its roots in earlier work in fuels and 
combustion. 

One of the initial facilities built at the NACA Cleveland laboratory in the early 1940s 
was a well equipped chemical laboratory for fuels and lubricants. New fuels or blends 
for piston engines could be synthesized. and during the war. for example. the 
laboratory studied alternate high-octane fuels such as the aromatic amines. With the 
switch from piston to jet engines after the war, the type and characteristics of desired 
fuels also shifted. The amount of heat obtainable per unit mass and volume became of 
great importance. Research involved not only the theoretical energy content of fuels. 
but how to release and harness that energy over a range of operating conditions. How 
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well did the fuel mix in an air stream? Would the fuel ignite and propagate over a range 
of combustible mixtures? How efficient was the combustion process over a range of 
operating conditions, particularly at the reduced pressures of high altitude? Such 
questions became important for research to answer. 

In 1948, the Lewis laboratory presented its research on fuels at a conference; six of 
the nine papers were on fuels for turbojets and ramjets. 1 Melvin Gerstein discussed 
powdered metallic fuels such as aluminum and beryllium, which had heats of 
combustion per unit volume up to four times greater than gasoline. Gerstein also 
discussed diborane, reporting that its flame speed was fifty times greater than that of 
hydrocarbons. It was part of the great love affair with diborane and pentaborane by the 
laboratory and others which extended beyond the mid- l 950s. 

In 1950, the uneasy international situation, and especially the outbreak of the 
Korean war, led to an acceleration of aeronautical research and development. One goal 
was aircraft capable of operating at very high altitudes, and one obstacle in doing this 
was described by Walter T. Olson, J. Howard Childs, and Edmund R. Jonash of the 
Lewis laboratory in 1950: 

Experience has shown that, as operating altitudes are progressively increased 
beyond 25000 feet [7600 m], the effects of altitude on combustion efficiency 
ultimately result in severe penalties in thrust and specific fuel consumption. The 
problem of maintaining high combustion efficiency is one of the most important 
problems of altitude operation.2 

The investigators found that combustion efficiency increased with fuel volatility, 
with greater hydrocarbon content as compared to aromatics, and with more straight­
chain and fewer branched-chain hydrocarbons. 

The following year, Olson and Louis Gibbons surveyed fuels suitable for ramjets and 
summarized results achieved by several organizations, including the experiments on 
liquid hydrogen at Ohio State University. Although Olson and Gibbons included 
liquid hydrogen among the fuels of interest, they were more interested in investigating 
diborane, pentaborane, and slurries of magnesium and aluminum.3 The same year, 
Benson E. Gammon examined the performance of liquid hydrogen and two other fuels 
for ramjets, finding hydrogen superior per unit mass but inferior per unit volume.4 

Another Lewis laboratory analyst, Hugh M. Henneberry, considered fuels for aircraft 
during 1951 and concluded that: 

neither the very high nor very low fuel densities have any advantage for long-range 
flight ... the practical difficulties associated with the use of liquid hydrogen 
cannot be justified on a range basis, but if tactical considerations predicate.flight 
at extremely high altitudes, liquid hydrogen must be considered as a possible.fuel 
[emphasis added].S 

There it was-the advantage of hydrogen for attaining extremely high altitudes-but 
Henneberry, like others at Lewis, was impressed by the potential of another high­
energy fuel, diborane, and consideration of hydrogen went no further at that time.* 

*For flight at an altitude of 21 000 m and speed of Mach 3.6. Henneberry concluded that diborane had a 59 
percent greater range than hydrocarbon fuels. 
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The military services and their advisors also showed little or no interest in hydrogen 
for aircraft prior to 1954. The Navy had embarked on a massive investigation ofboron­
hydride fuels for jet engines and was joined in this effort by the Air Force and N ACA.6 
The fuels and propulsion panel of the USAF Scientific Advisory Board, in considering 
high-energy fuels at its April 1952 meeting,* noted that rockets favored fuels with 
combustion products of minimum molecular mass but that "this condition is irrelevant 
in a turbojet."7 This indifferent attitude towards hydrogen appeared to prevail 
generally for two more years until a series of events, starting in 1954, swept it aside like 
fog before the wind. 

New Interest in Hydrogen 

Beginning in February 1954 and extending through March, the fuels and propulsion 
panel of the Scientific Advisory Board met three times, in an exhaustive survey of the 
major aspects of the propulsion program of the Air Force.8 Although no mention was 
made of hydrogen in the minutes, the panel was greatly interested in high-energy fuels 
and the Air Force program on them. On the same day as the last meeting (24 March 
1954), Randolph S. Rae visited Wright Field with a proposal to use hydrogen in a high­
altitude aircraft powered by a unique engine called Rex I. By all indications his visit 
touched off a strong renewal of interest in liquid hydrogen for aircraft, which will be 
described in the following chapter. 

The origin of interest within NACA to use hydrogen as an aviation fuel has not been 
fully established, but experiments began in 1954. Several events apparently 
contributed to the NACA interest. In Washington, A. M. Rothrock, chief of 
propulsion research, completed a comprehensive survey and analysis of turbojet 
propulsion and its effect on airplane performance in August; it was published seven 
months later. Rothrock discussed seven major propulsion factors and the state-of-the­
art concerning them. One was the heat of combustion of the fuel-where, of course, 
hydrogen excels. Rothrock's favorite way of beginning such a discussion was to show a 
plot of heat of combustion as a function of atomic number, and hydrogen was higher 
than the upper limit of his scaie. Despite this, Rothrock's discussion of hydrogen 
revolved more around hydrogen as an element in fuel molecules than as a fuel per se. 
He acknowledged interest in hydrogen mainly in focusing on the current favorite fuels, 
the boron hydrides, and did not mention hydrogen in his conclusions. A month after 
completing his report, Rothrock attended a meeting of the fuels and propulsion panel 
of the Scientific Advisory Board when Rae's Rex engine using hydrogen was 
discussed.9 Apparently Rothrock was not sufficiently impressed with the idea of using 
low-density hydrogen in volume-limited aircraft to change his report. which was still in 
the process of publication; but he may have passed word on the hydrogen proposal to 
the Lewis laboratory. 

In 1954, current turbojet engines could operate at altitudes of 13 700 meters without 
serious loss of combustion efficiency. Under the direction of Olson and Childs, a group 

*The chairman was Prof. C. Richard Soderberg. M.l.T. Other members : Louis G. Dunn. William M. 
Holladay. Andrew Kaletensky, and W. D. Rannie. A. M. Rothrock of NAC A attended the meeting as a 
guest and was later a member, 1953- 1955. 
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of researchers at the Lewis laboratory was engaged in a series of experiments to relate 
the effect of fuel characteristics, combustor design, and altitude operation on 
combustion efficiency. From this research, the altitude limits for good combustion had 
been extended to 21 000 meters, but the goal was 30 500 meters. As part of this research, 
Jonash, Arthur Smith, and Vincent Hlavin turned to gaseous hydrogen in 1954 and 
were not disappointed .* In their report completed two days before Christmas, 1954 
(published five months later), they indicated that hydrogen burned well in a single 
turbojet combustor at pressures as low as I / 10 atmosphere; at 1/ 4 atmosphere, 
combustion efficiency was above 90 percent. These results were within the combustion 
pressure range for turbojet engines operating at 30 500 meters altitude. The authors 
believed that they could attain I 00 percent combustion efficiency with better mixing of 
hydrogen and air. Propane was investigated briefly and found to be greatly inferior to 
hydrogen, with the difference attributed to hydrogen's higher flame speed and wider 
flammability limits. 10 

Sometime during 1954 or early 1955, Abe Silverstein, the associate director of the 
Lewis laboratory, was struck with an idea concerning hydrogen. Well aware of high­
altitude flight objectives and well versed in aircraft design principles, he suddenly saw a 
way of using hydrogen's superior combustion characteristics and coping with its 
principal disadvantage, low density. At high altitudes and low speeds, large wings are 
needed and these call for a proportionately large fuselage. Under these flight 
conditions, the drag of the airframe is low. The large volumes available in the wings 
and fuselage favored the use of low-density liquid hydrogen, provided lightweight 
hydrogen tanks proved feasible. 

As was his custom when struck with a new idea, Silverstein made some approximate 
or "back of the envelope" calculations. He became so enthused over the results that he 
went to Washington to discuss them with Hugh Dryden, NACA director of research. 
Dryden, too. was impressed , and the two discussed the idea with Air Force officials. 
Silverstein was convinced that he had something good, but needed more detailed 
calculations to back it up. 11 

Silverstein-Hall Report 

When Silverstein returned from Washington. he asked Eldon Hall. one of the 
laboratory's top analysts, to assist him in refining his analysis on using hydrogen for 
high-altitude aircraft. While this was under way, the fuels and propulsion panel met in 
March 1955 to discuss high-energy fuels . t The panel was very impressed with the 
potential of liquid hydrogen and boron hydrides. 12 The work of Jonash. Smith. and 
Hlavin was described, as well as current work by Thaine W. Reynolds of the Lewis 
laboratory. Reynolds, who was assisting Hall in the analysis for Silverstein. was 
studying lightweight tanks for hydrogen and was convinced that they were feasible. 

*Whether the Lewis group thought of using hydrogen independently or as a result of a suggestion by the 
Air Force or by Rothrock has not been established. 

tMark M. Mills had succeed ed Soderberg as chairman. Othe r members : W. D. Rannic. E. S . Taylor . Gale 
Young. and A. M. Ro th rock . 
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The fuels and propulsion panel suggested that the Air Force begin work on hydrogen 
fuel systems, hydrogen-fueled engines, and preliminary designs of hydrogen-carrying 
aircraft. This meeting apparently spurred the Lewis analysts to faster action, for 
Silverstein and Hall completed their report on 1 April 1955 and published it two weeks 
later- a near record for fast NACA publication and an indication of the importance 
Silverstein attached to the subject. 

In their introduction. Silverstein and Hall noted that despite hydrogen's high 
heating value and good combustion characteristics. it had received only casual 
attention. They acknowledged the deterrents of low density , low availability, and 
difficult handling. but made a case for considering hydrogen based on four points: a 
milita ry need that could not be met in any other way, advantages of hydrogen for high­
altitude flight, improvements in jet engines that indicated their mass could be halved 
for the same power, and large wing and fuselage requirements for high-altitude flight. 
The first two points were based on hydrogen's unique properties. The third favored 
light weight. and the fourth high volumes, to overcome hydrogen's disadvantage oflow 
densit y. As for availability and handling. Silverstein and Hall cited past experiences, 
implying that if the flight problems could be solved, so could those on the ground . u 

Of the flight problems, the authors singled out hydrogen ta nkage as a major 
problem. They drew on the technology of long-range missiles, particularly the Atlas, 
and suggested that liquid hydrogen tanks be constructed as cylindrical balloons of 
light-gage metal. depending upon internal pressure to maintain shape (fig. 19). This, of 
course. was the same idea proposed by Oberth in the 1920s a nd Martin and North 
American engineers in the 1940s. and being used for the first time on the Atlas ICBM 
amid some skepticism. 

Fig. 19. Liquid-hydrogen ta nk suitable for aircraft as envisioned by Abe 
Silverstein and Eldon Ha ll . "Liq uid Hydrogen as a Jet Fuel fo r H igh Altitude 
Aircraft." NACA RM E55C 2Ra. 15 Apr. 1955. Of light-gage meta l that 
depended on interna l pressure to ma intain its shape. the ta nk was 25 m long. 
3 m in diameter with a volume o f 175 m'. Liquid-hydroge n ca pac ity was 
11300 kg. The estima ted ta nk ma ss was IO percent of the fue l mass. 
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Using the basic hydrogen-tank design, Silverstein and Hall analyzed the use of liquid 
hydrogen for a subsonic bomber, subsonic reconnaissance airplane, and supersonic 
fighter. Of these, the reconnaissance type will be described as a typical example and for 
its relationship to later events. 

The subsonic reconnaissance airplane had a gross mass of 40000 kilograms and 
carried hydrogen tanks in wings and fuselage, as well as optional drop tanks for 
additional range (fig. 20). It operated at an altitude of 24000 meters and could make 
observations 13 500 kilometers from its base. A supersonic version was about I /4 
lighter, operated at the same altitude at a speed 3 times faster, but had a range less than 
1/ 5 the subsonic type. 

The subsonic version was powered by advanced turbojet engines weighing about 
half those in current use. The supersonic type also used an advanced turbojet that was 
equipped with an afterburner. Additional data on the airplanes and engines are given 
in table 2. 

Silverstein and Hall concluded that "within the state of the art and the progress 
anticipated, aircraft designed for liquid-hydrogen fuel may perform several important 
missions that comparable aircraft using hydrocarbon (JP-4) fuel cannot accomplish." 
They also concluded that "substantial applied research and development effort will be 
required in many technical fields to achieve the goals outlined."14 It was a convincing 
case for hydrogen if the assumptions were accepted. Silverstein, as the chief research 
executive of the Lewis laboratory, thereupon initiated a massive research program on 
hydrogen to give substance to his assumptions. 

. .......... , 
//) 

Fig. 20. High-altitude, subsonic reconnaissance airplane using liquid hydrogen as fuel. The liquid hydrogen 
tanks are in both fuselage and wings. Flight Mach number, 0.75; a ltitude 24400 m. From Silverstein and 
Hall, "Liquid Hydrogen as a Jet Fuel," 1955. 
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TABLE 2.-·-Characteristics and Performance of Reconnaissance Airplane and Engine Designs 

Item Reconnaissance Airplane 
Subsonic Supersonic 

Cruise Mach No 0.75 2.5 
Cruise altitude. m 20000 22000 
Target altitude. m 24000 24000 
Gross mass. kg 39800 34000 

Fixed (instruments, cameras. controls) 2268 2268 
Structures 13000 13000 
Engine 6328 6169 
Fuel tank 2372 1610 
Fuel 15 760 10730 

Wing 
Area. m' 348 107 
Sweep angle, deg 31 0 
Aspect ratio 13 3 
Average section thickness ratio 0.12 0.03 
Taper ratio 2 2 

Empennage area, m2 87 32 
Fuselage 

Length, m 45 52 
Diameter. riJ 3.5 3.7 

Lift coefficient. initial cruise 0.54 0.14 
Lift/ drag ratio (airplane less engine nacelles. 25.4 4.33 

initial cruise) 
Radius, km 13500 2490 
Engines (turbojet) 

Number 4 4 
Compressor diameter, m 0.87 0.84 
Sea-level thrust N 64050 72500 

(lb) (14400) (16300) 
Cruise specific fuel consumption. kg/ hr/ N 0.040 0.072 

From: Ahc Silverstein and Eldon Hall. "Liquid Hydrogen as a Jet Fuel for High-Altitude Aircraft." '.'JACA RM E55C282. 

15 Apr. 1955. p. 21. 

A key assumption of the Silverstein-Hall analysis was the feasibility of lightweight, 
insulated flight tanks suitable for liquid hydrogen. Reynolds continued his 
investigation and reported the results in August 1955. Table 3, taken from the report, 
summarizes the results. Reynolds concluded that it was feasible to design a tank that 
had a mass less than 15 percent of the liquid hydrogen it contained. Estimated 
hydrogen vaporization rates were less than 30 percent of hydrogen consumption 
during cruise, and prior to flight, the tank could be held in stand-by condition and 
readied for flight in a short time.1 s 

Followin~ the completion of the report with Hall on flying aircraft fueled with 
hydrogen, Sil\l-erstein again visited the Air Force with missionary zeal. He also set in 
motion a great wave of research related to hydrogen's use in aircraft at the Lewis 
laboratory. This included properties, combustion, materials, tankage, bearings, 
pumpings, controls, and complete engines. In 30 months, the investigations led to three 
dozen reports and were climaxed by a research conference in November 1957. 

In September 1955, Jerrold D. Wear and Arthur L. Smith completed an 
investigation of six types of injectors for burning gaseous hydrogen in a turbojet 
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TARLE 3.-Flighr-Trpe Liquid-Hrdrogen Tank Design 

Size: 
Diameter. m .... .. . .. ... .. ......... . ... . ........... .. ................. . . ... .. . 
Length. m ................. .. ....... . . . . ...... . . . .... .. .. .. . . .. . . . .. .. ...... . . 
Volume, m' ....... . . . ..... . . . ........ . .. . ...... .. . . ........... .. . 

3.05 
24.9 

174.2' 
Surface area, ml ......... . . . . . . . . . .... . . ... . 238.2 

Working pressure, atm ... . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
Styrofoamh insulation: 

2 

Thickness, cm . ........ ... . ...... ........... . 5.7 
Density, kg/ mJ ....... . . . ..... . .. . .... . .. . .. . 20.8 

Mass of tank : 
Shell. kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .. . . . . ......... . . 1163 
Insulation, kg .. ... .. . . .. ........ ...... .. ...... . . .... .......... . . . . 284 
Covering, kg . . . . . . . . . . . . . .......... . . . .. .. . .. . ...... . . . .. , , .... .. . . . 29 
Allowance for baffles and stiffeners. kg ............. . ............ . ......... . ..... . 112 
Approximate total mass. kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .. . . 1588' 

Estimated performance with ambient temperature at: 300 K 218 K 

Outer surface temperature. K .... ... . 285 154 
Heat-leak rate. W ........ . 25770 14500 
Hydrogen-vaporirntion rate. kg/ hr . . . 
No-loss time on ground. min .. . . .. .. .... ..... . 

206 
165d 

116 

a Holds 11 340 kg: liquid hydrogen with 9 percent expansion volume. 
h Cov~rcd with layer of Mylar-aluminum foil. 
c /\bout 14 percent of fuel mass. 

<1 For a tank wi th 5. 7 cm insulatio n. prccoolcd with liquid nitrogen. No-loss time is the l ime for heat leaking into the ' 
l<rnk to n1pori1c enough hydrogen to ra ise the rressurc to the working pressure (2 a tm). 

From: T.W. Reynolds. "Aircraft-Fuel-Tank Design for Li4uid Hydrogen."NACA E5.5.F22. 9 Aug. 1955. p. 9. 

combustor. 16 They found that at conditions simulating full power, all six injectors gave 
high combustion efficiency-an indication of the ease of burning hydrogen. Some 
relatively low combustion efficiencies were obtained, but these were at conditions 
where ordinary jet fuel would not burn. These experiments were followed by others as 
the laboratory probed deeper and deeper into the combustion of hydrogen under a 
variety of conditions. 

Bee Project 

The component and engine testing of hydrogen in the laboratory, essential as they 
were, did not answer an important question: Was it practical to use liquid hydrogen in 
an aircraft? Silverstt:in had been interested in finding this out from the beginning and 
his big opportunity came from a parallel interest by the Air Force. 

In the fall of 1955, the power plant laboratory of Wright Field. headed by Col. 
Norman C. Appold, planned an experiment to determine the feasibility of flying an 
airplane fueled with liquid hydrogen. The bids for a contract-about $4 million a year 
for 3 years- were higher and longer than anticipated. Lt. Col. Harold Robbins, 
ARDC headquarters and former Air Force liaison at Lewis, suggested that the NACA 
be approached to do the work. Silverstein jumped at the opportunity. He promised to 
do the job in 12 months and with $1 million for special equipment. The agreement was 
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reached in December 1955, and Silverstein lost no time in getting started. He chose 
Paul Ordin to be the project manager, assisted by Donald Mulholland. The project 
staff was quickly selected and put to work on their new assignment. 17 

Although Silverstein was technical head of a laboratory with a complement close to 
3000, it was characteristic of him to direct the project personally. He had a room in the 
basement of the administration building cleared for use by the project group. It was 
directly below his office and convenient for his close supervision. The project was 
classified secret and known as Project Bee. 

The airplane selected for the project was the B-57B twin-engine bomber powered by 
Curtiss Wright J-65 turbojet engines. The basic plan was to equip the airplane with a 
hydrog~n fuel system, independent of its regular fuel system, and modify one engine to 
operate on hydrogen as well as its regular fuel, which was JP-4 (kerosene). The airplane 
was to take off and climb on its regular fuel. After reaching level flight at about 16 400 
meters, the fuel on one engine was to be switched from JP-4 to hydrogen. When the 
hydrogen experiment was complete, the fuel flow would be switched back to JP-4 and 
the airplane would return to base under its normal operating conditions. 

The project team, aided by others in the laboratory, began to design and test the 
various components for the flight system. A liquid hydrogen tank was designed for 
mounting beneath the tip of a wing. Two methods for pumping liquid hydrogen were 
selected. The first was to pressurize the hydrogen tank with helium, a simple and fast 
method but requiring a fairly heavy tank to withstand the pressure. The second was to 
employ a liquid-hydrogen pump, but this required time for development. Conse­
quently the first tests were made with the pressurization system. 

Earlier combustion experiments showed that gaseous hydrogen burned easily in the 
turbojet engine. To feed gaseous hydrogen to the airplane en3ine required some means 
for gasifying the liquid. A heat exchanger was designed and tested for this purpose. 
Ram air passed through it during flight to heat and gasify the liquid hydrogen. 18 

The dual fuel system and transition between the two fuels, JP-4 and gaseous 
hydrogen, called for an integrated control system, the key component of which was a 
flow regulator for the gaseous hydrogen. The speed of the engine was controlled by 
coupling the hydrogen flow regulator to the engine's JP-4 fuel control. 19 

The flights were the province of the laboratory's test pilots headed by William V. 
(Eb) Gough, Jr., the fourth Navy pilot to qualify in helicopters and the thirtieth in jets; 
he joined the NACA as a test pilot after the war. By early May, Gough had checked out 
on the B-57 at the Glenn L. Martin plant in Baltimore and the Air Force hud ferried a 
B-57 to Cleveland for the experiments.20 

Assisting Gough was Joseph S. Algranti, another test pilot, who would fly in I he rear 
seat and operate the special controls of the hydrogen fuel system. He participated in the 
ground testing of the system from the beginning of the project. A third test pilot served 
as back-up and was in charge of the ground control station. 

The testing of the flight components required a considerable amount of liquid 
hydrogen-the problem that had plagued the rocket group at Lewis for a long time. 
The Air Force made available mobile hydrogen liquefaction equipment and tanks 
from the hydrogen bomb program. Glenn Hennings got the equipment in good 
working order and was soon producing liquid hydrogen for the various laboratory 
needs.21 In the first half of 1956, as part of another program, the Air Force let a contract 
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to build at Painesville, Ohio, a hydrogen liquefaction plant with a capacity of 680 
kilograms per day. When this plant began production late in 1956, it supplied all of 
Lewis's hydrogen needs. 

Concurrent with the development of the flight system for supply and controlling 
hydrogen to the engine, a number of experiments were conducted with single turbojet 
combustors and full-scale engines using gaseous hydrogen as a fuel. The engine 
performance was high and insensitive to initial hydrogen temperature.ii 

ln other research, hydrogen in a combustor 2/ 3 as long as a standard one, 
outperformed JP-4 and also operated at an altitude of26000 meters- 6000 higher than 
the limit for JP-4. 23 This meant that a shorter engine was possible with hydrogen, with 
accompanying substantial savings in mass. In another investigation, a team led by 
William A. Fleming compared the altitude performance of two turbojet engines, one 
burning hydrogen and the other JP-4. The engines were single-spool, axial-flow types, 
developing 33-45 kilonewtons (7500-10000 lb thrust). Hydrogen provided stable 
operation to the limits of the test facility- about 27 400 meters and Mach 0.8. In 
comparison, the same engine using JP-4 flamed out at altitudes 3000 to 4500 meters 
lower. Further, the specific fuel consumption (mass flow of fuel per hour divided by 
thrust) of hydrogen was 40 percent that of JP-4 fuel. 24 

Silverstein wanted a thorough check of the engine and control system, using both 
JP-4 and hydrogen fuels in the altitude wind tunnel before attempting flight. This was 
carried out by Harold R. Kaufman and associates, including test pilot Algranti. The 
hydrogen system consisted of a stainless steel, wing-tip fuel tank, a heat exchanger that 
utilized air passing through it to vaporize the liquid hydrogen, and a regulator to 
control the flow of hydrogen to the engine. The J-65 turbojet engine was modified by 
the addition of a hydrogen manifold and injection tubes. The modification did not 
change the engine's regular fuel system using JP-4. Kaufman reported that with JP-4 
the maximum altitude for stable combustion was about 20000 meters and flame-out 
occurred at 23 000 meters. In contrast, hydrogen was stable to the limit of the facility at 
27000 meters at flight-rated speed and temperature. The thrust was 2 to 4 percent 
higher, and specific fuel consumption was 60 to 70 percent lower, than with JP-4 fuel. 25 

In the simulated flight tests, 38 transitions were made from JP-4 fuel to hydrogen. 
Over three-fourths of these were satisfactory. The others had some engine speed 
variations, but they were so small and short in duration that the engineers believed 
there would have been no detrimental effect on aircraft performance. These 
satisfactory results in the altitude chamber cleared the way for testing the hydrogen 
system in the B-57. 

The hydrogen fuel tank on the left wing of the airplane (figs. 21 and 22) was 6.2 
meters long with a volume of 1.7 cubic meters. The stainless steel tank wa~ designed for 
a pressure of 3.4 atmospheres and insulated by a 5-centimeter coat of plastic foam, 
covered by aluminum foil and encased in a fiberglass covering. On the opposite wing 
was the helium supply consisting of 24 fiberglass spheres charged to 200 atmospheres. 
The helium was used for pressurizing the hydrogen tank and for purging. A heat 
exchanger for vaporizing the liquid hydrogen, a flow regulator, and a manifold for 
feeding gaseous hydrogen to the engine comprised the rest of the hydrogen system. 

As Christmas neared, pilots Gough and Algranti made a series of checkout flights 
without hydrogen, and finally the big day came. On 23 December 1956, Scotty 
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Fig. 21. Liquid-hydrogen fuel system for one engine of a B-57 airplane installed by the NACA Lewis 
laboratory. 

Fig. 22. B-57 airplane modified by the NACA Lewis laboratory to use liquid hydrogen in one engine. The 
wing-tip pod on the right (the airplane's left wing) is the hydrogen tank; the opposite pod contains helium 
for pressurization and purge. The dense smoke is normal in starting this engine on conventional fuel. 
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Simpkinson made the final check of instruments and the B-57 was fueled with JP-4. It 
was then towed to a remote site for loading liquid hydrogen. The vent of the tank was 
connected by pipe to a discharge area well away from the airplane and the system 
purged with helium. After countdown, 94 kilograms of liquid hydrogen were loaded 
into the wingtip tank. The ground crew left the vent-pipe system connected until 
Gough started the plane's engines on JP-4. At that time, Algranti closed the vent valve, 
the ground crew disconnected the vent line, and Gough began to taxi. He was 
accompanied by an Air Force chase plane equipped with a camera.26 

As the B-57 taxied into position for take-off, Algranti was maintaining the pressure 
in the liquid hydrogen tank. With the vent valve closed, the vaporization of a small 
amount of hydrogen caused the pressure in the gas pocket above the liquid hydrogen to 
rise. The vaporization was caused by heat leakage through the insulation, which is 
unavoidable in a practical installation. From ground testing, Algranti knew that the 
pressure would rise from 1 to 3.5 atmospheres in about five minutes, and he had to 
manually vent the tank when the pressure began to rise above 3.5 atmospheres. While 
taxiing, he noticed that the rate of pressure rise was considerably slower than in ground 
tests; the instrument records indicated that sloshing and agitation of the hydrogen 
during taxiing slowed the pressure rise by a factor of two. During takeoff, the tank 
pressure dropped sharply from agitation. Once airborne, however, the agitation ceased 
and the pressure began to rise at about the same rate as in the stationary tests. This 
phenomenon was caused by thermal gradients and stratification of liquid hydrogen 
and its vapor and was the subject of detailed investigation later. 

The takeoff and climb to the cruising altitude of 15 200 meters took almost an hour, 
and during that time, Algranti vented the tank 8 times to keep the pressure within 
limits. This resulted in a loss of about 16 percent of the hydrogen. On signal, Algranti 
made the transition from JP-4 to hydrogen. The engine responded by overspeeding 
and vibrating hard . The startled pilots quickly shut it down, purged the lines, and 
jettisoned the liquid hydrogen in the wing tank . The B-57 was difficult to fly on one 
engine, but Gough's training included this contingency. The experiment had taken 
place over Lake Erie and the weather had deteriorated. Gough dismissed the. chase 
plane, but the pilot elected to accompany him back to the Cleveland airport. The two 
landed side by side on dual runways in a light rain. 

Although the first flight was unsuccessful in operating the engine with hydrogen for 
an extended period, it was successful in showing that hydrogen could be handled and 
jettisoned safely. In addition, data were obtained on the phenomenon of hydrogen 
thermal stratification in the tanks. 

The second flight was also only partially successful. The transition from JP-4 to 
hydrogen was made successfully, but insufficient hydrogen flow prevented satisfactory 
high-speed engine operation. Again, the bulk of the hydrogen was jettisoned without 
incident. The jettisoning took less than 3 minutes, with the hydrogen forming a dense 
plume which vanished about 6 meters aft of the tank. 

On 13 February 1957, the first of three successful flights was made and the fuel sys­
tem worked well.27 The transition to hydrogen was made in two steps. The hydrogen 
lines were first purged, then the engine was operated on JP-4 and gaseous hydrogen 
simultaneously. After two minutes of operations on the mixture, Algranti switched to 
hydrogen alone. The transition was relatively smooth and there was no appreciable 
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change in engine speed or tailpipe temperature. The engine raii for about 20 minutes on 
hydrogen. The pilots found that the engine responded well to throttle changes when 
using hydrogen. When the supply was almost exhausted, the speed began to drop. As 
this became apparent, Algranti switched back to JP-4 and the engine accelerated 
smoothly to its operating speed. The engine burning hydrogen had produced a dense 
and persistent condensation trail, while the other engine operating on JP-4 left no trail. 

On 26 April, Silverstein held a special conference to report what had been learned by 
the Bee project using hydrogen in flight. The 175 attendees heard 7 papers by 19 
members of the project team. They covered hydrogen consumption, fueling problems, 
airplane tankage, airplane fuel system, and the flight experiments. The results were also 
given in a series of research reports published Iater.28 

The first series of flights of the hydrogen-fueled B-57 was made with a helium 
pressurization system to force the liquid hydrogen from the wing-tip tank to the 
engines. This required a fairly heavy tank to withstand the pressure. Later, a liquid­
hydrogen pump was developed which permitted a reduction in tank weight that more 
than offset the weight of the pump. Arnold Bierman and Robert Kohl developed the 
five-cylinder piston pump, driven by a hydraulic motor, fo~ installation in the wing-tip 
liquid-hydrogen tank.29 

Flight experiments with the pump extended into 1959. Three successful flights were 
made. Although the pump speed and discharge pressure varied, the hydrogen regulator 
maintained a constant engine speed during operation with hydrngen. All the 
transitions from JP-4 to hydrogen, burning hydrogen, and transition back to JP-4 
were made without incident. The feasibility of using liquid hydrogen in flight had been 
thoroughly demonstrated.JO 

Flight Propulsion Conference 

The Bee project of flying an airplane fueled with hydrogen was part of a broader 
investigation of advanced engines for airplanes and missiles at the NACA Lewis 
laboratory. The broader vein was presented at a second research conference held on 
21-22 November 1957, with 300 attendees. Hydrogen was the chief fuel discussed. The 
papers were presented by a series of eight panels, five of which were on air-breathing 
engines. The other three were on rockets (p. 91). Edgar M. Cortright. J . Howard 
Childs, De Marquis D. Wyatt, and David S. Gabriel led, describing the air-breathing 
engine concepts. They pictured military planning as being at a critical stage. The choice 
of deterrent weapons included the manned bomber, unmanned missile, glide bomber 
utilizing aerodynamic lift, intercontinental ballistic missile, and satellite bomber for 
flight beyond the atmosphere. Development of each was expensive and time 
consuming; the purpose of the first five panels of the conference was to present "an 
appraisal of the ultimate performance capabilities of aircraft and missiles powered by 
air-breathing engines"- range, speed, weight, and payload were used as criteria of 
merit. Flight at very high speed heats a ircraft surfaces and requires cooling for 
sustained flights. Cortright's panel found that only liquefied methane and hydrogen 
had significant cooling capacity at flight speeds a bove Mach 5. Hydrogen was the best 
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fuel for cooling, primarily because it was thermally stable and useful up to the 
maximum allowable temperatures of the vehicle surfaces.31 

Fuel heating value was also examined and not surprisingly, the panel singled out the 
superiority of hydrogen, noting that it was 70 percent better than diborane. Hydrogen's 
high heating value, combined with its greatly superior cooling capacity, made it 
extremely interesting as a fuel for long-range hypersonic flight. 

The first panel noted the disadvantages of hydrogen's low density-a problem 
. considered by a later panel. Also noted was possible dissociation loss that might limit 

the realization of full heating value of the fuels considered. These and other 
considerations provided the basis for detailed discussions of two applications: a 
manned bomber flying at a speed of Mach 4, to be powered by a new engine; and an 
unmanned ramjet missile-with all surfaces glowing red hot from air friction at its 
flight speed of Mach 7-cooled and fueled by hydrogen. 

Air-Breathing Engines for High-Speed Flight 

After panel discussions of inlets, exits, and cooling, an engine panel headed by H. M. 
Henneberry analyzed four types of engines for the Mach 4 manned mission and two 
types of ramjet for the Mach 7 unmanned missile.* The Mach 4 engines were: turbojet, 
fuel-rich turbofan, hydrogen expansion, and air-turborocket. All four had common 
elements of air inlet, fan or compressor for increasing the pressure of the incoming air, 
afterburner where additional fuel was burned, and nozzle. The fan or compressor was 
driven by a gas turbine, but the turbine and its driving gas differed among the four 
engines. In the turbojet the driving gas was primarily air, in the fuel-rich turbofan and 
air turborocket the gas was hydrogen rich, and for the hydrogen-expansion engine the 
gas was all hydrogen. 

Of the four engines, the hydrogen-expansion type is of particular interest because it 
was under development in a super-secret Air Force project to be discussed later. The 
hydrogen-expansion engine described by Henneberry had a complex flow system 
which will be described with the aid of figure 23. Air entering the engine was 
compressed by a two-stage fan driven, through suitable gearing, by a high-speed 
turbine. A small amount of air was directed to the primary combustor; the main stream 
flowed directly to the afterburner. The liquid hydrogen was raised to a high pressure by 
a pump and served as a coolant for various purposes (such as cooling hot vehicle 
surfaces) prior to entering the engine. The heat absorbed during these cooling 
functions converted the hydrogen to a gas. In the engine, the hydrogen flow was split, 
with one part flowing directly to the afterburner. The other part flowed through a heat 
exchanger where its temperature was increased substantially. The hot hydrogen was 
used to drive a 3-stage turbine which, in turn, powered the fan for compressing the air. 
After leaving the turbine the hydrogen entered the primary combustor where it burned 
hydrogen-rich with air. The hot, hydrogen-rich combustion gas entered the other side 
of the heat exchanger where it provided the heat for the separate flow of hydrogen gas 

*With Henneberry on the engine panel were A. V. Zimmerman, J. F. Dugan, W. B. Schram, R. 
Breitwieser, and J . H. Povolny. 
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Fig. 23. Schematic of hydrogen expansion engine as described by Henneberry at NACA 1957 Flight 
Propulsion Conference, 21:-22 Nov. 1957. 

for the turbine previously mentioned . After leaving the heat exchanger, the hydrogen­
rich combustion gas flowed to the afterburner where it and the other part of the 
hydrogen flow burned to completion, after which the hot gases expanded through the 
nozzle to provide thrust. Henneberry and his panelists estimated the weight of the 
hydrogen-expansion engine to be JO percent heavier than a turbojet, and to have many 
difficult development pro bl ems.* 

The turborocket, being pushed by W. C. House of Aerojet-General Corporation, 
used a small rocket to provide the hot gases for driving a turbine, with the turbine 
driving the air compressor or fan. The rocket used either a monopropellant or 
bipropellants-the latter being fuel-rich with additional burning in the afterburner, as 
in the other engines. The panel described a turborocket using liquid hydrogen as the 
fuel. After being compressed, part of the incoming air was diverted through a heat 
exchanger, chilled on its other side by liquid hydrogen. The air was liquefied and 
pumped at a high pressure to the rocket chamber. The main air-stream flowed directly 
to the afterburner. Liquid hydrogen, after serving to liquefy the air in the heat 
exchanger, went directly to the rocket chamber where it mixed and burned fuel-rich 
with the air. The combustion products drove a turbine (which drove the air fan or 
compressor). After leaving the turbine, the hydrogen-rich gas flowed to the afterburner 
where it mixed and burned in the main air-stream. A potential problem in this type of 
engine was icing from moisture in the incoming air. 

•As will be disrnssed later, Pratt & Whitney built a hydrogen-expander engine and tested it for the first 
time two months before the NACA conference. The engine development was part of a highly secret Air Force 
project, and it is very doubtful that the Henneberry panel was aware of it. Another. somewhat similar, type of 
cycle- the Rex engine-was known to the Lewis laboratory and the Henneberry panel may have drawn on 
this knowledge. Interview with A. Y. Zimmerman, Roger Luidens, and Richard Weber. NASA Lewis 
Research Center, 30 May 1974. 
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After comparing the four types of engines, the Henneberry panel concluded that the 
turbojet was the simplest, would require the least development, and was adaptable to a 
wide variety of fuels. 

Of the two ramjets considered by the Henneberry panel, one was described as 
conventional, the other fuel-rich. In the former, enough fuel was provided for complete 
combustion with the oxygen available, while the latter used an excess of fuel. The 
excess fuel helped to offset decrease in thrust at speeds above Mach IO. The panelists 
found that hydrogen was superior to diborane and methane for cooling and for 
performance at high supersonic speeds. They concluded that a fuel-rich ramjet using 
liquid hydrogen could extend the usefulness of air-breathing engines to speeds up to 
Mach 18. 

Mach 4 Configurations and Missions 

Another panel at the NACA 1957 conference on propulsion, headed by Roger W. 
Luidens, bridged the papers on propulsion with an analysis of the range capabilities of 
airplanes using the advanced propulsion concepts; it was followed by another panel led 
by S. C. Himmel that tied all the previous discussions of air-breathing engines, 
airplanes, and missiles together.* One mission selected for discussion was a speed of 
Mach 4, altitude of 30500 meters, a payload of 4500 kilograms, with airplanes using 
turbojet engines. When designed for hydrogen, the airplane was 91 meters long and 
had a gross mass of 136000 kilograms of which about l / 3 was hydrogen. The airplane 
using JP-4 fuel was half as long, but had a mass 40 percent greater than the hydrogen 
configuration, with the JP-4 making up 60 percent of the mass. The hydrogen-fueled 
airplane had a range of just over 5000 kilometers compared to 3050 for the JP-4 
airplane (fig. 24). While the hydrogen airplane had the greater range, it was short of the 
goal of I 0 200 kilometers. Use of an air-turbo rocket increased the range 13 percent, but 
this was not enough to warrant the cost and time of development. Even with additional 
engine improvements and by using advanced airframe design, the range of the 
hydrogen-fueled airplane could be increased to only 7600 kilometers, still short of the 
goal. 

The airplane designs using turbojets were outclassed by a hydrogen-fueled ramjet 
missile. With a inass of 17 400 kilograms and boosted to its cruising speed, it carried 
the same payload (4500 kg) at Mach 7 for a distance of 16700 kilometers. Liquid 
methane and diborane were both inferior to liquid hydrogen. 

The November 1957 propulsion conference at N AC A-Lewis proved to be the climax 
of efforts to promote air-breathing hydrogen-fueled engines as competitors to rocket­
powered intercontinental ballistic missiles. Strangely enough, the rich amount of 
experimental data on hydrogen from Lewis ground and flight experiments was not 
apparent to members of the audience. What came across strongly from the papers were 
concepts and trends of what the future could be like with hydrogen in advanced 
turbojet and ramjet engines. These potentials, however, came too late to catch up with 

*With Luidens were J . H. Disher, Murray Dryer, and T. W. Reynolds ; with Himmel were E. W. Conrad. 
R. J . Weber, R. R. Ziemer, and W. E. Scull. 
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Fig. 24. The effect of fuel type is shown by these models of high-altitude supersonic aircraft. The gross weight 
of the larger, hydrogen-fueled aircraft (left model) is only 60 percent of that of the smaller, JP-fueled 
aircraft (model on right). NACA 1957 Flight Propulsion Conference. 

ballistic missile development. As a final clincher, Sputnik had ushered in the space age 
seven weeks earlier and turned attention to space, where the rocket was the undisputed 
propulsion system. 

The many research scientists at the Lewis laboratory who worked on hydrogen as a 
fuel for high-flying aircraft were completely unaware that a huge and highly secret 
effort on hydrogen for high-altitude flight had been started in the Air Force the 
previous year. That work was managed by Col. N onnan C. Appold, who attended the 
NACA conference. The Air Force project will be described in a later chapter. 

Summary 

During the period 1954-1957, the NACA-Lewis Flight Propulsion Laboratory at 
Cleveland investigated liquid hydrogen as a fuel for high-altitude aircraft and missiles. 
The experiments began in 1954 with an investigation of low-pressure combustion in a 
single turbojet combustor, extended to other components (tanks, pumps, heat 
exchangers, controls) and complete turbojet engine systems, and culminated in the first 
(and only) flight experiments. Among the many contributions: 

( l) Gaseous hydrogen burns well at low pressures in a turbojet combustor. 
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(2) Promotion of hydrogen as a turbojet fuel; especially the concept that high­
altitude, low-speed flight using turbojet engines demands efficient combustion at low 
pressure, best provided by hydrogen; and, at the same time, aircraft configurations for 
that flight regime favor large-volume aircraft which alleviates the disadvantage of 
hydrogen's iow density. 

(3) Lightweight, low-loss liquid hydrogen tanks are feasible. 
(4) Liquid hydrogen can be pumped satisfactorily for turbojet engine conditions. 
(5) Hydrogen requires less combustion volume than hydrocarbons, making possible 

shorter and lighter engines. 
(6) A complete turbojet engine for subsonic flight can be operated with hydrogen at 

higher altitudes and with less fuel consumption (mass basis) than the same engine using 
hydrocarbon fuels. 

(7) Existing turbojet engines can be easily adapted to use hydrogen. 
(8) Flight demonstrations that liquid hydrogen can be handled safely in ground 

operations and in flight. 
(9) Liquid hydrogen is an excellent heat-sink for very high-speed flight where air 

friction heats the vehicle surfaces. 
(IO) Turbojets using hydrogen give good performance at flight speeds of Mach 4 and 

ramjets for flight speeds of Mach 7, with much higher speeds feasible with the latter. 
All these advantages made hydrogen appear to be the fuel of the future for advanced 

air-breathing engines; but, in fact, its prospects were already being tested, as we will 
see. 
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New Initiatives in High-Altitude 
Aircraft 

In 1953, military aviation was in transition from subsonic to supersonic flight. 
Chance-Vought delivered the last propeller-driven fighter, an F4U Corsair, to the Navy 
in February. Three months later, the YF-IOOA, produced by North American Aviation 
for the Air Force, became the first service supersonic fighter- the start of the Century 
series. These were made possible by more powerful turbojet engines such as the Pratt 
& Whitney J-57, which went into production in 1953. Speed, however, is but one of 
the familiar trinity of major military aviation goals- higher, faster, farther. Higher 
altitudes meant less vulnerability for bombers and reconnaissance aircraft. The 
altitude goal frequently mentioned during the period was 30 500 meters. Greater range 
was not neglected as a goal, but global bases and in-flight refueling sometimes made it 
possible to compromise range in favor of other goals. In addition, military aviation 
planners during the 1950s felt the keen competition of guided missiles, which were in 
rapid ascendancy. The rivalry between aviation and missile men was strong. 

From late 1952 to early 1954, three men of diverse backgrounds initiated proposals 
for achieving flight at very high altitudes. One was an Air Force major stationed at 
Wright Field, John D. Seaberg; another was a famous airplane designer, Clarence L. 
(Kelly) Johnson of Lockheed Aircraft; and the third was a lone British inventor 
with a novel idea, Randolph Rae. These initiatives and the activities they generated 
proceeded concurrently with, but largely independent of, the N ACA research 
described in the previous chapter. The initiative of Seaberg led to the new altitude 
capability of the B-57; Johnson's led to the extraordinary U-2 high-altitude 
reconnaissance airplane; and Rae's led to his personal disillusionment, but new interest 
within the Air Force for using liquid hydrogen in aircraft. 

Origins of Very-High-Altitude Aircraft at Wright Field 

At the outbreak of the Korean war, John D. Seaberg, an aeronautical engineer at 
Chance-Vought, was called back to active duty as an Air Force major. Seaberg, who 
had served as an engineering and base executive during World War II, was assigned to 
the new development office for bombardment aircraft at Wright Field. Late in 1952, he 
went to his boss, William E. Lamar, with some new ideas about achieving flight at very 

113 
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high altitudes. Seaberg saw in the new generation of turbojet engines, with their 
inherent high altitude potential, the opportunity of matching engine and airfoil to 
achieve an airplane of low wing-loading capable of higher altitude operation than 
anything yet conceived. The ideal application for such an airplane was reconnaissance; 
the high altitude would make detection very difficult and provide protection until 
effective countermeasures were developed. 1 

By March 1953, Sea berg's idea had jelled into a set of specifications for preliminary 
design studies by aircraft manufacturers. Operating conditions selected were an 
altitude of 21340 meters or higher, a range of 2800 kilometers, and subsonic speeds. 
Propulsion was to be by turbojet or turboprop suitably modified for the high altitude 
operation. The airplane would carry a crew of one and photographic equipment 
weighing between 45 and 318 kilograms. No armament or ejection equipment was 
provided, in keeping with the objective of minimum gross weight and high altitude for 
protection. The contractors were to supply design specifications suitable for a 
development contract, a recommended engine, and a list of major development 
problems anticipated.2 

Seaberg and Lamar decided to bypass the big aircraft manufacturers in favor of 
smaller companies because, believing that production would be small, they thought the 
smaller firms wc:mld give the studies a higher priority. There was no bidding; Bell 
Aircraft, Fairchild Aircraft, and Glenn L. Martin were called in to discuss the studies, 
and all three were very interested. The Air Force talked to no one else. Contracts to the 
three were let beginning 1 July 1953 and ran to the end of the year. Bell and Fairchild 
were asked to design a new airplane; Martin, builder of the B-57 bomber and RB-57 
reconnaissance airplane, was asked to study modifications to the RB-57 to meet the 
more stringent altitude requirements.3 

Wright Field evaluated the three studies in early 1954 and had the contractors 
present the study results during the first part of March. Bell proposed a twin-engine 
airplane; Fairchild submitted a single-engine design; and Martin discussed 
modifications to the RB-57, including a larger wing (fig. 25). All used Pratt & Whitney 
J-57 engines, modified for high altitude operation and initially designated J-57-Pl9 
(later J-57-P37).4 

Lt. Col. Joseph J . Pelligrini, attached to a reconnaissance unit at headquarters of the 
Air Research and Development Command (ARDC), visited Wright Field in mid­
March, saw the Martin proposal as a fast way of meeting an urgent need of the Air 
Force in Europe, and requested Wright Field to send ARDC headquarters a list of 
necessary RB-57 modifications within a week.5 The following month, Seaberg went to 
ARDC headquarters in Baltimore and gave a briefing on the three studies. Attending 
was Lt. Gen. Thomas S. Power, who succeeded Lt. Gen. Donald Putt that month as 
commander of ARDC. Power was so impressed that he had Seaberg repeat the briefing 
at Strategic Air Command headquarters the following day. Seaberg gave a third 
briefing at Air Force headquarters early in May 1954.6 Interest in high-altitude 
reconnaissance aircraft increased and Seaberg had every reason to believe his idea 
would soon become a reality. Two weeks after his third briefing, however, a new 
proposal for a high-altitude airplane, from Kelly Johnson of Lockheed Aircraft 
Company, reached Seaberg's desk with a request for an evaluation. This proposal 
would lead to a series of significant events in aeronautics, politics, and diplomacy. 
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Fig. 25. Models of Fairchild, Bell, and Martin high-altitude reconnaissance airplanes from design studies 
conducted for the Air Force during the second half of 1953. All three used Pratt & Whitney J57-Pl9 
engines. The Bell (X-16) and Martin (B57-D) designs were chosen for development, but only the latter was 
completed and is flying today as the RB-57F. (1954 photograph courtesy of W. E. Lamar and J. D. 
Seaberg.) 

Clarence L. (Kelly) Johnson, chief engineer of Lockheed Aircraft at Burbank, 
California, since 1952, was already a legend among aircraft designers. He had designed 
and built the prototype of the first U.S. jet fighter, the F-80, in 143 days. He had gone 
on to design the F-90, the F-104, and many others. He had his own special brand of 
management and operations known as the "Skunk Works." He condensed his 
management philosophy to "be quick, be quiet, be on time."* 

Johnson's unsolicited proposal to the Air Force came as no great surprise at Wright 
Field. Johnson had the confidence of and was accustomed to dealing with the highest 
levels in the Air Force and there was no reason for those officers to conceal their 
interest in very high-altitude flight from him. 

As the designer of the Air Force's F-104 fighter, Johnson had proposed to use its 
fuselage, a larger wing to achieve an altitude of about 20000 meters, and the General 
Electric J-73 turbojet engine. In his review of the proposals at Wright Field, Seaberg 
was not impressed with Johnson's selection of the J-73 for extremely high altitude 

•Johnson used a set of 14 operating rules for the Skunk Works including: almost complete control by 
project manager; a strong but small project office; an "almost vicious" restriction of the number of people 
connected. with the project; a simple, flexible drawing system; minimum paperwork; thorough and periodic 
cost review·; authority to subcontract; tight inspection; flight testing; prior specifications; timely funding; 
mutual trust; tight security; and rewards based on performance. Interview with C. L. Johnson and Ben Rich, 
Burbank, 2 May 1974. 
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flight. He felt that the more powerful Pratt & Whitney J-57, modified for high altitude 
operation, was required. However, it was too large to fit into the F-104 fuselage, so a 
modified fuselage would also be required. Since the proposals for the Martin RB-57 
modification and the Bell X-16 had been approved, Seaberg saw no need to develop a 
third airplane and recommended against Johnson's proposal.7 Seaberg's view was 
supported by the Air Force. The high-altitude B-57D was subsequently built; the Bell 
X-16 was initiated but cancelled in mid-1956. 

When the Air Force turned Johnson down, he did not give up and a fortunate turn of 
events gave him a big break. In 1954, the role of the guided missile was rising rapidly, 
and the Department of Defense formed a number of advisory groups in mid-1954 to 
examine the various aspects of military planning and weapons. James R. Killian 
became chairman of a committee on surprise attack and was aided by several panels. 
One of these was on intelligence. During the course of its work, the panel learned about 
Johnson's proposal for a very high-altitude reconnaissance airplane and liked it. 
Killian was convinced of its merits and soon others, including Charles Wilson, 
Secretary of Defense, and Allen Dulles, director of the Central Intelligence Agency, 
also became convinced. It was known that the airplane had been proposed to the Air 
Force but that the Air Force had decided not to develop it.* 

Johnson's proposal was taken to President Eisenhower during the latter part of 
November. As described by Eisenhower: 

Back in November 1954, Foster Dulles, Charlie Wilson, Allen Dulles, and other 
advisors had come to see me to get authorization to go ahead on a program to 
produce thirty special high-performance aircraft at a total cost of about $35 
million. A good deal of design and development work had already been done. I 
approved this action.8 

Eisenhower decided that the funding and direction of the project would be under the 
CIA and Richard M. Bissell, Jr., was selected to head it. The Air Force was to contract 
with Lockheed for development of the airplane, designated the U-2. Because of the 
sensitivity of the project, the Air Force handled its part directly from headquarters.9 
On 9 December 1954, Trevor Gardner, assistant secretary of the Air Force for research 
and development, visited Robert Gross and Kelly Johnson at Lockheed and told them 
to go ahead. 10 The Skunk Works swung into action and the first U-2 flew eight months 
later. It was powered by a Pratt & Whitney J-57-P37 turbojet engine, the engine 
Seaberg had argued was necessary. t 

The U-2 (fig. 26) was capable of flying at altitudes above 21300 meters at a speed of 
about Mach 0.75 (about 800 kilometers per hour at its altitude). The first operational 

*Members of the Killia n committee were briefed on Air Force plans for the B-570 and the X-16 by J ohn 
D . Seaberg in the office of Lt. Gen. Donald Putt, deputy chief of staff fo r development, USAF, on 18 Nov. 
1954. Seaberg also discussed the Fairchild and Johnson proposals and indica ted that Johnson's airplane 
performance could be improved ifthe J-57-P37 engine replaced the J-73 proposed by Johnson. Letter from 
Seaberg to author 28 June 1976, with enclosures. 

tSeaberg says that, to this day, Johnson tells him, "You had a chance to buy the U-2 and didn't do it" ; a nd 
he counters with, "Kelly, you picked the wrong engine." Interview with Seaberg, 23 Nov. 1973; letter from 
Seaberg to autho r, 28 June 1976. 
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Fig. 26. Lockheed U-2 airplane, proposed in 1954 and in active government service continuously since 1956. 

Its capability for sustained flight at very high altitudes is still unmatched by any other airplane. ( 1963 
photograph courtesy of Lockheed Aircraft Corp.) 

flight occurred in the spring of 1956. The government chose research by the National 
Advisory Committee for Aeronautics as the cover for the covert reconnaissance 
operations of the airplane, but kept the NACA in the dark about its real purpose. Early 
U-2s carried NACA markings (and, later, NASA markings) and obtained data on 
high-altitude meteorological phenomena.'' These data made significant contributions 
to a better understanding of turbulence, wind shears, and jet streams. In 1973, the 
NASA began using the versatile U-2 in its earth resources program. 

In the early sprin~ of 1954, in the midst of Seaberg's plans and before Johnson's 
proposal reached his desk, a British inventor brought a new and novel concept for an 
airplane and engine, called Rex I, to Wright Field. Unlike other airplanes, Rex I used 
liquid hydrogen as fuel. 

Rae's Rex I Proposal 

There was nothing unusual about the visitor who came to Wright Field on the chilly, 
overcast day of 24 March 1954. He was one of dozens who were processed through the 
large visitor's center adjoining the security fence to go to one of the many buildings of 
the huge Wright Air Development Center. Typical also was the reason for his visit. He 
was bringing an idea, neatly packaged in a brochure, and seeking a contract. The 
Center receives hundreds of unsolicited proposals annually and is geared to evaluate 
them. As with most such proposals, this one was destined to be rejected. What was 
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unusual, however, was the novel solution proposed for a difficult problem, the sensitive 
nature of the subject, and the timing. The proposal triggered waves of interest within 
the government, and there followed a series of events involving hydrogen that extend 
to this day-events that shuttled the proposer to the sidelines and left him bewildered 
and embittered. His name is Randolph Samuel Rae (1914- ). 

Randy Rae is a quiet, soft-spoken man with the imagination and creativeness that 
mark the practical innovator and inventor. He received his engineering education at a 
Swiss technical school and began .his career in electronics and underwater detection 
systems for locating submarines. He worked for the British Admiralty from 1939 to 
1948, serving. in four research and development groups in underwater acoustics, 
aerodynamics, thermodynamics, and propulsion, rising to the position of a principal 
scientific officer. He came to the United States in 1948 and worked in the Applied 
Physics Laboratory of Johns Hopkins University for four years. He started in 
aerodynamics and developed a supersonic diffuser for ramjet engines and later was 
placed in charge of the development of a complete guided missile system. More at 
home with technical details than overall project management, Rae soon was immersed 
in a difficult missile stability and control problem and devised a solution involving a 
gyro with a mechanical feedback. The system was put out for bid and a small company, 
Summers Gyroscope, won the contract. Rae met a kindred soul in dynamic, innovative 
Thomas Summers.12 

The missile development that Rae was managing used a ramjet engine for 
propulsion. A ramjet operates at high altitudes and speeds, but as with all air-breathing 
engines, it is altitude-limited. The ramjet's altitude-speed limitations set Rae to 
thinking about other solutions to the problem in April 1953. Was there a way to 
operate at very high altitudes but at lower speeds, specifically in the subsonic speed 
range? The rocket was not the answer, for although it operates independent of the 
atmosphere, it is very inefficient at low speeds. Could he combine the altitude­
independent feature of the rocket engine with a propulsion system efficient at low 
speeds? The most efficient means for aircraft propulsion at low speeds is the propeller, 
but it is, of course, altitude-limited. Rae conceived of using a rocket as a gas generator 
to drive a turbine which, through suitable gearing, would drive a large propeller. Such 
a propulsion system had no place in the high-speed, high-altitude operating regime of 
the Navy's work at the Applied Physics Laboratory. Rae became so intrigued with his 
concept that he left APL/ JHU to work full-time on the new propulsion system. He 
soon learned the handicaps a lone inventor faces. He needed not only monetary 
support but a corporate identity as well. He turned to his friend, Thomas Summers, 
who very generously offered both, although propulsion was a far cry from gyroscopes 
and instruments. 

Rae joined Summers in September 1953 and began analysis of what he called the 
Rex engine. The week before Christmas, Summers engaged Homer J. Wood, a 
mechanical engineering consultant. Wood had left the Garrett Corporation, makers of 
small gas turbine engines and other aircraft components, in October after ten years 
service during which he became assistant chief engineer in charge of turbomachinery. 
Wood assisted in the analysis and design of Rae's new engine.13 

By March 1954, Rae was ready to present his idea to the government. He visited the 
headquarters of the Air Force Air Research and Development Command (ARDC), 
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then located in Baltimore, and discussed his idea with Col. Donald Heaton, chief of the 
aeronautics and propulsion division, and Lt. Col. Langdon F. Ayers, who headed the 
propulsion branch. The two were engaged in planning research and development to 
increase the altitude capability of aircraft, and Rae's idea caught their inte rest. They 
suggested that he visit Wright Field and discuss the proposal with the specialists 
there. 14 This was what brought Rae to Wright Field on 24 March 1954, with brochures 
describing the proposal. 

Rae presented his proposal to a group in the new developments office of W ADC and 
passed out copies of his brochure. It bore the date of Februa ry 1954 and the title, 
"REX-!. A New Aircraft System" (fig. 27). Rae described it as "a lightly loaded low 
speed plane having an exceptional LID (lift / drag) characteristic." By lightly loaded, 
he meant a low weight per unit area of wing; the aircraft resembled a low-powered 
glider. The speed of about 800 kilometers per hour would make a military airplane 
quite vulnerable were it not for the very high operational altitude that Rae proposed­
over 24000 meters, which was well a bove the capability of other aircraft and hopefully 
beyond the range of antiaircraft weapons. What stirred the interest of the Wright Field 
audience was the novel engine that Rae proposed : a three-stage turbine engine using 
liquid hydrogen and liquid oxygen (fig. 28). Ahead of each turbine was a small 
combustion chamber. All of the hydrogen and part of the oxygen were fed to the first 
combustion chamber. This partial combustion of the hydrogen produced a gas 
temperature of about 1100 K, the then practica l limit for turbine materials. After 
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Fig. 27. Sketches of REX-I. a low-speed. high-altitude a irplane using li4u id hydrogen. proposed to the Air 
Force by R. S. Rae in Mar. 1954. Gross mass. 32 660 kg: empty mass. 16330 kg: wing.area. 434 m~: power. 
1790 kW (2400 hp) : take-off speed. 11 3 km ' hr : cruising. speed. 640-800 km hr at 26000 m a ltitude: range. 
10000 km. When empty. it could glide an add it iona l 1000 km. F ro m brochure "REX- LA New Aircraft 
System." by R. S. Rae. Summers Gyroscope Co .. Feb. 1954. 
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Fig. 28. Schematic of Rex I engine. Liquid hydrogen and oxygen. gasified by passing through heat 
exchangers, flow to three small combustion chambers. The hot gases drive three turbines connected to a 
common shaft. T he gases for the second and third turbines a re a mixture of the exhaust from the previous 
turbine and combustion gases. After the third turbine, the exhaust gases supply heat for the heat 
exchangers and then discha rge. From the brochure " REX-!, A New Aircraft System." by R. S . Rae, 
Summers Gyroscope Co., Feb. 1954. 

leaving the first turbine, the gases were reheated by adding additional oxygen and 
burning. The process was repeated for the third turbine. After leaving the third turbine, 
the gases passed through heat exchangers to heat the incoming liquid hydrogen and 
liquid oxygen.* Rae was attracted to hydrogen by its high specific heat, relatively low 
combustion temperature, and high energy content. 15 

The three high-speed turbines, on a single shaft, were geared down to drive a 
propeller. The conceptual engine was very compact (fig. 29). With both liquid 
hydrogen and liquid oxygen on board the aircraft, the turbine engine was independent 
of altitude. Rae proposed to use the turbine engine to drive a large propeller which 
provided the propulsive thrust by accelerating atmospheric air. The propeller, 
obviously, depended very much on altitude; the size of the propeller needed for thrust 
at high altitude later became an issue in eva luating the proposal. After pointing out the 
military advantages of a high-altitude a ircraft, the brochure ended with a low-keyed 
request: "The Summers Gryoscope Company is desirous of obtaining a Government 
contract to develop the revolutionary REX-I aircraft system." 

As is usual in such cases, Rae left that day wondering how his proposal would be 
received, after the noncommittal attitude of the Wright Field listeners. In fact, his 
proposal caught the attention and interest of many in the Air Force and several 

*Rae used an initial pressure of 69. 7 atm, a final pressure of 0.67 atm, and a heat exchanger efficiency of 
90%. He quoted an achievable specific fuel consumption of 1 lb/ hp · hr (0.61 kg/ kW · hr) and gave data 
indicating this could be attained with a four-stage turbine system with a turbine efficiency of 50%. He had 
analyzed both three- and four-stage turbines; by specific fuel consumption, he apparently meant both 
hydrogen and oxygen. 
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Fig. 29. Drawing of Rex I engine showing the heat exchanger, hydrogen-oxygen combustors, and three 
turbines. In the foreground is a reduction gear train transmitting power from the high-speed turbines to 
the engine application which, in the first proposal, was a propeller. From the brochure "REX-I, A New 
Aircraft System," by R. S. Rae, Summers Gyroscope Co., Feb. 1954. 

analyses were started immediately. In response to a request for more information, Rae 
serit considerable detail about the proposed engine with a cost analysis. The cost was 
estimated to be on the order of $3 million a year for three years,16 

In an analysis completed in May, Weldon Worth, R. E. Roy, and R. P. Carmichael 
examined propulsion aspects of the proposal and concluded: "There are numerous 
examples of optimism in the proposal but nevertheless, if the development does not 
bog down under adverse problems that result from impractical features, the small 
engine size and weight, the reasonably low fuel consumption, the high altitude 
combustion capability of hydrogen, and the surprising aircraft performance present a 
stimulating approach to a high altitude performance regime well beyond present 
aircraft capabilities." They added that there were other possible ways of achieving the 
same flight regime and discussed adverse technical factors that were based on 
hydrogen's characteristics and the possibility, from preliminary estimates of the 
propeller laboratory, that a much larger propeller than proposed might be necessary. 
Large, insulated lightweight tanks and a circulating gas-heat exchanger system were 
considered major development problems; these and a larger propeller or fan could 
substantially increase rize and mass of tankage, engine, and gearing between engine 
and propeller.11 

In Rae's opinion, Wright Field's principal objections to his proposal centered on 
mass estimates and propeller size. He was kidded that his airplane would need a 
runway with trenches on each side of the wheels to accommodate propellers 12 meters 
in diameter. Rae believes he was vindicated later on both these points, but at the time 
he felt that the brickbats were coming at him thick and fast, is 
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Other Engines and Hydrogen Proposals 

Rae's proposal to use liquid hydrogen as an aircraft fuel was, of course, not new nor 
was his engine the only possibility for using it. In 1937, von Ohain found that his 
experimental turbojet engine worked well on gaseous hydrogen (p. 73). In 1954, 
J.M. Wickham of Boeing studied the use of hydrogen for a strategic bomber powered 
by turbojets. For a subsonic cruise-supersonic dash flight, Wickham concluded that 
hydrogen gave a theoretical 30 percent increase in range over the use of a hydrocarbon 
fueJ.19 . 

Wright Field was also well aware of another type of engine capable of using liquid 
hydrogen which--like Rae's Rex I-used liquid oxygen for combustion independent 
of altitude. This was the turborocket, a combination of rocket and air-breathing 
engine, which went back as far as a suggestion by Goddard (p. 74). During World War 
II, the Germans developed such an engine using a turbine, driven by decomposed 
hydrogen peroxide (steam and oxygen) to power an axial-flow compressor. The fuel 
was injected into the air stream and burned. The British had also investigated the 
turborocket by 1945, and Wright Field became interested ·after the war. Alfred M. 
Nelson, an analyst at Wright Field, reported his study of rocket-driven, turbine­
compressor engines in December 1946 (fig. 30, top). Nelson described an engine where 
the rocket provides fuel-rich hot gases to power a turbine which drives a compressor. 
After leaving the turbine the fuel-rich gases burn in the air in the aft section of the 
engine. The hot gases expand through the exhaust nozzle to produce thrust. One of the 
best known champions of the turborocket was William C. House, who proposed a 
cycle in 1949 while an employee of the Aerojet Engineering Corporation.* House 
examined a number of bi propellants including liquid hydrogen and liquid oxygen. He 
apparently proposed this combination to the Air Force in September 1953 and later, 
but nothing came of it (fig. 30, bottom).20 

With all this previous experience both in hydrogen as a fuel and in hybrid engines, 
why did the Air Force become so interested in Rae's proposal? The reasons came less 
from the technical interest of experts at Wright Field than from Air Force managers of 
research and development at Headquarters. They were under increasing pressure from 
other Air Force elements to develop means for increasing the operational altitude of 
aircraft. Rae's idea stirred interest because it was timely. 

Air Force Evaluation of Rex I 

In June 1954, Col. Omar E. Knox sent the W ADC evaluation of Rae's proposal to 
ARDC Headquarters. Three laboratories, including the power plant laboratory, 
contributed to the evaluation . The basic engine was considered technically feasible, but 
considerable doubt existed regarding the technical feasibility of the propeller, 
hydrogen system, and airframe. lf the airplane could be built as predicted, it would be 

* Aerojet applied for and was granted a patent in Sept. 1950, but it was issued under a secrecy order 
because of potential military application. That order was removed and House received Patent 31110153 in 
Nov. 1963. 
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NELSON SKETCH OF TURBO ROCKET, (1946). (COURTESY OF R.P. CARMICHAEL.) 
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Fig. 30. Schematic of air turborocket engines, also called simply turbo rockets, by Alfred Nelson in an Air 
Force memorandum in 1946 and from an Aerojet brochure ca. 1964. (William House of Aerojet 
championed this type of engine from 1949 into the early 1960s.) Rocket combustion gases drive a turbine 
which drives an air compressor. The fuel-rich turbine exhaust gases burn in the air stream and additional 
fuel is injected . These concepts, mentioned by Robert Goddard in 1937, were developed in Germany and 
England during World War II. 

extraordinary in performance. Rae was praised as an imaginative and competent 
engineer, as evidenced by his contributions while working for the Applied Physics 
Laboratory and by the analysis he submitted. At the same time, however, the 
evaluators questioned the wisdom of placing development of an airplane with a 
company with so little systems capability. The cost estimate was considered unrealistic. 
Knox recommended against accepting the proposal, but suggested that ARDC look 
into overall propulsion and airframe problems of aerodynamically supported aircraft 
at extreme altitudes. That was exactly what Heaton and Ayers had been doing and why 
they were interested in Rae's proposal. They were not satisfied with W ADC's negative 
response.it 

In July 1954, Col. Paul Nay replaced Heaton as chief of the ARDC division of 
aeronautics and propulsion and was soon involved in concepts for achieving high 
altitude flight , including Rae's. On 9 August, Rae and Wood visited Nay and Ayers at 
ARDC headquarters in Baltimore and the following day Rae sent his proposal to Nay. 
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It contained details on program phasing and cost. Rae estimated first year costs at $1.9 
million and annual costs for the next three years at $3. l million. Included was a $50000 
sum to contract with Lockheed Aircraft Company for an airframe analysis. Rae 
stressed that hydrogen was more a working fluid than a fuel and that its complete 
oxidation was not desirable. He had done additional analysis, and the application for 
the long-range, high-altitude airplane included a reconnaissance radar picket as well as 
a bomber. Rae did not attempt to downgrade the potential problems and indeed 
mentioned several. He also pointed out that hydrogen could be used as a fuel in regular 
turbojet engines and that engine cycles using hydrogen had common elements that 
justified immediate component development. He requested the Air Force to provide a 
supply of liquid hydrogen in the Los Angeles area for ·component testing. To 
emphasize his point on the versatility of hydrogen, he sent the Air Force a report 
describing an engine cycle which later became known as Rex 111.22 It used air as the 
oxidizer and will be described later. 

Rae's visit to ARDC and the revised proposal strengthened the belief of Nay and 
Ayers that Rae's concept should be further investigated. Three weeks after the visit, on 
31 August 1954, Nay directed W ADC to prepare a development plan for high-altitude 
engines, including the Rex I engine. He emphasized the need for long-range, high­
altitude aircraft and argued that the optimum speed had not been established. This was 
a crucial point, for most of the emphasis was on aircraft capable of supersonic speeds, 
whereas the propeller-equipped Rex I was subsonic. Nay pointed out that WADC 
emphasis was on fans and compressors for jet engines rather than propellers, and the 
latter needed attention along with the hydrogen-oxygen reheat turbine cycles 
conceived by Rae. W ADC should-as appropriate-conduct studies, experiments, 
and preliminary development of promising high-altitude propulsion systems, 
including Rex I. Summers Gyroscope was regarded as capable of analytical and 
experimental work with their existing facilities. W ADC was encouraged to develop a 
working arrangement with an engine manufacturer and take maximum advantage of 
existing hydrogen technology, including rocket experiments. The directive was 
accompanied by a transfer of funds to accomplish it.23 

The directive was clearly much broader in scope than merely contracting with 
Summers for the use of Rae's idea. The directive addressed the general problem of 
high-altitude propulsion, of which Rae's engine was one possible solution. While 
Summers was endorsed as capable of analytical and experimental work with their 
existing facilities, ARDC also suggested a working arrangement with an engine 
manufacturer. This constituted a limited endorsement and was not an arbitrary 
decision. Procurement experts had investigated Summers Gyroscope as a contractor, 
and the top procurement official of ARDC visited the company to satisfy himself about 
its capabilities for limited work on the concept.24 

Other Reactions to Rae's Proposal 

Wright Air Development Center took no action on the directive during the 
remainder of 1954, but there were other developments. The Fuels and Propulsion 
Panel of the Air Force Scientific Advisory Board considered the Rex I engine at its 29 
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September 1954 meeting.* The panel saw Rex I as an interesting cycle of potential 
importance and recommended that the development of non-air-breathing chemical 
engines should be actively pursued. Rex I was viewed as only one of several 
possibilities. The panel also recommended that a broad general study be made before 
development of the Rex I engine.25 

According to Rae, the staff of the scientific Advisory Board asked him to go to 
the NACA Lewis Flight Propulsion Laboratory in Cleveland and give a briefing on 
Rex 1.26 He did so in November 1954, presenting the Rex concepts and various cycles to 
Abe Silverstein. t 

The situation in late 1954 was tense for Rae. He had distributed fifteen copies of his 
brochure and backup technical data, given several briefings, and was aware that the Air 
Force was very interested. He had to defend his idea against a number of criticisms. He 
had conducted enough analysis to believe in the soundness of his approach and wanted 
support to develop it, but this appeared slow in coming. On the Air Force side, there 
was great interest in Rae's concepts-probably more than he suspected-for it touched 
on a critical need. The power plant laboratory, however, had reservations about the 
practicality of Rae's engine and how far to go with Summers Gyroscope as a 
contractor, and these points were clearly made in the WADC evaluation. The new 
development office of th~ weapon systems directorate, where Seaberg was pushing 
other high-altitude concepts, was negative about the Rex concept. Storm signals were 
flying for those perceptive enough to observe them. 

Late in 1954, when Kelly Johnson was developing the U-2, Randy Rae was still 
seeking a way to get the Air Force to move on his proposal. It became clear to him that 
he needed to associate with a company having experience with turbines, the major 
component of his propulsion system. He knew Bertram N. Snow ( 190 l-1966), 
dynamic vice president of the Garrett Corporation, makers of small turbines and many 
other components for the aviation industry. He approached Snow and later J. C. 
(Clift) Garrett, founder and president of the company.27 Garrett and Snow were very 
interested in Rae's ideas, but being shrewd and perceptive businessmen, they wanted to 
sound out Air Force interest in Rae's ideas and Garrett as a suitable contractor before 
they committed themselves. After assuring themselves on these questions, they began 
negotiations to acquire the Rex engine from Rae and Summers. 28 

W ADC Response to ARDC Directive 

Meanwhile, the power plant laboratory at Wright Field started actions responsive to 
the ARDC directive of August 1954. Four procurement requests were initiated 
during the first quarter of 1955. On 6 January, PR 303 was initiated with $750000 for a 

*Present were Prof. C. P. Soderberg (chairman), William M. Holladay, Allen F. Donovan, William D. 
Rannie, Addison M. Rothrock, Gale Young, and Mark Mills. 

t An interesting speculation is whether Rothrock, who heard the Rex-I presentation at the 29 Sept. 1954 
SAB meeting, transmitted information about it to Lewis earlier than November 1954, or asked the 
laboratory to investigate hydrogen, ~r asked the SAB staff to send Rae to Lewis. The last appears to be the 
most probable (p. 97). Rae's presentation intensified Silverstein's interest in hydrogen for aircraft, but was 
not the origin of his interest. 
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contract with Summers Gyroscope Company to explore the Rae concepts, including 
the study of an aircraft design. For unknown reasons, this procurement request was 
recalled and reinitiated with a new date, I 0 March 1955. It became the subject of much 
controversy and negotiation. 

On 14 January 1955, a second procurement request, PR 305, was initiated to 
investigate hydrogen as a fuel in conventional turbojet engines. Four engine 
manufacturers were listed as sources, but when the form reached Philip J. Richie, a 
procurement official of the power plant laboratory, he added five more to be solicited. 
The requests, sent out on 2 February, had a due date of 15 March. On 20 February, 
Richie received a puzzling directive from ARDC Headquarters : give the Garrett 
Corporation an opportunity to submit a proposal on PR 305. He reluctantly complied, . 
but did not extend the due date . Garrett bid on this and later attempted to include the 
same kind of work in other proposals but was unsuccessful. On I 5 June, PR 305 
resulted in a contract with United Aircraft for $543000. 

In recognition of the unique properties of liquid hydrogen, the power plant 
laboratory initiated two procurement requests for studies ofliquid hydrogen tanks and 
insulation on 25 March 1955. PR 338 resulted in a contract with Beech Aircraft in June 
for $172000. PR 339 became a contract with the Garrett Corporation in October, but 
until then it was caught in the same web of controversy and negotiations with Garrett 
as PR 303.29 

When PR 303, with Summers Gyroscope as the sole source, n;ached Richie in 
March, he decided that a talk with Thomas Summers was necessary. When Summers 
came to Wright Field, Richie was puzzled to find him in no hurry to submit the 
necessary proposal. He soon learned the reason. On 22 March, Richie was summoned 
to ARDC headquarters and learned that the headquarters procurement officer 
objected to PR 303; Garrett had acquired Summer's interest in Rex and was the 
company to deal with.* Richie also learned during his visit that Gen. Marvin Demler, 
Gen. J. W. Sessums, Col. Paul Nay, and other top officials at ARDCwere very familiar 
with the Rex program and wanted a contract executed fast.Jo 

High-Level Air Force Interest in Rex 

The familiarity of top Air Force R&D officials with the Rex proposal and their 
desire for rapid contracting did not result solely from interest in a novel idea. The same 
month that Philip Richie learned of Air Force interest at ARDC Headquarters, the 
Fuels and Propulsion Panel of the USAF Scientific Advisory Board met at the RAND 
Corporation and considered superfuels. t The panel was impressed by the performance 

*The date of Ga rrett's acquisition of Rex interests from Rae and Summers 1s not clear. An indenture and 
transfer agreement on the patents dated 18 March 1955 appears to be the earliest date. However, another 
indenture agreement was signed on 22 June 1955 from Rae to Garrett and Summers to Garrett. On 29 July 
1955, an announcement was made at a meeting of Air Force a nd Ga rrett officials tha t Ga rrett had acquired 
the Summers interest in the Rex engine. Garrett File, AFSC, Andrews AFB. 

t The a ttendees at the March 1955 meeting were Mark M. Mills(chairman), W. Duncan Rannie, Addison 
M . Rothrock (NACA), Edward S. Taylor, a nd Gale Young. Records of USAF Scientific Advisory Board, 
Pentagon. 
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potentials of two promising fuels-liquid hydrogen and boron hydrides. NACA 
experiments with hydrogen (pp. 97-98) were discussed and the panel recommended 
active development of hydrogen fuel systems and engine combinations, as well as 
preliminary design studies of aircraft to use these fuels. The panel also met with the 
SAB panel on intelligence to consider vehicle requirements. The fuels and propulsion 
panel concluded that the Rex engine might contribute to this application and 
recommended further study.3 1 

The Air Force motivation for rapid action on high altitude aircraft stemmed from 
the U-2. Many in that service were unhappy having the CIA manage that aircraft. Even 
before it flew, there were discussions within the Air Force about a follow-on airplane. 
The possibility that the U-2 might get shot down was recognized early, so attention was 
focused on airplanes capable of higher speeds and altitudes. One of the problems 
foreseen for the U-2 was its vulnerability from engine flameout at high altitude.32 If 
flameout occurred, the airplane had to descend to a much lower altitude-about 9000 
meters-to restart the engine; at that time it was a sitting duck for antiaircraft fire .* 

In addition to the flameout problem of the U-2, Kelly Johnson was faced with a 
problem of fuel loss from boil-off at very high altitudes. He had help on both problems 
from the Air Force and Pratt & Whitney, makers of the J-57-P37 engine. At the time, 
Col. Norman C. Appold, a combat pilot during World War II and holder of master's 
degrees in chemical and aeronautical engineering, was chief of the power plant 
laboratory at Wright Field. Earlier he had managed the Air Force contract with Pratt 
& Whitney for the J-57 and was very familiar with it. For this reason, and because he 
could draw on other propulsion and fuel experts in his laboratory, Appold was 
designated a "consultant" to Kelly Johnson. The father of the J-57 engine and chief 
engineer of Pratt & Whitney was Perry W. Pratt (no relation to the Pratt of P& W), and 
he too became closely involved with helping Johnson. 

The J-57 turbojet engine normally operated on JP-4, a kerosene-like fuel. Johnson 
needed a fuel of lower volatility than JP-4 to minimize fuel loss during climb to the 
cruising altitude and during cruise. When the airplane took off, its fuel was at ground 
temperature. At high altitude, the combination of still-warm fuel and reduced pressure 
caused the more volatile portions of the fuel to boil away through the tank vents. 
Second, he needed a fuel with as high a combustion efficiency and ftameout limit as he 
could get. Research showed that low volatility fuels had lower combustion efficiency 
than those of higher volatility, but this could be offset somewhat by improvements in 
the fuel injection system. Other research showed that fuels of low volatility had high 
flameout limits. In the end, Johnson, Appold, and Pratt selected a lower volatility fuel 
developed with the assistance of the Shell Oil Company research laboratories.33 

During the course of studying the fuel-engine relationships for the U-2 and J-57, 
Appold and the fuel experts at the power plant laboratory considered a variety of fuels, 

*On 3 May 1960, two days after Francis Gary Powers was shot down over Russia, NASA put out a press 
release stating in part that "the pilot reported over the emergency frequency that he was experiencing oxygen 
difficulties." Propulsion engineers familiar with the altitude performance of jet engines assumed Powers had 
a ftameout and descended to a lower altitude to relight. Powers, however, insists that he was shot down at 
operational altitude. Gary Powers with Curt Gentry, Operation Vver-Flight: The U-2 Spy Pi/01 Tells His 
Story for the First Time (New York: Holt , Rinehart and Winston), pp. 144, 201-202, 302, 323. 351-352. 
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including some of high volatility such as methane and liquid hydrogen. Methane was 
available in quantity, but liquid hydrogen was quickly dismissed because it was not. 34 

This was the same period in which Rae was promoting the use of hydrogen in his Rex 
engine. Appold was well aware of Rae's Rex proposals and was involved in the actions 
regarding them. Sometime during the discussions between Appold, Johnson, and 
Pratt, the seed of the idea to use hydrogen was planted and grew.* It matured into 
action in 1956 as we will see later. 

Long Summer of Negotiations 

Stimulated by the high-level interest in Rex from his March 1955 trip to ARDC 
Headquarters, Philip Richie returned to his procurement duties at Wright Field's 
power plant laboratory expecting to let a contract on Rex within a month.35 This was 
not to be. In fact, what followed was an extraordinary series of proposals by Rae and 
Garrett on the one hand and revisions of statements of work by personnel of the power 
plant laboratory on the other, with many negotiations between the two groups. These 
actions reverberated up and down the line, affecting virtually every level of 
management in Air Force research and development as far as the Assistant Secretary. 
At the root of the problem was a fundamental difference in approach between Rae and 
Garrett on the one hand and Appold and his associates at the power plant laboratory 
on the other. Rae insisted on a contract for the complete airplane powered by his 

. turbine engine. This differed from the usual Air Force practice. An airframe 
manufacturer usually is the prime contractor for an airplane, including its tanks and 
fuel system, with the engine furnished either by the government or by an engine 
manufacturer, as a subcontractor to the airframe manufacturer. Garrett, as a 
manufacturer of aircraft components and small turbine machinery, had often been a 
subcontractor but went along with Rae's desire to obtain the complete aircraft 
contract. Obviously, Garrett intended, at some point, to either license or work jointly 
with an airframe manufacturer. 

The Air Force, on the other hand, respected Rae's position as the originator of a 
novel solution to a difficult problem, but never viewed either him or Garrett as 
potential contractors for an entire airplane. The Air Force became extremely 
interested in hydrogen as a fuel and the Rex engine as a means for reaching very high 
altitudes, but was not fully convinced that either was practical. For these reasons, the 
power plant laboratory, not the weapon systems directorate, took the lead in 
initiating the purchase requests to explore the Rex concept and in dealing with Rae and 
Garrett. The laboratory wanted a step-by-step approach to determine the feasibility of 
using hydrogen and the Rex engine before initiating a large development effort. 
Necessary steps included a study of engine cycles, selection of the optimum cycle, and 

*Neither Appold, Johnson, nor Pratt could recall definitely when or where the idea originated (interviews 
with Appold 4 Jan., with Johnson 14 Feb. and 2 May, and with Pratt 14 May 1974). The origin of the idea is 
less important than the interactions that occurred. Less than four months after the first U-2 flight (Aug. 
1954), the NACA Lewis laboratory found that gaseous hydrogen in a turbojet combustor did not flameout as 
easily as jet fuel and could burn at pressures equivalent to 16000 m altitude (p. 98). No connection between 
the U-2 problem and the Lewis experiments has been established, but the timing is interesting. 



NEW INITIATIVES IN HIGH-ALTITUDE AIRCRAFT 129 

experimental work on selected components including the fuel tank. The laboratory 
would review the work at each step before approving the next. This logical and 
conservative approach was irksome to Rae and Garrett, who were convinced they had 
a great idea and wanted to move fast to capitalize on it. They did decide, however, to 
propose a series of engines using hydrogen. 

The negotiations with Garrett began on 20 April 1955 when Rae and Snow presented 
the Garrett proposal to Wright Field and followed it up two days later with a report. 
Their proposal went so far beyond what the laboratory had intended that one listener 
commented that it covered PR 303 36 "like the state of Texas covers Rhode Island."
Included in the proposal were three types of hydrogen-fueled engines called Rex 1, II, 
and 111.37 All were jet propulsion engines; the propeller had disappeared. Rex I used 
liquid hydrogen and liquid oxygen to drive multiple turbines, with the hydrogen-rich 
exhaust gases dumped overboard. It was the same turbine system as Rae's original 
Rex I (pp. 119-121 ). The shaft power from the turbines was used to drive a fan which 
compressed incoming air (fig. 31, top). Thrust was obtained by expanding and 
accelerating the air through the nozzle. 
, Rex II was similar to Rex I except that the hydrogen-rich exhaust gases from the 
turbines were burned in the air .in the afterburner (fig. 31, bottom). Rex II was 
essentially the same concept as a turborocket (p. 122). 

Rex III was quite different from the other two engines. Liquid oxygen was not used, 
and the hydrogen served two different functions. First, heated hydrogen alone was 
used to drive the turbines; and second, the hydrogen was burned with air to provide the 
heat for the first function. This sounds like a man lifting himself by his bootstraps, but 
it works (fig. 32). Hydrogen from the tank is raised to a high pressure by a pump and 
passes through a heat exchanger where it is heated to a sufficiently high temperature to 
drive the first turbine. After leaving the turbine, it is reheated in a second heat 
exchanger and the process repeated for the third turbine. After the third turbine, the 
hydrogen enters a combustion chamber where it mixes with part of the engine air and 
burns fuel-rich. The hot combustion gases provide the source of heat for the three 
exchangers that heat the incoming hydrogen. After the third heat exchanger, the 
hydrogen-rich gases are injected and burned in the main air stream of the engine in the 
afterburner. The three turbines drive the compressors for the incoming engine air and 
the air used to burn the hydrogen. 

The scope of the Garrett proposal of April 1955 became an issue between the 
company and the power plant laboratory, as negotiations continued. In early May, 
Rae complained to Brig. Gen. V. R. Haugen, director of laboratories at Wright Air 
Development Center, that the power plant laboratory had emasculated his program. 
Haugen investigated and satisfied himself that the laboratory's actions were proper and 
invited Rae to lunch in an effort to improve relationships.38 

On 20 May, Garrett and Air Force officials met again. Some changes in the 
description of work were made by mutual consent. Garrett, willing to invest capital in 
developing Rex engines, sought a development contract, but Appold rejected this as 
untimely. Both parties, however, agreed on another matter: prompt action to ensure 
an adequate supply of liquid hydrogen.39 

The government owned five acres of land within Garrett's facility at Phoenix, and 
this was studied as a possible site for a government-owned hydrogen liquefaction plant 
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Fig. 31. Rex I and II engine systems as proposed by Rae in 1955. The Rex I engine, first proposed in 1954, 
drove a two-stage air compressor and the air expanded through the exhaust nozzle for propulsive thrust. 
In the Rex II system, fuel was added to the airstream. Rex II was a form of turborocket ihat had been 
studied in Germany, England, and the U.S. in the 1940s. From R. S. Rae, "Various Engine Cycles Using 
Hydrogen as a Working Fluid and as a Fuel," Twelfth Annual Flight Propulsion Meeting, Institute of 
Aeronautical Sciences, Cleveland. 14 Mar. 1957. 

for Garrett's experimental needs. In June, William C. Meister, a government industrial 
specialist, reported that the site was satisfactory. He also reported that liquid hydrogen 
plant details could be obtained "from standard plants built in the past."40 He was 
probably thinking of the Bureau of Standards plant at Boulder or possibly the earlier 
Herrick L. Johnston plants, but none of these was "standard." 

On 6 June the persevering Rae tried again to obtain acceptance of his original 
proposal for a complete airplane development but failed once more. The meeting 
ended with three unresolved issues: airframe work, use of hydrogen in conventional 
engines, and burning hydrogen in an afterburner, as proposed in Rex 11.41 On27 June, 
Rae's frustrations must have reached the breaking point for in a meeting with Wright 
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HEAT EXCHANGERS 

Fig. 32. Rex III engine system. Heat from burning hydrogen with air is transferred by means of heat 
exchangers to hydrogen on its way to the combustion chamber. The heated hydrogen drives turbines prior 
to combustion. There are three heat exchangers and three turbines. The turbines power a two-stage air fan 
or compressor. After leaving the last turbine. the hydrogen is injected and burned in the airstream in the 
afterburner and the expansion of the hot gas through the nozzle produces thrust. From R. S. Rae. 
"Various Engine Cycles Using Hydrogen as a Working Fluid and as a Fuel," Twelfth Annual Flight 
Propulsion Meeting. Institute of Aeronautical Sciences. Cleveland. 14 Mar. 1957. 

Field officials, including a judge advocate, he refused to sign a contract with the Air 
Force, claiming that it neglected his patent rights.* 

Meanwhile, individuals in other organizations were becoming interested in 
hydrogen. Silverstein of NACA had completed his analysis in April 1955 and 

*On the same day, Rae's attorney filed a patent application for a multistage. high-altitude engine with a 
single combustion stage (518049). On 18 Oct. 1960. he was granted patent 2956402 for Rex Ill. 
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Fig. 33. Randolph Samuel Rae, creator of the Rex engines using liquid hydrogen as fuel, shown beside an 
experimental liquid hydrogen tank, ca. 1955. (Courtesy of R. S. Rae.) 

according to one Air Force observer, "took to the road" making a circuit of high-level 
Air Force officials. One of these was Lt. Gen. Thomas Power, commander of the 
ARDC.42 On 7 July, Power and Gen. Marvin Demler were briefed by W ADC on the 
Rex program, with results that became evident from Appold's actions the following 
day. In discussions with his staff, Appold expressed concern about the Rex program, 
asked questions about the approach, the scope, and whether to go forward or cancel. 
He asked for a recommendation based on a comparison between the Rex and 
conventional engines available in the same time.43 On 16 July, ARDC authorized 
W ADC to study high-altitude engines with a two-pronged approach. One was to use 
conventional engines and the other, a new propulsion system for altitudes to 30500 
meters.44 This essentially reiterated the ARDC directive of the previous year, but the 
sense of urgency had increased. 

During July and August 1955, negotiations with Rae and Garrett continued without 
much success. On 25 August, Rae again refused to sign a contract, citing the inclusion 
of a study task as his reason. According to the notes of Frank Patella of the power plant 
laboratory who attended ihe meeting, Rae's position was: "The Garrett Corporation 
wants a development contract at this time and will not go along with anything less." 
Finally, however, after mµch additional negotiation and revision of work statements, 
two contracts with Garrett were signed in October 1955. One, coming from PR 303, 
was not far from what the power plant laboratory had originally specified. The other, 
from PR 339, was to study liquid hydrogen tanks. The two totaled $3284000-over 
four times the combined amount of the United Aircraft and Beech Aircraft contracts 
that had been in effect since June.45 
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When the Rex division of Garrett received its two contracts from the Air Force, after 
five months of hard negotiating, there was a big party and celebration. The staff was 
confident that they were at last firmly on the road to engine development and a great 
future .46 Yet this was not to be , for the contract contained provisions that were to 
eventually knock Garrett out of the major competition. 

Shift from Subsonic to Supersonic Aircraft 

When Rae received the final work statement of the engine contract, he was 
disappointed to find that it specified only a supersonic airplane and a shorter range 
than he had been urging.47 Rae's interest was in very long-range, high-altitude aircraft, 
with speed a secondary consideration. His early proposals for essentially a low­
powered glider reflected this interest . His early engines used very small diameter 
turbines- on the order of 20 centimeters-and this was one reason he and Garrett had 
been attracted to each other, for smali turbines were one of Garrett's specialties. 
During the long contract negotiations in the spring and summer of 1955, Rae still 
favored subsonic speeds, but the Air Force was more interested in a supersonic 
airplane at high altitude and would sacrifice range to get it. This was consistent with the 
Air Force desire for a superior airplane to supplant the subsonic U-2-superior both in 
altitude and in speed. 

In the negotiations, Rae had gained funds for an airplane design study using the Rex 
engine. After receiving the work statement specifying a supersonic airplane, the Rex 
division prepared a "Problem Statement for Aircraft Studies" dated 7 November 1955 
and negotiated a contract with Kelly Johnson at the Skunk Works. The problem 
statement specified Rex engines in pods for wing mounting. The size and weight of the 
pods with engines were given, as well as engine thrust and specific fuel consumption. 48 

The pod diameter, essentially that of the engine inlet , was 122 centimeters, which 
meant an engine much larger than Rae's original concept ; but the engineers of Garrett's 
Rex division did not feel that the larger sizes would be a major problem to develop. 

During the course of the study, the engineers at the Skunk Works found that the 
thrust specified by Garrett was too low for their design needs. Agreements were 
reached with the Rex division on extrapolation of the engine data for engines of larger 
thrust and data giving specific fuel consumption as a function of Mach number. With 
these, the designers at the Skunk Works chose a cruise speed of Mach 2.25 and an 
engine with a thrust 50 percent higher than Garrett had originally specified. The larger 
thrust meant an engine with an inlet diameter of 150 centimeters. The engine now was 
considerably larger than machinery within Garrett's experience, but this did not deter 
the company . Some individuals within the Air Force, however, began to doubt 
whether Garrett was the best contractor for the engine. 

The Lockheed study of a hydrogen-fueled airplane was completed and reported by 
the end of January 1956. Two configurations, both powered by Rex III engines of the 
larger thrust, were selected. The preferred design, designated CL-325-1, had a straight, 
thin wing and a slender fuselage. It was made of aluminum alloy with a single liquid 
hydrogen fuel tank in the fuselage. The second configuration, CL-325-2, used 
droppable auxiliary wing tanks, which reduced the airplane size and weight by about 
15 percent. The CL-325 wing was lightly loaded, i.e., the wing had to support a 
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comparatively low weight per unit area. Its thrust per unit weight was also low, which 
required a long runway for takeoff. The characteristics of the CL-325, taken from the 
Lockheed report, are given by table 4.49 

The Garrett engine contract, which began 15 October 1955, called for engine analysis 
and selection of the optimum one. The Rex division of Garrett, however, had been at 
work for some time before the contract and had already selected Rex III and had 
specified it for the Lockheed study beginning in November.50 

The first Garrett engine report, covering the first four months of the contract, was 
"Rex Engine Cycle and Selection," 15 February 1956, with the Lockheed report 
included as an appendix. The report concluded that the Rex III was the optimum 
engine and that Air Force mission requirements could be met. It also concluded that a 
Rex III with a thrust of 17 800 newtons at 30 500 meters altitude and Mach 2.25 was 
feasible; its specific fuel consumption would be less than 1360 kilograms per hour and 
dry mass less than 1995 kilograms. Other design data were given. The engine described 
had a thrust slightly greater than that selected by Johnson in the airplane design and 
reflected Garrett's confidence that they could develop the larger engine. , 

Garrett sent a team to Wright Field on 15 February to give an oral summary of the 
report. The members of the team were in high spirits, looking forward to a favorable 
reaction. They had been told that if the audience did not ask a lot of questions, it meant 

TABLE 4. - Characteristics of CL-325-1 Hydrogen-Fueled Airplane 

Dimensions 
Length, m., , . . , . . , . , , , , , . . . , . . .. . .... .. . . .. ...... . . . . .. . . . .. , . , .. . .. . . , . , , , . , . . .46.73 
Wing span , m . , , .... . . . ..... . . ... . . , . . . . . . . . . .... ..... ... , , . . , , .. . . . . .... , . , . ...... 24.35 
Height, m ......... , .... ... .. . .......... , ... , . .. . ......... .. ..... ... .... . .......... . . . 8.71 
Wing area, sq. m .... .. ..... . . ..... . .. .. . ..... ... ....... ... ...... . .. . . . .. ... .. . .. .. .... 209 
Wing aspect ratio .... . ..... . .. . .... ... .. . . . .. . . .. .. .... .. . . . . .. . .... .... .. . . .. ... ...... 2.5 

Mass, kg 
Take-off ... .. . . ..... . .. ..... . . . ... .. .. .. ... .. . ..................... .. . .......... . .. 20 731 
Lan'ding ...... ...... ...... . . ........ .. . ............ .. ... ... . ., ..... . ..... . ...... .. . . 14486 
Empty .... ..... . .. • . .. ..... .. ...... . .. .. ... . . . ..... . .. . . ......... . . .... ......... ... 13 352 
Payload ................ . . . . ....... ... . . ... .. .... .. ... . .............. . .. . .... .... .... 680 
Liquid hydrogen .... . .. . .. . .. . . ..... . . . . . ... .. .... .... . .. .......... .. . . . .. .. . . .. .. .. . 6553 

Engines 
Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 2 
Type ..................................... ..... .. . . ... . ... ... . . ....... .. . .. ....... Rex Ill 
Thrust , each engine, take-off and climb, N ......... ..... .... ....... ... . .. ...... . . . . .... 20016 
Rated thrust , each engine, at 30500 m, N ................. .... .. .... . . ...... ..... .. .... 16680 

Performance 
Take-off distance, m ............. . . . ... . . . . . .. . .. ..... ..... ..... ... . . . . ............... 1402 
Rate of climb at sea-level, m/ s ........................ . . . ...... . . .. . • ....... .... . ........ 8.9 
Equivalent air speed during climb, m/ s . . . . . . . . . . . . ... ...... ...... . .. . ..... .... . . . ...... 79 
Cruise Mach number ...................... . . . ..... . . . . .. .. ........ . .. . ........ ... . .... 2.25 
Radius (to target) , km ..... .......... . ..... . .. . .. ... . .. .. . ... .... . ... . .......... . .. ... 2797 
Climb and descent distance, km ..... . ................ ... . . . .... ... .. . . ............... .. . 556 
Landing distance, m ............... . • ..... . . ... . ..... .. . ........ .. .............. . .... .. 640 
Stall speed at landing, m/ s ....................................................... .. . .... 37 

From Lockheed Aircraft Corp. report I 1195, attached to report by J. L. Bartlet t. Jr. , I. M. Goldsmith. and 
A. Shaffer. "Rex Engine Cyc le Study and Selection," report RD-14- R. Rex Di v., Garrett Corp. , 15 Feh. 1956. 
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trouble. Not many questions were asked; and that night, in the hotel room, the 
members of the team sat around trying to figure out what had gone wrong. 51 

What had gone wrong was that members of the audience, particularly those in the 
power plant laboratory, were beginning to realize that Garrett was talking about a 
whole new ball game. Gone was the simple, ingenious, new engine with its small 
turbines. In its place was a large, complex engine, with compressors and turbines about 
the size of those in contemporary turbojet engines. In addition, there were heat 
exchangers using hot combustion gases, something no one had yet attempted to 
develop. Rex III was considerably more complex than a turbojet engine and had other 
problems. Frank Patella, the laboratory's contract manager for the Rex engine study, 
noted in his log that Garrett apparently did not realize the problems involved in the 
proposed three-speed gearbox or the heat exchangers. 52 The Wright Field experts may 
also have been troubled by Rae's assurance that liquid hydrogen production facilities 
would cover the development needs for the larger engine. 

Garrett Loses the Fight 

The 15 February 1956 presentation was the turning point. Garrett's relationship with 
the Air Force would be downhill from that time on. Both sides had begun the 
relationship with great expectations and in good faith; but step by step, the size and 
complexity of Garrett's proposed engines grew and ultimately destroyed the 
company's prospects. On the Air Force side, the need to involve a well-established 
engine manufacturer was seen as early as August 1954, but it took time for this position 
to become the dominant consideration. 

Nine days after Garrett's presentation, members of the power plant laboratory staff 
reported to Col. Harold Robbins of ARDC headquarters. Robbins, in turn, was to 
brief Gen. Thomas S. Power, ARDC's commander, on 27 February. Frank Patella was 
among those who talked with Robbins and he noted in his diary the main points of the 
briefing: Garrett did not have the facilities for component tests, the tools to 
manufacture, or the experience needed for the large engine, Rex III. There was 
considerable doubt among the Air Force propulsion experts that Garrett could 
develop such capability in time to meet the urgent need, for all agreed that the 
development of a special engine for high altitude operation merited a crash program. 
Robbins presumably conveyed these conclusions to Power in his briefing three days 
later. 

Back at Wright Field, power plant experts continued their analysis of the Rex engine 
and Garrett's capabilities to develop it. On I March 1956, General Haugen, 
commander of WADC, was briefed on the Rex situation by B. A. Wolfe of the power 
plant laboratory. The Rex I engine, 60 centimeters in diameter, had been considered 
within Garrett's capabilities; but the 150-centimeter Rex III was clearly beyond 
Garrett's development and production facilities. The consensus was that to proceed 
with the Rex III development by Garrett would be sheer folly. On 5 March 1956 
another conference took place, this time between working level personnel from the 
development and material groups. The participants again concluded that Garrett did 
not then have the capability to develop the engine and that it might take 8-10 years to 
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develop it unless a crash program were started. The power plant laboratory 
representatives pointed out that other engine manufacturers were now proposing 
essentially the same type of engine as Rex Ill.53 The problem was being studied at all 
Air Force levels, from headquarters on down. 

In the midst of these conferences, Garrett received a serious blow. The company had 
been urging the government to provide a liquid hydrogen plant on the government­
owned land within their Phoenix facility. The city of Phoenix learned of this proposal 
and acted to prohibit Garrett from working with hydrogen within the city limits. This 
development set off a new round of conferences and staff studies within the 
government. On 22 March 1956, Lt. Gen. Power, commander of ARDC, 
recommended to the Air Materiel Command that a favorable atmosphere be sought 
whereby a major engine manufacturer could acquire Garrett's and Rae's interests in the 
Rex engine. If this could be done, the Garrett contract could be terminated and 
proposals solicited from major engine manufacturers. 54 Power's proposal was backed 
by a detailed staff study. 55 Philip Richie, at the working level in AMC, objected to the 
conclusions of the staff study and wrote a point-by-point rebuttal. Richie 
recommended that a committee be appointed to make a detailed study of the problem 
and use it either to convince Garrett that it was in the country's best interest to go 
elsewhere or use it to explain to others why the Air Force stayed with Garrett . On IO 
May, Richie's recommendation was backed by his boss, Col. Merle R. Williams, 
W ADC procurement chief, so the Air Force remained locked in an internal struggle 
over what to do about Garrett.56 

Meanwhile, Bertram N. Snow, vice president of the Garrett Corporation, wrote to 
W ADC on 12 May 1956, pointing out several problems. A remote facility was required 
to test with hydrogen; since none was presently available, there would be a considera­
ble delay in carrying out the existing contract. He proposed to amend the contract to 
allow engine development of a prototype meeting the 50-hour test specification and to 
authorize the necessary facilities. If a hydrogen generating plant could not be provided 
by the government, Snow proposed to try for a commercial pr.oduct on contract. He 
estimated that the prototype engine could be developed in four years, with a program 
and facility cost of $72.5 million. Garrett followed up this proposal with a presentation 
two days later: the Garrett board of directors had decided that while the company 
could not handle large-scale production of the engine, it could handle limited produc­
tion. Two engine manufacturers had made overtures to Garrett but had been 
rebuffed.57 

Sometime in the spring, the perceptive Snow sensed the changed Air Force attitudes 
towards Garrett . He and Rae visited General Power in Baltimore to protest. Power 
listened to them and promised that they would receive a reply, but that it would come 
from General Rawlings of the Air Materiel Command. The meeting with Rawlings was 
held on 18 May 1956, and Snow was told bluntly that timely and successful 
development of the proposed engine could be done only by a major engine 
manufacturer. On 18 June, Snow wrote a strong letter of protest to Assistant Secretary 
of the Air Force for Materiel, Dudley C. Sharpe, stating Garrett's position and 
included a chronology of events. He made five points: (I) Garrett owned patent rights, 
(2) the Air Force had encouraged Garrett to develop the Rex engine, (3) Air Force 
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working level organizations had ignored Garrett's proprietary rights,* (4) Garrett's 
performance had been satisfactory, and (5) Garrett was willing to negotiate in the 
public interest. The thrust of Snow's letter was two proposals that eliminated the need 
for the government to furnish facilities . The first proposed that Garrett be given the 
prime contract for engine development, and Garrett would subcontract to a larger 
engine manufacturer any work it could not handle. The second proposed that Garrett 
be given the engine production contract and if production needs exceeded what Garrett 
could provide with its own resources, then Garrett would license a larger engine 
manufacturer to make the additional units. 58 

This appeal to Sharpe and visits to high-level government officials by Garrett 
officials did little to resolve the basic issues. Although Garrett continued working on its 
original contract , with several extensions, that work was essentially out of the 
mainstream of Air Force R&D projects. Phase I of the Garrett contract, engine 
analyses and selection, had been completed and presented on 15 February 1956.59 

Phase II, a thorough and comprehensive preliminary design study of the Rex Ill 
engine, was completed in May 1956.60 Phase III , to design, fabricate, and test 
combustors, turbines, fuel pumps, gear boxes, and heat exchangers, continued until 
1 February 1957, when the objectives were revised to be general research and 
development rather than specific to the Rex Ill engine design. On 18 October I957, 
Garrett received a directive to stop all work on the contract except for the preparation 
of a final report. This report, in several volumes, was completed in 1958.61 

What Went Wrong 

What went wrong in the Rae-Garrett-Air Force relationship? Lt. Col. Langdon F. 
Ayers, who was in the midst of the Rex events from beginning to end, summarized his 
view in August 1956. He saw Rex as the "classical example" of the problem of 
exploiting innovations. He believed that established, old-time engine companies were 
not likely to recognize or develop innovations because of vested interests. When an 
individual proposed a promising engine innovation, Ayers thought that the 
government should move the innovation, as fast as possible, to an established engine 
company and reward the inventor.62 

With the perspective of time, it is easy to see the errors made on both sides, but what 
can we learn from them? How can promising innovations be nurtured until they 
develop into a benefit for both originator and sponsor? There are no easy answers, but 
a few observations can be made. 

An idea or concept in itself is of little or no value until it is transformed into 
something people need or want. In our free enterprise system, an innovator must 
develop his idea or else seek a suitable sponsor who then takes the risk of development. 
The development of an innovation as complex as an aircraft engine or an airplane 
requires considerable capital for facilities, equipment, and operating funds . If a 
sponsor already has these and is willing to use them to develop an innovation, the 

*This was apparently with reference to an analysis by R. P. Carmichael, which will be discussed la ter. 
Garrett was also disturbed over the government's attitudes towards its patent rights. 
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innovator has made a fortunate alliance. Rae's case is tragic in that he twice chose 
sponsors who did not have the capability to meet his goals. Summers Gyroscope was 
clearly not suitable for more than studies and small component work. Garrett was 
suitable for developing small machinery and was willing to invest some of its own 
capital to expand, but it looked to a sponsor of its own, the government, to provide 
additional facilities and a development contract. The government was interested in 
Rae's idea but was not willing to sponsor the development of a company to exploit it, 
especially when there were suitable companies available. The government's position 
was sound. but perhaps errors of judgment were made in encouraging Garrett and 
later, when a contrary view became prevalent, of not promptly informing the company. 
Perhaps Rae, as inventor. and Garrett, as a company ready to develop the invention, 
erred in seeking to make too big a step in the beginning. They seemed unaware of the 
danger of proposing larger and larger engines until they found themselves out of the 
ball park . The urgency felt by the Air Force to develop an airplane superior to the U-2 
settled the matter. 

How can the government benefit from the ideas of lone inventors? This has been the 
subject of much study and a single case history can scarcely provide the answer. The 
Rex history does show, however, that the choice of a sponsor to exploit an innovation 
is all-important and that a goal may sometimes be reached better by a series of small 
steps rather than a gamble on one giant leap. 

Other Interests in Hydrogen 

During the last quarter of 1955 and concurrent with Garrett's Air Force contract, 
two other events occurred to broaden interest in hydrogen for aircraft. 

In October, the Fuels and Propulsion Panel of the USAF Scientific Advisory Board 
met and considered superfuels and reconnaissance vehicles.* On superfuels, the panel 
noted that hydrogen was one of three main lines of attack. It was most anxious to see 
engine studies and preliminary aircraft design studies directed towards application of 
hydrogen for aircraft propulsion. Further studies by the NACA since the March 
meeting continued to show excellent combustion characteristics of hydrogen. The 
panel believed that power plant development using hydrogen would encounter 
minimum difficulties. but an aircraft to use low-density fuel would require substantial 
redesign. Also noted was a need to study the possible adaptation of hydrogen to 
current aircraft or missiles. "" 

Anticipating the panel's conclusions. the Air Force included $4.5 million in the FY 
1957 budget request for development related to hydrogen, a substantial increase over 
the $ l million of the previous year. 

In November, Wright Field issued a technical note. "Cycle Performance of Some 
Selected Engine Configurations Using Liquid Hydrogen Fuel," in which Robert P. 
Carmichael analyzed nine engine systems using hydrogen as a coolant and a turbine 
working fluid as well as a fuel. 64 

*The meeting. held on 21 October 1955. was a ttended by Mark M . Mills. chairman. W. D . Rannie. 
Addison M . Rothrock, E. S. Taylor. and Gale Young. SAB files. Pentago n. 
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He also compared the performance of these engines with a conventional turbojet. 
Among his conclusions: some of the hydrogen engines gave superior performance 
compared to conventional turbojets ; precooling the incoming air with liquid hydrogen 
increased the mass fl.ow through the engine; both precooling and use of hydrogen 
turbines increased combustion pressure and permitted operation at higher altitudes 
with smaller combustors than conventional jets using hydrocarbon fuels. 

Carmichael's analysis was distributed to nine major aircraft engine manufacturers 
and seven airframe manufacturers, causing Garrett to complain that their proprietary 
rights had been violated (pp . 136-37). * In spite of the complexity of some of the 
hydrogen engines, the note must have stirred up considerable interest in hydrogen 
within the aeronautical community. 

Summary 

The Air Force began planning work to achieve very-high-altitude flight in late 1952 
and this resulted in successfully modifying the Martin RB-57, a later version of which is 
flying today. In 1954 Kelly Johnson of Lockheed , famed airplane designer, proposed a 
high-altitude reconnaissance airplane that was sponsored by the government. This 
became the U-2, which is also still flying . 

In 1954, Randy Rae proposed a novel hydrogen-fueled subsonic airplane capable of 
high-altitude flight. Although never built , it spawned considerable interest and activity 
on the potential of hydrogen as a fuel. The Garrett Corporation acquired Rae's 
interests and pressed the Air Force for a contract to develop the airplane and its engine, 
but received only a study contract and some component work. As interest grew and 
specifications changed from a subsonic to supersonic airplane, the required engine 
power increased, which meant a much larger hydrogen-fueled engine than Rae 
originally envisioned. The growth in engine size effectively took Garrett , a maker of 
small turbines and aircraft components, out of the competition. The government 
considered it inappropriate to set up Garrett as a manufacturer of large aircraft engines 
when several capable and well-established companies were willing to do the same 
thing. Rae and Garrett placed reliance on their patents, and their relationships with the 
government made a case study of the frustrations of an innovator with a single 
customer and needing large resources. Some benefits resulted, however; by the end of 
1955, interest in using hydrogen in aircraft had grown considerably. 

*The a llega tion is questionable in view of Wright F ield's long background in lurborockcts and research on 
hydrogen. The official response to Garren ind icated that no proprieta ry data had been used in the 
Carmichael report and lhal engine cycles in ge neral a re not proprietary. 
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Suntan 

The largest and most extraordinary project for using hydrogl'.n as a fuel was carried 
out by the Air Force in 1956-1958 in supersecrecy. Very few people are aware of it, 
even now, yet over a hundred million dollars were spent- perhaps as much as a quarter 
of a billion dollars. Although the project was cancelled before completion, it led 
directly to the first rocket engine that flew using hydrogen. The project was code­
named Suntan, and even this was kept secret. 1 It had all the air of cloak and dagger 
melodrama and indeed, its principal precursor was just that. Suntan was an effort by 
the Air Force to develop a hydrogen-fueled airplane with performance superior to the 
secret spy plane, the U-2. 

Suntan had its roots in Air Force interest in very high-altitude flight during the first 
half of the 1950s. One approach, along conventional lines, was pushed by Maj. John D . 
Seaberg of the Wright Air Development Center, beginning in late 1952. This involved a 
modification of the Martin RB-57 and the start of the Bell X-16, although the latter was 
cancelled in mid-1955. A different approach, sparked by a proposal by Randolph Rae 
in 1954 to build a glider-like airplane powered by the Rex engine, focused on the 
potential advantages of using liquid hydrogen. The Air Force interest in hydrogen was 
supported by Abe Silverstein, associate director of the Lewis laboratory of the 
National Advisory Committee for Aeronautics. 

By the end of 1955, the Air Force had in progress a number of research and 
development activities on the feasibility of using liquid hydrogen in flight. The Garrett 
Corporation, which bought Rae's patents and formed a Rex division with Rae as chief 
engineer, was three months into a contract for design studies of Rex engines and had 
concentrated on the largest and latest, the air-breathing Rex III. Kelly Johnson's 
Skunk Works at Lockheed Aircraft, past their peak effort in designing and building 
prototype U-2s for the CIA, was two months into a three-month design study of 
hydrogen-fueled aircraft for Garrett. United Aircraft (now United Technologies) was 
in the second quarter of a study of using hydrogen in a conventional turbojet engine, 
and a competitor, General Electric, was also showing interest in hydrogen. Beech 
Aircraft and Garrett were investigating liquid hydrogen tanks, insulation, and 
behavior of hydrogen in storage. The Air Force and NACA agreed that the Lewis 
laboratory would determine the feasibility of flying an airplane fueled with liquid 
hydrogen. The Air Force would provide the estimated $1 million needed, as well as 
lend equipment. 

141 
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The driving force behind the Air Force's mounting interest in hydrogen was the 
determination to develop an airplane with performance superior to the U-2. 
Dissatisfied with its supporting role to the CIA, the Air Force sought not only to take 
over the operational phase of the U-2 but also to regain the initiative in equipment by 
developing a second-generation airplane. One prospect was the Rae-Garrett proposal, 
but that approach did not seem quite the right answer. In late 1955, the time was ripe 
for a new proposal, and soon one was made by Kelly Johnson. He was immediately 
seen as the right man with the right idea. 

Air Force Moves Fast 

The high-flying U-2 was the latest symbol of Johnson's ability to design and build a 
new airplane quickly in his unique and unconventional Skunk Works. Familiar with 
hydrogen from conducting airplane design studies for Rae and Garrett, Johnson was 
impressed with its potential. Early in 1956, armed with a proposal for a hydrogen­
fueled supersonic airplane as a follow-on to the U-2, he visited the Pentagon where he 
had no difficulty seeing high Air Force officials, including Lt. Gen. Donald L. Putt, the 
deputy chief of staff for development.2 Johnson offered to build two prototype 
hydrogen-fueled airplanes, with the first to fly within 18 months. They would fly at an 
altitude of 30 300 meters, a speed of Mach 2.5, and have a range of 4070 kilometers.3 

To the Air Force, which had missed the opportunity to buy Johnson's original U-2 
proposal, the offer was too tempting to resist; they bought it. 

New airplanes, however, are not bought without due deliberation. The Air Force 
went through the proper motions, but the circumstances made the outcome a foregone 
conclusion. After receiving the proposal, Putt called a meeting on 18 January 1956. 
Among those present were his counterpart for materiel, Lt. Gen. Clarence S. Irvine; Lt. 
Gen. Thomas S . Power, head of the Air Research and Development Command; and 
Col. Norman C. Appold, head of Wright Air Development Center's power plant 
laboratory. The purpose of the meeting was to evaluate Johnson's proposal, but in his 
opening remarks, Putt made it clear that the Air Force wanted a new high-altitude 
airplane within two or three years, whether or not it was the one that Johnson 
proposed.4 

The short time that Putt specified was in keeping with Johnson's reputation, but 
incredibly short if liquid hydrogen, with its array of formidable pro bl ems, was to be the 
fuel. Engine development was considered the pacing item and the reason Appold, the 
Air Force's chief propulsion expert, had been summoned to the meeting. 

Putt wanted six months of study and experimentation to determine the feasibility of 
attaining the performance goals specified by Johnson. He named Col. Ralph Nunziato, 
a former test pilot and a member of his staff handling intelligence-gathering 
equipment, to be his project officer. Power named Appold to head the ARDC team, a 
clear indication of the critical importance of the propulsion system to the overall effort. 

Appold's first assignment was to select a qualified engine manufacturer to study a 
hydrogen-fueled engine and if feasible, develop it. Given a month to do this by Putt, 
Appold selected two candidates: the General Electric Company and the Pratt & 
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Whitney division of United Aircraft. He met with their representatives,* asked for and 
received proposals within two weeks, evaluated them, and selected Pratt & Whitney. 
He reported his actions at another meeting in Putt's office on 20 February, and the 
selection was approved.5 

Contract negotiations with Pratt & Whitney started early in April and by the first 
of May, a six-month contract had been signed. Agreement was also reached with 
Lockheed. Officials of Pratt & Whitney, impressed with the potential of hydrogen and 
wishing to avoid the red-tape of a cost-plus-fixed-fee contract, agreed to a fixed cost 
contract. As it turned out, their costs exceeded the fixed amount and Pratt & Whitney 
lost money.t Lockheed held out for a provisional contract that could be renegotiated 
and repriced at the end of the contract. Both firms , however, were hard at work by the 
first of April 1956. The contracts were made retroactive, to cover the fast start.6 

In the weeks that followed the initial meeting in February, Appold and Nunziato 
were very busy dealing with the two companies and consulting with specialists at the 
Wright Air Development Center on the feasibility of providing large quantities of 
liquid hydrogen. Although Appold continued as head of the power plant laboratory, it 
was clear that his new assignment would soon require full attention, as well as a staff. 
He chose Lt. Col. John D. Seaberg, the aeronautical engineer assigned to weapon 
systems who had started work on high-altitude aircraft in 1952 {pp. 113-14), to manage 
work on flight-type liquid hydrogen tanks, airframe, and complete airplane systems. 
Major Alfred J . Gardner, a combat pilot during World War II , holder of two master's 
degrees in engineering, and a propulsion specialist, was chosen to manage the engine 
development. Capt. Jay R. Brill, West Pointer, mechanical and nuclear engineer, 
would manage the logistics, including the quantity production of liquid hydrogen and 
its storage, transportation, and handling. The team worked initially at Wright Field 
and moved to ARDC headquarters in Baltimore in June, as a special projects office.7 

Considering the highly classified U-2 and the Air Force's desire to build a superior 
airplane, it is not surprising that the new project was very closely held. It was given a 
special classification higher than "Top Secret," the highest standard category. Full 
access ~as limited to about 25 people, an extremely small number considering the size 
and complexity of the large research and development effort.8 

Two compelling reasons beyond technical management and Air Force security 
called for a special projects office : fast contractual action and contractor security. To 
get an airplane developed in the two or three years that Putt demanded meant by­
passing the normal, but time-consuming, management and procurement processes. 
Appold turned to Col. Lee Fulton, head of procurement at ARDC Headquarters and 
his deputy, Robert Miedel, for help ; Miedel served as temporary procurement officer. 
They soon had a blanket "determination and findings" statement from Richard 
Horner, assistant secreta ry of the Air Force for research and development, and 

*Jack Parker, Gen. Mgr. , A ircra ft Gas Turbines Div., General Electric Co., and Charles Dribble, a G.E. 
engineer ; Wright Pa rkins, Willia m Gwinn, and Perry Pratt of Pratt & Whitney. 

t Pratt & Whitney received $15.3 million fo r the first phase of work and spent $17 . 1 million. 
Interview, Ernest Schweibert with Lt. Richa rd Doll, Dec. 1958. 
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directives from the Air Force deputy chiefs of staff for development and materiel, Putt 
and Irvine. These authorities allowed the Suntan team to waive normal procurement 
procedures and award contracts directly, with a minimum of review. This cut months 
from the procurement process. 

Miedel bowed out in June 1956 by appointing William E. Miller as contracting 
officer and negotiator on all Suntan contracts, and Lt. Col. J. R. Beyers as head of 
contract management. Two special auditors were assigned by the Auditor General. 
Miller's group also handled property and contractor security.9 

Extraordinary measures were taken to conceal Suntan from the curious and the 
unauthorized. The Suntan team at ARDC changed project numbers from time to time; 
some contracts were written through other Air Force offices, so they could not be 
related to Suntan. At contractor plants, Suntan workers were isolated and guarded 
from other units and operated as independently as possible. Special measures were 
taken to prevent identification of Suntan visitors by those not connected with the 
project.* Documentation was kept to a minimum. Io 

Lockheed CL-400 

The initial contract with Lockheed called for two prototype reconnaissance aircraft, 
with the first to fly in 18 months. Hard on its heels, also in 1956, Lockheed received a 
contract for six of the aircraft. The design Lockheed selected was designated CL-400 
and was capable of a speed of Mach 2.5 at an altitude of 30300 meters. 11 The CL-400 
was described openly for the first time in 1973 by Ben Rich at a symposium on 
hydrogen-fueled aircraft at the NASA Langley Research Center. Figure 34, taken from 
his paper, shows the characteristics of the CL-400. It had a fuselage diameter of three 
meters and a length of 49 meters to accommodate the 9740 kilograms of liquid 
hydrogen. The retractable ventral (bottom) fin improved directional stability at 
supersonic speeds. 

The engines, designated 304-2, were to be supplied by Pratt & Whitney and will be 
described later. Each weighed 2850 kilograms, provided 42 kilonewtons at sea-level, 
and 27 at Mach 2.5 and 29000 meters altitude. 

The mission profile is shown by figure 35. The range was 4070 kilometers and could 
be extended only by a considerable increase in airplane size. Airplane sizes with lengths 
as long as a football field , as well as other variables, were studied at the Skunk Works. 
The relatively short radius of 2000 kilometers was later to become a matter of great 
concern. 

*Of numerous stories of security incidents. o ne of the most interesting involved a good-looking fema le 
engineer of the Skunk Wo rks who almost- a nd inadvertent ly-- blew Suntan's cover. She attended a 
symposium o n hydrogen at the-N BS Cryogenics La bo rato ry a nd following established pract ice o f the Skunk 
Wo rks. registered as representing he rself. Standing nearby was a male engineer who knew she wo rked for 
Lockheed but had forgotten he r name. He pecked a t the register and immediately grew suspicious, 

wondering why Lockheed was interested in hyd rogen and hid ing it. Interview with Col. Gardner, 19 Sept. 
1973. 
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T.0.G.W., 69.956 LB. 

ZERO F.W. 48,515 LB. 

FUEL LOAD, 21.440 LB. 

PAYLOAD 1.500 LB. 

CREW, 2 

WING AREA 2AOO SQ. FT.

ASPECT RATIO. 2.5 

304-2 ENGINES • TWO 

Fig. 34. Lockheed CL-400 reconna issance aircraft using liquid hyd rogen as fuel, ca. 1955. Ben R. Rich, 
"Lockheed CL-400 Liquid Hyd rogen-Fueled Mach 2.5 Reconnaissance Vehicle," read at a symposium on 
hydrogen-fueled aircraft , NASA Langley Research Center, 15- 16 May 1973. 
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Fig. 35. Mission profile for the Lockheed CL-400 using liquid hydrogen as fuel. (Source same as fig. 34.) 
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Fig. 36. Clarence L. (Kelly) Johnson, aircraft designer and builder extraordinary, father of the U-2 
reconnaissance airplane and its first proposed successor in 1956-1958, the hydrogen-fueled CL-400. 
(Courtesy of Lockheed Aircraft Corp.) 
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Fort Robertson at the Skunk Works 

Kelly Johnson saw his task as much more than designing and building a hydrogen­
fueled airplane. He was also concerned about its operation, for if it was to be 
successful, liquid hydrogen had to be produced and shipped in quantity and be handled 
like gasoline. On 16 March 1956, he and his staff met with representatives of J. H. 
Pomeroy and Company of Los Angeles, a consulting engineering firm. Johnson 
wanted Pomeroy to study the engineering feasibility and cost of producing 
parahydrogen in quantity, and he was interested in three production rates-45000, 
135000, and 225000 kilograms per day. He wanted the plant location to be in the 
Antelope Valley of California. Pomeroy agreed to undertake the study, and ten days 
later Johnson sent them a letter of intent with ground rules.12 

At the outset of the project, Johnson assigned one of his assistants, Ben Rich, a 
thermodynamics and heat transfer expert, the dual responsibilities of propulsion and 
the handling of hydrogen. Rich, who knew little about liquid hydrogen at the time, 
checked Mark's Mechanical Engineering Handbook which stated that liquid hydrogen 
was an impractical fluid and only a laboratory curiosity. He was to understand why in 
his subsequent visits to laboratories and firms working with liquid hydrogen. Among 
those contacted were Professor William Giauque, University of California at Berkeley, 
and Russell B. Scott at the Cryogenic Laboratory of the U.S. Bureau of Standards at 
Boulder. Rich concluded that liquid hydrogen was mostly in the hands of highly skilled 
scientists, and few of them appreciated the practical problems he saw in adapting liquid 
hydrogen to routine use as an airplane fuel. In that application, a temperature range 
from the boiling point of liquid hydrogen, 20.3 K, to the frictional temperature of the 
airplane skin at Mach 2.5, about 670 K, had to be handled with designs and materials 
dictated by volume and weight restrictions. The earthbound design and construction 
methods used with liquid hydrogen generally were unsuitable. Moreover, Rich found 
that he was thinking of far greater quantities of liquid hydrogen than others; he used 
the unit "acre-feet" to emphasize his point. All these considerations made it obvious 
that the Skunk Works staff had to learn how to handle liquid hydrogen and to adapt it 
to the particular application. This required a liquid hydrogen test facility. During 
World War II, a bomb shelter revetment had been built adjacent to the Skunk Works, 
and it was selected as the site of the hydrogen facility. It was named "Fort Robertson" 
after the man who was in charge of the test operations. A Collins cryostat, capable of 
producing nine liters of liquid hydrogen per hour, was installed to test materials, 
bearings, seals, and small components. When larger quantities were needed for tank 
flow and spill tests, liquid hydrogen was obtained from the Bureau of Standards 
Cryogenic Laboratory at Boulder and stored in a 2200 liter refrigerated dewar built by 
the Air Force for the hydrogen bomb program. The Skunk Works also relied heavily 
on the experts at the NBS Cryogenic Laboratory, particularly Russell Scott, regarded 
as "Mr. Hydrogen," who became a consultant. 

On 1 October 1956, the J. H. Pomeroy Company reported on hydrogen liquefaction 
plants. The report is an excellent summary of the state-of-the-art, and cites 52 
references.13 An entire plant was planned- from incoming natural gas for producing 
gaseous hydrogen to underground storage of liquid hydrogen. A plant of 45000 
kilograms per day capacity was studied in detail, as well as multiples of it-well above 
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the size of the Boulder installation, which had the largest capacity in existence in the 
U.S. Pomeroy considered the 45 000 kilogram per day capacity to be about the largest 
practical size. Construction cost was estimated at $45 million and operating costs at 
$0.386 per kilogram. A million cubic meters of natural gas per day would be required.* 
Pomeroy discussed an expansion engine process that would, with some additional 
R&D, be available. With catalysts, it would permit continuous liquefaction of 
parahydrogen. 

Hydrogen Tanks and Systems 

For a hydrogen-fueled airplane, the very low temperature and density of liquid 
hydrogen pose special design problems for tanks, pumps, lines, instrumentation, and 
other components in the fuel system. The special requirements imposed by hydrogen 
are recognized immediately by all who consider such designs and, of course. received 
major attention by the men of the Skunk Works. The CL-400 design divided the 
hydrogen tankage into three sections; the forward tank had a capacity of 67000 liters ; 
aft, 54000; and center (sump), 15000. The two main tanks were kept at 2.3 atmospheres 
pressure and the sump tank slightly lower for fuel transfer. In the sump was a booster 
pump, built by Pesco Products, that supplied liquid hydrogen to the engines at a 
pressure of 4.4 atmospheres. The engines were mounted at the wing tips, which meant 
that the liquid hydrogen had to pass through a hot wing with surface temperatures up 
to 436 K. The design provided a vacuum-jacketed, insulated line for this purpose. 

There were many unknowns in the design of the hydrogen tanks and other fuel 
components, and numerous experiments were conducted to obtain more information. 
These were done at Fort Robertson and included half-scale models of the sump tank. 
the vacuum-jacketed lines for carrying hydrogen from the tanks through the hot wings 
to the engines, booster pumps, valves, controls. and other components. These were 
tested in thermal environments simulating flight conditions. Later a full-scale sump 
pump was built and shipped to Pratt & Whitney for their use in engine testing. 

Is Hydrogen a Practical Fuel? 

Among the first concerns of Johnson and Rich were the fire and explosion hazards of 
hydrogen. Could it be handled as safely as gasoline? In his early visits to laboratories 
using liquid hydrogen, Rich inquired about fires and explosions. but obtained little 
information. The laboratories went to great lengths to avoid these problems. The only 
previous explosions Rich learned about were some minor ones Professor William 
Giauque experienced when oxygen crystals formed in a heat exchanger containing 
hydrogen. The paucity of information led Johnson and Rich to devise a series of 
experiments to determine for themselves the hazards of hydrogen fires and explosions. 

*CH,+ H,O (steam) - 3H, + CO 

CO+ H, O (steam) - H, + CO, 

The CO' byproduct would be marketed to keep costs down. 
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For this they turned to their only testing ground, Fort Robertson-less than a 
kilometer from the runways of the Burbank airport. 

Tests were devised in which tanks containing liquid hydrogen under pressure were 
ruptured. In many cases, the hydrogen quickly escaped without ignition. The 
experimenters then provided a rocket squib (a small powder charge) to ignite the 
escaping hydrogen. The resulting fireball quickly dissipated because of the rapid flame 
speed of hydrogen and its low density. Containers of hydrogen and gasoline were 
placed side by side and ruptured. When the hydrogen can was ruptured and ignited, the 
flame quickly dissipated; but when the same thing was done with gasoline, the gasoline 
and flame stayed near the container and did much more damage. The gasoline fire was 
an order of magnitude more severe than the hydrogen fire . The experimenters tried to 
induce hydrogen to explode, wi~h limited success. In 61 attempts, only two explosions 
occurred and in both, they had to mix oxygen with the hydrogen. Their largest 
explosion was produced by mixing a half liter ofliquid oxygen with a similar volume of 
liquid hydrogen. Johnson and Rich were convinced that, with proper care, liquid 
hydrogen could be handled quite safely and was a practical fuel-a conclusion that was 
amply verified by the space program in the 1960s. At the time, however, Johnson and 
Rich filmed their fire and explosion experiments to convince doubters. 

The confidence of Johnson and Rich in hydrogen handling was not always shared by 
their hydrogen consultant, Russell Scott, who was often amazed at what he saw going 
on in the test areas of Fort Robertson. 14 The facility, however, was well equipped with 
an explosion-proof electrical system, non-sparking safety tools, hydrogen sniffers or 
monitors, and other safety devices. In the three years of work and the handling of 
thousands of liters of liquid hydrogen, there was not a single accident caused by 
hydrogen. There was, however, one close call. In keeping with Kelly Johnson's 
philosophy of austerity, the ovens used for simulating hot wing temperatures of Mach 
2.5 flight were made partially of wood. There were five such ovens, and early one 
morning, about 2 a.m., one of them caught fire. The Skunk Works personnel, including 
Rich, were summoned because the fire department could not be called, for security 
reasons. At the time there were 2000 liters of liquid hydrogen stored in the area and 
Rich decided that the best course of action was to dump the liquid hydrogen on the 
ground. It was winter and very humid ; the cold hydrogen quickly filled the revetment 
with fog about five feet thick. Rich and about two dozen other people were in the 
revetment and all they could see of each other were their heads, an eerie sight. Luckily, 
the hydrogen did not ignite. 

Suntan at United Aircraft 

United Aircraft Corporation* became involved in liquid hydrogen as a propulsion 
fuel in 1955 on the initiative of the power plant laboratory at Wright Field. Acting on a 
directive from its headquarters, the laboratory initiated a procurement request in 
January 1955 to investigate hydrogen as a fuel in turbojet engines. In February, 
invitations to bid were sent to United Aircraft and three other major engine 

*Name changed to United Technologies Corp. in 1975. 
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manufacturers. Proposals were submitted in March; United Aircraft won the 
competition and was awarded a contract on 15 June (p. 126). 

The contract was not with the corporation's Pratt & Whitney division but with the 
research department headed by John Lee. The work was exploratory and included 
cycle analyses, aircraft weight analyses, and some experiments. One of the men 
involved was Wesley A. Kuhrt, to whom hydrogen was no stranger. When 13 years old, 
he made hydrogen in his cellar laboratory by adding zinc to hydrochloric acid. 
Suddenly there was an explosion; glass fragments were imbedded in his chest, but he 
escaped serious injury. The incident neither cooled his enthusiasm for science nor 
created a fear of hydrogen.15 

The Pratt & Whitney division had followed Air Force and NACA interest in 
hydrogen during 1955 and was also aware of Rae's Rex engines.16 The Suntan project 
began for the division with a call from Appold in January 1956; by February, division 
officials began to believe they would win the contract for the engine. On 17 February, 
Perry Pratt, chief engineer, summarized what he had learned about hydrogen in jet 
engines. He cited six companies with experience in pumping hydrogen and described 
an engine that was somewhat similar to the Rex engine.* Pratt had examined the 
hydrogen supply problem and concluded that conversion of liquid hydrogen to its para 
form at time of liquefaction was feasible, and this made hydrogen storage, and 
shipment by truck, rail, or air practical. This optimistic report was written on Friday.17 

The following Monday, Pratt was in California visiting various people knowledgeable 
about hydrogen, including Kelly Johnson at Lockheed .18 By this time, it was highly 
probable that Johnson and Pratt, collaborators in adapting the J-57 engine for the U-2, 
were aware that they would again be working together on the Suntan project. 

William Sens, a Pratt & Whitney engineer, accompanied Pratt on the California trip 
and while there learned about Rex engines. This excited him, for six weeks earlier he 
had conceived an idea about hydrogen-fueled engines following a conversation with 
John Chamberlain, a combustion expert at United Aircraft's research laboratory. 
Chamherlain had pointed out that heated hydrogen was capable of a large amount of 
work in a thermodynamic cycle. Sens began thinking of using heated hydrogen to drive 
a turbine which would power an engine fan or compressor. After passing through the 
turbine, the hydrogen would be injected and burned in the airstream of the engine. 
Immediately after returning from California, Sens sent a proposal to Pratt for 
developing a hydrogen engine meeting the following requirements: 

Altitude 30500 m 
Speed M 2.5 
Thrust 20000 N (4500 lb) 
Thrust specific fuel consumption 0.076 kg/ N·hr (0.75 

lb/lb thrust· hr) 
Nacelle weight 2722-3175 kg 
Engine diameter 155 cm 

*Reaction Motors, Carter Pump. North American. Aerojet. Cambridge Corp .. and National Bureau of 
Sta nda rds. Pratt mentioned an engine fan diameter of 150 cm. the same diameter that Johnson a nd Rae had 
agreed upon in the Lockheed a irpla ne study for Ga rrett. a nd which had been officially repo rted to the Air 
Force two days earlier. 
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These specifications indicate that Sens was also aware of Johnson's propulsion 
requirements or those of the CL325-l prepared by Johnson for Garrett (table 4, p. 
134).19 

Sens described his proposed engine as having a dual cycle, with the basic one 
resembling a supercharged ramjet: 

Air is .. . compressed by a low pressure ratio compressor, heated by combustion 
of hydrogen vapor and discharged through a ... nozzle. In addition, heat is 
extracted from the air stream by means of a heat exchanger after part of the 
combustion of the hydrogen has taken place. This heat is used to vaporize and 
heat the hydrogen being used in the combustion process. In the secondary cycle 
the liquid hydrogen fuel is compressed to a high pressure by means of a multi-stage 
centrifugal type pump. The high pressure hydrogen is then vaporized and heated 
to a relatively high temperature in the heat exchanger located in the high 
temperature air stream. The hydrogen is then expanded through a multi-stage 
axial-flow turbine to a pressure only slightly above that of the fan discharge air. 
The turbine power output is used to drive the compressor used in the air cycle. 
Because of the large speed difference between the hydrogen turbine and the air 
compressor, it is necessary to use a single speed reduction gear between the two 
components.20 

Sens discussed anticipated problems and the applicability of existing Pratt & Whitney 
experience to solve them. 

Sens was not the only one in the corporation considering possible hydrogen engines. 
Wesley Kuhrt in the research department had been working on them for some time, 
and on 1 March 1956, he conceived three engine systems for which he later filed and 
was granted patents.21 One was a turbofan engine (fig. 37). Air entering the inlet is 
compressed by the fan and flows around the centerbody to the aft section, where 
gaseous hydrogen is injected and burns stoichiometrically. The hot gases expand 
through the exhaust nozzle to produce thrust. The source of power for the air fan is a 
turbine driven by heated hydrogen prior to combustion. Liquid hydrogen flows to the 
heat exchanger around the exhaust nozzle where it gasifies and is raised to a reasonably 
high temperature. From the heat exchanger the hot hydrogen drives a multistage 
turbine which is connected to the air fan through a gear box. After leaving the turbine, 
the hydrogen is injected in the engine air stream and burned. Kuhrt's engine is similar 
to Rae's Rex III in that both employ a heat exchanger to heat the hydrogen to drive a 
turbine, but K uhrt's concept is much simpler than the Rex III (p. 131 ). 

For Kuhrt, the beginning of the Suntan work at United Aircraft was a call in early 
1956 to come to the office of Wright Parkins. Present were Perry Pratt, Col. Norman 
Appold, and others. Appold stressed the need to get started quickly on a project to use 
hydrogen in aircraft engines.22 

For Richard J. Coar, a rising, brilliant young mechanical engineer hard at work on 
developing the J-75 turbojet, the Suntan program also began early in 1956 when he was 
"yanked off his project" and assigned to the hydrogen engine work. His first task was 
engine analysis and learning all he could about hydrogen. He visited the Bureau of 
Mines, the Arthur D. Little Company, and a conference at the Bureau of Standards 
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Fig. 37. Wesley A. Kuhrt's turbofan jct engine using liquid hydrogen as fuel. the precursor to Pratt & 
Whitney Aircraft's 304 engine. From Patent 3 241311 , 22 Mar. 1966, filed 5 Apr. 1957. (Courtesy of United 
Technologies Corp.) 

Cryogenic Laboratory at Boulder. Inspection of the liquefaction plant convinced him 
that production of liquid hydrogen would be a major obstacle to military use of 
hydrogen. The plant was small and the laboratory techniq1 es required highly skilled 
personnel. 1 n April, Coar went to Baltimore to negotiate a contract with the Air Force. 
It was on one page and technical negotiations were completed in a day-a marked 
contrast to the long and agonizing process that Rae , Garrett, and the Air Force had 
gone through earlier. 2> 

Pratt & Whitney's initial approach to the problem was to analyse the various 
hydrogen engines that had been proposed, select one, and develop it so as to take the 
greatest advantage of hydrogen's unique properties. This remained their mainline 
approach but in a short while, they realized that modification of an existing engine 
would provide a quicker. though less efficient, engine for early flight experience. They 
proposed to modify a J-57 for this purpose, the Air Force agreed , and the contract was 
amended. 

Shamrock 

In the spring of 1956, Suntan engine activities at Pratt & Whitney were in full swing. 
Coar selected Richard C. Mui.ready, a bright young engineer, as his assistant. Liquid 
hydrogen handling tests began immediately with hydrogen obtained from the 
Cambridge Corporation in dewars. Associated with this activity were preparations for 
component and engine testing, including obtaining a supply of liquid hydrogen. With 
the help of Capt. Jay Brill , a hydrogen liquefier of 227-kilogram-per-day capacity was 
purchased from Herrick L. Johnston and installed in the engine test area behind the 
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East Hartford plant. The test area was called the "Klondike" because of the cold 
Connecticut winters and well-ventilated test stands that were designed to prevent the 
accumulation of hydrogen. Coar and Mulready also began to round up all the gaseous 
hydrogen tube trailers they could find to supply the liquefier.24 

The second activity. code named "Shamrock," began in April to convert a J-57 to 
burn hydrogen. The design was completed in May; thereafter, component testing and 
engine modifications ran concurrently. The hydrogen liquefier was ready in 
September, engine testing began in October. The test engineers were agreeably 
surprised by the ease of engine operation. They ran it at full power and throttled back 
so far that the air fan was revolving so slowly the individual blades could be counted. 
Under this latter condition, the throttle could be opened and the engine would quickly 
and smoothly accelerate to full power. They found that the temperature distribution 
was good and there were no major problems. Such satisfactory results came only after 
careful design studies, modifications, and component testing. Among these precursory 
activities were the development of a heat exchanger using air bled from the compressor 
to gasify the hydrogen, modifications to the J-57 electronic fuel control system, and 
development of an oil-lubricated, liquid-hydrogen pump. Figures 38 and 39 show a 
schematic of the modified J-57 and comparison with the standard model. 

By the fall of 1957, the J-57 experiments demonstrated beyond question that a 
conventional turbojet could be readily adapted to use hydrogen. Such engines could 
have been used to meet Kelly Johnson's tight airplane development schedule. but 
modifying an existing turbojet could not optimize the advantages of hydrogen. The 
Pratt & Whitney engineers had realized this early in their studies, as had their 
counterparts in the Rex division of Garrett and the Air Force. The mainline Pratt & 
Whitney effort from the start focused on a design of a special hydrogen engine, and its 
design started in April 1956 with the first contract.2~ 

HEAT EXCHANGER 

Fig. 38. Schematic of the P ratt & Whitney Aircraft J-57 jet engine modified to use liqu id hyd rogen as fuel. 
1956. (Courtesy o f Pratt & Whitney.) 
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Fig. 39. Comparison of Pratt & Whitney's J-57 with afterburner (about 6\4 meters long) and using 
hydrocarbon fuel (bottom) with the engine modified to use liquid hydrogen (top). 1956. (Courtesy of Pratt 
& Whitney.) 

The Model 304 Engine 

By mid-August 1956, Pratt & Whitney engineers had designed the new engine to use 
hydrogen. It was designated the "304," taken from the division's engine order number 
703040, 16 April 1956.26 It was essentially the one proposed earlier by Sens and Kuhrt 
and is shown schematically by figure 40. Liquid hydrogen was pumped at high pressure 
through a heat exchanger in the aft section of the engine. The heated hydrogen drove a 
multistage turbine which, through a reduction gear, powered a multistage air fan. The 
fan compressed incoming air, the primary working fluid of the engine. Part of the 
hydrogen discharged from the turbine was injected and burned in the air-stream be­
hind the fan. The amount of hydrogen injected and burned was controlled to limit the 
temperature of the combustion gases which furnished the heat for the heat exchanger 
downstream. The remaining hydrogen was injected and burned in the after-burner 
section beyond the heat exchanger. and the hot gases and air expanded through the 
nozzle to produce propulsive thrust. The engine was similar to the Rex Ill but much 
simpler, as only one heat exchanger was used. The maximum diameter of the 304 
engine was 203 centimeters, as compared to the 150 centimeters proposed by Garrett 
for Rex Ill. Nacelle length was 10.7 meters; weight 2722 kilograms; thrust at 30500 
meters altitude, 21.4 kilonewtons (4800 lb); and specific fuel consumption 0.082 
kilogram/ newton · hour (0.8 lb/ lb · hr). These are close to the specifications in Sens's 
draft of 24 February 1956. 
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Fig. 40. Schematic of Pratt & Whitney's model 304 engine designed to use liquid hydrogen as fuel, 1956. 
(Courtesy of Pratt & Whitney.) 

Pratt & Whitney engineers were well experienced in all the components of the 304 
engine except the liquid-hydrogen pump and the hot-gas heat-exchanger. They 
purchased a liquid-hydrogen pump for study, but became dissatisfied with it and 
proceeded to make a better one.27 They saw two critical problems: an impeller that 
would handle liquid hydrogen without cavitation, and adequate sealing between the 
high-pressure liquid hydrogen at 20 Kand the oil-lubricated bearing. Apparently they 
were not familiar with the work at Ohio State University on oil-free ball bearings 
operating in liquid hydrogen (pp. 25-26). They designed a two-stage centrifugal pump 
with a seal protecting conventional bearing lubrication. Figure 41 is a photograph of 
the pump rotor. The pump worked well and a total of 25 hours test time was accumu­
lated in 75 tests over two years.* 

The hot-gas-to-hydrogen heat exchanger (fig. 42) was the most unusual and 
interesting component of the 304 engine. With an outside diameter of 182 centimeters, 
the unit consisted of banks of 48-millimeter stainless steel tubing in an involute pattern 
to ensure uniform air flow. An enormous amount of tubing was used-enough to 
stretch over 8 kilometers; 2240 tube joints were furnace-brazed. The hydrogen passing 
through the heat exchanger was heated from 20 K to 1000 K, and the entering 
combustion gas temperature was 1500 K. The rate of heat transfer was 21000 kilowatts 
(72 million Btu/ hr), enough to heat 700 six-room houses.28 

Pratt & Whitney engineers, experts in designing gas turbines, built the 304 hydrogen 
turbine with 18 stages, the largest of which was 45 centimeters in diameter. Operating 
temperature was 1000 K and power output was 8950 kilowatts (12000 hp). The 
turbines were tested for a total of 64 hours over a two year period. The 12-stage high­
pressure group is shown by figure 43. 

The first model 304 engine was assembled in East Hartford, Connecticut, by 18 
August 1957-sixteen months after go-ahead (fig. 44.). 

*One pump accumulated 4!12 hours of test time with speeds as lni.gltas 25 300 rpm, pressures of 75 atm. and 
a flow of 1.9 kg/ s. 



156 LIQUID HYDROGEN AS A PROPULSION FUEL, 1945-1959 

Fig. 41. Prall & Whitney's liquid-hydrogen pump for the model 304 jet engine. The seal between the rotor 
and bearings operated dry; the bearing lubrication was conventional. (Courtesy of Prall & Whitney.) 

Fig. 42. Hydrogen heat exchanger in Pratt & Whitney's model 304 jet engine using liquid hydrogen as fuel. 
(Courtesy of Prall & Whitney.) 
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Fig. 43. High-pressure group of the 12 stages of hydrogen turbine expansion used by Pratt & Whitney's 
model 304 engine. The early stages operated near 1000 K. (Courtesy of Pratt & Whitney.) 

Fig. 44. Pratt & Whitney's model 304 engine using liquid hydrogen as fuel. Visible inside the nozzle is the 
afterburner fuel injector. The engine was first tested in September 1957. The numerous wires on the engine 
led to sensors for measuring performance. (Courtesy of Pratt & Whitney.) 
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Engine Tests 

The testing of the 304 engines was carried out at Pratt & Whitney's new center west 
of West Palm Beach, Florida. The test center, still under construction in the fall of 
1957, was the result of several years of planning by United Aircraft officials to 
overcome the limited space for testing at their Connecticut plant. Problems of safety 
and noise made a more remote site desirable, and there were considerations of dispersal 
of facilities for defense reasons. These had led to the choice of West Palm Beach 
County as a desirable test site. United Aircraft acquired a large tract of land, swapped 
part of it for adjacent land owned by the state, and ended up with 27 square kilometers 
of sand, scrub pine, swamp, and alligators-well suited for remote testing of new 
engines. In the negotiations for the hydrogen engine contract, United Aircraft officials 
indicated a willingness to invest $20 million in permanent facilities at the new center if 
the Air Force would pay for all movable equipment, also estimated to be about $20 
million.29 The cost sharing was agreed upon in principal, if not in the exact amounts, 
and construction proceeded. During initial operations, the test crew often had to call 
for a bulldozer to clear the unpaved roads of deep ruts to allow passage; alligators were 
a common sight.3° 

The first 304 engine tests began on 11 September 1957 using three fluids: nitrogen, 
gaseous hydrogen, and liquid hydrogen. The inert nitrogen was used to check the fuel 
system and rotating machinery, especially bearings and seals. The first series of runs 
lasted through October; 4Yi hours were logged, including 38 minutes with liquid 
hydrogen. The engine was removed for inspection and overhaul when turbine oil 
consumption became excessive. When reinstalled for a second series of runs on 20 
December 1957, no significant failures occurred, but the engine was periodically 
removed, inspected, overhauled and reinstalled.31 

Six series of runs were made through the first part of July 1958 and 5Yi hours of 
operation with hydrogen were accumulated. Only minor problems were encountered 
until the last run, when there was a major failure of bearings, turbine, and heat 
exchanger. Meanwhile, a second engine of the same type had been installed on a twin · 
test stand; its first run was made on 16 January 1958. Tests continued on the second 
engine into the first part of April, with a little over JO hours of operation with 
hydrogen. The engine was removed when the low pressure section of the turbine failed . 

During the testing period, Coar and Mulready designed and built a second model of 
the 304 engine, which had an additional (fifth) compressor stage and lower specific fuel 
consumption. The first 304-2 was assembled at East Hartford on 20 June 1958 and four 
days later was operated at the Florida test center. Tests continued for a month, with 
3 l / 3 hours of accumulated running time with hydrogen before the engine experienced 
a complete turbine failure. It was removed for repair and strengthening of the turbine 
disks. While this engine was in the shop, another 304 engine (presumably of the first 
design) was installed and operations began in mid-August. This engine operated 
satisfactorily through September and accumulated over 6 hours time using hydrogen. 
Table 5 shows a comparison of the specifications and performance of the two versions 
of the 304. 

By the end of September 1958, the repaired 304-2 engine was back on the stand and 
made a short run, and another 304 engine was nearing assembly at East Hartford . 
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TABLE 5.-Characteristics of Pratt & Whitney's Model 304 Enf!ines 

Model 
304-1 

Test 
Performance 

Model 
304-2 

Test 
Performance 

Characteristic Spec 
A6600 Eng. 1 Eng. 2 

Spec 
A-6600A 

Sea-level static thrust 
newtons 55600 55422 53429 60048 35028 
(lbs) ( 12 500) (12460) (12012) (13500) (7875) 

Thrust specific fuel 
consumption, kg/N ·hr 1.10 1.252 1.220 0.900 .937 

Compressor speed, rpm 3600 3630 3300 3600 2503 

Pump discharge pressure, atm 54 42 34 

Overall turbine efficiency .475 .507 

Note: Model 304-1 had 4 compressor stages. 
Model 304-2 had 5 compressor stages. 

Neither was destined to run again, for time had run out on the Suntan project. In all, 
the engines were operated 25Yi hours with hydrogen, and all indications were that the 
development was proceeding satisfactorily. 

Baby Bear, Mama Bear, and Papa Bear 

Concurrent with the engine testing was an extensive program of component testing, 
and the combined operations created a heavy demand for liquid hydrogen, a situation 
anticipated by the Air Force. 

Capt. Jay Brill's primary assignment on the Suntan management team was the 
logistics of liquid hydrogen. In one of his first moves, he contacted the Atomic Energy 
Commission to scrounge the excess equipment used for the "wet" hydrogen bomb 
program. He was able to obtain several of the refrigerated transport dewars developed 
for the J\EC program (p. 68). In April 1956, he began a survey of industrial firms to 
assess their capability and interest in building hydrogen liquefiers and producing liquid 
hydrogen for the program. Wright Field had prepared a specification for liquid 
hydrogen which was given the code name "SF-I" fuel. Brill was accompanied on his 
visits by Marc and Blackwell (Blacky) Dunnam. Marc was chief of the fuels and oil 
division of the Power Plant Laboratory and Blacky had experience with cryogenic 
equipment. They visited the Linde Company in New York, Hydro-Carbon Research in 
New Jersey, and the Air Products Company in Allentown, Pennsylvania. Brill 
returned to Dayton convinced that large hydrogen liquefiers could be built with 
existing technology. The Arthur D. Little Company was awarded a contract to serve as 
a consultant in hydrogen liquefaction and to study hydrogen handling and safety 
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procedures. The Air Force also made use of the services of Russell Scott and other 
experts at the Bureau of Standards Cryogenic Laboratory at Boulder.32 

In his survey of industrial firms, Brill found that there was plenty of gaseous 
hydrogen capacity by several processes. One firm produced excess hydrogen as a by­
product in Painesville, Ohio. This was near Pesco Products division of Borg Warner 
Corporation, a firm Appold had involved in developing a liquid hydrogen transfer 
pump for the CL-400 airplane. It was also near the NACA Lewis Laboratory, which 
would soon need liquid hydrogen for its flight investigation. For these reasons, the Air 
Force contracted with Air Products, about May 1956, to build a 680-kilogram-per-day 
liquid hydrogen plant in Painesville. At the same time, two other contracts for similar 
size plants were awarded. One was to Stearns-Roger for a plant at Bakersfield, 
California, to support the CL-400 program at Lockheed and the other was to Hydro­
carbon Research for a plant to support Pratt & Whitney at East Hartford. The 
Painesville plant was named "Baby Bear" and was the first to become operational, in 
May 1957, at a cost of $2 million. The California plant was placed into operation in the 
fall of 1957, but the contract with Hydro-Carbon Research was cancelled for 
budgetary reasons.33 Pratt & Whitney's initial hydrogen needs at East Hartford, over 
its own capacity, were supplied by truck from Baby Bear. 

Another of Brill's tasks was the transportation ofliquid hydrogen. Specifications for 
over-the-highway trailers had been drawn up by Wright Field and a contract was 
awarded to the Cambridge Corporation. Concurrently, permission was sought and 
obtained from the Interstate Commerce Commission to transport liquid hydrogen 
over the highway. The trailers were labeled "flammable liquid," since to reveal the true 
contents would blow the security cover. The U-1 semi-trailer built by the Cambridge 
Corporation had a capacity of 26500 liters, with a hydrogen loss rate of approximately 
· 2 percent per day. Figure 46 shows the U-1 and its successor, the U-2. The latter's 
specifications were issued on 15 March 1957 because the U-1 ran into a natural, but 
unanticipated, problem. The very low density of hydrogen made tandem axles on the 
semi-trailer unnecessary, so the U-1 had only one. During subsequent use of this 
equipment, there occurred an endless series of problems, all stemming from the single 
axle, which was unheard of for such a large trailer. It seems that each time one of these 
large semi-trailers went through a state weighing station, it roused suspicion, doubt 
about the equipment, and inquiries about the nature of the load.• The Suntan team 
considered painting a false second axle on the trailer but this was too obvious, and they 
gave in by ordering the U-2 with its second axle- one that was not needed for the load 
but which raised no questions on the road.34 

To satisfy the anticipated demands for liquid hydrogen at Pratt & Whitney's Florida 
test center, the Air Force decided to locate a la rge hydrogen liquefaction plant nearby. 
United Aircraft obligingly deeded a tract of land to the government for the plant. The 
Air Force was unsuccessful in interesting private capital to put up the plant, so it 
funded its construction and operation by Air Products. The plant, with a 4500-
kilogram-per-day capacity, was placed in operation in the fall of 1957, at a cost of$6.2 

*In one instance, a suspicious and frustra ted weighing official found one semi-tra iler 45 kilograms too 
heavy. He ordered the driver to unload the excess but of course. the driver was powerless to do so. The Air 
Force had to go all the way to the governor of the sta te to secure a release fo r the load. Interview with 
Blackwell C. Dunnam, WADC, WPA FB. OH, 6 June 1974. 
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Fig. 46. The U-1 semi-trailer {top) first used to haul liquid hydrogen. The single axle, adequate for low­
density hydrogen, caused so many problems with puzzled truck-weighing officials that it was replaced with 
the U-2 having a second axle. {Courtesy of AFSC.) 

million.JS The Suntan team called this plant "Mama Bear," but locally it was known as 
the APIX fertilizer plant. APIX was an acronym for Air Products Incorporated, 
Experimental; the fertilizer association was encouraged by the Air Force and Air 
Products to conceal the true identity of the product.* Mama Bear used crude oil in a 
chemical process to obtain gaseous hydrogen. Liquid hydrogen storage tanks at the 
plant were connected to the Pratt & Whitney test cells by a double-wall, vacuum­
jacketed 7.5-centimeter line, 610 meters long. By April 1958, the line had carried 
833000 liters ofliquid hydrogen at rates up to 1700 liters per minute for component and 
engine tests. 

•Workmen were observant and soon the word spread locally that hydrogen was involved. A retired Army 
colonel, in his role in local Civil Defense. became alarmed that a hydrogen bomb was being manufactured in 
the midst of an unsuspecting community. A delegation of security officials from Washington had to visit him 
and convince him to keep quiet. Interview with Co( A. Gardner {USAF, Tet.). 19 Sept. 1973. 
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Even before Mama Bear was completed, the Air Force planned a much larger 
hydrogen liquefaction plant to meet the anticipated testing needs of the 304 engine 
development. The contract was awarded to Air Products in 1957, and the plant was 
built a few hundred yards away from Mama Bear. It cost $27 million and when placed 
into operation in January 1959, had a capacity of 27200 kilograms per day~the 
world's largest. Crude oil was first used to obtain gaseous hydrogen but later methane 
was used. This plant, called "Papa Bear," came too late for the Suntan program but 
served a very useful role in the space program that followed. 

Suntan Fades 

In addition to its technological problems, the Suntan project was the subject of 
conflicting technical views over its feasibility and the best way to accomplish 
reconnaissance. In fact, Suntan did not get very far as a wholly supported project. 
Within six months, a difference of technical opinion over achievable range surfaced 
and this contributed to the gradual demise of the project. True to its name, Suntan had 
no clearcut ending: it just faded away. By the middle of- 1957, opposition had 
effectively doomed the project although it lingered through 1958 and was not cancelled 
until the management team, weary of waiting, so requested in February 1959. 
Surprisingly, one of the main opponents was the man who conceived and sold the 
project to the Air Force, Kelly Johnson. The main defendant was the Suntan 
management team, particularly Appold and Seaberg, who for some months were able 
to convince high officials to keep the project going in the face of mounting opposition 
and budgetary restraints.36 

Johnson's change of mind apparently came during the first six months of study and 
experimentation on the feasibility of the hydrogen-fueled airplane. The Air Force had 
insisted on a minimum radius to target of 2800 kilometers and was convinced that this 
distance and more was feasible. Johnson, on the other hand, believed that a radius of 
2000 kilometers was about the best that could be achieved. The two sides stuck to their 
views throughout the life of the project.37 

Following the initial phase of study and experimentation, the project proceeded 
during Fiscal Year 1957 as originally planned, with an allocation of about $19 million. 
Lockheed ordered 4 kilometers of aluminum extrusions to build the CL-400; Pratt & 
Whitney went full speed in developing the 304 engine; the Massachusetts Institute of 
Technology contracted to provide a guidance system; and Air Products contracted to 
build a large hydrogen liquefaction plant adjacent to the Pratt & Whitney test center in 
Florida.38 

The bottom line on how well a project is faring in government circles is the fraction 
of the budgeted funds that is actually allocated to it. The Air Force obtained approval 
for $95 million for Suntan development for the fiscal year beginning in July 1957. The 
first significant indication that the project was in trouble came when the Suntan 
management team requested release of these funds to maintain the development 
schedule. The request was placed on the 22 August agenda of the Air Council, the Air 
Force's highest management group; In preparation for this meeting, the Suntan team 
met with crusty, blunt Gen. Curtis E. LeMay, former boss of the Strategic Air 
Command who had moved up to vice chief of staff in July. It was the first time that 
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Le May had received a full briefing on Suntan and his initial reaction brought dismay to 
the team. "What," he exploded, "put my pilots up there with a ... bomb?"39 Le May 
not only took a dim view of using liquid hydrogen but also was apparently under 
pressure to find funds for other important projects. On 19 September, the team 
received the bad news: of the $95 million approved in the budget for Suntan, only $32.3 
million would be made available for it; the remainder would be transferred to other 
projects. In spite of additional efforts by Gen. Samuel E. Anderson, the new head of the 
Air Research and Development Command, to restore the funding, the decision 
remained firm.40 

Johnson's views apparently contributed to the Air Force decision to cut Sun­
tan. Sometime during the mid-1957 period, he was visited by James H. Douglas, Jr., 
who had succeeded Donald A. Quarles as Secretary of the Air Force in March 1957. 
Douglas was accompanied by Lt. Gen. Clarence A. Irvine, .deputy chief of staff for 
materiel and a member of the Air Council. The visitors, concerned about the short 
radius of the CL-400 and mindful of Johnson's ability to stretch the range of other 
aircraft, asked him how much margin for growth was in the CL-400. The answer: 

4practically none. ' 

Ordinarily, range can be extended by adding more fuel or improving the fuel 
consumption of the propulsion system for a given thrust. Johnson could see a range 
growth of only a paltry 3 percent or so from adding more fuel." ... we have crammed 
the maximum amount of hydrogen in the fuselage that it can hold. You do not carry 
hydrogen in the flat surfaces of the wing," he explained.42 Johnson turned to Perry 
Pratt for estimated improvements in the 304 engine and his answer was equally 
pessimistic: no more than 5 or 6 percent improvement in specific fuel consumption 
could be expected over a five-year period. The very low growth estimates were 
compounded by operational logistics problems of liquid hydrogen. As Ben Rich 
asked: "How do you justify hauling enough LH2 around the world to exploit a short­
range airplane?"43 

Having exhausted their appeals by October 1957, the Suntan team drastically 
curtailed the project to fit the funds available. Pratt & Whitney was given $18. 7 million 
to continue development of the 304 engine at an undiminished pace. A total of $11.6 
million was allocated for hydrogen liquefaction plant construction and operation and 
$3 million was set aside for later use. Development of the CL-400 was cancelled, but 
Lockheed was asked to continue the fuel system tests; $3 million was recovered from 
the changes. The MIT guidance contract also was cancelled.44 

The Suntan team, particularly Seaberg, was not convinced that Johnson's 
pessimism over range was justified. Contracts for additional design studies were let not 
only with Lockheed but also with North American Aviation, Boeing, and Convair­
Fort Worth. The additional study at Lockheed did nothing to change Johnson's view. 
In all, 14 designs were considered, ranging from bombers to Mach 4 reconnaissance 
aircraft with comparisons between using petroleum fuels and liquid hydrogen. For the 
same range, Lockheed found that aircraft using liquid hydrogen were larger but 
weighed less at takeoff than those using petroleum fuels. At a given speed, hydrogen­
fueled aircraft exceeded the altitude limits of petroleum-fueled aircraft by 3000 to 6000 
meters.45 By March 1958, a Boeing design appeared to be the most promising of the 
new studies. Powered by four engines, it would fly at Mach 2.5, 30 500 meters altitude, 
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and have a radius of 4100 kilometers-almost twice that of the CL-400. The Boeing 
airplane was also considerably larger than the CL-400, with a length of 61 meters, a 
delta wing span of 61 meters, and a takeoff weight of 75 750 kilograms.46 

The final results of the design studies were presented to the Air Council on 12 June 
1958. LeMay, who chaired the meeting, raised the same objections as previously but 
allowed a full discussion of the subject. The Suntan team felt that the general reaction 
was favorable, but this was dispelled by two significant points in the summary of the 
meeting. Even if a successful new reconnaissance aircraft were developed, the 
President might not allow its use because of international political risks. If this 
happened, LeMay argued, the Air Force would only be building museum pieces. The 
second point was even more devastating. The Air Force had given a competing project 
higher priority; since it was underfunded there was no justification for allocating funds 
to Suntan.47 

The June meeting spelled the effective end of Suntan, but the Air Council thought 
that the engine work should continue for its value in advancing the technology. Since 
the Suntan mission was broader than the Air Force, however, the June decision was 
not the final word. A joint committee of the Department of Defense and the Central 
Intelligence Agency was formed to make recommendations regarding Suntan . The 
committee, headed by Edwin Land of the Polaroid Corporation,* held meetings 
during the summer and fall of 1958 and the Suntan management team was held 
together pending the results. Although not privy to the committee's findings, the team 
sensed the trend and terminated the Pratt & Whitney contract in November. By 
February 1959, with still no word from the committee or formal directive from Air 
Force headquarters, the team requested that the project be ended. Of the $19 million 
allocated for FY 1959, about half had been transferred to the Advanced Research Proj­
ects Agency for rocket projects.48 

In retrospect, several principals of the Suntan project saw different reasons for its 
ending. To Kelly Johnson, designer of the aircraft, the short range and hydrogen 
logistics were the predominating reasons; he considered the meeting with Douglas as 
the effective end of the project.49 For Norman Appold, the project manager, the end 
came for other reasons. Suntan was one of a variety of options for gathering 
intelligence.5o The implications of flying aircraft over Russian territory, which had 
been on the minds of the Air Council and others since the beginning of the U-2 and its 
potential flameout problem, became very real with Gary Powers's experience in 1960. 

For Ralph Nunziato, with access to top-level Pentagon meetings and decisions, the 
reasons for cancelling Suntan were purely economic. In a presentation to the Air 
Council, he indicated that the next phase of development would need an estimated 
$150 million. It was a period of stringent budgetary limitations and Suntan lost out to 
other projects.5' 

Even the amount spent on Suntan remains in doubt. The consensus of several 
involved is that about $100 million was spent and some documentation appears to 
support this. 52 But Appold, the project manager, firmly believes the total to be closer to 

*Other members: Courtland Perkins of Princeton, Edward M. Purcell and H. Guyford Stever of MIT, 
and Allan Donovan of Space Technology Laboratories. Richard E. Horner of the Air Force and Garrison 
Norton of the Navy were ex officio members. 
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$250 million, and Richard Horner, who was assistant secretary of the Air Force for 
R&D, concurs.53 Since Suntan covered many activities and since great pains were 
taken to camouflage the project by directing funds through various channels, the actual 
total cost remains unknown. 

Suntan Technology and Equipment 

What was learned with the Suntan project? The technology of liquid hydrogen was 
advanced in several ways. There is concurrently a revival of interest in hydrogen-fueled 
aircraft. As before, however, their potential value is controversial. NASA held a 
special conference on hydrogen-fueled aircraft in 1973 and has sponsored industry 
design studies of both subsonic and supersonic configurations. Although no specific 
development has started, NASA continues to sponsor research applicable to 
hydrogen-fueled aircraft. 

On the other hand, Kelly Johnson, who turned back to petroleum fuels and designed 
the highly successful SR-71, remains disenchanted with liquid hydrogen. In 1974, he 
summed up his view: "Today, there is regenerated interest in liquid hydrogen for 
aircraft propulsion, but considering all phases of the problem, I do not think we will 
have such aircraft in the foreseeable future."54 Seaberg, who managed design study 
contracts with Boeing, Convair, and North American Aviation as part of the Suntan 
effort in 1957, agrees with Johnson's 1974 assessment.55 The essence of technological 
progress, however, is the conversion of the impossible to the possible, so the case for 
hydrogen-fueled aircraft remains open. 

Although Suntan technology and equipment have yet to find application in aircraft, 
they soon found application in rocket propulsion. In 1958, the Suntan management 
team began searching for ways to use the technology thei.r project had generated, as 
well as equipment like the boost pump and the hydrogen liquefaction plants. One result 
was a proposal to use liquid hydrogen in a rocket engine for the rapidly developing 
space program. Like a phoenix rising from the ashes, the technology and equipment of 
Suntan would indeed play a major role in the space program of the 1960s. To learn how 
this occurred, we must next consider several other developments that were running 
concurrently with Suntan- activities at Pratt & Whitney, General Dynamics, North 
American Aviation, NACA, and the Department of Defense. 
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Fig. 47. Suntan management team: Col. Norman C. Appold, top left; Lt. Col. John D. Seaberg, top right; 
Maj. Alfred J. Gardner, bottom left; and Capt. Jay R. Brill. All engineers, Appold and Gardner each held 
two masters degrees, Brill one. Appold and Gardner were combat pilots and Seaberg a base executive 
during WW ll. Brill graduated from West Point 3 years after the war. Appold headed the engine 
laboratory at Wright Field for 5 years prior to becoming the Suntan project manager. After Suntan, 
Seaberg managed the Centaur development for both the Air Force and NASA, assisted by Gardner and 
Brill. All except Brill retired as colonels: Appold heads the C-5 project for Lockheed-Georgia; Seaberg 
manages remotely-piloted-vehicle R&D at Wright Field; and Gardner is an assistant to the president of 
Lockheed Missiles and Space Co. Brill became a brigadier general in 1975 and manages the A-10 
development at Wright Field. 



SUMMARY, PART II 

The 1950-1957 period was one of great technological advances in the use of liquid 
hydrogen as a fuel in rockets and aircraft. Thermonuclear research provided the first 
large stimulus to hydrogen technology at the start of the period; from it came a large 
new cryogenics laboratory, larger hydrogen liquefiers, mobile dewars for transporting 
hydrogen, and other advances. 

The Lewis laboratory of the National Advisory Committee for Aeronautics 
advocated liquid hydrogen for rockets in 1950 and for aircraft in 1954, conducted 
research showing hydrogen's potential, and demonstrated that liquid hydrogen could 
be safely used in manned flight. 

The Air Force, always seeking to extend flight capabilities, took a strong interest in 
very-high-altitude flight in 1953, became interested in hydrogen for this purpose in 
1954 as the result of an imaginative proposal of Randolph Rae, helped the Central 
Intelligence Agency develop the U-2 airplane using conventional fuel, and mounted a 
massive, crash project to exceed the U-2's performance by using hydrogen. The 
hydrogen airplane did not materialize, but the liquid hydrogen plants and test facilities 
constructed by the Air Force would find full utilization in the emerging space program. 
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PART III 

1958-1959 
On Friday evening, 4 October 1957, man's Jong dream of spaceflight became reality 

with the launching of Sputnik I. Most Americans were surprised, not only by the feat 
itself but that the Soviets had done it first. 

There was no lack of public forewarning about the c.oming age of spaceflight, 
however. In July 1955, the United States had announced its intention to launch 
satellites as part of the scientific activities of the International Geophysical Year which 
was to begin in mid-1957, and this was immediately followed by press articles that the 
Soviets were making similar plans. In the United States, the satellite activity became 
Project Vanguard, authorized in September 1955. 

Vanguard was the culmination of a decade of scientific research of the upper 
atmosphere using balioons and sounding rockets, of increasing pressure by groups 
who saw the feasibility of spaceflight and made realistic proposals, and finally, of the 
interest and backing of the scientific community through the National Academy of 
Sciences. The last was essential, for many earlier and sound space proposals had been 
treated with disdain. Some of this attitude may have come from longtime exposure to 
grand and impractical schemes and science fiction. Even the ideas of such scientists and 
engineers as Tsiolkovskiy, Goddard, Oberth, and von Braun had failed to arouse much 
more than transient public interest. The wartime scare caused by the German rockets 
had Jong since receded, and by the late 1940s even the the military services were hard 
pressed to justify space projects-in spite of the obvious advantages of reconnaissance, 
communications, and meteorological satellites. International interest in cooperating 
to study the upper atmosphere and space phenomena using high-altitude probes and 
satellites became a major driving force, but it evolved so gradually during the early 
1950s that the public scarcely took notice. After the 1955 announcement, Project 
Vanguard proceeded slowly and with little publicity. 

Parallel with scientific interest in space was military interest. During the heyday of 
ballistic missile development during the 1950s, effort was concentrated on long-range 
missile capability, but engineers were well aware that the same missiles, more powerful 
than Vanguard, could be modified to provide the additional velocity needed to launch 
satellites. 

The Soviet Sputnik I provided the spur for action in this country. The news media 
reflected astonishment, dismay, and fear. American pride was hurt, competitive spirit 
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aroused, and a determination to "catch up" with and exceed the Russians became 
evident. 

In previous parts, we have examined the growth of liquid hydrogen technology and 
its potential application for rockets and aircraft. In this final part, we will examine the 
events leading to the decision to use liquid hydrogen in two launch vehicles for the great 
space accomplishments of the 1960s and 1970s. To do so, we need to understand 
something of the antecedents of these vehicles-the ballistic.missiles of the 1950s. Also 
pertinent is the competition among several government organizations for a role in 
space and the formation of the National Aeronautics and Space Administration. 
Throughout this discussion, emphasis will be on launch vehicles and the considerations 
that led to the use of liquid hydrogen. 



9 

The Early U.S. Space Program 

In early 1958, when the Soviet Union and the United States had each launched two 
satellites, it was obvious, from comparing their weights, that the Soviets were using a 
much more powerful launch vehicle. This led to great concern in the United States 
about the apparent lag in vehicle capability-a concern welcomed by space enthusiasts 
for it meant more support. This concern, however, was not entirely justified when all 
the technological gains associated with the development of intercontinental and 
intermediate range ballistic missiles are considered. Indeed, modifications of these 
vehicles provided the base for the U.S. "stable" of launch vehicles in the early years of 
the space program. One ICBM, the Atlas, established the feasibility of lightweight, 
pressure-stabilized tanks, a technology important for favorable consideration of low­
density liquid hydrogen. For all these reasons, a review of the development of 
Vanguard, the first U.S. vehicle developed solely as a launch vehicle, and military 
ballistic missiles during the 1950s is helpful in understanding launch vehicle planning 
during 1958 and 1959. 

The Navy's Vanguard 

When the National Security Council endorsed the concept of a scientific satellite in 
May 1955, it was based on two conditions: peaceful purposes were to be stressed and 
no interference with the development of ballistic missiles was to be permitted. I Donald 
A. Quarles, Deputy Secretary of Defense, charged with selecting a suitable vehicle for 
the scientific satellite, appointed a committee headed by Homer Joe Stewart, a rocket 
expert at the Jet Propulsion Laboratory and professor at the California Institute of 
Technology. The Stewart committee recommended a vehicle proposed by the Naval 
Research Laboratory . It consisted of a Viking first stage,* a second stage using liquid 
propellants, and a third stage using solid propellants. A modification of this 
combination became the Vanguard launch vehicle, and the Navy managed its 
development. 

*Viking, built by the Glenn L. Martin Co., was powered by a Reaction Motors rocket of 89 kN (20000 lb 
thrust) and used alcohol and liquid oxygen as propellants. 
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Vanguard was a slender vehicle, 21 meters tall and I. I meters in diameter, weighing 
10250 kilograms at launch. The first stage was powered by a General Electric X-405 
rocket engine of 120 kilonewtons (27000 lb thrust) using kerosene and liquid oxygen. 
The second stage was powered by an Aerojet rocket engine of 33.4 kilo newtons (7500 lb 
thrust) using a hydrazine compound (unsymmetrical dimethylhydrazine-UDMH) 
and nitric acid as propellants. The third stage was driven by a solid propellant rocket of 
13.8 kilonewtons (3100 lb of thrust). 2 

Vanguard development was treated like a second-class program from the start, 
particularly when it came in conflict with high-priority ballistic missile programs. Even 
the funding was second level, coming from an emergency fund of the Secretary of 
Defense for two years. By the spring of 1957, however, development was proceeding 
satisfactorily. Two successful test flights had been made and the third (TV-2*), with a 
live first stage and dummy upper stages, was on schedule. Confidentially, the Navy 
ordered Glenn L. Martin to make the remaining test vehicles with live upper stages and 
capable of launching a satellite. In the months that followed, however, the Vanguard 
team encountered problems and was still struggling to patch and fly TV-2 when 
Sputnik was launched. 

The Vanguard team then found itself suddenly in the spotlight. John Haugen, the 
quiet, scholarly Vanguard director, briefed President Eisenhower. John Hagerty, the 
White House press secretary, relying on the optimistic part of Haugen's briefing, 
announced five days after Sputnik that the first of a series of test vehicles carrying a 
small satellite sphere would be launched in December 1957. Although Hagerty added 
that the first fully instrumented satellite would be launched in March 1958, the media 
emphasized the December date as the time the U.S. would match the Russian 
accomplishment. The Vanguard team finally launched the recalcitrant TV-2 
successfully in October and on 6 December prepared to launch the three-stage TV-3. A 
large gathering of reporters and spectators saw TV-3 rise from the pad about a meter, 
fall back, and collapse into a giant firebalJ.3 That was the low point in the trouble-filled 
Vanguard development. Success came on 17 March 1958 when Vanguard I launched 
its tiny but well-instrumented satellite which transmitted signals for seven years. 
Meanwhile, a U.S. Army team, under the technical direction ofWernhervon Braun, 
had launched the first American satellite. 

The Army's Redstone and Jupiter Vehicles 

The Army's principal missile team was formed around 120 German rocket experts 
brought to the United States in 1945. First stationed at Fort Bliss, Texas, the Germans 
were transferred to the Army's Redstone Arsenal, Huntsville, Alabama, in 1950; and 
they were soon deeply involved in the Army's growing missile development program. 
The technical group was headed by Wernher von Braun, who had held the same 
position at Peenemtinde during the development of the German A-4 (V-2) rocket, the 
beginning of modern rocketry.4 

*TV-2 was the second of the Vanguard test vehicles; the earlier two vehicles flown were a leftover Viking 
and TV-l. 
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The first large Army ballistic missile was the Redstone, modeled after the V-2. 
Redstone was powered by a North American Aviation rocket engine developing 334 
kilonewtons (75000 lb thrust) using an alcohol-water mixture and liquid oxygen. 
During eight years of research and development and 37 flights, the Redstone evolved 
into a 322-kilometer-range vehicle, 21 meters tall, 1.8 meters in diameter, weighing 
27 670 kilograms at launch.5 

A space enthusiast since youth, von Braun proposed a satellite launch vehicle based 
on Redstone in 1954, a year after the first Redstone launch. In 1955, his team submitted 
·a proposal for a satellite launch vehicle to the Department of Defense. Called Jupiter 
·c, it consisted of a modified Redstone with two solid-propellant upper stages. This 
design was used in a joint Army-Navy proposal to the Stewart committee, but it was 
not selected. Disappointed, von Braun soon found another application-study of 
aerodynamic heating of a warhead reentering the atmosphere during a ballistic 
trajectory. Three Jupiter Cs were launched, the last less than two months before 
Sputnik I. After this flight, the commander of the Army Ballistic Missile Agency 
(ABMA) at Redstone Arsenal, Maj. Gen. John Bruce Medaris, ordered the remaining 
Jupiter equipment into storage. As enthusiastic a space proponent as von Braun, 
Medaris was waiting for the right opportunity to show what ABMA could do in 
spaceflight. 6 

The perfect opportunity soon came. Medaris and von Braun were dinner hosts to 
visiting Neil McElroy, who was succeeding Charles Wilson as Secretary of Defense, 
when.word came that Sputnik I was launched. The rest of the evening and the following 
morning were devoted to what ABMA could do. On 31 January 1958, the Medaris-von 
Braun team launched Explorer I, first American satellite, using a modified Jupiter C 
vehicle.* 

The Air Force and the Ballistic Vehicle Build-Up 

Although the Army had shown great initiative in ballistic missile development, the 
Air Force became the dominant military service in long-range, ballistic missiles. The 
Air Force had the responsibility for developing the Atlas and Titan intercontinental 
ballistic missiles (ICBM), the Thor intermediate range missile, and later, the 
Minuteman, an all-solid-propellant missile. 

The Atlas and Titan had a range of about 10000 kilometers and a payload capability 
of 700 kilograms. The Atlas was powered by two 667-kilonewton ( 150000 lb thrust) 
first-stage engines plus a 267-kilonewton (60000 lb) sustainer engine. At launch, all 
three engines operated and at the end of first-stage operation, the two large engines 
were jettisoned leaving the sustainer engine to continue to operate during the second 
phase. Propellants for all three engines came from common tanks which constituted 
the bulk of the structure. These tanks were made of thin-gage stainless steel and 
depended upon internal pressure for structural stability. Since Atlas jettisoned only its 
first-stage engines, it was called a 1 Yi stage vehicle. Titan I, on the other hand, was a 

*It consisted of a modified Redstone first stage and three upper stages of solid rockets. The three upper 
stages used 11 , 6, and I Sergeant solid rockets, respectively. The Sergeant, 11 cm in diameter, was developed 
by the Jet Propulsion Laboratory. which teamed up with ABMA in building and launching the first satellite. 
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conventional two-stage vehicle which jettisoned both first-stage engines and associated 
tankage. Its tanks were of the more conventional design with internal ribs for structural 
stability. Titan I's engines were similar to those for Atlas, and both vehicles used ajet­
grade fuel similar to kerosene, with liquid oxygen as oxidizer.* 

The Atlas, developed by the Convair division of General Dynamics Corporation, is 
of special interest to our story.t As one of two contractors studying 8000 kilometer 
vehicles for the Air Force in 1947, Convair chose a ballistic missile over a winged, 
subsonic vehicle-a bold decision at the time. A key to long-range ballistic missiles was 
achieving very light structures and an imaginative Convair engineer, Karl J. Bossart 
proposed several bold innovations for light structures. By the end of 1948 and three test 
flights, Bossart was able to incorporate his innovations into the Atlas design. One was 
the use of integral, thin-wall, pressure-stabilized tanks previously mentioned. 
Although Oberth had proposed such balloon-like tanks in 1923 and both the Glenn 
L. Martin Company and North American Aviation had used the concept in satellite 
designs for the Navy (pp. 41, 44), such tanks had never been built and flown. Bossart 
had independently conceived the idea during design calculations when he found that 
the tank pressure needed for the inlets of the engine's pumps was greater than the 
internal pressure necessary for the tanks to remain stable under aerodynamic forces 
and vehicle loading. Bossart also dispensed with insulation for the liquid oxygen tank 
and used swiveling rocket nozzles to control the pitch, yaw, and roll of the vehicle 
during flight. 1 

Bossart's innovations and the initial Atlas project aroused little interest until the 
early 1950s when the Air Force swung away from air-breathing propulsion and winged 
missiles in favor of ballistic missiles. The break for Atlas came in 1954 when the Air 
Force Strategic Missiles Committee recommended that it be developed with some 
changes. The committee also recommended that a new management group be 
established to accelerate ballistic missile development. This resulted in the formation 
of the Ballistic Missile Division of the Air Research and Development Command 
under Brig. Gen. Bernard Schriever, and the ballistic missile program began to 
accelerate. In fiscal year 1953, funding was $3 million; in FY 1954, $14 million; in FY 
1955, $161 million. In February 1955, another advisory committee recommended 
additional development of intermediate range ballistic missiles (IRBM) with a range of 
2800 kilometers. By the summer of 1955, the Air Force had two ICBMs (Atlas and 
Titan) and one IRBM (Thor) under development. The Army won approval to develop 
the Jupiter IRBM.t The Navy turned to solid propellants and the Polaris missile was 
initiated. The Air Force also became interested in solid-propellant missiles and in 1957 
began development of the Minuteman. During this period, funding continued to 
climb : in FY 1956, $515 million; in FY 1957, $1.3 billion.K Thus, by the time of 
Sputnik, six U.S. missiles were being developed with the highest national priority, and 

•The later Titan JI used storable propellants. UDMH and N20,. 
tConsolidated Aircraft became Consolidated-Vultee (Convair) in 1943 and was absorbed by General 

Dynamics in 1954. The division building rockets has been named Convair, Astronautics, and now Convair­
Aerospace. 

! Jupiter, developed by the Chrysler Corp. for the Army, is not to be confused with Jupiter C developed in­
house by ABMA. 
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all were larger and had greater payload capability than Vanguard. By 1958, 
development of liquid-propellant missiles not only provided the basic technology 
applicable to future launch vehicles but also the vehicles themselves were to become the 
greater part of the first generation of launch vehicles. 

A key technology responsible for achieving low structural weight of the Atlas missile 
was Bossart's thin-gage, pressure-stabilized tanks. This concept met with considerable 
skepticism during the development of the Atlas. Opponents pointed out that if 
pressurization should fail, the tanks-and the missile-would collapse of their own 
weight. An equal concern was how well the tanks could withstand high aerodynamic 
loads during the early part of a flight. Doubt was sufficiently widespread that Titan, the 
second ICBM, was built with tanks of conventional design. An unanticipated severe 
test of the pressure-stabilized tanks came with the first test flight of Atlas in 1957. Hot 
exhaust from the turbopump burned through control wiring and the vehicle began to 
tumble while still in the atmosphere, placing excessive loads on the tanks. They held, 
and anyone viewing the film of the flight could easily become a convert to Bossart's 
concept. In spite of this, however, some engineers remained unconvinced, and 
prominent among them were those in the von Braun team.* This attitude was 
important to their later consideration of liquid hydrogen, as we will see. 

During the build-up of missile capability in the 1950s, President Eisenhower and the 
Department of Defense kept booster programs closely related to surface-to-surface 
military requirements, much to the disappointment of space enthusiasts. A prevailing 
attitude was that spaceflight was not yet practical, and work to make it so was far too 
costly to be taken very seriously. To be sure, there was tolerance for research on high­
energy propellants and other means for achieving high rocket velocities, but it was 
peripheral to the main task of developing long-range ballistic missiles. Up to the time of 
Sputnik, talk of spaceflight was very unpopular in the halls of government and 
proponents had to tread very lightly. "Space Cadets" were frowned upon and the use of 
the word "space" in a proposal in pre-Sputnik days invited budget cuts within the 
executive branch and in Congress. 

Competition for the Space Role 

Sputnik unleashed all the pent-up desires of U.S. space proponents in both the 
military and civilian sectors. The military advantages of satellites for reconnaissance 
and communications were obvious, but plans ranged far beyond these applications. 
For years the Air Force had quietly been preparing for manned flight into space. The 
Army was more aggressive, speaking of moon bases as the ultimate "high ground." The 
Army also had the superb missile development team of ABMA with over three 

•Bossart and his colleagues at General Dynamics staged a demonstration in an attempt to show engineers 
from ABMA the toughn~ss of the thin-wall tanks. They pressurized a discarded Atlas tank and invited one of 
the engineers to knock a hole in it with a sledge hammer. The blow left the tank unharmed. but the fast 
rebounding hammer nearly clobbered the wielder. In another instance,, von Braun expressed his attitude 
towards the tanks during a good-natured exchange on using the Atlas for Project Mercury:" ... John Glenn 
is going to ride on that contraption? He should be getting a medal just for sitting on top of it before he takes 
off!" Interview with K. J. Bossart, 27 Apr. 1974; group interview with Grant Hansen, K. E. Newton, Deane 
Davis, Donald Heald, and Bossart, Convair Aerospace Div., San Diego, 29 Apr. 1974. 



178 LIQUID HYDROGEN AS A PROPULSION FUEL, 1945-1959 

thousand engineers and technicians to provide sound, detailed proposals. Maj. Gen. 
J.B. Medaris, ABMA commander, was a strong space advocate and had the backing 
of those above him, especially the blunt and aggressive Secretary of the Army, Wilbur 
Brucker. Navy space enthusiasts lacked high-level support, hence the Navy was not a 
strong competitor. The Air Force, with responsibility for intercontinental ballistic 
missiles, viewed space as a logical extension of its airspace. It was already skirmishing 
with the Army over the Thor and Jupiter 1 RB Ms and this extended into their bid for a 
role in space. 

With the big money in the military and their traditional role of spearheading costly 
flight developments, a strong civilian role in space appeared remote. Even the first 
scientific satellites were managed and controlled by the military, although the scientific 
community had access to the resulting data. Almost everyone assumed that the same 
arrangements would characterize future U.S. space efforts. 

The only civilian government group seriously in the space role competition was the 
normally quiet and timid National Advisory Committee for Aeronautics (NACA), 
which had almost missed the boat on jet propulsion twenty years earlier. NACA had 
smart, eager young men as well as wise old officials, and some of both groups were 
determined not to miss the opportunities offered by space exploration. The N ACA 
lacked the money and clout of the military services and traditionally cooperated with 
the military on expensive development projects, such as the X series of experimental 
aircraft. The military provided the funds, managed the development and initial 
operations, while the NACA provided the instrumentation and analyzed the 
experimental results. Eventually, the aircraft were turned over to NACA. In its first 
proposals for space exploration, NACA's director Hugh Dryden envisioned the same 
sort of working relationship, but both he and the military reckoned without the will of 
the ex-military man in the White House. 

President Eisenhower was well aware of the interservice rivalries as well as the 
international implications of a peaceful effort for space exploration. In response to 
Sputnik, he had allowed the Army to proceed with a back-up to Vanguard, but he had 
not accepted the concept of a significant military effort in space. In November 1957, he 
appointed an old and trusted friend and advisor, James R. Killian, president of the 
Massachusetts Institute of Technology, to be his special assistant for science and 
technology. Killian and his science advisory committee played a key role in influencing 
the policy for space research during the months that followed. That policy turned in 
favor of a civilian space program. 

Consolidation of Military Space Projects 

In his 9 January 1958 State-of-the-Union message, President Eisenhower spoke of 
the need for a single focal point for advanced military projects, including anti-missile 
and satellite technology. Four days later, Secretary of Defense Neil McElroy told the 
House Armed Services Committee that he was establishing an Advanced Research 
Projects Agency (ARP A) responsible to him for anti-missiles and outer space projects. 
ARPA was formally established on 7 February with Roy W. Johnson, a former 
executive vice president of the General Electric Company, as the director and Rear 
Admiral John Clark as his deputy. A month later, Herbert F. York, director of the 



THE EARLY U.S. SPACE PROGRAM 179 

Livermore Laboratory of the Atomic Energy Commission and associate director of the 
department of physics of the University of California, was appointed chief scientist. 
ARPA had authority over all military space activities.9 

On 27 March, President Eisenhower approved ARP A's plans for space exploration 
as announced by Secretary of Defense McElroy. When a new civilian space agency was 
organized, it would take over the non-military space programs. ARPA's plans 
included earth satellites and space probes for scientific investigations, the latter as part 
of the International Geophysical Year program. Losing no time, ARPA authorized the 
Air Force Ballistic Missile Division to launch three lunar probes with Thor-Vanguard 
vehicles and the Army Ballistic Missile Agency to launch deep space probes with the 
new Jupiter IRBM equipped with the same cluster of solid rocket stages that had 
placed Explorer I in orbit. The original FY 1959 budget request of $340 million for 
ARP A was raised to $520 million. 10 

Not long after he went to ARPA, York met David A. Young of Aerojet and invited 
him to work with him. Young, who had worked with liquid hydrogen and oxygen in the 
late 1940s (p. 33), accepted.11 He was among the first of a number of highly competent 
rocket and missile experts recruited for ARP A by Johnson, Clark, and York. These 
experts, hired and paid by the Institute of Defense Analysis, a private firm that 
provided technical and administrative services for ARP A, received the same salary 
as they did from their former employer. Young recruited Richard B. Canright from 
Douglas Aircraft, where he had been assistant chief engineer of missile systems. Prior 
to that, Canright had conducted research at the Jet Propulsion Laboratory of the 
California Institute of Technology on liquid and solid propellant rockets. Canright, a 
knowledgeable and experienced propulsion expert, was well familiar with hydrogen. 
He had operated a rocket on gaseous hydrogen and oxygen in the early 1940s (fn, p. 34) 
and wrote a paper in 1947 on the relative importance of specific impulse and density for 
long-range rockets (pp. 47-48). He and David Young were members of the NACA 
subcommittee on rocket engines and staunch supporters of the NACA high-energy 
rocket program. From the Air Force came dynamic and aggressive Richard S. Cesaro. 
He was recommended to York by Richard Horner, assistant secretary of the Air Force 
for R&D, and came to ARPA in June. 12 Cesaro, a long-time employee of NACA in 
propulsion research and committee management, had moved to the Air Research and 
Development Command headquarters in January and was the technical director for 
aeronautics and astronautics. Cesaro was a master at maneuvers in government 
decision-making processes, a technical gadfly, and an aggressive proponent for using 
advanced technology .1 J 

By early June, a number of experts were working for ARPA and York assigned them 
to a number of ad hoc panels to plan and initiate military space programs.* 

Canright organized an informal panel on vehicles and he persuaded some of his 
colleagues- Cesaro, Youngquist, Irvine, and Young- to serve on it. In mid-June 1958, 

*Jo hn F. Kinca id to solid propellant chemistry. Samuel B. Batdorf to man-in-space. Charles R . lrvine and 
Capt. R. C. Truax to Project l l 7-L. Arthur J . Stosick to la rge engines, David A. Young to communication 
relays. Roger B. Warner to meteorology. Richa rd B. Canright to scientific satellites. Col. Dent L. Lay to 
Project ARGUS, Robertson Youngquist to exploratory research, and Richard S. Cesaro to satellite 
tracking. 
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Canright and Young were asked by Johnson to present ARP A's plans to a panel of the 
National Security Council. Canright made two recommendations on vehicles and 
engines: use a cluster of proven rocket engines for large vehicles, and use hydrogen and 
oxygen as propellants in upper stages. To Canright, using multiple rocket engines for 
space vehicles was an extension of aircraft practice, where the redundancy of multiple 
engines was a tried and proven method of achieving reliability. According to Canright, 
the panel accepted his recommendations, and he later took advantage of this apparent 
endorsement to push for his ideas in ARP A planning. Richard Cesaro, long a 
proponent of high energy fuels for air-breathing engines and rockets, also favored the 
use of hydrogen-oxygen as propellants for upper stages. He, like Canright, supported 
the use of multiple engines for large vehicles. 14 

NACA Takes the Initiative 

During its 43-year life, the N ACA had been content to be a government aeronautical 
research organization. At the end of World War II, there were three major research 
laboratories with a staff of about 8000. It contracted a modest amount ofresearch with 
universities and non-profit institutions. As a non-competing service organization, the 
N ACA was close to and strongly supported by both the military and the aeronautical 
industry. In the 1950s, the laboratories had started research on missiles; by 1957, such 
work constituted from a quarter to a third of total research. 15 Among the staff were 
rocket and space enthusiasts who saw Sputnik as merely an endorsement of what they 
had been advocating. The majority of the staff, however, were deeply committed to 
aircraft powered by air-breathing engines, and Sputnik produced an ambivalence. As 
Bruce T. Lundin, then a division chief at the Lewis Flight Propulsion Laboratory and 
now its director, saw the situation, "we were divided into two strong camps ... half 
were afraid we were going to get sucked into space [research] and the other half were 
afraid that we were going to get left out." Lundin's view was that the future of the 
NACA lay in responding to the national need and to "use our unique capability to 
bring our nation into space. It was either us or the military and I really felt that the 
United States should go into space as a peaceful civilian activity rather than carrying a 
sword." 16 

Early in December 1957, Hugh Dryden, NACA's director, summoned the directors 
and associate directors of the research laboratories to Washington to discuss the future 
posture of the N ACA with respect to space. Abe Silverstein, associate director of the 
Lewis Flight Propulsion Laboratory, went with Ray Sharp, the director. Silverstein 
asked Lundin, who had been expressing his views freely, to put them in writing as the 
Lewis position. Lundin spent a Sunday afternoon writing a paper which Silverstein 
used, with minor revisions and additions, at the Washington meeting. Dryden opened 
the meeting with some introductory remarks about the possible courses for the N ACA 
and then asked the research directors for their opinion. The Lewis position was the 
most enthusiastic response that Dryden got from the Center people. Henry J. E. Reid 
and Floyd Thompson from the Langley laboratory were not very enthusiastic about 
building up the NACA to move into space activities. Smith DeFrance from the Ames 
laboratory was opposed to it, fearing that it would destroy the whole concept on which 
the NACA was based.1 7 
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The Lundin-Silverstein paper presented compelling arguments for an active role in 
space activities. After discussing and discarding two possible roles, the suggested one 
was: 

... a bold and v1s1onary approach based on (a) the importance of space 
exploration, (b) its urgency and importance to our national survival, (c) the 
importance of research at this time, (d) our traditional role of leadership in 
independent aeronautical research, (e) the obvious need for consolidating present 
Governmental research on space problems into a single agency, (f) our future 
needs in the way of staff and facilities, and (g) examples of what new knowledge is 
needed and how the foregoing would provide it. 1 ~ 

Following the meeting of the laboratory directors, the chairman of the NACA, 
James Doolittle, and Dryden took a very unusual step. They invited about 30 research 
laboratory middle managers-division chiefs in the main-to Washington for 
cocktails and dinner and an unfettered discussion of what they thought the course of 
the NACA should be. The 18 December 1957 event, known as the Doolittle dinner by 
some and the Young Turks dinner by others, was an affair with no holds barred. One or 
two took the opportunity to berate N ACA management for their ultra-cortservative 
position in the past and to air old grievances. Most, however, were with Walter T. 
Olson, chief of the fuels and combustion division at the Lewis laboratory, when he 
stood up and made a strong argument for moving boldly into space. Doolittle and 
Dryden got the message: the younger NACA staff members were enthusiastic for 
space. 19 

The long established procedure of the NACA, when faced with the prospect of 
entering a new field, was to form a special advisory committee to look into the matter. 
This not only obtained the services of prominent and knowledgeable people but 
formed a basis of support. In November 1957, NACA authorized a special committee 
on space technology which was organized in January 1958. H. Guyford Stever, 
associate dean of engineering of the Massachusetts Institute of Technology, was the 
chairman.* This committee formed seven working groups involving many persons 
who later became prominent in space activities. 

The NACA staff also began its own studies of space technology and desirable 
research objectives. On 14 January 1958, Dryden released a NACA staff study entitled 
"A National Research Program for Space Technology." It called for a space effort 
based on cooperation between government agencies. NACA would step up its space 
activities, build new facilities, and add to the staff, but would limit its work to basic 
research. Large vehicles would be flown by the Department of Defense with technical 
assistance by NACA. This was similar to past arrangements, particularly for research 

*Among its sixteen members were Norman C. Appold, the manager of the Suntan project; Wernher von 
Braun, technical director of the Army Ballistic Missile Agency; and Abe Silverstein, associate director of the 
NACA Lewis Flight Propulsion Laboratory. Also on the committee were J. R. Dempsey, manager of 
General Dynamics-Astronautics and responsible for developing the Atlas, and S. K. Hoffman. general 
manager of the Rocketdyne Division, North American Aviation. 
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aircraft such as the X-15, and would offend no one. Two days later, the main committee 
of the NACA met and passed a resolution on space flight calling for a national program 
involving research in space technology, development of scientific and military space 
vehicles, and research on higher atmosphere and space phenomena. A cooperative 
program between NACA, DoD, the National Academy of Sciences, and the National 
Science Foundation was seen as the best way to implement the program. The 
resolution emphasized that the NACA role in space was one of coordination and 
research on space technology requiring expansion of its current activities and called on 
the special committee on space technology to review needed research and help 
formulate a program for the NACA. 

On 10 February 1958, the NACA staff reinforced the resolution with a report 
entitled "A Program for Expansion of NACA Research in Space Flight Technology: 
With Estimates of the Staff and Facilities Required." The report described a program 
bold in concept and broad in scope.* 

The implications of Sputnik for civil space activities were considered by the 
Congress, and by early 1958, several proposals were pending-including one that 
would put the space program under the Atomic Energy Commission. None of these 
suited the administration and in February, President Eisenhower asked his scientific 
advisor, James Killian, to devise a plan. The result was a recommendation in March, 
approved by the President, to give the civil portion of the space program to the NACA 
and strengthen and rename it. On 2 April, less than a week after giving the ARPA the 
green light on its space plans, Eisenhower sent Congress a bill to establish the National 
Aeronautics and Space Administration. At the same time, he directed NACA and 
DoD to discuss current space programs and decide which should be transferred to 
NASA when it came into being. The Bureau of the Budget thereafter took a very active 
role in pressing for decisions on the transfer of programs and funding from DoD to 
NACA-NASA. Thus, in the period from 2 April until NASA was formally in business 
on 1 October, the new organization had plenty of clout to contend with the ARPA, 
Army, and Air Force in jockeying for a role in space. 

Following the President's 2 April directive, ARPA's Roy Johnson and Herbert York 
met with NACA's J. W. Crowley, Ira Abbott, and Robert Gilruth to discuss the 
transfer of programs. It was obvious that purely scientific space programs would be 
transferred and that reconnaissance satellites would remain with the military, while the 
disposition of manned spaceflight and launch vehicles was uncertain. Both the military 
and civilian sides saw a need for large launch vehicles and bothincluded such vehicles 
in their planning, leaving the precise responsibility for later resolution. It was 
inevitable, however, that ARP A and N ACA were on a convergent course with respect 
to launch vehicles and propulsion. 

*Among the facilities proposed was one for chemical rockets up to a thrust of 4.5 MN (I million lb). A 
smaller test stand equipped with an ejector to reduce ambient pressure at the nozzle for altitude simulation 
was also proposed. Other facilities included nuclear rockets, pumps, gas generators, and smaller-scale rocket 
stands. Liquid hydrogen was named as one propellant to be used . These facilities, estimated to cost $380 
million, would be built over a 5-year period. The plan also called for an operating budget increase of$100 
million annually and more than doubling the staff(to 17000). 



THE EARLY U.S. SPACE PROGRAM 183 

During the spring of 1958, NACA's director of research Hugh Dryden sought a 
strong leader within the NACA staff to come to Washington and help him formulate a 
civilian space program. He found his man in Abe Silverstein.* 

Silverstein (1908- ) was a sharp, aggressive, imaginative, and decisive leader. He 
could be charming or abrasive. He was a hard bargainer at the conference table in 
technical and management matters but very warm-hearted in personal relationships. 
He could cast work aside like a cloak and radiate such warmth and empathy for people 
that those who had felt his lash in a technical discussion earlier could forget their 
chagrin and respond to him with equal warmth. Many damned his ways but liked the 
person. He had an uncanny technical intuition, or feel, for the right approach; and 
those who were dismayed at his methods could scarcely question his judgment. To a 
casual observer he might appear to be a one-man show, one who would not delegate, or 
one who liked to participate in all technical decisions, large and small. Yet this is not a 
complete picture, for Silverstein and his methods were far more complex. In 
conferences with his superiors or peers, Silverstein was a restrained yet highly skilled 
proponent for his cause. He was a good moderator or chairman. On the other hand, in 
conferences on matters where he was directly responsible for the outcome, he was far 
more direct and aggressive. At the latter, he liked to gather together a group of his 
subordinates- and, later, contractors- about the conference table and engage in a 
free-for-all argument over various technical merits or weaknesses of a program or 
proposed action. 

Sometimes he displayed a near-mania for winning the argument, especially on rare 
occasions when it became rather obvious that he was on the wrong side. Wise 
associates never pressed him too hard when he painted himself into a corner, for he 
would never admit it and more time would be lost. Even then his amazing sixth sense in 
engineering was functioning and absorbing all inputs, and he never followed a bad 
argument with a bad decision. He respected those who stood up to him and stoutly 
made a good technical point, but woe to him who made a weak argument, for 
Silverstein could be relentless. Strangely enough, this dominant personality seldom 
produced lasting antagonism and did not diminish the growth of strong and competent 
subordinates; many went on to distinguished careers. t 

Silverstein strove always for excellence and he inspired the same in those who 
worked with him. He attributed this trait to his mother, whom he described as "ideally 
trained to do space work because she knew the importance of perfection." He eschewed 
politics, or its equivalent, in management and disdained image building, which is 
probably why he did not regard himself as a "headquarters-type" person. 

*Silverstein almost lost the opportunity. He recalls that very early in 1958 Dryden asked him to work with 
him on space planning, but Silverstein refused because he was "not a headquarters-type person." Silverstein, 
however, was intrigued with the opportunities offered by space and about a month la ter, approached Dryden 
with an organizational plan for NACA. He remembers Dryden looking at him coldly and saying, in effect: 
"Silverstein, I invited you up here to work with me on this thing. If you are willing to come up, fine , 
otherwise, forget it." Silverstein took the jnb. Silverstein interview, 29 May 1974. 

tThree of the best known are : George M. Low, past deputy administrator of NASA a nd now president of 

Rensselaer Polytechnic Institute; Edgar M. Cortright, past director of the Langley Research Center and now 
an executive in industry; and Bruce T. Lundin, director of the Lewis Research Center. 
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Fig. 48. Abe Silverstein, director of space flight programs, National Aeronautics and Space Administration, 
1958-1960, who had a decisive role in the use of liquid hydrogen asa fuel in the upper stages of the Saturn 
launch vehicle. (Photo ca. 1955.) 
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In the spring of 1958, Silverstein transferred to NACA headquarters and began to 
assemble a staff to help him plan a space program. Others from the three laboratories 
joined in to help as called upon. By mid-year, personnel at the laboratories a nd at 
headquarters were assigned to 11 program elements.* By mid-July, a FY 1960 budget 
proposal had been prepared by Silverstein, Robert Gilruth, Morton Stoller, Edgar 
Cortright, and Newell Sanders. The space vehicle portion was $349 million and 
included vertical probes, 12 small satellites and 3 larger ones for scientific experiments, 
a satellite for an astronomical telescope, 3 communications satellites, 4 lunar probes, 
inter-planetary probes, 4 manned space capsules weighing 1140 kilograms each, a 4450 
kilogram manned satellite for biological and life science studies, and a winged vehicle 
for a recoverable space vehicle. The budget called for $80 million for propulsion 
systems, including $30 million for a single engine of 4.5 meganewtons ( 1 million lb. 
thrust), $15 million for nuclear rockets, $12 million for high energy propellants, $15 
million for a clustered rocket of 4450 kilonewtons (one million lb thrust), $5 million 
for solid rockets, and $3 million for solid propulsion components. The budget also 
called for $26. 7 million for a spaceflight staff of 1700 and $50 million for facilities , 
including a space projects center.20 On 29 July 1958, President Eisenhower signed H. R. 
12575 making it the National Aeronautics and Space Act of 1958. The NACA was 
absorbed, along with its laboratories and personnel, when NASA officially began 
operations on 1 October 1958. The new space agency was humming with activity and 
Silverstein was its chief planner and director under administrators Glennan and 
Di:yden. 

*Unmanned satellites: P. Purser. A. J . Eggers, A. Zimmerman. F. O'Sullivan ; manned spacecraft : M. 
Faget, H. Henneberry. Eggers; astronomical telescope: Zimmerman. O'Sullivan, R. T. Jones ; meteorology: 
E. Cortright , M. Stoller, Zimmerma n, O'Sullivan; communications: N. Sanders, Stoller; lunar probes: 
Brown, Stoller; internal power : Cortright , O'Sullivan, von Doenhoff; advanced rockets: A. 0. Tischler. G. 
Thibodaux; range: E. Buckley, Stoller. F. Smith ; guidance: Sanders, Stoller; other projects : Zavasky, 
Cortright. 
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Early High-Energy Upper Stages 

During the 1950s, interest in high-energy propellants for upper stages of rocket 
vehicles had steadily mounted. Such propellants were initially seen as a means for 
increasing the range of ballistic missiles, but this shifted early towards increasing the 
capability of rockets to launch satellites and space probes. The principal candidates 
were hydrazine-fluorine, hydrogen-oxygen, and hydrogen-fluorine, but none had 
reached the development stage. The coming of Sputnik and U.S. plans for a strong 
space program quickly produced action; the first high-energy upper stage authorized 
for development used liquid hydrogen-oxygen. The decision, and subsequent 
development, owed much to an earlier program, which had faltered- Suntan, the 
pro.gram to develop a high-altitude reconnaissance airplane fueled with liquid 
hydrogen (chap. 8). 

Legacy of Suntan 

The Pratt & Whitney Aircraft division of United Aircraft Corporation was 
operating the first 304 hydrogen-fueled engine in the initial series of Suntan tests at the 
Florida test center when Sputnik was launched. At that time there was no indication 
that Suntan was soon to end, but neither this possibility nor Sputnik caught the astute 
Perry Pratt napping. About two years earlier, he had recruited C. Branson Smith from 
the Hamilton Standard division of United Aircraft, and one of his first assignments 
was to study the possibilities for Pratt & Whitney's entry into the rocket field.' With the 
Rocketdyne division of North American Aviation and Aerojet-General Corporation 
the giants in the large liquid-propellant rocket engine business, and Bell Aircraft and 
the Reaction Motors division of Thiokol smaller but very aggressive, it was obvious 
that a newcomer would need to do something new and different. As the division began 
to move fast on the hydrogen-fueled engine for Suntan in early 1956, Smith found his 
answer. ln April 1956, he jotted down in his work log two subjects of potential interest: 
hydrogen as a high-energy fuel and pentaborane as a storable fuel. Smith's approach to 
rocket work was methodical: educate the staff, make an evaluation of rockets to 
establish the best type on which to concentrate, and propose an experimental contract 
to gain experience and advance the basic technology. ln May 1956, Smith briefed Pratt 
on early results. From this meeting came a decision to summarize the status of 
hydrogen rocket engine work, to consider rocket engines for aircraft auxiliary 

187 



188 LIQUID HYDROGEN AS A PROPULSION FUEL, 1945-1959 

propulsion, and to consult with Wesley Kuhrt on the air turborocket. Smith visited the 
Los Alamos Scientific Laboratory and learned about their nuclear rocket. Although 
ammonia was to be the working fluid in early tests, Los Alamos was also interested in 
using hydrogen ; the Livermore Laboratory, also working on nuclear rockets, had 
definitely planned to use hydrogen. Smith learned a great deal about hydrogen at Los 
Alamos and at the Bureau of Standards cryogenic laboratory in Boulder. He submitted 
his report on rockets to Pratt in June and revised it the next month. He concluded that: 
( 1) in the next decade the rocket would become capable of performing most military 
missions at greater speeds and altitudes than gas turbine powered aircraft, (2) the most 
immediate application for Pratt & Whitney was an auxiliary thrust rocket to increase 
aircraft performance, and (3) in the missile field the ultimate fuel was hydrogen. Smith 
saw the first step for the division as a general educational program; the second step, the 
development of a small rocket for boosting aircraft in combination with gas turbine 
engines; and the third step, to propose hydrogen for long-range ballistic missiles. 
Smith added that the division's present and anticipated experience with hydrogen 
offered an opportunity to overtake existing rocket competitors.2 .Although this is what 
happened later, Smith's recommendations did not produce immediate action. Pratt & 
Whitney was fully engrossed in the Suntan program to use hydrogen in a modified J-57 
and in developing the 304 engine. By the fall of 1956, Smith was making ca lculations of 
hydrogen and ·oxygen as coolants, and in November he visited NACA's Lewis 
laboratory to learn about work on hydrogen as a rocket fuel with oxygen and fluorine 
as oxidizers. 

On 4 April 1957, Smith and Pratt made a presentation on hydrogen-fueled rockets at 
a management meeting of United Aircraft officials.* As a result, Pratt asked Smith to 
prepare a proposal for the first phase of a hydrogen rocket program. He was to make a 
cost estimate, note the limited availability of hydrogen, and consider a possible 
substitute fuel. Apparently, the United Aircraft management was willing to get 
involved in rocket work, but not wholly convinced that liquid hydrogen was the best 
fuel. In mid-April Smith was among a group of engineers who met with the Navy on 
boron fuels . After the meeting, Pratt took Smith to visit Col. Norman C. Appold, the 
Suntan manager, at the Air Force's Air Research and Development Command 
headquarters in Baltimore. They proposed tha t Pratt & Whitney develop a liquid 
hydrogen-liquid oxygen rocket engine, but Appold was not receptive; he wanted Pratt 
& Whitney to concentrate on Suntan objectives. 

In July 1957, Smith summa rized a year's thinking about rockets. In propellant 
evaluation, he indicated that hydrogen led for vehicles requiring maximum 
performance, such as ICBMs, satellites, and space ships. Hydrogen was well-suited for 
long-range missiles and could halve the gross mass of those being developed using 
kerosene and oxygen. He also saw advantages for hydrogen for shorter-range missiles, 
particularly stages that must accelerate to very high velocities. The substitution of 
hydrogen for kerosene in the second stage of an ICBM would increase the payload 50 
percent without increasing the gross mass. Alternately, ICBMs then being developed 
could place payloads into a satellite orbit by using hydrogen in the second stage. He 
recommended to Pratt that a vigorous effort be mounted to develop a hydrogen-

• H. M. Horner, L. S. Hobbs, W. P. Gwinn, W. A. Pa rkins, and B. McNama ra . 
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oxygen rocket engine. Smith also considered boron fuels and solid propellants in his 
review and proposals to the Navy and Air Force.3 

On 25 July 1957, Smith visited the power plant laboratory at Wright Field and made 
a presentation featuring hydrogen as a rocket fuel for a 267 kilonewton (60000 lb 
thrust) second stage for an ICBM. Because of the classification of Suntan, he omitted 
telling his audience about the considerable experience Pratt &_Whitney had amassed 
with liquid hydrogen.* The reaction of the Wright Field group to Smith's presentation 
was that his results appeared reasonable, but hydrogen haCI not been pursued previ­
ously because of its high cost and low availability. Smith was encouraged enough by 
the reactions to complete a proposal in August, but nothing came of it. It was the same 
month that the first 304 hydrogen expander engine was assembled at the East Hart­
ford plant for shipment to the Florida test center and two months before Sputnik I. 

The Air Force had ample precedent, in previous work at Ohio State University in the 
1940s, to be interested in hydrogen for rockets. The fuels and propulsion panel of the 
Air Force Scientific Advisory Board foresaw the need for a hydrogen-fueled rocket a 
year before Sputnik I. At the panel's meeting on 14 November 1956, high-energy 
propellants were considered for upper stages of high-performance rockets. The panel, 
of which Abe Silverstein was a member, recommended that two rocket engines be 
developed in the 111 to 222 kilonewton (25 000-50 000 lb thrust) size using high-energy 
chemical propellants. t Liquid hydrogen-oxygen was singled out as being a 
particularly attractive high-energy combination. The panel was aware of the Air 
Force's plants which had been built to produce liquid hydrogen in quantity for the "air­
breathing super fuel program" (i.e., Suntan) and that ample quantities would be 
available for testing. The ballistic missile program used vast amounts ofliquid oxygen, 
so the panel thought the time for using the hydrogen-oxygen combination had come.4 

Although the minutes do not single out the contributions of individual members, the 
influence of Abe Silverstein is unmistakable. He had been intensely interested in liquid 
hydrogen as an aircraft fuel since 1955 and was directing a strong research program on 
it. As early as 1950, he had organized a meeting of government and industry rocket 
experts on the subject of high-energy rocket propellants for long-range missiles (p. 
76). At the 1950 meeting, the rocket group at the N ACA Lewis laboratory had 
recommended liquid hydrogen as their first choice for fuel , with hydrazine and 
ammonia as alternatives. Fluorine was the favored oxidizer, with oxygen as the 
alternate. At the time of the panel meeting, hydrazine or ammonia with fluorine, and 
hydrogen with fluorine or oxygen, were the high-energy combinations of greatest 
interest in the country. Prior to its meeting, the panel had visited the NACA Lewis 
laboratory, the Air Force power plant laboratory, and Pratt & Whitney. 

The Air Force waited over a year (until December 1957) to reply to the board's 
recommendations. With respect to rocket engines using ammonia-fluorine, the Air 
Force cited a contract with Bell Aircraft on experiments with a 156 kilonewton (35000 
lb thrust) chamber using ammonia-fluorine . With regard to hydrogen-oxygen, the Air 

• c ol. Appold, _the Air Force's Sunta n ma nager. had visited the la boratory the previous day and 
presuma bly had info rmed the staff a bout P ratt & Whitney's hydrogen experience. 

t Dr. Ma rk M. Mills was chai rman ; o ther members a ttending. besides Silverstein, were Dr. W. Duncan 
Ra nnie of JPL a nd C. l.T. and Dr. Edwa rd S. Taylor of M.LT. 
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Force commented that six months previously (about June 1957), Wright Field had 
prepared a procurement request for a liquid-hydrogen engine, but did not send it to 
industry because of NACA work with this combination. The November 1957 NACA 
firing of a liquid hydrogen-fluorine rocket(p. 92) was cited . The Air Force intended 
to follow through when NACA completed its exploratory work- an indication that 
the Air Force felt no great rush for action, two months after Sputnik 1.s This was 
consistent with the disappointments Pratt & Whitney was experiencing in trying to sell 
the Air Force a hydrogen-oxygen engine. The stimulus needed was to come later in a 
negative way- the demise of Suntan. 

During the remainder of 1957 and the early part of 1958, Smith and his group at 
Pratt & Whitney continued to work on the analysis of hydrogen cycles and the layout 
of engines with thrusts ranging from 31 to 133 kilonewtons (7000 to 30000 lb). 
Exploratory meetings were held with the Air Force, and on 4 Marth 1958, Perry Pratt 
sent to the ARDC a preliminary design and proposal for a 68 kilonewton (15000 lb 
thrust) advanced rocket engine using liquid hydrogen and liquid oxygen as 
propellants.6 It was intended for the Air Force's growing astronautics program and 
specifically for applications being developed by the Missile Systems Division of 
Lockheed Aircraft Corporation. Lockheed was studying advanced versions of its 
WS l l 7L reconnaissance satellite, and their work indicated a thrust level of about 3 I 
kilonewtons (7000 lb). Lockheed, however, wanted to use fluorine instead of oxygen 
with hydrogen. 

The hydrogen-fluorine combination produces peak performance using a smaller 
proportion of hydrogen than the hydrogen-oxygen combination; when this is coupled 
with the greater density of fluorine over oxygen, the result is a much more compact 
stage for the same thrust and duration. (Lockheed was also very interested in an even 
denser combination, hydrazine-fluorine.) 

By the spring of 1958, the Suntan management team at ARDC decided that the time 
had come for a rocket engine using liquid hydrogen to power an upper stage. 7 They 
were aware of the Lockheed studies and the efforts of Krafft Ehricke of Convair­
Astronautics to sell ARDC a Mars probe using a hydrogen-oxygen stage on top of the 
Atlas intercontinental missile. 

The Suntan team may have hedged on the selection of oxidizer. Liquid oxygen was 
the safest choice, but fluorine was also of interest.* The team coordinated the proposal 
with Brig. Gen. Marvin C. Demler, deputy commander of ARDC, and it was signed by 
Lt. Gen. Sam Anderson, the commander. The proposal was addressed to Gen. Thomas 
C. White, Air Force chief of staff, but the air staff decided to pass it to Richard E. 
Horner, the assistant secretary of the Air Force for research and development. 8 Horner 
had followed the Suntan work closely and was aware of its coming termination and the 
desirability of finding an application for the new technology. The Suntan management 
team arranged a briefing for him and brought in Pratt & Whitney representatives to 
strengthen their presentation. Horner favored the proposal , but decided it should be 

*In addition to Lockheed's interest in fluorine, three of the Suntan team- Col. Norman C. Appold, Lt. 
Col. John D. Seaberg, and Capt. J. R. Brill-had attended the NACA conference in November 1957 that 
was devoted la rgely to liquid hydrogen as a fuel, including data from the firing of a liquid hydrogen-fluorine 
rocket. 
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sent to Roy Johnson, director of the Advanced Research Projects Agency which was 
heading military space coordination. Johnson and his staff were briefed on 13 June 
1958 (the day following a briefing of the Air Council on Suntan). Horner also arranged 
for ARPA staff members to visit the Suntan liquid hydrogen facilities in July 1958. 
Richard Canright and David Young, both well acquainted with hydrogen, were greatly 
impressed at seeing liquid hydrogen being pumped through nearly a half kilometer of 
piping at Pratt & Whitney's Florida test center. The Air Force made a persuasive case 
for ARP A to choose Pratt & Whitney for the development of a liquid hydrogen rocket, 
based on the division's experience in building a hydrogen expander engine for Suntan 
and the ready availability of a large supply of liquid hydrogen.9 

While the Suntan team was making a bid within the government to develop a 
hydrogen-fueled rocket, Smith and others at Pratt & Whitney revised their March 1958 
proposal to the Air Force to conform with Lockheed Aircraft desires and resubmitted 
it on 5 May 1958. In the following weeks, the two companies cooperated in analyses 
and layouts of five different propulsion systems, all for a proposed advanced 
reconnaissance satellite. During this period there were many reviews of the work by Air 
Force and ARPA representatives. At one such meeting on 9 July 1958, Air Force, 
ARPA, Lockheed, and Pratt & Whitney representatives unanimously agreed to select 
liquid hydrogen and liquid oxygen as the propellants and a thrust level of 53.5 
kilonewtons (12000 lb). Nine days later, Pratt & Whitney engineers drafted engine 
specifications and a proposal for company approval before sending them to ARDC. 
The engine was to be developed in 18 months at a fixed price of $19.8 million.10 
Essentially the same engine was in fact developed later as the R L-10. 

In August 1958, the ARDC was authorized to proceed with the development of a 
hydrogen-oxygen engine. Its application was not for a Lockheed-built stage, however, 
but for a stage proposed by General Dynamics-Astronautics. 

Origins of Centaur 

The first rocket stage to fly using liquid hydrogen and liquid oxygen as propellants 
was the Centaur stage on top of an Atlas intercontinental ballistic missile. Centaur was 
the brainchild of Krafft Ehricke. For nearly three decades, Ehricke had prepared 
himself for the space age; when it dawned with Sputnik, he was ready. Within a month, 
he proposed a hydrogen-oxygen stage for use with the Atlas missile. Ehricke was able 
to move rapidly because previous work on the Atlas missile and the ideas of others 
about hydrogen-oxygen upper stages had laid the groundwork. 

Ehricke became a space enthusiast at the age of eleven when he was captivated by 
Fritz Lang's "Girl in the Moon," shown in Berlin in 1928. Advanced in mathematics 
and physics for his age, he appreciated the great technical detail that Hermann Oberth 
had provided to make the film realistic. Young Krafft became acquainted with 
Tsiolkovskiy's space rocket using hydrogen-oxygen, which he read about in 
Scherschevsky's Die Rakete fuer Fahrt und Flug. He also tackled Oberth's Wege zur 
Raumschiffahrt in his early teens, but was slowed by the mathematics. Ehricke 
graduated from the Technical University in Berlin (aeronautical engineering) and 
took postgraduate courses at the Humboldt University in celestial mechanics and 
nuclear physics. He was conscripted into the army, served in a Panzer division on the 
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Russian front during World War II, but was recalled and reassigned to rocket 
development work at Peenemiinde in June 1942. There he came under the strong 
influence of Walter Thiel, in charge of rocket engine development, who was killed in 
the first British air raid on Peenemiinde in October 1943. Peenemiinde, under Maj. 
Gen. Walter Dornberger and Wernher von Braun, his technical director, had a single 
purpose- the rapid development of specific weapons-and there was no official 
tolerance of work not directly related to the main goal. In spite of this, Thiel shared 
Ehricke's desire to look beyond the immediate future to greater possibilities. Thiel 
himself drew plans for testing rockets larger than any yet dreamed of-on the order of 
5-14 meganewtons ( 1-3 million lb thrust). He wanted to use natural gorges in Bavaria 
as testing sites. He talked to Ehricke about resuming his own earlier experiments with 
liquid hydrogen in small rocket thrust chambers. The experiments of Heisenberg and 
Pohl with a nuclear reactor using heavy water excited Thiel. When he heard that 
Heisenberg was planning to operate a turbine with steam heated by the heavy water 
reactor, Thiel urged Ehricke to study the possibilities of using nuclear energy for 
propulsion. Ehricke considered several working fluids, but both he and Thiel favored 
hydrogen and believed it was a fuel with a future. 11 

As the war was ending, Ehricke helped move Peenemlinde records into Bavaria, to 
keep them out of Russian hands. He made his way on foot to Berlin where he found his 
wife and went into hiding until the Western Allies moved in. He was located by the U.S. 
Army, given a six-month contract, and came to the United States to rejoin the von 
Braun team as part of the Paperclip operation.* 

Ehricke and von Braun recalled another time they had considered hydrogen. In 
1947, von Braun asked Ehricke to check a report by Richard B. Canright of the Jet 
Propulsion Laboratory on the relative importance of exhaust velocity and propellant 
density for rockets of the Y-2 size and larger (pp. 47-48). It had caught von Braun's 
attention because he and two associates had written a paper the previous year which 
Canright had cited.12 Yon Braun had found, under the assumptions of fixed tank 
volume and a relatively heavy structural mass, that propellants with the highest 
densities and reasonably high exhaust velocities had the greater ranges. Canright, on 
the other hand, found that for large rockets and his assumptions (which included a 
variable tank volume and relatively light structural mass), exhaust velocity was 
decidedly more important than density. Canright's analysis showed hydrogen to be 
superior to other fuels when using the same oxidizer. Both Ehricke and von Braun, 
familiar with Oberth's case for using hydrogen-oxygen in upper stages of rockets 
(appendix A-2), agreed that hydrogen had a good potential for certain applications. 
Practical experience with liquid hydrogen in rockets at that time, however, was still 
very small and its handling problems large. The Army, for whom von Braun and 
Ehricke worked, wanted practical propellants that could be stored and handled safely 
in the field . This convinced von Braun to stick to well tested and denser propellants, but 
Ehricke felt less restrained and hydrogen's potential remained prominent in his 
thinking. 

• Ehricke wanted to work for the Americans. and he hid each time someone knocked on his door. waiting 
for the right ca ller. One day his wife answered the door and routinely said, " I don' t know where he is." As she 
did so, she recognized the insignia of a U.S. Army officer and immediately began screaming. ''He's here' He's 
here!" Interview. 26 Apr. 1974. Paperclip was the project for bringing German rocket experts to the United 
States. 
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Fig. 49. Krafft A. Ehricke, father of the first hydrogen-oxygen stage, Centaur, shown receiving the Loesser 
award at the 1956 International Astronautical Congress, Rome. (Courtesy of F. C. Durant, Ill.) 
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In 1950, Ehricke moved with von Braun to Huntsville, Alabama, but grew restless 
with both the climate and von Braun's conservative engineering. He joined Walter 
Dorn berger at Bell Aircraft in 1952. Bell, then busy developing the Agena upper stage, 
also proved to be unable to offer Ehricke the opportunity for a breakthrough he was 
looking for; and in 1954, when K. J. Bossart of Convair contacted him to work on the 
Atlas ICBM, he was ready to move. Soon after, the Air Force established the Ballistic 
Missile Division under Brig. Gen. Bernard Schriever to accelerate development of the 
Atlas. Schriever insisted on total dedication to the job at hand and Ehricke found 
himself again in the same atmosphere as at Huntsville and Peenemunde. In Charlie 
Bossard, however, Ehricke found a man of kindred spirit who, like Walter Thiel at 
Peenemiinde, encouraged him to think beyond the immediate task. To imaginative 
Ehricke, this attitude and the climate and atmosphere of southern California were 
heaven. 

By 1956, Ehricke was conducting in-house studies of vehicles for orbiting satellites. 
He approached the Rocketdyne Division of North American Aviation to obtain 
preliminary design data on various rocket propulsion systems employing turbine­
driven pumps. He did not have much luck in getting government interest for his 
proposals, although he was a passionate believer in space exploration and a very 
persuasive person. The first week in October 1957, he visited Maj. George Colchagoff 
at ARDC headquarters. Ehricke had gotten wind of the Suntan project and was 
hoping to gain support for launching a satellite. It was the austere period under 
Secretary of Defense Charles Wilson, when "space" was out of favor. Although 
Colchagoff was receptive and personally convinced of the value of spaceflight, the 
official position made it difficult for Ehricke to round up support. On the Monday 
following Sputnik I's flight, however, Ehricke found many who indicated they had 
always favored spaceflight and now felt free to talk to him. 

Excited by the new atmosphere, Ehricke returned to San Diego and began to 
streamline his plans. A. G. Negro, a Rocketdyne applications engineer, visited Convair 
on 11 October 1957 and returned with a request for information on a small pressure-fed 
rocket engine using liquid hydrogen and liquid oxygen. It was to produce 31 
kilonewtons (7000 lb of thrust) and be capable of restart at altitude. By the end of 
October, Negro established the design characteristics of the engine, including a 
combustion pressure of 4 atmospheres and exhaust velocity of 4030 meters per 
second.13 

In December 1957, General Dynamics-Astronautics submitted a proposal to the Air 
Force en\itled, "A Satellite and Space Development Plan." It was for a four-engine, 
pressure-fed hydrogen-oxygen stage with each engine developing 31-33 kilonewtons 
(7000-7500 lb of thrust). According to Ehricke, "The reason why we selected this 
engine system in teamwork with the Rocketdyne Division of N.A.A. was simply that 
we wanted to avoid the delay by what we thought would have to be a brand new pump 
development. We were, for security reasons, not aware of the Pratt & Whitney's 
pioneer work in this field."• 4 

The Air Force did no~ buy the specific General Dynamics-Astronautics proposal, 
but in the following months activities within the government clearly foreshadowed an 
emerging space program. Among these, General Dynamics-Astronautics and Pratt & 
Whitney were brought together by the Air Force and the Advanced Research Projects 
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Agency and in August 1958 were authorized to proceed with the development of the 
Centaur stage, the first to use liquid hydrogen and liquid oxygen. 

NASA Plans, ARPA Acts 

The ink was hardly dry on the President's signature establishing NASA on 29 July 
1958 when Abe Silverstein established a committee to coordinate government plans for 
propulsion and launch vehicles. He called it an informal technical advisory committee 
for propulsion with himself as chairman. It had a flexible membership to meet the 
needs that arose.* 

At the first meeting on 7 August 1958, the agenda included high-energy upper stages. 
Recognizing that a choice of the best high-energy propellant combination depended 
upon the application and stage design, a working group was appointed to review 
available information and present it to the committee for evaluation. Headed by A. 0 . 
Tischler, a propulsion researcher Silverstein recruited from the NACA Lewis 
laboratory, the working group was instructed to give particular attention to hydrogen­
oxygen and hydrogen-fluorine. t In so doing, the Silverstein committee also agreed to 
defer a contract then under consideration by the Air Force to develop a hydrazine­
fluorine engine of 356 kilonewtons (80000 lb thrust).15 

At the second meeting of the Silverstein committee on 14 August, discussion of the 
high-energy propellant stages centered around a hydrazine-fluorine engine of 53 
kilonewtons ( 12000 lb thrust), being developed by Bell Aircraft for the Air Force, and a 
contract just awarded by Wright Field to Aerojet-General to study the feasibility of a 
hydrogen-oxygen engine of 445 kilonewtons ( 100000 lb thrust). However, no actions 
were taken on these.16 

By the time of the third meeting of the Silverstein committee on 28 August 1958, the 
Tischler working group on high-energy upper stages reported progress.t Hydrazine­
fluorine engines in thrust ranges from 27 to 90 kilonewtons (6000 to 20000 lb) were 
marginally superior to hydrogen-oxygen engines for a well-designed stage using tank 
pressurization to force propellants to the engine. A hydrogen-oxygen engine using a 
turbopump, however, was superior to a hydrazine-duorine engine of the same thrust 
using tank pressurization instead of pumping. Hydrogen-fluorine engines were lighter 
than engines using the two other propellant combinations. 17 

According to Silverstein and Tischler, this meeting provided the impetus for final 
actions by ARPA on a hydrogen-oxygen engine. Cesaro reportedly slipped out of the 
meeting and telephoned his associates to move fast on the Centaur proposaJ. 1K 

*Attendees at the initial meeting were : fo r ARPA. Dr. Arthur Stos ick and Richa rd Cesa ro; for the Air 
Force, Col. Donald Heaton, ARDC, and C. W. Schnare and William Rogers, WADC; fo r NASA. William 
Woodward a nd A. 0 . T ischler. 

tOther members: R. B. Canright and R. S. Cesaro of ARPA ; Joseph Rogers and Alfred Nelson, W ADC; 
Alfred Gardner, ARDC; a nd M. L. Moseson. NACA-Lewis. Nelson was a propulsion a na lyst a t Wright 
Field ; Schna re was the chief rocket engine expert a t Wright F ield and Joseph Rogers worked fo r him. 
Moseson was a design specialist a t NAC A-Lewis. 

tAttendees : Dr. Jack Irvine, Richa rd Cesaro for ARPA; Col. Donald Heaton. C. W. Schnare. Joseph 
Rogers. Richa rd Shaw. and B. C hasma n fo r ARDC; Lt. Col. N ils Nengtson for AOMC; Dr. Abe 
Silverstein, William Woodward , and A. 0. T ischler fo r NASA. 
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Whether for this reason or by coincidence, ARPA issued order 19-59 the following day 
(29 August), directing the commander of ARDC to initiate a high-energy fuel stage for 
use with a modified Atlas missile. The propellants were to be liquid hydrogen and 
oxygen. The propulsion system was to be either pressure-fed or pump-fed, with a total 
thrust of 133 kilonewtons (30000 lb) in single or multiple units. The final design would 
be determined after detailed studies were made by the propulsion and vehicle 
contractors and review by ARP A. Preliminary flight rating testing was to be 18 months 
from go-ahead. The sole source for the engine contract was Pratt & Whitney Aircraft 
Division of United Aircraft Corporation, and the sole source of the vehicle was 
Convair-Astronautics Division of General Dynamics Corporation. ARPA would 
review and approve the design, development, and financial plan; provide policy and 
technical guidance; arrange technical direction ; prescribe management and technical 
reports ; and receive credit for technical and scientific information released on the 
project. 19 

In essence, ARP A bought Krafft Ehricke's modified Centaur proposal, and the 
wording of its order suggests that a fast decision was made before final proposals and 
designs were determined. The commander, ARDC, designated the special projects 
office, then headed by Lt. Col. John D. Seaberg, as responsible for implementing the 
order. This was the office formerly headed by Col. Norman Appold, who managed the 
Suntan project. Seaberg and others in the office, including Majors Alfred J . Gardner, 
Jay R. Brill, and Alfred J. Diehl, had all been a part of Suntan. Two days after the 
ARP A order, Pratt & Whitney conducted the tenth and final series of tests with the 
hydrogen-fueled 304 turbojet engine. Suntan became a thing of the past and Centaur, a 
hydrogen-oxygen rocket stage on top of Atlas, rose as its replacement. All the plant, 
equipment, and technology of Suntan could now be brought to bear in assuring that 
Centaur would succeed. 

The impact of ARPA's order for Centaur was not immediately apparent to NASA, 
and Tischler's working group continued its study of high-energy upper stages, as a 
coordinated government effort. At the fourth meeting of the Silverstein committee on 
11 September 1958, the working group on high-energy propellants had not heard from 
all pertinent contractors or assimilated all the data, but Tischler reported to the parent 
committee on the tentative results. He compared three propellant combinations­
hydrogen-oxygen, hydrazine-fluorine, and hydrogen-fluorine- and systems using 
pressurized tanks versus systems using turbopumps. With payload capability as the 
criteria, conclusions were: (I) for pressurized systems, hydrogen-oxygen and 
hydrazine-fluorine were about equivalent; hydrogen-fluorine was 10-15 percent better 
in payload capacity; (2) systems with turbopumps were 5-15 percent better than 
pressurized systems; (3) hydrogen and oxygen had both been pumped successfully but 
pumping of fluorine needed further research; this reduced the comparison to pumped 
hydrogen-oxygen versus pressurized hydrazine-fluorine where the former has a 10-20 
percent greater payload capability; and (4) a 53-62 kilonewton (12000-14000 lb 
thrust) rocket engine appeared best for a Thor first stage and two such engines would 
be suitable for an upper stage of the Atlas.20 

At the fifth meeting of Silverstein's committee (25 September 1958) the agenda 
concerned liquid hydrogen pumping and storable propellants. Richard C.oar and 
Walter Doll of Pratt & Whitney Aircraft discussed their experience with liquid 
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hydrogen pumps. One pump developed for "another purpose" (i.e., Suntan) had a flow 
rate of 2.2 kilograms per second with 17 hours of operation ; a second pump had a flow 
rate of 45 kilograms per second with a delivery pressure of 54 atmospheres. They 
offered to deliver the latter pump in 18 months at a cost of $4.5 million. Stanley Gunn 
and Merle Huppert discussed Rocketdyne work on liquid-hydrogen pumps. They 
envisioned a six-stage, axial-flow pump. Tests of single stages of such a pump were 
scheduled for November, as part of the firm's work on the nuclear rocket. These 
presentations gave further evidence to the working group that pumping liquid 
hydrogen was not a major obstacle to the development of a pump-fed, hydrogen­
oxygen rocket engine.21 

Other than information exchange, the Silverstein committee took no action to 
initiate development of a high-energy upper stage. Tischler drafted plans for two sizes 
of hydrogen-oxygen engines but they were tabled. Alfred Nelson summarized high­
energy propellants, engines, and stage designs. Thrust levels varied from 31 to 600 
kilonewtons (7000 to 135000 lb). In NASA's first ten-year plan (November 1958), 
mention was made that hydrogen-oxygen upper stages in the 45 to 445 kilonewtons 
(10000 to 100000 lb thrust) range would be available.22 

One of the eight organizations whose high-energy propellant data Tischler's working 
group had studied for the Silverstein committee* was the NASA Lewis laboratory, 
where both men still had close ties. Since the Lewis research continued to influence the 
former Lewis men in NASA headquarters, a summary of it during 1958-1959 i5 
pertinent. 

Lewis Hydrogen Rocket Experiments, 1958-1959 

After their initial success in operating a hydrogen-cooled, hydrogen-fluorine rocket 
engine in November 1957 (p. 92), Howard Douglass, Glen Hennings, and Howard 
Price, Jr. continued the experiments until February 1959. Fourteen runs were made 
using the showerhead and triplet type of injectors with comparable results. A 
maximum exhaust velocity of 3455 meters per second was obtained at a flow rate that 
was 14 percent liquid hydrogen with a combustion pressure of 20 atmospheres. This 
was 97 percent of the maximum theoretical performance. The experimenters reported 
no problems relative to engine operation, starting, or stability of combustion. They 
did, however, have a number of minor problems with the injectors and with operating 
the thrust chamber beyond its design limits. Following this series of experiments, 
another team of researchers made 26 more runs with the same type of engine over a 
range of combustion pressures and exhaust nozzle expansion ratios. Earlier, Vear! 
Huff had suggested the technique of exhausting the rocket into a properly 
proportioned duct closed at the rocket end. The high-velocity rocket exhaust pumped 
the air from the duct, reducing the pressure in the immediate vicinity of the rocket 
nozzle and thereby simulated high altitude. The exhaust duct needed for silencing and 
for removing hydrogen fluoride from rockets using fluorine was ideal for the new 
purpose, so the one duct served three purposes. The nozzle altitude simulation 

*Bell Aircraft , North American Aviation, Aerojet-General, General Dynamics-Astronautics. Manin. 
Space Technology Laboratories, Wright Air Development Center. and the NASA Lewis laboratory. 
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Fig. 51. Cross-section of an injector used in experiments with an 89-kN rocket engine using liquid oxygen 
and regeneratively cooled by the liquid hydrogen. A lightweight design. the injector was a converging 
showerhead type. Measured performance was 93 percent of theoretical_ From Toma1ic. Bartoo. and 
Rollbuhler. NASA TMX-253. Apr. 1960. 

for high-performance rocket stages. His convictions were to have an important bearing 
on decisions made at the end of 1959, decisions that have determined the course of 
space vehicles to this day. 

The second value of the Lewis hydrogen research was the influence it had on other 
rocket engineers. During 1959, 92 people from 42 organizations made 60 visits to the 
Lewis rocket laboratory. While not all were interested in hydrogen, the two major 
rocket engine manufacturers, Rocketdyne and Aero jet, each made three visits; Pratt & 
Whitney, with a go-ahead in August 1958 from the Air Force to develop a hydrogen­
oxygen rocket engine for flight, made three visits during 1959. In fact, Pratt & Whitney 
representatives began visiting the Lewis rocket laboratory in 1957, much to the surprise 
of the laboratory officials who had previously found the company aloof when it came 
to exchanging information about aircraft engines.27 

Transfer of Centaur 

In October and November 1958, the Air Force let contracts with Pratt & Whitney 
and Convair to develop Centaur, the hydrogen-oxygen upper stage for Atlas. Also in 
October, NASA Administrator Keith Glennan requested ARPA Director Roy 
Johnson to transfer Centaur to NASA. This was agreed upon in principle by Deputy 
Secretary of Defense Donald Quarles by November. The Air Force, however, had 
missions requiring the Centaur vehicle and wanted to retain management control. As a 
consequence, both the Advanced Research Projects Agency and the Air Force 
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